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Abstract

When conducting inference for the average treatment effect on the treated with a Syn-

thetic Control Estimator, the vector of control weights is a nuisance parameter which is often

constrained, high dimensional, and may be only partially identified even when the average

treatment effect on the treated is point-identified. All three of these features of a nuisance pa-

rameter can lead to failure of asymptotic normality for the estimate of the parameter of interest

when using standard methods. I provide a new method yielding asymptotic normality for an

estimate of the parameter of interest, even when all three of these complications are present.

This is accomplished by first estimating the nuisance parameter using a regularization penalty

to achieve a form of identification, and then estimating the parameter of interest using moment

conditions that have been orthogonalized with respect to the nuisance parameter. I present

high-level sufficient conditions for the estimator and verify these conditions in an example in-

volving Synthetic Controls. In simulations, this Orthogonalized Synthetic Control inference

method has desirable size and power properties relative to existing inference methods.
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1 Introduction

In the context of method of moments estimation, if the moment conditions jointly identify

a subvector of the parameters, then a standard estimation method such as General Method

of Moments (GMM) is generally a consistent estimator for that subvector. However, if the

remaining subvector is unidentified, then this remaining parameter cannot be consistently

estimated and as a result the estimates for the identified subvector are not asymptotically

normal (see, for example, Andrews and Cheng (2012)), which significantly complicates in-

ference. Additionally, if a nuisance parameter is at the boundary of the parameter space or

close to the boundary relative to the sample size, then this can also result in our estimates

for the parameter of interest not being asymptotically normal (see, for example, Andrews

(1999) and Geyer (1994)). Lastly, if the full vector is high dimensional, this can complicate

standard asymptotic normality results even when the subvector we would like to perform

inference on is low dimensional. I propose an estimation method that aims to simultaneously

overcome these complications to obtain an estimate for an identified parameter of interest

that is asymptotically normal even when a nuisance parameter is partially identified, on or

near the boundary of the parameter space, and, in some cases, high dimensional.

The procedure I propose can be decomposed into three steps. In the first step, regu-

larized estimates of all parameters are found by minimizing a penalty function subject to

the constraint that the sample moment conditions are close to zero. The primary purpose

of this penalty function is to make the estimated nuisance parameter converge to a unique

element of the identified set. We must therefore choose which element of the identified set

we would like our estimate to converge to. Since this choice affects the asymptotic variance

of our subsequent estimate of the parameter of interest, I base the penalty function on an

estimate of the asymptotic variance as a function of the nuisance parameter, provided that

this asymptotic variance function can be estimated sufficiently accurately. In cases where the

asymptotic variance cannot be accurately estimated, such as when using time-series or panel

data and the degree of temporal dependence is high relative to the number of time periods,
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I discuss alternative ways of choosing the penalty function in Section 3. The second step in

my procedure is to use Neyman orthogonalization to construct a set of moment conditions

that are orthogonal with respect to the nuisance parameter. This involves introducing a new

parameter that is chosen to make the derivative of the moment conditions with respect to

the original nuisance parameter equal to zero. After the estimated nuisance parameters have

been plugged into the orthogonal moment conditions, the third step is to use these moment

conditions to re-estimate the parameter of interest. In Section 2, I give two suggestions of

how this can be done and provide asymptotic normality results for both methods.

My primary application of this approach is as a Synthetic Control Estimator (SCE)

which gives an asymptotically normal estimate of the average treatment effect on the treated

(ATT). Several other inference methods have been proposed for SCEs. The placebo method

of Abadie et al. (2010) is commonly used in practice and, as previously noted (see Abadie

et al. (2010) and Abadie et al. (2015)), corresponds to a traditional Fisher Randomization

Test when treatment is randomly assigned. While this would mean that this test have

exact size from a design-based perspective, this condition is unrealistic in most current SCE

applications. Chernozhukov et al. (2024) propose a t-test inference method based on a K-fold

cross-fitting procedure and Li (2020) propose a subsampling method. They each show that

their method has asymptotically correct size when both the number of pre-treatment time

periods T0 and post-treatment time periods T1 are large, which I also show for my method

in section 4. Chernozhukov et al. (2024) also prove that their estimator is asymptotically

normal, although it relies on the bias of their SCE being the same in the pre-treatment and

post-treatment time periods.

Several papers proposing methods closely related to the SCE have also provided asymp-

totic normality results for the estimated ATT. Arkhangelsky et al. (2021) introduce a Syn-

thetic Difference-in-Differences estimator, which involves a weighted Difference-in-Differences

regression. They establish consistency and asymptotic normality of the estimated ATT, al-

though this relies on having the number of control units go to infinity and the Euclidean
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norm of the control weights converge to zero at a sufficiently fast rate. Carvalho et al. (2018)

provide a Lasso-based estimator of the ATT that is asymptotically normal and that allows

that number of units to be large, but their inference method relies on consistently estimating

the long-run variance, unlike my method and the t-test of Chernozhukov et al. (2024). Two

other inference methods are the conformal inference method of Chernozhukov et al. (2021)

and the End-of-Sample Instability Test, originally introduced by Andrews (2003) and applied

to SCE by Cao and Dowd (2019). Chernozhukov et al. (2021)’s and Cao and Dowd (2019)’s

methods require stronger assumptions on the degree of temporal dependence, but they both

have the potential advantage that the sizes of their tests are asymptotically correct when T1

is fixed and only T0 → ∞. The asymptotic results of Li (2020) and Cao and Dowd (2019)

rely on keeping the number of control units fixed as the number of time periods grows, which

can provide a poor approximation in applications where the number of controls is not small

relative to the number of time periods. I compare my method with many of these approaches

in simulations and show that it controls size and has the highest power among the methods

that control size.

A large body of work considers inference in cases where a set of moment equations only

partially identifies a vector of parameters (e.g., Chernozhukov et al. (2007) and Romano and

Shaikh (2010)). Hansen (1996) offers a method for inference when a nuisance parameter is

unidentified under the null hypothesis, but it requires simulating the sampling distribution of

the estimated nuisance parameter. Chaudhuri and Zivot (2011) provide an inference method

for GMM estimators when a nuisance parameter may be weakly identified, and Andrews and

Cheng (2012) propose an inference method for extremum estimators when a subvector may

be weakly identified. Han and McCloskey (2019) generalize Andrews and Cheng (2012)’s

results to the case where the entire vector is allowed to be weakly identified by introducing a

method of reparameterization. Cox (2022) also builds on this work for the case of, possibly

constrained, minimum distance estimators. However, these methods generally do not allow

the vector of parameters to be high dimensional. Additionally, by only considering cases
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where the parameter of interest is identified, we can focus on conducting the estimation

in a way that makes inference simpler for that parameter (by making its estimated values

asymptotically normal) and possibly in a way that makes the estimates of that parameter

more precise (by minimizing its asymptotic variance). On the other hand, methods that

conduct inference on the whole identified set have the advantage that they can be used when

both the parameter of interest and the nuisance parameter are partially identified.

This work also extends the literature on the Neyman Orthogonalized Score. While the

technique dates back to Neyman (1959), several more recent papers have used it as a way

to achieve asymptotic normality after obtaining an estimate of a high-dimensional nuisance

parameter using a regularization penalty or machine learning technique (e.g., Belloni et al.

(2018), Ning and Liu (2017), Chernozhukov et al. (2015), Belloni et al. (2014), and Cher-

nozhukov et al. (2018)). Many of these methods estimate the nuisance parameter with

LASSO. While this can be a powerful technique when the nuisance parameter is high di-

mensional but has a sparse, point-identified value, if the nuisance parameter is partially

identified, the LASSO penalty may often be insufficient for the estimates to converge to a

specific vector. I help extend this literature by showing how the Neyman Orthogonalized

Score can be applied in cases where the nuisance parameter is partially identified. The lit-

erature on optimal instruments is also related, and in particular, Singh et al. (2020) take

a similar approach as I do here, where they choose the function of the instruments that

minimizes the estimated asymptotic variance for the parameter of interest. In section 5, I

give an example of how my method can be applied to the optimal choice of instruments.

In Section 2, I discuss how a set of moment conditions can be combined with initial

regularized estimates of the parameters to create the orthogonal moment conditions and

then how these orthogonal moment conditions can be used to estimate the parameter of

interest. I discuss this first to show what properties we want the regularized estimates of

the parameters to satisfy, and how the limiting values of the estimated nuisance parameters

influence the asymptotic variance for the estimated parameter of interest. In Section 3,
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I then show when the regularized estimates satisfy these conditions and discuss how to

adjust the procedure to handle cases where the asymptotic variance cannot be consistently

estimated. In Section 4, I show when the high level conditions in the previous sections are

satisfied for a SCE under a linear factor model structure. I apply this SCE by replicating

the work of Andersson (2019) estimating the effect of Sweden’s carbon pricing policies on

CO2 emissions. My method finds that their results are statistically significant at commonly

used levels, whereas several other methods do not. I also conduct simulations to compare

the performance of my inference method with existing approaches for SCEs. Lastly, I discuss

other applications, possible extensions, and limitations of the method in Section 5.

2 Neyman Orthogonalization

I assume that the researcher has a set of moment conditions they wish to use that are

a function of a vector of parameters θ = (β, δ) where the subvector β ∈ B ⊆ Rp is the

parameter of interest and δ ∈ Dn ⊆ RJ is a nuisance parameter. I let Θn = B ×Dn equal

the parameter space for the entire vector. I use the subscript n to highlight the fact that

the parameter space for the nuisance parameter may change as the sample size grows. This

is particularly relevant when δ is high dimensional, so J is allowed to grow with n. Then

I let g(θ) = E[
∑n

i=1 gi(θ)/n] and ĝ(θ) =
∑n

i=1 gi(θ)/n denote Q-dimensional vectors for the

population and sample moment conditions with a sample size of n. Note that since I wish

to allow for cases where observations are not identically distributed, I allow g to change

with n. I am interested in the case where these moment conditions jointly identify the true

value of the parameter of interest β, but may only partially identify δ. The true value of the

parameter of interest and the identified set of the nuisance parameter may also change with

the sample size, so I denote the identified set as

Θ0,n := {θ ∈ Θn : g(θ) = 0} = {β0,n} ×D0,n, (1)
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where β0,n is the true value of β and D0,n is the identified set for δ. Allowing for drifting

sequences of β0,n is useful for multiple reasons. First, it is useful for analyzing whether the

method is robust to β0,n being close to the boundary of the parameter space and being close

to values where δ is unidentified. Additionally, in the SCE application, β0,n corresponds to

the average of a sequence of dynamic treatment effects, so we want to allow that average to

change as our sample size changes.

Using this set of the moment conditions, the orthogonalized moment conditions are given

by

M(θ, η) = ηg(θ), (2)

where η ∈ H ⊆ Rm×Q is an additional nuisance parameter and m is the number of orthog-

onalized moment conditions. Generally, I recommend having η be unconstrained so that

H = Rm×Q, however in specific applications such as the SCE case, there can be reason to

constrain η for achieving identification as I discuss in Section 4. Because the orthogonalized

moments are linear combinations of the original moment conditions, there is no reason to

choose m > Q. Furthermore, if the q-th element of the original moment conditions gq(θ)

does not vary with β at all, then gq(β, δ0,n) = 0 for any δ0,n ∈ D0,n. Therefore, if m is

greater than the number of elements of g which are nontrivial functions of β, the elements

of M(β, δ0,n, η) = ηg(β, δ0,n) are linearly dependent functions of the elements of g(β, δ0,n),

for any fixed value of η and δ0,n ∈ D0,n. This is relevant because the orthogonalized moment

conditions are used to estimate β after plugging in values of the nuisance parameters. There-

fore, I set m equal to the number of moment conditions in g that are non-trivial functions

of β.

We want to choose η so that asymptoticallyM(θ, η) is insensitive to δ. The first step in the

estimation procedure is to obtain initial estimates of the parameters by picking values that

minimize a penalty function among all the values that make the sample moment conditions

close to zero, which I discuss how to do in Section 3. Let θ̂ = (β̂, δ̂) and η̂ be equal to

an initial regularized estimates of the parameters, and suppose that the distance from our
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estimates to the values θ0,n = (β0,n, δ0,n) and η0,n is converging to zero as n → ∞.1 Then we

want the sequence of matrices η0,n to satisfy

∂δM(θ0,n, η0,n) = 0, (3)

so that these moment conditions are not sensitive to δ at (θ0,n, η0,n). Generally, there may

exist many choices of η that satisfy this condition, particularly if rank(∂δg(θ0,n)) < Q which

may happen when δ is partially identified. Therefore, η itself can be thought of as a partially

identified nuisance parameter. By construction, ∂vec(η)M(θ0,n, η) = 0 for any θ0,n ∈ Θ0,n be-

cause g(θ0,n) = 0. Therefore, M(θ0,n, η) is also orthogonal with respect to η. This allows η

to be estimated in the same manner as δ, where a regularization penalty is used to make

η̂ converge to a specific element of the set H0,n := {η ∈ H : ∂δM(θ0,n, η) = 0}. Note that

this set depends on which δ0,n ∈ D0,n is selected, so it is necessary to either estimate δ first

or estimate δ and η jointly. This means that a penalty function will also be used to select

η̂ from among all the values of η ∈ H which make the sample moment conditions approxi-

mately orthogonal with respect to δ. This is very similar to the Neyman Near-Orthogonal

Score introduced by Chernozhukov et al. (2018), although they handle the estimation of δ

differently since they impose that the original nuisance parameter is point-identified.

Another property we want η0,n to satisfy is for M(β, δ0,n, η0,n) = η0,ng(β, δ0,n) to identify

β. However, this can be handled by choosing our penalty function so that it diverges to

infinity at values of η that make β unidentified. This naturally arises when the penalty

function is based on the asymptotic variance for our estimate of β, since the expression for

the asymptotic variance generally diverges as η approaches a point where β is unidentified.

After estimates of the nuisance parameters δ̂ and η̂ have been obtained, they can be plugged

into the sample orthogonalized moments where

1Since the dimension of δ may be growing, which metrics this holds under is key for the results below.
Assumption 2.1 contains the details on under exactly which metrics this convergence must hold.
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M̂(β, δ̂, η̂) = η̂ĝ(β, δ̂). (4)

Because of equation (3), under suitable conditions, the sample moment conditions are

not sensitive to the values of the nuisance parameters when β = β0,n and (δ̂, η̂) is close

to (δ0,n, η0,n). In my asymptotic results, I focus on the cases where the dimensions of the

parameter of interest and the moment conditions are fixed but the dimension of δ may either

be fixed or growing with the sample size. This is relevant to the SCE case where δ is the

vector of control weights, which may be of a similar size to the number of time periods.

Assumption 2.1 As n → ∞ while p and Q are fixed and either J fixed or J → ∞, we

have that

1. ||δ̂ − δ0,n||1 + ||η̂ − η0,n||1 = op(1/(log(J) log(n))).
2

2. g(θ) is twice continuously differentiable on Θn and for each q ∈ {1, ..., Q}, ||∂δgq(θ0,n)||∞ =

O(log(J)) and ||∂δĝq(θ0,n)−∂δgq(θ0,n)||∞ = Op(log(J)/
√
n) where ĝq is the q-th element

of ĝ.

3. There exists ϵ > 0 such that for each q ∈ {1, ..., Q}, supδ:||δ−δ0,n||1≤ϵ max eig(∂2
δ ĝq(β0,n, δ)) =

Op(log(J)) where ĝq is the q-th element of ĝ and max eig denotes the maximum eigen-

value of a matrix.

4. Either ||δ̂ − δ0,n||1 = op(n
−1/4/

√
log(J)) and ||η̂ − η0,n||1 = op(n

−1/4/
√
log(J)) or ĝ is

linear in θ and ||η̂∂δĝ(θ)||∞ = Op(log(J) log(n)/
√
n).

For Assumption 2.1.2, I show in Appendix B, that if a triangular array {Xi}n∈N where Xi =

{Xi1, ..., XiJ} is α-mixing with exponential speed, is mean-invariant, has uniformly bounded

fourth moments, and has an exponential-type bound on the tails of their distributions, then

max1≤j≤J |E[
∑n

i=1Xij/n] −
∑n

i=1Xij/n| = Op(log(J)/
√
n) when n, J → ∞ with J/nγ → 0

for some γ > 0. This allows for cases where there is a significant degree of dependence across

2I use || · ||1 to denote the L1 norm and || · ||∞ to denote the L∞ norm for both vectors and matrices.
Similarly, I use || · ||2 to denote both the L2 norm for vectors and the Frobenius norm for matrices.
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the observations and J is growing faster than n. This is important is some applications, such

as the SCE case, where there may be a significant degree of temporal dependence and the

length of the control weights (which corresponds to J) may be greater than n. Assumption

2.1.3 imposes that there is a bound on how locally convex or concave g is at θ0,n, which holds

trivially when g is linear in θ.

Assumption 2.1.1 imposes that distances between δ̂ and δ0,n as well as between η̂ and

η0,n using the L1 norm are converging to zero at the given rates. For δ̂, the faster that its

dimension is growing, the faster its rate of convergence must be. Furthermore, an additional

condition on its rate of convergence must be imposed when the moment conditions are a

non-linear function of δ, as shown in Assumption 2.1.4. The reason why weaker conditions

are needed when ĝ is linear in δ is because in this case, making ∂δM̂(β0,n, δ0,n, η0,n) close to

zero makes ∂δM̂(β0,n, δ, η0,n) close to zero for any δ. In cases where it is hard to achieve a rate

of convergence for the nuisance parameters that is faster than n−1/4, Mackey et al. (2018)

shows that making the moment conditions h-th order orthogonal can allow this condition to

be weakened to op(n
−1/(2h+2)). I show how to obtain δ̂ and η̂ so that Assumptions 2.1.1 and

2.1.4 are satisfied under plausible conditions in Section 3. Together with the orthogonality

condition, this gives the following adaptivity condition.

Lemma 2.1 (Adaptivity Condition) Suppose (β0,n, δ0,n) ∈ Θ0,n, η0,n satisfies equation

(3), and Assumption 2.1 holds. Then as n → ∞ with p and Q fixed with either J fixed or

J → ∞,
√
n(M̂(β0,n, δ̂, η̂)− M̂(β0,n, δ0,n, η0,n)) = op(1).

Because of this adaptivity condition, an estimator of β using M̂(β, δ̂, η̂) is asymptoti-

cally equivalent to an estimator using M̂(β, δ0,n, η0,n). One way to use these orthogonalized

moment conditions to estimate β is via a GMM estimator:

β̃GMM = argmin
β∈B

M̂(β, δ̂, η̂)′WnM̂(β, δ̂, η̂), (5)
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whereWn is am×m weighting matrix. As is common for GMM estimators, when a consistent

estimator of the asymptotic variance of
√
nM̂(θ0,n, η0,n) is available, it is most efficient to

let Wn be equal to the inverse of the estimated asymptotic variance. I discuss the choice

of Wn further in Section 3. In many cases, it is possible to show that
√
nM̂(θ0,n, η0,n) is

asymptotically normal since it is a linear function of a vector of averages. This allows for

modified versions of standard arguments for the asymptotic normality of GMM estimators

to be applied.

Assumption 2.2 As n → ∞ while Q and p are fixed and either J fixed or J → ∞, we

have that

1. supθ∈Θn
||ĝ(θ)− g(θ)||2 = op(1)

2. For all ϵ > 0, there exists γϵ such that P (supθ∈Θn:||θ−θ0,n||1<γϵ ||∂β ĝ(θ) − ∂β ĝ(θ0,n)||2 >

ϵ) → 0.

3.
√
nM̂(θ0,n, η0,n)

d→ N(0, VM) for some sequence of positive definite matrix VM .

4. ∂βM(β0,n, δ0,n, η0,n) → Mβ for some matrix Mβ with rank(Mβ) = p and ||β1 − β2||2 ≤

C||M(β1, δ0,n, η0,n)−M(β2, δ0,n, η0,n)||2 for all β1, β2 ∈ B and all n for some C > 0.

5. Wn −W
p→ 0 for some positive definite matrix W and the sequence η0,n is bounded.

6. There exists ϵ > 0 such that {β : ||β − β0,n||1 < ϵ} ⊆ B for all n.

For the uniform convergence condition in Assumption 2.1.1, I provide an example of when

this will hold in Appendix B, provided ĝ satisfies a stochastic Lipschitz continuity condition.

Note that Assumption 2.2.6 imposes that β0,n are interior points of B and bounded away

from the boundary of B since extremum estimators like the one defined by equation (5)

are generally not be asymptotically normal when the parameter is on the boundary of the

parameter space or close to the boundary. Even when ĝ is linear in β, ∂β ĝ(θ) may still vary

with δ so Assumption 2.2.2 is imposed to ensure that ∂β ĝ(β0,n, δ̂) converges to ∂β ĝ(β0,n, δ0,n)

as δ̂ converges to δ0,n. This condition trivially holds when the cross partial derivatives ∂βδĝ(θ)
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are equal to zero. Assumption 2.2.3 can be directly combined with the adaptivity condition

to show the asymptotic normality of
√
nM̂(β0,n, δ̂, η̂) and Assumption 2.2.4 guarantees the

identification of β. The penalty function can be chosen to help ensure that Assumption 2.2.4

holds and η0,n is bounded.

Because M̂(θ0,n, η0,n) involves taking sample averages, in the case where J is fixed it can

be satisfied under standard conditions that allow Central Limits Theorems to be applied. I

provide examples of this in Appendix B, including conditions that allow for quite general

forms of non-stationarity. In cases where J → ∞, arguments justifying Assumption 2.2.3 are

more complicated. However, as I show with the SCE case, when δ0,n is high dimensional but

sparse, Assumption 2.2.3 holds under very similar conditions to the low dimensional case.

As for the convergence of Wn, I discuss this further in Section 3 when describing how to

choose the weighting matrix.

For the case when the parameter of interest may be close to or at the boundary, we can

use a “One-Step” estimator β̃OS, equal to

β̃GMM − (∂βM̂(β̃GMM , δ̂, η̂)′Wn∂βM̂(β̃GMM , δ̂, η̂))−1∂βM̂(β̃GMM , δ̂, η̂)′WnM̂(β̃GMM , δ̂, η̂).

(6)

This estimator can be thought of as minimizing the quadratic approximation of the GMM

objective function at the initial estimate β̃GMM . This means that when β is unconstrained,

the estimators β̃GMM and β̃OS are identical. The conditions for the asymptotic normality of

the One-Step estimator are the same as for the GMM estimator, except β0,n is allowed to

be on the boundary or close to the boundary of the parameter space. This follows from the

same reasoning as Theorem 1 in Ketz (2018) for his “quasi-unconstrained” estimator.

Proposition 2.1 (Asymptotic Normality) Suppose (β0,n, δ0,n) ∈ Θ0,n, η0,n satisfies

equation (3), and Assumptions 2.1 and 2.2.1-2.2.5 hold. Then as n → ∞ with p and Q fixed
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with either J fixed or J → ∞,
√
n(β̃GMM − β0,n) = Op(1) and

√
n(β̃OS − β0,n)

d→ N(0, V ),

where V = (M ′
βWMβ)

−1M ′
βWVMWMβ(M

′
βWMβ)

−1. If Assumption 2.6 additionally holds,

then as n → ∞ with p and Q fixed with either J fixed or J → ∞,

√
n(β̃GMM − β0,n)

d→ N(0, V ).

Therefore, when the same weighting matrix Wn is used, the GMM and One-Step estima-

tors achieve the same asymptotic variance. When W = V −1
M , V simplifies to (M ′

βV
−1
M Mβ)

−1.

In general, the choice of the nuisance parameters may influence the precision of β̃GMM and

βOS both through changing how much variability there is in the sample moment conditions

(i.e., VM) and through how sensitive those moment conditions are to β (i.e., Mβ).

3 Regularized Estimation

I now discuss estimation of the nuisance parameters. The results in the previous section

hold for many possible values of (δ0,n, η0,n) ∈ D0,n×H0,n. For some penalty function f(θ, η),

I define the optimal nuisance parameters as

(δ0,n, η0,n) = argmin
δ∈D0,n,η∈H0,n

f(β0,n, δ, η). (7)

The primary purpose of the penalty function is to select a unique pair of elements from

the identified sets. Therefore, we want there to be unique elements of the identified sets

that minimize f(θ, η). However, the penalty not only influences whether the estimated

nuisance parameters each converge to a particular element of the identified sets, but also

which elements of the identified sets they converge to. In subsection 3.2 below, I show how
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in some cases a form of relative asymptotic efficiency can be achieved by making the penalty

function depend on the asymptotic variance of β̃GMM .

However, since the asymptotic variance is not observed, if the penalty function depends

on this, then f(θ, η) is also unknown. Since D0,n, and H0,n are unknown as well, the nuisance

parameters are chosen to minimize an estimated penalty function f̂ among all parameters

that come close to setting the sample versions of the moment conditions equal to zero. We

can define the feasible set for the regularized parameters as Θ̂0 = {θ ∈ Θn : ||ĝ(θ)||∞ ≤ λδ}

and Ĥ0 = {η ∈ Rm×Q : ||∂δηĝ(θ)||∞ ≤ λη}, where λδ and λη are tuning parameters whose

choice is discussed below. Then we can estimate the parameters using

(β̂, δ̂, η̂) = argmin
θ∈Θ̂0,η∈Ĥ0

f̂(θ, η). (8)

3.1 Rate of Convergence

For analyzing the asymptotic properties of this estimator, I consider two cases as before:

one where the dimension of δ is fixed and one where the dimension is allowed to grow with the

sample size. In the case for which J is fixed and ĝ is linear in θ, Assumption 2.1 only requires

that ||δ̂−δ0,n||1+ ||η̂−η0,n||1 = op(1/ log(n)) and ||η̂∂δĝ(β0,n, δ)||∞ = Op(n
−1/2/ log(n)). This

allows for very slow rates of convergence for δ̂ and η̂. Since ||η̂∂δĝ(θ̂)||∞ ≤ λη, in the linear

case, the second condition can be directly achieved by choosing λη to be Op(n
−1/2/ log(n)).

However, if ĝ is non-linear in δ, then we also want ||δ̂− δ0,n||2 = op(n
−1/4) and ||η̂− η0,n||2 =

op(n
−1/4) in order for Assumption 2.1.4 to hold. While this still allows for rates of convergence

slower than the standard parametric
√
n rate, stronger assumptions are imposed to satisfy

these conditions for the non-linear case.

Assumption 3.1 As n → ∞ while p and Q are fixed, and either J fixed or J → ∞, we

have that
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1. g and ĝ are continuously differentiable on Θn. For any ζ > 0,

sup
(θ,η)∈Θn×H:f(θ,η)≤f(θ0,n,η0,n)+ζ

||η||1

is bounded and the set {(θ, η) ∈ Θn ×H : f(θ, η) ≤ f(θ0,n, η0,n) + ζ} is compact for all

n.

2. For some sequences of positive constants {an}n∈N and {bn}n∈N, supθ∈Θn
||ĝ(θ)−g(θ)||∞ =

Op(an), supθ∈Θ0,n
||ĝ(θ)− g(θ)||∞ = Op(bn), supθ∈Θn

||∂δĝ(θ)− ∂δg(θ)||∞ = Op(an), and

supθ∈Θ0,n
||∂δĝ(θ)− ∂δg(θ)||∞ = Op(bn).

3. For some sequences of non-negative constants {cn}n∈N supθ∈Θ̂0,η∈Ĥ0
|f̂(θ, η)−f(θ, η)| =

Op(cn).

4. There exists constants C1, C2 > 0 such that ||g(θ)||∞ + ||∂δηg(θ)||∞ ≥ C2max{||θ −

Θ0,n||1 + ||η −H0,n||1, C1} for all θ ∈ Θ, η ∈ H.

5. There exists constants C3, C4, C5, C6 > 0 and γ1, γ2 > 0, such that for all (θ, η) ∈

Θ0,n ×H0,n |f(θ, η)− f(θ0,n, η0,n)| ≥ C4min{((||θ− θ0,n||1 + ||η− η0,n||1)γ1 , C3} and for

all (θ1, η1), (θ2, η2) ∈ Θn×H, if f(θ1, η1), f(θ2, η2) ≤ f(θ0,n, η0,n)+C5 then ||θ1−θ2||1+

||η1 − η2||1 ≥ C6|f(θ1, η1)− f(θ2, η2)|γ2 .

For the estimator defined by equation (8), both the objective function and feasible set

may be stochastic, so there can be uncertainty coming from both the estimated penalty

function and the sample moment conditions. As a result, the rate of convergence for δ̂ and η̂

depends both on the rate of convergence of the sample moments to the population moments

and the rate of convergence of the estimated penalty function.

Assumption 3.1.1 allows for the parameter spaces to not be compact, as long as the

feasible values of the parameters that make the penalty sufficiently small are compact. As-

sumption 3.1.4 can be viewed as an extension of Assumption 2.2.4. It provides a strong

identification condition for the identified sets Θ0,n and H0,n. Strong partial identification
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conditions of this form are common in the literature on estimating identified sets and are

imposed by others such as Chernozhukov et al. (2007). It holds in a variety of applications

including the case of a SCE under a linear factor model data-generating process discussed

in Section 4 but also in cases where the partial identification is caused by collinearity and

an insufficient number of instruments. Assumption 3.1 weakens the assumptions imposed

by Chernozhukov et al. (2007) by not requiring that the parameter space or the identified

sets to be compact, and it allows for the dimension of θ to be growing. Part of the reason

that these conditions can be weakened is that I do not need to show that Θ̂0 and Ĥ0 are

converging to Θ0,n and H0,n. Rather, I only need to show convergence of the feasible set on

the subset of the parameter space where f is small, which is why the compactness condition

in Assumption 3.1.1 is imposed.

Assumption 3.1.2 strengths Assumption 2.2.1 by imposing a specific rate for the uniform

convergence of the sample moment conditions. Achieving this condition is difficult in some

cases when B and Dn are not bounded, although these conditions could likely be weakened

when ||ĝ(θ)||∞ and ||η∂δĝ(θ)||∞ are convex functions. I impose a rate of convergence for

the estimated penalty function in Assumption 3.1.3 and a condition relating |f(β0,n, δ, η)−

f(θ0,n, η0,n)| to ||δ − δ0,n||1 and ||η − η0,n||1 in Assumption 3.1.5. Note that for Assumption

3.1.5, it is only necessary that among elements of D0,n and H0,n that are close to δ0,n and

η0,n, (||δ − δ0,n||1 + ||η − η0,n||1)γ1 can be bounded by f(β0,n, δ, η)− f(θ0,n, η0,n). This allows

us to guarantee that if elements of the identified sets achieve close to the minimum value of

f , then they must be close to θ0,n and η0,n. It may often be the case that (δ0,n, η0,n) is on the

boundary of the identified sets D0,n and H0,n and is not a local minimum of f(β0,n, δ, η) on

Dn ×H. This is why the second part of Assumption 3.2.5 is needed, because it allows us to

place a bound on the rate of change of f(θ, η) for values of the nuisance parameter that give

a penalty value which is not significantly greater than the value at (θ0,n, η0,n). As a result,

values just outside D0,n × H0,n should not make f much lower than f(θ0,n, η0,n). This still

allows for the possibility that f(θ, η) may diverge to infinity at some values of (θ, η), such as
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values of η where β becomes unidentified when f depends on V .

When f depends on the V , Assumption 3.1.3 often holds when f̂ is the same function

of an estimate of the asymptotic variance and V̂ is converging to V at a rate of cn. In

subsection 3.2 below, I discuss how the estimated variance is often converging at least as fast

as a rate as the sample moment conditions. Alternatively, f can be chosen to be a known

function, in which case Assumption 3.1.3 holds trivially with f̂(θ, η) = f(θ, η), so cn = 0.

Under similar regularity conditions on the sample moment conditions as before, when Θn is

compact and J is fixed, Assumption 3.1.2 often holds with an = 1/
√
n. In the case where J

is growing, an is generally growing with J but adding constraints on δ can help ensure that

it is growing slowly in J (see Remark 3.1). For the SCE case, I use f(θ, η) = ||δ||22 + ||η||22

which, along with the properties of D0,n and H0,n, allows for Assumption 3.1.5 to hold with

γ1 = 2 and γ2 = 1.

Lemma 3.1 (Rate of Convergence of Regularized Estimates) Suppose that As-

sumption 3.1 holds, and λδ, λη → 0 such that min{λδ, λη}/bn → ∞ as n → ∞ with p and Q

fixed and either J fixed or J → ∞. Then

||δ̂ − δ0,n||1 + ||η̂ − η0,n||1 = Op(max{λδ, λη, an, cn}γ2/γ1).

Lemma 3.1 requires that λδ and λη are shrinking more slowly than bn. This guarantees

that Θ0,n ⊆ Θ̂ and H0,n ⊆ Ĥ with probability approaching one. Similarly as to with an and

cn, when the identified sets are compact and J is fixed, we often have that b = 1/
√
n. We can

therefore satisfy this condition by having λη and λδ shrinking at a slightly slower rate than

an and bn (e.g., λδ, λη = Op(n
−1/2 log(n))). In such cases, we have ||δ̂−δ0,n||1+ ||η̂−η0,n||1 =

Op((n
−1/2 log(n))γ2/γ1). For the linear case, we only need ||δ̂−δ0,n||1 = op(1/ log(n)) when J is

fixed to satisfy Assumption 2.1.1 and 2.1.4, so Assumption 3.1.5 holding with any γ1, γ2 > 0

is sufficient. On the other hand, for the non-linear case, we want ||δ̂ − δ0,n||1 = op(n
−1/4)

so we need γ2/γ1 > 1. In cases where γ2/γ1 ≤ 1, one potential solution is the approach of

17



Mackey et al. (2018), where further nuisance parameters are introduced to make the moment

conditions h-th order orthogonal, in which case we only need that ||δ̂−δ0,n||2 = op(n
−1/(2h+2)).

When J → ∞, an as well as cn if cn ̸= 0 are generally growing with J . However, as long

as it is growing slowly in J and J is not growing too much faster than n, we can satisfy

Assumption 2.1.1 and 2.1.4 under similar conditions as when J is fixed.3 Having constraints

on δ is beneficial for guaranteeing an and cn grow slowly in J .

Remark 3.1 (Adding L1 norm Constraints) Suppose that we additionally add a

constraint on the L1 norm of δ to the estimator defined by equation (8) uses Θ̃n = {θ ∈

Θn : ||δ||1 ≤ λ1} as its parameter space, for some additional penalty term λ1. Furthermore,

suppose that g and ĝ are linear in θ so g(θ) = E[
∑n

i=1(X0 − X1β − X2δ)/n] and ĝ(θ) =∑n
i=1(X0,i −X1,iβ −X2,iδ)/n. Then for the uniform convergence conditions in Assumption

3.2.2, supθ∈Θ̃n
||ĝ(θ)−g(θ)||∞ ≤ ||

∑n
i=1E[X0,i]/n−

∑n
i=1 X0,i/n||∞+supβ∈B ||(

∑n
i=1 E[X1,i]/n−∑n

i=1X1,i/n)β||∞ + λ1max1≤j≤J |
∑n

i=1E[X2,j,i]/n−
∑n

i=1 X2,j,i/n|. Note that the last term

is also a bound on supθ∈Θ̃n
||∂δĝ(θ) − ∂δg(θ)||∞. In many cases, the maximum in the last

term can be growing slowly in J . Additionally, if it results in δ0,n being sparse, this can make

it easier to show that
√
nM̂(β0,n, δ0,n, η0,n) is asymptotically normal. On the other hand, if

λ1 is kept too small so that {δ : ||δ||1 ≤ λ1} ∩D0,n = ∅, then it causes Lemma 3.1 to fail to

hold. Also, further constraining δ may increase what the minimum asymptotic variance is

obtainable is.

The conditions placed on λδ and λη in Lemma 3.1 do not tell us how to choose them

in practice. Therefore, in order to reduce room for specification searching by researchers, it

is important to have an algorithm for determining these tuning parameters. One plausible

approach is based on estimating confidence sets for the identified sets Θ0,n and H0,n. When a

parameter is partially identified by some population criterion function, one way to construct

confidence sets for the identified set, used by Chernozhukov et al. (2007) and others, is to

3For example, if an = bn = cn = n−1/2 log(J) then we can choose λδ and λη to be Op(n
−1/2 log(J) log(n))

so that ||δ̂ − δ0,n||1 = Op((n
−1/2 log(J) log(n))γ2/γ1). Then as long as γ2, γ1 > 0 and J/nγ → 0 for some

γ > 0, we have that δ̂ satisfies Assumptions 2.1.1 and 2.1.4 for the linear case.
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use the set where the sample criterion function is below a particular value. This is similar

to how Θ̂0 and Ĥ0 are constructed. However, if λδ and λη are chosen so that Θ̂0 and Ĥ0 are

confidence sets for Θ0,n and H0,n, this still leaves the choice of the confidence level. In order

for min{λδ, λη}/bn → ∞, we want this confidence level to be converging to 100% as n → ∞

and there is still the question of how to choose the confidence level in practice. Furthermore,

these methods often require resampling and therefore may be computationally intensive. For

the simulation results in Section 4, I use a computationally simple method which guarantees

that Θ̂0 and Ĥ0 are non-empty but also that λδ and λη are shrinking at a rate of bn log(n).

3.2 Variance Estimation and Inference

As mentioned earlier,

V = (M ′
βWMβ)

−1M ′
βWVMWMβ(M

′
βWMβ)

−1.

Therefore, we can estimate V with

V̂ (θ̂, η̂) = (M̂ ′
βWnM̂β)

−1M̂ ′
βWnV̂M(θ̂, η̂)WnM̂β(M̂

′
βWnM̂β)

−1,

where M̂β = ∂βM̂(θ̂, η̂) and V̂M(θ̂, η̂) is an estimate of the asymptotic variance of the orthog-

onal moment conditions. In the case where the data are I.I.D., VM is simply the variance

matrix for the moment conditions, and if V̂M(θ, η) is the sample variance matrix then under

simple regularity conditions V̂M(θ̂, η̂) is
√
n-consistent when J is fixed. However, in contexts

with time series or panel data, VM often corresponds to the long-run variance of the moment

conditions.

When VM corresponds to the long-run variance and the structure of the dependence

across observations is unknown, it is common to use estimators in the class of quadratic
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Heteroscedastic Autocorrelation Consistent (HAC) variance estimators that take the form:

V̂M(θ, η) =
n∑

i=1

n∑
s=1

QK(
i

n
,
s

n
)η(gi(θ)− ĝ(θ))(gs(θ)− ĝ(θ))′η′/n, (9)

where QK(i, s) is a weighting function that depends on a smoothing parameter K. This

includes kernel variance estimators such as those of Andrews (1991) and Newey and West

(1987) as well as the orthonormal series variance estimators such as that of Phillips (2005).

For conventional Kernel HAC estimators, QK(i, s) = K((i − s)/K) where K is a kernel

and K is the bandwidth. For Series HAC estimators, QK(i, s) =
∑K

k=1 ϕk(i)ϕk(s)/K where

{ϕk(s)}Kk=1 are orthonormal basis functions taking values in [0, 1].

Asymptotic results for non-parametric long-run variance estimators that rely on K → ∞

as n → ∞ can often provide poor approximations in practice, particularly when the degree

of temporal dependence is high relative to the sample size. Intuitively, this is because the

uncertainty in our estimation of VM significantly contributes to our uncertainty in our test

statistic in these cases, but this is not captured by increasing-smoothing asymptotic results.

SCEs are often used is settings with small to moderate sample sizes and with data that display

a high degree of dependence over time, making the use of increasing-smoothing asymptotic

results particularly questionable. This is illustrated by Chernozhukov et al. (2024) who show

that their inference procedure for their SCE performs very poorly when they calculate their

standard errors using a HAC estimator and rely on increasing-smoothing asymptotic results

to obtain critical values.

The notion of fixed-smoothing asymptotics was first introduced by Vogelsang and Kiefer

(2002), Kiefer and Vogelsang (2002), and Vogelsang and Kiefer (2005). As the name suggests,

it involves keeping the degree of smoothingK fixed as the sample size grows. For both Kernel

and Series HAC estimators, this results in V̂M(θ̂, η̂) converging to a stochastic matrix. The

fact that V̂M(θ̂, η̂), and therefore V̂ (θ̂, η̂), are converging to something stochastic has several

implications for this procedure, since V̂M is potentially being used three different times. It
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may be used to estimate δ̂ and η̂, it can be used to estimate β̃GMM and β̃OS by setting

Wn = V̂M(θ̂, η̂)−1, and lastly it may be used along with β̃GMM or β̃OS to construct a test

statistic or confidence interval. If V̂ is not converging to V , then f̂ should not be a function of

V̂ in order to satisfy Assumption 3.1.3. Therefore, we want to define an alternative penalty

function. One alternative is to have f depend on a known function which upper bounds

V (θ, η). In this case, Assumption 3.1.3 can be trivially satisfied with f̂ = f . In Section 4, I

give an example of how to do this for the SCE case.

For using V̂M(θ̂, η̂) to weight the moment conditions, Hwang and Sun (2018) compare

the performance of the One-Step and Two-Step GMM estimator under a fixed-smoothing

asymptotic framework. They show that whether the Two-Step GMM procedure outperforms

the One-Step GMM procedure depends on the values of long-run correlation coefficients.

Because these long-run correlations can also not be consistently estimated under the fixed-

smoothing asymptotic framework, it is generally not clear whether the One-Step or Two-

Step GMM estimators performs better. As shown by Sun (2014a), under fixed-smoothing

asymptotics, while the One-Step GMM estimator is still asymptotically normal, the Two-

Step GMM estimator is asymptotically mixed normal. Because of this, it is easier to choose

δ̂ and η̂ to minimize an upper bound on the asymptotic variance and simpler to conduct

inference when Wn = Im. For these reasons, I focus on using Wn = Im and have the penalty

function be based on the upper bound of the asymptotic variance when fixed-smoothing

asymptotic results are relevant.

However, even when β̃GMM and β̃OS are asymptotically normal, common test statistics

can still have nonstandard limiting distributions. For example, the Wald test statistic, rather

than converging to a chi-squared distribution, converges to a distribution which depends on

the kernel or basis function and the smoothing parameter. For Kernel HAC estimators,

Sun (2014b) provides conditions under which an adjusted Wald statistic and an adjusted

t-statistic have asymptotic distributions that can be approximated by F and t distributions,

but do not converge exactly to F and t distributions. On the other hand, Sun (2013) gives
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versions of the Wald statistic and t-statistic that converge exactly to F and t distributions

when Wn = Im and a Series HAC estimator is used. Furthermore, Lazarus et al. (2021)

characterize the size-power frontier for Kernel and Series HAC estimators under a fixed-

smoothing framework and find that there is little cost to restricting attention to tests which

converge exactly to t and F distributions. I therefore focus on verifying that the conditions

of Sun (2013) for the GMM estimator with Wn = Im and V̂M being a Series HAC estimator,

with the test statistic being the standard Wald statistic defined as

Wn = n(β̃GMM − β0,n)
′V̂ (θ̂, η̂)−1(β̃GMM − β0,n),

and the t-statistic is defined as

tn =
√
n(β̃GMM − β0,n)/

√
V̂ (θ̂, η̂)

when p = 1. I impose the following conditions in order for this method to be able to conduct

valid and standard inference in a fixed-smoothing asymptotic framework.

Assumption 3.2 Suppose that with p, K, and Q fixed, and either J fixed or J → ∞,

as n → ∞, we have that

1. For all ϵ > 0, there exists γϵ, such that

P (supr∈[0,1],θ∈Θn:||θ−θ0,n||1<γϵ ||
∑⌊rn⌋

i=1 (∂βgi(β, δ)− ∂βgi(β, δ0,n))/n||2 > ϵ) → 0.

2. K ≥ p and {ϕk(x)}Kk=0 with ϕ0(x) = 1 is a sequence of continuously differentiable and

orthonormal basis functions in L2[0, 1] satisfying
∫ 1

0
ϕk(x)dx = 0.

3. Uniformly in r, λn ∈ [0, 1],
∑⌊rn⌋

i=1 ∂β ĝ(β0,n+λn(β̃GMM −β0,n), δ0,n)/n− r∂βg(θ0,n)
p→ 0.

4. V
−1/2
M

∑n
i=1 ϕk(

i
n
)η0,ngi(θ0,n)/

√
n

d→ ξk jointly for k = 0, ..., K with ξk ∼ iidN(0, Im).

Assumptions 3.2.2-3.2.4 contain the conditions imposed by Sun (2013) adjusted to this
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setting.4 Assumption 3.1.2 is satisfied for commonly used based functions. For example,

ϕk(x) =
√
2 sin(2πkx) and ϕk(x) =

√
2 cos(2πkx) satisfy the condition. However, there are

basis functions such as ϕk(x) =
√
2 sin(π(0.5 − k)x) that do not satisfy it because it does

not satisfy the mean-zero condition. Assumption 3.1.3 is standard in the literature on fixed-

smoothing asymptotics (see, for example, Vogelsang and Kiefer (2005)), and easily holds

in cases where ĝ is linear in θ. Assumption 3.2.4 holds when B̂(r) =
∑⌊rn⌋

i=1 ĝi(θ0,n)/
√
n is

converging weakly to a Gaussian process with almost surely continuous sample paths and

independent increments. In Appendix B, I show that this can hold in cases where gi(θ0,n) is

not stationary.

One additional complication that is not present in Sun (2013) or other previous fixed-

smoothing results is the plugged-in values of the nuisance parameters δ̂ and η̂. This is why

Assumption 3.2.1 is imposed. Assumption 3.2.1 can be viewed as a slightly stronger version

of Assumption 2.2.2 and it is serving the same role of bounding how sensitive ∂βgi(θ) is to δ.

This has sufficient conditions similar to Assumption 2.2.2 and also holds trivially when the

cross partial derivatives of the moment conditions are equal to zero. Additionally, similarly

to with the adaptivity condition in Lemma 2.1, we want V̂ (β0,n, δ̂, η̂) to be asymptotically

equivalent to V̂ (β0,n, δ0,n, η0,n). In order for this to be the case, I impose Assumption 2.1*,

which slightly strengthens some of the conditions of Assumption 2.1 to hold with partial

sums.

Assumption 2.1* As n → ∞ while p and Q are fixed and either J fixed or J → ∞, we

have that

1. For each q ∈ {1, ...,m}, ||∂δE[
∑t

i=1Mqt(θ0,n, η0,n)/n]||∞ → 0 uniformly over 1 ≤ t ≤ n.

2. g(θ) is twice continuously differentiable on Θn and for each q ∈ {1, ...,m}, uniformly

over 1 ≤ t ≤ n,

||∂δ
∑t

i=1 Mqi(θ0,n, η0,n)/n− ∂δE[
∑t

i=1 Mqt(θ0,n, η0,n)/n]||∞ = Op(log(J)/
√
n).

4Here, I imposed the conditions on the original moment conditions evaluated at θ0,n rather than on the

orthogonalized moment conditions used to estimate β̃GMM and β̃OS . In the proof of Proposition 3.1, I verify
that this implies that they hold for M̂(β, δ̂, η̂) under Assumption 2.1.
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3. There exists ϵ > 0 such that for each q ∈ {1, ..., Q},

sup1≤t≤n,δ:||δ−δ0,n||1≤ϵmax eig(∂2
δ

∑t
i=1 gqt(β0,n, δ)/n) = Op(log(J)).

Under Assumptions 2.1 and 2.1*, when V̂M is a Series HAC estimator,

V̂M(β0,n, δ̂, η̂)− V̂M(β0,n, δ0,n, η0,n)
p→ 0.

Since the partial sums
∑t

i=1 ηgi(θ) include fewer terms than the full sum
∑n

i=1 ηgi(θ), they

will generally be smaller asymptotically, so the bounds on partial sums in Assumptions 2.1*

will have similar sufficient conditions to before. Together with Assumption 3.2, we can show

that the Wald and t statistics will converge to F and t distributions.

Proposition 3.1 Suppose β̃GMM is estimated using equation (5) with Wn = Im and

Assumptions 2.1*, 2.1, 2.2, and 3.2 hold with K ≥ p. When n → ∞ with K, p, and Q fixed

and either J fixed or J → ∞,

K − p+ 1

pK
Wn

d→ Fp,K−p+1 and tn
d→ tK when p = 1,

where Fp,K−p+1 is an F distribution with p,K − p + 1 degrees of freedom and tK is a t-

distribution with K degrees of freedom.

Here, I’ve focused on test statistics that use β̃GMM , but because β̃OS has the same asymp-

totic distribution, Proposition 3.1 holds for the Wald and t statistics that use β̃OS estimated

with Wn = Im if we simply use β̃OS in place of β̃GMM in Assumption 3.2.3. If we were

instead to focus on asymptotics with K → ∞ where V (θ0,n, η0,n) is consistently estimated,

then we have that Wn
d→ χ2

p/p, where χ2
p is chi-squared distribution with p degrees of free-

dom, and tn
d→ N(0, 1). Note that Fp,K−p+1

d→ χ2
p/p and tK

d→ N(0, 1) as K → ∞, so

critical values obtained from the fixed-smoothing asymptotic results are approximately the

same as the critical values from increasing smoothing asymptotic results when K is large.

For applications in which increasing smoothing asymptotic results are likely to provide an

24



accurate approximation, consistency for a variety of HAC estimators has been shown under

fairly general conditions that include allowing for non-stationarity. For example, suppose

that the sequence {gi(θ0,n)}i∈N is mean-zero, α-mixing, and there exists ν > 1 such that

supi E[||gi(θ0,n)||ν2] < ∞ and
∑∞

s=1 s
2α(s)

ν−1
ν < ∞ where α(s) are the mixing coefficients.

Andrews (1991) shows that a class of Kernel HAC estimators are consistent under these

conditions if n,K → ∞ such that K2/n → 0.5

As noted in the literature, non-parametric long-run variance estimators can often be

converging to the true long-run variance at a rate faster than
√
n. For Series HAC estimators,

Phillips (2005) provides a Mean Squared Error (MSE)-optimal choice ofK under stationarity

conditions such that K = O(n4/5) and a convergence rate of n4/5 is achieved. Whereas

K = O(n2/3) when using the Coverage Probability Error (CPE)-optimal choice of Sun (2013).

Andrews (1991) provides rates of convergence for a class of Kernel HAC estimators when the

data is weakly stationary. He shows that when using a Quadratic Spectral Kernel with the

optimal choice of bandwidth, it is also possible to achieve a n4/5 rate of convergence, while

other choices still achieve a rate faster than
√
n. However, V̂ (θ, η) depends on V̂M(θ, η) and

∂βM̂(θ, η), and ∂βM̂(θ, η) is usually converging at the standard parametric rate
√
n when J

is fixed. This means that when the penalty function f depends on V and the fixed-smoothing

asymptotic results are not relevant, Assumption 3.1 usually holds with cn = n−1/2 when J is

fixed, so the estimated penalty function is often converging at the same rate as the sample

moment conditions.

Intuitively, choosing the penalty function so that the nuisance parameters are minimizing

some estimate of the asymptotic variance seems like it should provide a relatively more

efficient estimator, at least when the variance estimator is sufficiently accurate. However, if

β is not a scalar, then there may be a trade-off between more precisely estimating different

subvectors of β. However, in most applications, either β is a scalar or, if p > 1, then the

5This follows from Lemma 1 and Theorem 1(a) of Andrews (1991). The class of Kernel estimators includes
many commonly used ones such as the truncated, Bartlett, Parzen, Tukey-Hanning, and Quadratic Sprectral
kernels.
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object of interest is h(β) for some known function h : Rp → R. When β is a scalar, we can

choose f̂(θ, η) = V̂ (θ, η). If the object of interest is h(β) and h is continuously differentiable,

then
√
n(h(β̃GMM) − h(β0,n)) is asymptotically normal by the Delta method and we can

choose f̂(θ, η) = ∂βh(β)V̂ (θ, η)∂βh(β)
′.

In summary, in applications where fixed-smoothing asymptotic results provide a better

approximation due to the degree of dependence being high relative to the sample size, I

recommend: not having f̂ depend on V̂ , having Wn = Im, and using a Series HAC estimator

with K chosen according to Sun (2013). Otherwise, greater efficiency can be achieved by

having f̂ depend on V̂ , having Wn = V̂M(θ̂, η̂)−1, and having V̂M be either a Series or Kernel

HAC estimator with K chosen to provide the fastest rate of convergence.

4 Synthetic Control Application

First introduced by Abadie and Gardeazabal (2003) and Abadie et al. (2010), SCEs have

become a popular choice in contexts with panel data where a single unit becomes and stays

treated and there is a large pool of never-treated units which can be used as control units.

The method involves constructing a weighted average of the control units or a Synthetic

Control (SC) unit by minimizing the difference between this SC and the treated unit on

a set of pre-treatment predictor variables, so that this SC can be used as an estimate of

the treated unit’s counterfactual outcomes in the post-treatment time periods. I focus on

analyzing my method in this original context, where there is a single unit that becomes

and stays treated. Researchers are most commonly interested in conducting inference on

the average treatment effect on the treated unit and the weights on the control units are

a nuisance parameter, so I use β to denote the ATT and δ to denote the control weights.

When applying my method as an SCE, I refer to my estimator as the Orthogonalized SCE.
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4.1 Verifying the Conditions for the Formal Results

I first discuss how to implement the estimator as an SCE and verify the conditions

imposed in the formal results above hold when the data follow a linear factor model. Linear

factor models, also known as interactive fixed effect models, have been a common setting

to explore the properties of SCEs, beginning with Abadie et al. (2010). I index the units

{0, 1, ..., J} where i = 0 is the treated unit and J = {1, ..., J} denotes the set of control

units. The control units never receive treatment, whereas the treated unit becomes and stays

treated after a known point in time. I denote the sets of indices for time periods prior to its

treatment and after its treatment as T0 with T0 = |T0| and T1 with T1 = |T1| respectively.

Here, the asymptotics are slightly different from before because there are two variables T0

and T1 that capture our sample size rather than just n. I focus on verifying the assumptions

in the previous sections for n = min{T0, T1}.

Assumption 4.1 (Linear Factor Model) For all units i ∈ {0, ..., J} and time periods

t ∈ T0

⋃
T1, outcomes follow a linear factor model with R factors so that

Yit = βtdit + ftµi + ϵit,

where dit is an indicator function equal to 1 if and only if i = 0 and t ∈ T1 and equal to 0

otherwise. The factor loadings µi, dynamic treatment effects βt, and treatment assignment

dit are fixed, but the latent factors ft and idiosyncratic shocks ϵit are stochastic.6

I let µ denote the R× (J + 1) matrix of factor loadings with µi being its i-th column, f

denote the (T0+T1)×R matrix of realizations of the factors with ft being is t-th row, and ϵ

denote the (J+1)×(T0+T1) matrix of idiosyncratic shocks. Additionally, I use the subscript

J to denote the sub-matrix for only the units j ∈ J and the superscripts pre and post to

denote the sub-matrices for only pre-treatment and post-treatment values respectively. I

6I have the treatment effects be fixed because the parameter of interest β0,n in the previous sections was
assumed to be fixed. However, in the SCE case, generalizing the results to allow β0,n to be stochastic is
straightforward, in which case confidence intervals can then be interpreted as prediction intervals.

27



define the average treatment effect on the treated to be β0,n =
∑

t∈T1 βt/T1. This means

that β0,n may be changing as T1 grows, just as β0,n is allowed to change with the sample size

as in the previous sections. If the idiosyncratic shocks are mean-zero and the SC has the

same factor loadings as the treated unit (i.e., µ0 = µJ δ), then we can identify β0,n using the

moment condition
∑

t∈T1 E[Y0t − β − Y ′
J ,tδ]/T1 = 0. Therefore, we want to use this moment

condition plus a set of moment conditions that identify the set D0,n = {δ ∈ ∆J : µ0 = µJ δ},

where ∆J := {δ ≥ 0 : ||δ||1 = 1} is the J − 1-dimensional unit simplex.

Several of the difficulties mentioned earlier can arise in characterizing the asymptotic

distribution of the estimated average treatment effect due to its dependence on δ̂. Not only

may there be many δ ∈ D0,n so δ is partially identified, but analysis of the asymptotic

distribution of the control weights is also complicated by the fact that it is often high-

dimensional (relative to T0 and T1). Lastly, even when J is fixed and δ is point-identified,
√
T0(δ̂ − δ0,n) generally has a non-standard asymptotic distribution due to the constraints

δ̂ ∈ ∆J .7 Other inference methods, like Cao and Dowd (2019) and Li (2020), also have

the limitations of assuming that the control weights are point-identified and treating the

number of units as fixed in their asymptotic results. One exception is Zhang et al. (2023)

who obtain a
√
n-consistent estimator while allowing δ to be partially identified, and another

is Chernozhukov et al. (2024) whose method is discussed further below in subsection 4.3.

Several recent papers have discussed how to estimate the SC using a set of moment

conditions, including Fry (2024), Powell (2021), and Shi et al. (2023). A linear instrumental

variables approach along the lines of Fry (2024) or Shi et al. (2023) is the most straightforward

to verify the conditions of sections 2 and 3. In this case, the moment conditions are

g(β,δ) =

∑
t∈T0 E[Z ′

t(Y0t − YJ ,tδ)]/T0∑
t∈T1 E[Y0t − β − YJ ,tδ]/T1

 and ĝ(β, δ) =

 Zpre(Y pre′

0 − Y pre′

J δ)/T0∑
t∈T1(Y0t − β − YJ ,tδ)/T1

 ,

7This is illustrated by Li (2020) and Fry (2024) who use the method of Andrews (1999) to characterize
the asymptotic distribution of the estimated average treatment effect.
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where Zpre is a (Q − 1) × T0 matrix of containing the values of Q − 1 instruments in pre-

treatment time periods. In Fry (2024), the vector of instruments is a constant and units

which are not included in the set of controls but are also untreated in pre-treatment time

periods. The exclusion restriction E[Zqt(Y0t −
∑J

j=1 δjYjt)] = 0 holds for these other units

in pre-treatment time periods when the idiosyncratic shocks are uncorrelated across units

and the factors are uncorrelated with the idiosyncratic shocks. Intuitively, when the factors

are responsible for the covariance across units, we can guarantee that the SC has the same

exposure to latent factors as the treated unit by estimating the SC to have the same covari-

ance with other units. In the empirical application below, I provide a practical example for

how the set of instruments can be chosen.8 Other potentially valid choices of instruments

exist, such as using lagged values of the outcome variable or using shift-share instruments.

Additionally, it may be possible to reframe other estimators, such as the Debiased OLS es-

timator of Chernozhukov et al. (2024) discussed below, as method of moments estimators,

in which case the same orthogonalization technique could be employed.

Following my recommendation from section 2, I set m = 1 so η is 1×Q and there is only

a single orthogonal moment condition. This means that ∂βM(θ, η) = −ηQ where ηQ is the

Q-th element of η. Also, since there is only a single orthogonalized moment condition that

is linear in β, both the One-Step and GMM estimators in Section 2 are equivalent to picking

the value of β that sets M̂(β, δ̂, η̂) equal to zero for any positive definite weighting matrix

Wn. Therefore, the estimator is simply given by:

β̃GMM = β̃OS =
∑
t∈T1

(Y0t − YJ ,tδ̂)/T1 +

Q−1∑
q=1

η̂q/η̂Q
∑
t∈T0

Zqt(Y0t − YJ ,tδ̂)/T0.

Under Assumptions 4.2 and 4.3 below, the l-th row and q-th column of the asymptotic

8Fry (2024) also provides several model selection methods for splitting untreated units into a set of controls
and set of instruments. However, because of the potential problems for inference that using a data-driven
model selection procedure may introduce, I focus on cases where the units used as instruments are only the
units which are known to not be valid controls but plausibly valid instruments. I discuss how this can be
done when discussing the empirical application below.
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variance of the original moment conditions Vg is given by

lim
T0,T1→∞

min{T0, T1}
∑

t∈TIl=Q

∑
s∈TIq=Q

E[gl,t(θ0,n)gq,s(θ0,n)
′]/(|TIl=Q

TIq=Q
|), (10)

where Iq=Q is an indicator function that is equal to 1 if and only if q = Q. I define V̂M to be

a Series HAC estimator and V̂ (θ̂, η̂) = V̂M(θ̂, η̂)/η̂2Q. As mentioned before, fixed-smoothing

asymptotics provide a better approximation for SCE applications because of the small sample

sizes and high degree of temporal dependence in the data. Furthermore, the values of the

smoothing parameter K are often small in applications. For example, in the empirical

application below, K is equal to 4 when the method of Sun (2013) is used. Therefore, I

use the method suggested in Section 3 for such cases by not using V̂ when constructing the

penalty function f̂ . Also, for testing a null hypothesis H0,n : β0,n = β̄, I use the test statistic√
min{T0, T1}(β̃GMM − β̄)/

√
V̂ (θ̂, η̂) and critical values from a t distribution with K degrees

of freedom.

Even if the penalty function does not depend on the long-run variance estimator, we can

still choose the penalty function to be equal to an upper bound of the asymptotic variance

as a function of the nuisance parameters, where the upper bound is tight in special cases.

Because ĝ is linear in δ, each of the elements of the asymptotic variance of the original

moment conditions Vg involves a quadratic form δ′Ωδ for some positive definite matrix Ω.

Also, since V (θ, η) = ηVg(θ)η
′/η2Q where Vg(θ) is positive definite for any fixed θ ∈ Θn,

choosing f̂(θ, η) = f(θ, η) = ||δ||22 + ||η||22/η2Q minimizes an upper bound on V (θ, η) and

does not involve V̂ (θ, η). However, ||η||22/η2Q =
∑Q−1

q=1 (ηq/ηQ)
2 + 1 may not have a unique

minimum on

H0,n = {η ∈ RQ : η

E[ZpreλpreµJ ]/T0∑
t∈T1 E[λtµJ ]/T1

 = 0}.

Therefore, I normalize ηQ = 1. I show in the proof of Proposition 4.1 that this allows η0,n

to be identified. Then the penalty can simply be set to f̂(θ, η) = f(θ, η) = ||δ||22 + ||η||22 and
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have the parameter space for η be equal to H = {η ∈ RQ : ηQ = 1}. I mention when the

upper bound being minimized is tight below when discussing Assumption 4.3. In order for

Assumption 3.1 to be satisfied, I impose the following conditions:

Assumption 4.2 As T0, T1, J → ∞ while Q is fixed,

1. E[Ztϵit] = 0 for all i, t and max0≤i≤J{| 1
T0

∑
t∈T0 ||Ztϵit||1} = Op(log(J)/

√
T0).

2. Zpre′fpre/T0 = E[Zpre′fpre/T0] +Op(1/
√
T0).

3. E[Zpre′fpre/T0]
′E[Zpre′fpre/T0] → Ω0 and E[

∑
t∈T1 ft/T1] → Ω1 where Ω0 is full rank.

The sequence of factor loadings µi is uniformly bounded.

4. max0≤i≤J{| 1
T1

∑
t∈T1 ϵit|} = Op(log(J)/

√
T1) and

∑
t∈T1 ft/T1 = E[

∑
t∈T1 ft/T1]+Op(1/

√
T1).

5. D0,n is non-empty for all J > C for some integer C ≥ 1.

Assumption 4.2.1 ensures that the instruments satisfy the exclusion restriction, and As-

sumption 4.2.3 guarantees that the instruments are relevant and that there are enough of

them to identify D0,n. Furthermore, following the reasoning discussed in Remark 3.1, by

setting Dn = ∆J , the rate of convergence conditions in Assumption 4.2 guarantee that

the sample moment conditions converge to the population moment conditions at a rate of

log(J)/
√
min{T0, T1 uniformly in δ ∈ Dn. Assumption 4.2.5, imposes that once enough

control units have been added, the factor loadings of the treated unit µ0 fall in the con-

vex hull of the factor loadings of the control units. Note that the factors may not have

the same average values before and after treatment, which allows for cases where there is a

dependence between the values of the latent factors and the timing of treatment. In order

for
√
nM̂(β0,n, δ0,n, η0,n) =

√
min{T0, T1}η0,nĝ(β0,n, δ0,n) to be asymptotically normal and for

the other conditions of Propositions 2.1 and 3.1 to hold, I impose the following additional

assumption:

Assumption 4.3 As T0, T1, J → ∞ while Q and K are fixed,
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1. For q, l ∈ {1, ..., Q−1}, E[(Zpre
q ϵpre)′(Zpre

l ϵpre)/T0] → Σq,l and E[
∑

t∈T1 ϵit/
√
T1)

2] → Σi

for each i ∈ {0, ..., J}, where Σq,l are (J + 1)× (J + 1) non-stochastic positive definite

matrices and Σi are positive constants.

2. {ϕk(x)}Kk=1 are chosen to satisfy Assumption 3.2.2.

3. There exists a set P ⊂ N with |P| < ∞ and
∑

j∈P δ0,n,j = 1 for all n, where δ0,n,j is

the j-th element of δ0,n.

4. The sequence (Zt, ϵt)t∈N is α-mixing with mixing coefficients α(t).

5. There exists γ > 2 such that supt∈T0 E[||Zt(ϵ0 − ϵJ ,t)δ0,n]||γ] and supt∈T1 E[|ϵ0t −

ϵJ ,tδ0,n|γ] are bounded and
∑

t∈N α(t)
1−2/γ < ∞.

Assumption 4.3.3 imposes that the optimal control weights are sparse. This sparsity

condition is useful for verifying the identification condition in Assumption 3.1.5. It is also

useful for obtaining the asymptotic normality of ĝ(β0,n, δ0,n), since then it is sufficient to

have asymptotic normality of sample averages involving the sparse set of control units that

receive positive weight. In this context, sparsity of the optimal control weights is plausible

for two reasons. First, because there are only R latent factors, it is plausible that there exists

δ ∈ ∆J such that µ0 = µJ δ and ||δ||0 is equal to or only slightly larger than R. Second,

the simplex constraints have a tendency to select such sparse solutions, which is why most

empirical applications with many controls find sparse weights. Assumption 4.3.1 helps us

specify what the asymptotic variance of the sample moment conditions is. Along with the

mixing condition and requiring a bound on the moments of ĝ(β0,n, δ0,n), this is sufficient

to apply a Functional Central Limit Theorem to the partial sums of the sample moment

conditions, which allows for the estimator to be asymptotically normal and our t-statistic

to have a t-distribution asymptotically. Also note that the upper bound of the asymptotic

variance being minimized is tight in the special case where Σq,l = IJ+1 for all q, s ∈ {1, ..., Q}

and Σi is constant across units. This means that we should generally expect the upper bound
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to be closer to being tight when idiosyncratic shocks are homogeneous across units and the

instruments are not redundant.

Note that for δ0,n ∈ D0,n,

ĝ(β0,n, δ0,n) =

∑
t∈T0 Zt(ϵ0t − ϵ′J ,tδ0,n)/T0∑
t∈T1(ϵ0t − ϵ′J ,tδ0,n)/T1

 =

∑
t∈T0 Zt(ϵ0t −

∑
j∈P ϵjtδ0,n,j)/T0∑

t∈T1(ϵ0t −
∑

j∈P ϵj,tδ0,n,j)/T1

 .

Therefore, using the adaptivity condition of Lemma 2.1,

β̃GMM = β̃OS =
∑
t∈T1

(ϵ0t −
∑
j∈P

ϵj,tδ0,n,j)/T1 +

Q−1∑
q=1

η0,n,q
∑
t∈T0

Zqt(ϵ0t −
∑
j∈P

ϵjtδ0,n,j)/T0 + op(1).

As a result, the asymptotic distribution of the estimator depends only on a finite number of

averages of the idiosyncratic shocks and averages of the product of the idiosyncratic shocks

with the instruments. When T0 is large relative to T1, the uncertainty in β̃GMM comes from

the idiosyncratic shocks in the post-treatment time periods, whereas when T1 is large relative

to T0 the uncertainty in β̃GMM comes from the instruments and idiosyncratic shocks in the

pre-treatment time periods.

Proposition 4.1 Under Assumptions 4.1 and 4.2 for the estimator described above, the

conditions of Assumption 3.1 are satisfied with γ1 = 2, γ2 = 1, an = log(J)/
√

min{T0, T1},

bn = log(J)/
√

min{T0, T1}, and cn = 0. Furthermore, if Assumption 4.3 also holds, λδ and

λη from equation (8) satisfy max{λδ, λη}1/2 log(J) → 0, min{λδ, λη}
√

min{T0, T1}/ log(J) →

∞, and T1/T0 → a for some a > 0 as T0, T1 → ∞, then the conditions of Propositions 2.1

and 3.1 hold. More specifically, we have that

√
min{T0, T1}(β̃GMM − β0,n)/

√
V

d→ N(0, 1) and

√
min{T0, T1}(β̃GMM − β0,n)/

√
V̂ (θ̂, η̂)

d→ tK .
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For empirical applications, I use an algorithm for selecting λδ and λη so that

λδ, λη = Op(log(J) log(min{T0, T1})/
√
min{T0, T1}).

Therefore, the condition on λδ and λη in Proposition 4.1 is satisfied as long as

log(J)2 log(min{T0, T1})/
√

min{T0, T1} → 0.

This allows for J to be growing significantly faster than T0 and T1.

4.2 Empirical Application

I now explore how my method works in practice by replicating the work of Andersson

(2019) and then examining its performance in simulations fitted to their data. Andersson

(2019) evaluate the impact of Sweden’s Carbon Tax on CO2 emissions from transport per

capita in the country. The carbon tax was introduced at US $30 per ton of CO2 in 1990

and increased slightly during the 1990s to US $44 in 2000. Then, from 2001 to 2004, the

rate was increased to US $109, and as of 2023 it is around $125. When the carbon tax

was implemented, it complemented an existing energy tax and there was also an addition

of a Value-Added-Tax (VAT) of 25 percent in 1990. The primary treatment effect they are

interested in is the combined effect of the carbon tax and VAT starting in 1990 on CO2 per

capita. While we could view this as a case with two continuous treatment variables (the

Carbon tax rate and the VAT tax rate), if we are only interested in estimating the average

difference between actual CO2 per capita and CO2 per capita without the Carbon tax and

VAT, then we can view the Carbon and VAT together as a single binary treatment.

Andersson (2019) uses pre-treatment time periods of 1960 through 1989 and the post-

treatment periods of 1990 through 2005. The set of units they use as controls are the 14

OECD countries: Australia, Belgium, Canada, Denmark, France, Greece, Iceland, Japan,

New Zealand, Poland, Portugal, Spain, Switzerland, and United States. They arrived at
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this set of 14 control countries by starting with 24 other OECD countries for which data

was available. They excluded 9 of these countries: Ireland, Finland, Norway, Netherlands,

Germany, Italy, United Kingdom, Austria, Turkey, and Luxembourg. In the case of Finland,

Norway, the Netherlands, Germany, Italy, and the United Kingdom, their justification was

based on these countries implementing a Carbon tax or making significant changes to their

fuel taxes. Because these units were experiencing similar interventions, using them as controls

could lead us to underestimate the effect of the policies in Sweden. However, due in part to

Sweden being one of the first countries to adopt a Carbon tax, all these other interventions

happened in the post-treatment years of 1990 to 2005. Since the post-treatment data for

the instruments are not used, these policy changes do not necessarily present a problem

for using these countries’ CO2 per capita from transport data as instruments. In the case

of Austria and Luxembourg, their justification for excluding them was based on concerns

of “fuel tourism”. They exclude Turkey because its CO2 emissions data was significantly

different from the other OECD countries throughout the entire sample, and they exclude

Ireland based on economic shocks that happened in the post-treatment time periods which

did not also occur in Sweden.9 As discussed in Fry (2024), the key assumption for a country

to be a valid instrument unit is that the factors playing a role in determining both its CO2

emissions from transport and Sweden’s CO2 emissions from transport should be the same

as the factors playing a role in determining both its CO2 emissions from transport and

CO2 emissions from transport in the control countries, in the pre-treatment time periods.

I estimate the Orthogonalized SCE using the same set of controls as Andersson (2019) and

the set of instruments being Ireland, Finland, Norway, the Netherlands, Germany, Italy, the

United Kingdom, and a constant, although I find similar results when also excluding Ireland

from the set of instruments.

In the main specification of Andersson (2019), their predictor variables are CO2 from

transport per capita in 1970, 1980, and 1989, as well as GDP per capita, motor vehicles

9More specifically, they cite the Celtic Tiger expansion period in Ireland.
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(per 1,000 people), gasoline consumption per capita, and urban population averaged for

the period 1980–1989. They weight these predictors using the approach of Abadie et al.

(2010). As is common when the SC’s weights are constrained to be a convex combination

of the control units, the control weights they find end up being rather sparse with only

6 of the 14 control countries included receiving weight greater than 1%: Belgium (0.195),

New Zealand (0.177), Denmark (0.384), Greece (0.090), Switzerland (0.061), and the United

States (0.088). Using this SC as their counterfactual, they estimate an effect of -0.29 metric

tons of CO2 emissions per capita in an average year, which is a 10.9 percent reduction, for the

1990–2005 period. Aggregating over the total population and the 1990-2005 period, the total

cumulative reduction in emissions for the post-treatment period is 40.5 million tons of CO2.

They perform several placebo tests and robustness checks, including the popular placebo

test of Abadie and Gardeazabal (2003) and Abadie et al. (2010). This method involves

additionally estimating a synthetic unit for every control unit using the other control units.

A test statistic is then constructed for the treated unit and every control unit by calculating

the MSPE (mean squared prediction error) of each synthetic unit in the post-treatment time

periods, and then either dividing by the synthetic unit’s pre-treatment MSPE or excluding

certain synthetic units with especially large pre-treatment MSPE. A p-value can then be

calculated by looking at what quantile the treated unit’s test statistic falls in. In Andersson

(2019), when they exclude the synthetic units with a pre-treatment MSPE at least 20 times

larger than Synthetic Sweden’s pre-treatment MSPE, it leaves 9 control countries. The gap

in emissions for Sweden in the post-treatment period is the largest of all remaining countries,

giving a p-value of 1/10 = .1. When using the ratio of post-treatment MSPE to pre-treatment

MSPE, the p-value is 1/15 = .067. In both cases, the test statistic is the most extreme for

the actually treated unit, but the p-value fails to fall below the most common thresholds for

statistical significance because of the small number of control units.

When re-estimating the average treatment effect, I use the same set of pre-treatment time

periods and post-treatment time periods. The weights of Synthetic Sweden are somewhat
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Figure 1: Gap between Sweden and Synthetic Sweden

less sparse than before with the countries receiving positive weight being: Australia (0.087),

Belgium (0.113), Denmark (0.322), Greece (0.089), Japan (0.0190), New Zealand (0.105),

Switzerland (0.201), and the United States (0.064). It is unsurprising that the weights are

still sparse but with slightly more countries receiving non-zero weight since the penalty

function encourages the weights to be more spread out but the simplex constraints are still

imposed. That said, the weights are quite similar, with all 6 countries that received positive

weight before still receiving positive weight and Denmark still receiving the most weight. The

weights on the moment conditions η̂ are fairly spread out across the pre-treatment moment

conditions with the largest weight being placed on the one using the United Kingdom as

an instrument and the smallest weight being placed on the one using the Netherlands as an

instrument.10 The estimated average effect of the Carbon tax and VAT from 1990 to 2005

is a decrease of 0.26 metric tons of CO2 per capita per year, which is similar to the estimate

of Andersson (2019). Where the method introduced here allows for a more substantial

10More specifically, the weights on the pre-treatment moment conditions are: Finland (-6.166), Germany
(-10.590), Ireland (7.883), Italy (7.912), Netherlands (-0.662), Norway (11.617), United Kingdom (-22.402),
and the constant (17.882).
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difference is in terms of inference. Using the t-test described above, the p-value for the

null hypothesis that these taxes had no average effect on CO2 emissions from transport per

capita in the post-treatment time periods is 0.0067.11 This supports the results of the original

paper, by showing that under plausible assumptions, the results would be very surprising if

these policies had no effect on average. However, in addition to the method of Abadie et al.

(2010) not necessarily providing statistically significant results, if the inference methods of

Chernozhukov et al. (2021) or Cao and Dowd (2019) discussed below are used, we calculate

p-values greater than .1 causing us to fail to reject the null of no effect at common levels of

statistical significance.12 This may be due to these methods having lower power in this case.

4.3 Simulations Based on the Empirical Application

Several other methods of inference for SCEs have recently been proposed in addition to

the method of Abadie et al. (2010). I discuss the differences between these methods and the

t-test using the Orthogonalized SCE and then compare their performance in simulations.

I also compare the bias and MSE of the Orthogonalized SCE with existing variations of

the SCE. I conduct the simulations by fitting a linear factor model to the pre-treatment

CO2 emissions from transport per capita data from Andersson (2019). I first estimate the

number of factors using the Singular Value Thresholding method of Gavish and Donoho

(2014).13 Using this method, I estimate that there are five factors. I then estimate the

factor loadings and factor realizations using Principal Components Analysis. In order to

allow the number of time periods to vary, I fit the estimated values of the factors f̂ and the

residuals ϵ̂it = Yit −
∑5

r=1 f̂trµ̂ri to models and use these models for a parametric bootstrap.

11When estimating the long-run variance of the moment conditions, the smoothing parameter K is esti-
mated to be 4, illustrating the empirical relevance of the fixed-smoothing asymptotics. For the series ϕk(x),
I choose ϕk(x) =

√
2 sin(2πxk) for even k and ϕk(x) =

√
2 cos(2πxk) for odd k. Therefore, Assumption 3.2.2

is satisfied.
12Using the subsampling method with 300 iterations and a subsample size of 10 gives a p-value of .14.

Using the conformal inference method with moving block permutations gives a p-value of 0.39. Using the
End-of-Sample Instability test gives a p-value of 0.43. Using the t-test cross-fitting method of Chernozhukov
et al. (2024) with K = 3 gives a p-value of .009.

13Here, the number of factors is chosen to be equal to the number of singular values greater than the
median singular value times 2.858.
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For the factors, I fit each factor to an ARIMA model.14 For the idiosyncratic shocks, I

sample them from mean-zero normal distributions that are independent across both unit

and time. I also set each of the variances of the idiosyncratic shocks to be the same over

time but allow for heteroscedasticity across units by using the sample variance of {ϵ̂it}1989t=1960

for each i, which is consistent with my formal results. The factor loadings are fixed across

the simulation draws.

For the bias and MSE, I compare the Orthogonalized SCE to the estimators of Cher-

nozhukov et al. (2024) as well as an OLS version of the SCE which chooses the control

weights to minimize pre-treatment MSE. The OLS-SCE is the SCE analyzed by Ferman

(2021), Ferman and Pinto (2021), Li (2020), and others.15 I also compare the bias and MSE

of my estimator to a “Naive IV-SCE”, which is an estimator that uses the same control

weights estimated using the instruments, but does not perform the orthogonalization step.

In other words, it simply estimates the ATT by calculating the average difference between

the treated unit and the SC in the post-treatment time periods. For inference, I compare my

t-test procedure to several other methods that have recently been proposed in the literature.

The method that is most comparable to mine is the t-test cross-fitting procedure of

Chernozhukov et al. (2024), where the pre-treatment time periods are split into K blocks

and control weights δ̂k are estimated using OLS withholding the k-th block, Hk. This handles

the bias in estimating the control weights with OLS by subtracting
∑

t∈Hk
(Y0t−Y ′

J ,tδ̂k)/|Hk|

from
∑

t∈T1(Y0t − Y ′
J ,tδ̂k)/T1, giving K different estimates β̂k which can be averaged: β̂ =

1
K

∑K
k=1 β̂k. Their test statistic then relies on standardizing β̂ using the variation across the

estimates β̂k. Following the suggestion of Chernozhukov et al. (2024), I use K = 3 in the

simulations. While Ferman and Pinto (2021) show that using OLS to estimate δ can lead the

SCE to be asymptotically biased, Chernozhukov et al. (2024)’s debiasing approach can fix this

while avoiding the need for instruments. However, it relies on the bias being constant over

14This is done using the auto.arima() function in the forecast package in R, where AIC is used for model
selection and QMLE is used to estimate the parameters.

15As noted by Kaul et al. (2021), for this choice of predictors, this is also an optimal solution to Abadie
et al. (2010)’s algorithm for weighting predictors, one of the most commonly used methods in practice.
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time. One similarity between our approaches is that their test statistic asymptotically follows

a t-distribution but does not require consistently estimating the asymptotic variance of the

estimated ATT. Chernozhukov et al. (2024) prove that their estimator is asymptotically

normal, despite not orthogonalizing with respect to the weights. However, Chernozhukov

et al. (2024)’s result relies on each of the sets of control weights δ̂k being approximately

independent of the shocks that occur in T1 and Hk and the bias of the OLS estimator being

the same over time. In cases where the timing of treatment is influenced by the values of

the latent factors, we would usually expect the bias in the post-treatment time periods to be

different from in the pre-treatment time periods. Using Neyman orthogonalization allows us

to achieve asymptotic normality without having to impose these conditions.

Li (2020) propose a subsampling method that they show has asymptotically correct size

when both T0 and T1 are large. However, they use an I.I.D. subsampling method rather than

a block subsampling method which requires stronger independence conditions and Andrews

and Guggenberger (2010) show that subsampling and m out of n bootstrap methods can have

incorrect asymptotic size when the parameter is close to the boundary of the parameter space.

Also, they use the OLS-SCE estimator, which, as mentioned, can be asymptotically biased

in the factor model setting. Chernozhukov et al. (2021) provide a method for conformal

inference that can be used with different SCEs provided that the estimator satisfies certain

consistency conditions. For the simulations, I use the moving block version of the conformal

inference method in order to better deal with the temporal dependence of the observations.

The End-of-Sample Instability test was originally introduced by Andrews (2003), suggested

for SCE by Hahn and Shi (2017), and formally analyzed and extended by Cao and Dowd

(2019). It involves testing for a structural break in the sequence of differences between

the treated unit and SC. For the placebo method of Abadie et al. (2010), I include the

version that excludes the synthetic units with a pre-treatment MSPE at least 20 times larger

than the treated unit’s pre-treatment MSPE. Using the version that uses the ratio of post-

treatment MSPE to pre-treatment MSPE provides similar results, except has higher power
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when α = .1.16

Table 1: Main Estimation Accuracy Results

Naive Orthogonalized OLS-SCE Debiased
GMM-SCE GMM-SCE OLS-SCE

Bias Magnitude

T0 = 30,T1 = 16 0.037 0.010 0.099 0.099
T0 = 60,T1 = 16 0.014 0.002 0.093 0.047
T0 = 30,T1 = 32 0.032 0.013 0.131 0.136
T0 = 60,T1 = 32 0.022 0.002 0.107 0.089

β̂ MSE

T0 = 30,T1 = 16 0.043 0.023 0.018 0.017
T0 = 60,T1 = 16 0.038 0.011 0.015 0.007
T0 = 30,T1 = 32 0.039 0.033 0.028 0.027
T0 = 60,T1 = 32 0.041 0.010 0.019 0.013

Notes: All simulations are conducted with a thousand replications.

Chernozhukov et al. (2021)’s and Cao and Dowd (2019)’s methods require stronger con-

ditions on the idiosyncratic shocks, but they both have the potential advantage that the sizes

of their tests are asymptotically correct when T1 is fixed and only T0 → ∞. This suggests

that they may be preferable when T1 is very small. On the other hand, these methods and

the placebo method are designed to test the sharp null of no effect in every post-treatment

time period, rather than testing a null hypothesis about the ATT. While it depends on

context, usually testing the sharp null hypothesis is of less interest. When conducting the

simulations for the sizes of the tests, βt = 0 for all t ∈ T1, so both the sharp null and the

null hypothesis of β0,n = 0 are true.

Table 1 includes the results for the bias and MSE of the OLS-SCE, the Debiased OLS

method of Chernozhukov et al. (2024), the Orthogonalized SCE, and the naive IV-SCE which

skips the orthogonalization step. Although the primary purpose of the orthogonalization step

is to achieve asymptotic normality, we can see that in these simulations the orthogonalized

version of the estimator also has lower bias and MSE than the naive version. While the

Debiased OLS method does start to provide lower bias than the regular OLS estimator as T0

16For this inference method in the simulations, I also estimate the weights using OLS.
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Figure 2: Normality of the Orthogonalized SCE when T0 = 30 and T1 = 16

grows, the bias is still notable, indicting that the assumption of constant bias across the pre-

treatment and post-treatment time periods fails to hold. Overall, the Orthogonalized SCE

provides the lowest bias and the MSE results are more mixed, with the Debiased OLS-SCE

usually providing slightly lower MSE than the Orthogonalized SCE.

Figure 2 shows the histogram for estimates of β0,n for the Orthogonalized SCE from

10000 replications when the sample size is the same as in Andersson (2019). We can see that

even with this relatively small sample size, the normal approximation holds relatively well

with only slightly greater concentration near zero and slightly more outliers than would be

expected.

Table 2 contains the size results for the inference methods discussed above when the

nominal size is .1, .05, and .01. It is worth noting that the End-of-Sample Instability test

and subsampling method are more computationally intensive than the conformal inference

method and two t-test methods.17 Looking at the results, we can see that the rejection

rates for the Orthogonalized SCE are all below the nominal levels, even when there are

only four post-treatment time periods, indicting that it is succeeding in controlling size.

As T0 increases, it tends to become slightly more conservative. The conformal inference

method is similarly only experiencing very small over-rejection when T0 = 30 and T1 = 16

17The average runtime of the subsampling method is around 10 times longer and the End-of-Sample
Instability test is around 100 times longer than that the average runtime of the Orthogonalized SCE t-test.
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Table 2: Main Size Results

Orthogonalized End-of-Sample Conformal Cross-Fitting Subsampling Placebo
SCE t-test Instability test Inference t-test Method Method

Rejection Rates with α = .1

T0 = 30,T1 = 4 0.086 0.228 0.101 0.265 0.282 0.002
T0 = 30,T1 = 16 0.061 0.158 0.109 0.378 0.363 0.002
T0 = 60,T1 = 16 0.051 0.202 0.089 0.413 0.378 0.000
T0 = 30,T1 = 32 0.073 0.208 0.091 0.520 0.482 0.001
T0 = 60,T1 = 32 0.042 0.188 0.085 0.356 0.466 0.000
Rejection Rates with α = .05

T0 = 30,T1 = 4 0.045 0.190 0.033 0.164 0.212 0.000
T0 = 30,T1 = 16 0.030 0.111 0.065 0.237 0.259 0.000
T0 = 60,T1 = 16 0.023 0.162 0.053 0.267 0.287 0.000
T0 = 30,T1 = 32 0.038 0.175 0.044 0.346 0.384 0.000
T0 = 60,T1 = 32 0.027 0.159 0.035 0.227 0.357 0.000
Rejection Rates with α = .01

T0 = 30,T1 = 4 0.016 0.128 0.000 0.036 0.120 0.000
T0 = 30,T1 = 16 0.008 0.072 0.000 0.065 0.130 0.000
T0 = 60,T1 = 16 0.003 0.111 0.000 0.071 0.137 0.000
T0 = 30,T1 = 32 0.007 0.121 0.000 0.10 0.227 0.000
T0 = 60,T1 = 32 0.006 0.118 0.000 0.074 0.198 0.000

Notes: All simulations are conducted with a thousand replications.

or T1 = 4 and then also becomes more conservative as the sample size grows. The placebo

method never calculates a p-value below .05 by construction because J is too small, and

is also very conservative when α = .1. On the other hand, the cross-fitting t-test method

and the subsampling method have significant over-rejection even as T0 and T1 grow. The

over-rejection is smaller but still quite notable for the End-of-Sample Instability test.

Table 3 contains the power for the same set of inference methods. The simulations

are done under the same conditions as before, but now under the alternative hypothesis of

βt = −.5 in each post-treatment time period so β0,n = −.5. In Appendix C, I also include

the size-adjusted power. The power is adjusted for size by finding the threshold for the

p-value that makes the method’s actual size equal to the nominal size under the null, and

then seeing how often the p-value falls below this threshold under the alternative. While this

adjustment is infeasible to do in application, it is useful for comparing the power of inference

methods with very different sizes. The conformal inference method and the placebo method

generally have the lowest power, although the power of the conformal inference method
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Table 3: Main Power Results

Orthogonalized End-of-Sample Conformal Cross-Fitting Subsampling Placebo
SCE t-test Instability test Inference t-test Method Method

Rejection Rates with α = .1

T0 = 30,T1 = 4 0.808 0.849 0.696 0.975 0.282 0.168
T0 = 30,T1 = 16 0.796 0.827 0.304 0.968 1.000 0.458
T0 = 60,T1 = 16 0.902 0.889 0.655 1.000 1.000 0.020
T0 = 30,T1 = 32 0.633 0.855 0.008 0.946 0.996 0.232
T0 = 60,T1 = 32 0.900 0.888 0.034 0.970 0.998 0.000
Rejection Rates with α = .05

T0 = 30,T1 = 4 0.644 0.816 0.367 0.897 0.212 0.000
T0 = 30,T1 = 16 0.634 0.796 0.160 0.862 0.999 0.000
T0 = 60,T1 = 16 0.788 0.860 0.366 0.996 1.000 0.000
T0 = 30,T1 = 32 0.466 0.829 0.002 0.825 0.990 0.000
T0 = 60,T1 = 32 0.775 0.863 0.006 0.880 0.997 0.000
Rejection Rates with α = .01

T0 = 30,T1 = 4 0.306 0.754 0.000 0.477 0.120 0.000
T0 = 30,T1 = 16 0.259 0.746 0.000 0.451 0.995 0.000
T0 = 60,T1 = 16 0.390 0.815 0.000 0.821 0.991 0.000
T0 = 30,T1 = 32 0.160 0.780 0.000 0.443 0.972 0.000
T0 = 60,T1 = 32 0.376 0.812 0.000 0.521 0.987 0.000

Notes: All simulations are conducted with a thousand replications.

starts to increase when T1 is very small and the power of the placebo method would likely

increase if J was larger. While the cross-fitting t-test and the End-of-Sample Instability test

have higher power before adjusting for their over-rejection under the null, after adjusting for

size, the cross-fitting t-test has less power and the power of the End-of-Sample Instability

test is similar to that of the Orthogonalized SCE t-test. The subsampling method’s power

generally remains the highest even after adjusting for its size, although it drastically drops

when T1 is made very small. Overall, however, the Orthogonalized SCE t-test consistently

has the highest power of the tests that control for size in these simulations.

One potential point of caution is that in finite samples, the p-values may be fairly sensitive

to the choice of the smoothing parameterK for the Series HAC estimator. In the simulations,

I use the method of Sun (2013) to choose K and it appears to perform quite well. In

applications, it may be worth checking the robustness of statistical significance of results

to moderate changes in K. Also, one obvious drawback of this method is that it requires

a set of units to be used as instruments while the others do not. This motivates further
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investigating what are alternative sets of moment conditions that can identify the ATT in

such cases.

5 Other Applications and Limitations

5.1 Other Applications

In section 4, I focused on the traditional SCE case where there is a treated single unit

that receives some binary intervention. However, the method can be extended to other

contexts, provided that there is a set of moment conditions that identify whatever function

of treatment effects is of interest. For example, if there is a set of treated units with indices

in N1 who become treated at the same time, then the same moment equations could be used

with Y0t replaced with
∑

i∈N1
Yit/|N1|. In a staggered adoption setting, this could then be

extended by estimating separate control weights for each treatment block while using units

in other treatment blocks as instruments.18

Another potential application of this method beyond the SCE case is estimation of a

scalar regression coefficient β using many instruments. Consider the linear model

Yi = Xiβ0,n + ϵi,

where Y is our outcome variable, X is an endogenous explanatory variable, and ϵ is unob-

served. We could also extend this to include covariatesW if we use that Frisch–Waugh–Lovell

Theorem to project Y and X onto the orthogonal complement of W . Suppose we have a set

of instruments Zi = (Z1i, ..., ZJi) which each satisfy the exclusion restriction so E[Zjiϵi] = 0

for each j ∈ {1, ..., J}, but many of them may be weak or irrelevant. We can use the moment

18Since units need to be untreated during the time periods for which they are being used as instruments, it
would be important for each instrument’s moment equation to only use time periods in which that instrument
is untreated.
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condition

g(θ) = E[(Ziδ)(Yi −Xiβ)].

If we are in a context where Zi is high-dimensional, imposing the restriction that δ ∈ D :=

{δ : ||δ||1 = 1} can help us to achieve the necessary rate of convergence for δ̂ similarly as in

the SCE case and as discussed in Remark 3.1. Because the instruments satisfy the exclusion

restriction, g(θ) = E[(Ziδ)Xi(β0,n − β)]. Thus, g(θ) = 0 if and only if E[(Ziδ)Xi] = 0 or

β = β0,n. The first option can be ruled out by choosing δ̂ to minimize our estimate for the

asymptotic variance of β̃GMM (i.e., f̂(θ, η) = V̂ (θ, η)), since this expression diverges if the

linear combination of instruments is chosen to be irrelevant. As a result, it is still true that

g(β, δ0,n) identifies β.

For this application, the moment condition is already orthogonal with respect to δ when

β = β0,n, so there is no need to perform the orthogonalization step. In other words, we

can let η̂ = η0,n = 1, so that the convergence condition for η̂ is trivially satisfied. We

can let ĝ(θ) =
∑n

i=1(Ziδ)(Yi − Xiβ)/n. Since this is again a case where solving for both

β̃GMM and β̃OS is equivalent to setting a single moment condition equal to zero, our esti-

mate has the standard two-stage least squares form
∑n

i=1(Ziδ̂)Yi/n∑n
i=1(Ziδ̂)Xi/n

. If the data are identically

distributed, its asymptotic variance is Vg/E[(Ziδ0,n)Xi]
2 where Vg is the asymptotic variance

of
∑

i=1(Ziδ0,n)ϵi/
√
n. So then for some estimate of this asymptotic variance V̂g(θ), we can

define

θ̂ = argmin
β∈R,δ∈RJ

V̂g(θ)/(
n∑

i=1

(Ziδ)Xi/n)
2 such that |

n∑
i=1

(Ziδ)(Yi −Xiβ)/n| ≤ λδ, ||δ||1 = 1.

Because of the constraints, we generally choose a sparse subset of the instruments, which

provide us with a more precise estimate of β0,n. We should expect this estimator to perform

well when there is a sparse subset of strong instruments. Other methods have been proposed

for this case, such as Belloni et al. (2012) who use a two-stage estimator with LASSO used

in the first stage. They show that their estimator can be semi-parametrically efficient under
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homoscedasticity conditions. Further work is needed to compare the performance of this

estimator to existing options and explore variations (e.g., using a jackknife estimator for

β̃GMM when the data are I.I.D.).

This method could also be applied in cases where θ is point-identified but constrained.

Generally, constraints can present a complication for inference if θ0,n is at or close to the

boundary of the parameter space, but the Neyman orthogonalization allows us to handle

constraints on the nuisance parameter and the one-step estimator β̃OS allows for the param-

eter of interest to be at or near the boundary of the parameter space. One example is models

with control variables that have sign-restricted coefficients, and the number of controls can

be large if regularization can be used to achieve the rate of convergence requirements in

section 2. This can also be applied to random coefficient models, such as that of Berry et al.

(1995), since the variance parameters are constrained to be non-negative.

5.2 Inference with Full Vector Partial Identification

So far, I have assumed that the parameter of interest is point-identified. However, ideas

from this procedure may still be of use when β is also partially identified. In some cases, it

may be possible to reparametrize the model in order to obtain a point-identified subvector

we want to conduct inference on. Alternatively, if we wish to test a null hypothesis that some

vector β̄ is in the identified set for β, then we could use nM̂(β̄, δ̂, η̂)′V̂M(β̄, δ̂, η̂)−1M̂(β̄, δ̂, η̂)

to form a test statistic, where δ0,n and η0,n can be chosen to minimize V̂M(β̄, δ, η) since this

may increase the power of this test. Consider the following model:

Yi = Xiβ0,n + h(Vi, δ0,n) + ϵi,

where β ∈ R, δ ∈ RJ , and the function h is known. If both X and the elements of V are

endogenous observable variables, then we can try to identify the whole vector with a set of

instruments. However, if we have fewer instruments than the length of θ = (β, δ), then the

47



entire vector θ is partially identified. If we have a set of instruments Zi ∈ RQ and we assume

for simplicity that (Yi, Xi, Vi, Zi) is I.I.D., then the identified set is θ ∈ RJ+1 such that

E[ZiYi]− E[ZiXi]β − E[Zih(Vi, δ)] = 0.

Since β appears in all the moment conditions, we can have m = Q so η ∈ RQ×Q. Our identi-

fied set for η is similar to the SCE example where η0,n should satisfy ∂δη0,nE[Zih(Vi, δ)] = 0.

Supposing that we want to test whether β = 0 is in the identified set, we can use the

test statistic nM̂(0, δ̂, η̂)′V̂M(0, δ̂, η̂)−1M̂(0, δ̂, η̂). For any θ with β = 0, we have Vg(θ) =

E[(Zi(Yi − h(Vi, δ)))(Zi(Yi − h(Vi, δ)))
′]. Since the sampling is I.I.D., we can let V̂M be the

sample variance of the orthogonalized moment conditions. Since g is linear in β, verifying

many of the conditions in section 2 is similar to the SCE case. However, a faster rate of

convergence for ||δ̂ − δ0,n||2 is required since the moment conditions are not linear in δ. On

the other hand, the complication of δ being high-dimensional is not present. Because the

data are I.I.D., when the sample is large we are able to accurately estimate Vg and VM so it

may be reasonable to make f̂ a function of V̂M .

Partial identification of θ can also arise when the number of moment conditions exceeds

the number of parameters to be estimated. For example, Chalak and Kim (2024) study

measurement error models where the latent factors and the observable proxies for the latent

factors can both directly affect the outcome variable. They find that under independence

conditions on the errors, higher order moment conditions can be used to partially identify the

entire vector. Here, the identified set is a finite set of points. If we are interested in testing a

particular null hypothesis for a subvector we could take the same approach discussed above.

However, in this case, identification for the whole vector or a subvector can be achieved by

placing sign restrictions on either the entire vector of parameters or a subvector respectively.

This can place us in the case where β0,n is point-identified and θ is constrained, in which

case this method can be employed as previously discussed.
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5.3 Weak Identification Cases

Assumption 3.1.4 can be considered a strong partial identification condition, as it bounds

how far values of δ can be from its identified set in terms of how small the value of δ makes the

population moment conditions at β0,n. This means the results in the previous sections allow

for δ to be strongly point-identified, strongly partially identified, or completely unidentified,

but cases of weak identification have been ruled out. Weak identification of D0,n can present

a problem for this method because it relies on being able to consistently estimate an element

of the identified set δ0,n which, roughly speaking, relies on being able to consistently estimate

the identified set D0,n. This cannot be done when D0,n is weakly identified, but whether δ̂ is

converging to an element of D0,n be may still influence the asymptotic distribution of β̃GMM

and β̃OS.

To illustrate the problem, consider the example of the non-linear regression model,

Yi = β0,nh(Xi, δ0,n) + Ui,

where Y and X are observed and the function h is known. Suppose the moment conditions

g(β, δ) = E[XiUi] = E[Xi(Yi − βh(Xi, δ))] and ĝ(β, δ) =
∑n

i=1(Xi(Yi − βh(Xi, δ)))/n are

used. Here, D0,n = RJ when β0,n = 0 and D0,n contains a single element δ0,n otherwise under

restrictions on h. When β0,n/λδ → b ∈ [0,∞), the feasible values for δ̂ generally expand

to include all of RJ , whereas when β0,n/λδ → ∞, Θ̂0 shrinks to just include a single point.

While standard estimators of β are asymptotically normal when
√
nβ0,n → ∞, they are

√
n-

consistent but not asymptotically normal in the weak identification case of
√
nβ0,n → b ∈

[0,∞) (see, Andrews and Cheng (2012) and Han and McCloskey (2019)). When δ is weakly

identified, the orthogonalized estimators β̃GMM and β̃OS are
√
n-consistent by a similar

reasoning as with standard estimators. However, they are generally not asymptotically

normal. For example, in the case with
√
nβ0,n → b, β0,n/λδ → 0 so δ̂ converges to the global

minimizer of f(β0,n, δ, η) on RJ , say δ∗. This may in turn result in η̂ converging to a different
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value η∗. Using the adaptivity condition, we would then expect that
√
nM̂(β0,n, δ̂, η̂) =

√
nM̂(β0,n, δ

∗, η∗) + op(1). While
√
nM̂(β0,n, δ

∗, η∗) may still be asymptotically normal, it is

not centered around zero unless
√
nβ0,n → 0. As a result, β̃GMM and β̃OS generally have

non-standard limiting distributions. On the other hand, when
√
nβ0,n → ∞, it is possible

to consistently estimate δ0,n, so the method works similarly to before. Hence, the problem

arises when
√
nβ0,n → b ∈ (0,∞). Intuitively, this is because we either want to be close

enough to the unidentified case where the true value of δ is irrelevant (i.e.,
√
nβ0,n → 0

so
√
nM(β0,n, δ

∗, η∗) → 0) or close enough to the strongly identified case where we can

accurately estimate δ0,n (i.e.,
√
nβ0,n → ∞ so ||δ̂ − δ0,n||1

p→ 0).

Appendix A

Proof of Lemma 3.1: I first show that ||θ̂ − θ0,n||1
p→ 0 and ||η̂ − η0,n||1

p→ 0, both

when J fixed and when J → ∞. Let ϵ > 0 and let Nϵ(θ0,n, η0,n) be an open ϵ-ball using the

|| · ||1 norm centered at (θ0,n, η0,n). For some ζ > 0 to be specified below, let S0 := {(θ, η) ∈

Θ0,n × H0,n : f(θ, η) ≤ f(θ0,n, η0,n) + ζ}. Then let τ = dH(S0, {(θ0,n, η0,n)}, || · ||1), where

dH(, , || · ||1) denotes the Hausdorff distance using the || · ||1 norm. Note Nϵ(θ0,n, η0,n)∩S0 = ∅

exactly when τ < ϵ, so Nmin{ϵ,τ/2}(θ0,n, η0,n)∩ S0 ̸= ∅ for all n. Because S0 is compact and f

is continuous on S0 for each n by Assumption 3.1.1, S0∩N c
min{ϵ,τ/2}(θ0,n, η0,n) is also compact

for each n. Then we can define

γ := min
(θ,η)∈S0∩Nc

min{ϵ,τ/2}(θ0,n,η0,n)
f(θ, η)− f(θ0,n, η0,n).

Note that by Assumption 3.1.5,

C6|f(θ1, η1)− f(θ2, η2)|γ2 ≤ ||θ1 − θ2||1 + ||η1 − η2||1

when f(θ1, η1), f(θ2, η2) ≤ f(θ0,n, η0,n)+C5. So if ζ is chosen such that ζ ≤ C5, then it holds
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that there exists κ such that for all (θ1, η1), (θ2, η2) ∈ S := {(θ, η) ∈ Θn × H : f(θ, η) ≤

f(θ0,n, η0,n) + ζ}, if ||θ1 − θ2||1 + ||η1 − η2||1 < κ, then |f(θ1, η1)− f(θ2, η2)| < γ/4. Letting

Sκ
0 denote the closed κ blowup of S0 using the || · ||1 norm, we obtain that:

min
(θ,η)∈Sκ

0∩Nc
min{ϵ,τ/2}(θ0,n,η0,n)

f(θ, η)− f(θ0,n, η0,n) > 3/4γ.

Note that since (θ̂, η̂) ∈ Θ̂0 × Ĥ0, then

(θ̂, η̂) ∈ Ŝ0 := {(θ, η) ∈ Θ̂0 × Ĥ0 : f(θ, η) ≤ f(θ0,n, η0,n) + ζ}

when |f(θ̂, η̂)−f(θ0,n, η0,n)| ≤ 3/4γ as long as ζ is chosen so that ζ ≥ 3/4γ. Therefore, since

dH(Ŝ0, S0; || · ||1) < κ implies Ŝ0 ⊂ Sκ
0 , it follows that

P (||θ̂ − θ0,n||1 + ||η̂ − η0,n||1 < ϵ) ≥ P (||θ̂ − θ0,n||1 + ||η̂ − η0,n||1 < min{ϵ, τ/2})

≥ P (|f(θ̂, η̂)− f(θ0,n, η0,n)| ≤ 3/4γ; dH(Ŝ0, S0, || · ||1) < κ).

Let (θp, ηp) = argmin(θ,η)∈Ŝ0
||θ − θ0,n||1 + ||η − η0,n||1. If dH(Ŝ0, S0, || · ||1) < κ, then

||θp − θ0,n||1 + ||ηp − η0,n||1 < κ and therefore f(θp, ηp) < f(θ0,n, η0,n) + γ/4. By definition of

θ̂ and η̂, f̂(θ̂, η̂) ≤ f̂(θp, ηp). This implies

f(θ̂, η̂)− f(θp, ηp) ≤ |f̂(θ̂, η̂)− f(θ̂, η̂)|+ |f̂(θp, ηp)− f(θp, ηp)|.

Thus f(θp, ηp) < f(θ0,n, η0,n) + γ/4 and |f̂(θ̂, η̂) − f(θ̂, η̂)| + |f̂(θp, ηp) − f(θp, ηp)| < γ/4

together imply f(θ̂, η̂) − f(θ0,n, η0,n) < γ/2, in which case ||θ̂ − θ0,n||1 + ||η̂ − η0,n||1 < ϵ.

Therefore, we have that

P (||θ̂ − θ0,n||1 + ||η̂ − η0,n||1 < ϵ)

≥ P (|f̂(θ̂, η̂)− f(θ̂, η̂)|+ |f̂(θp, ηp)− f(θp, ηp)| < γ/4; dH(Ŝ0, S0, || · ||1) < κ)
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≥ P (2 sup
(θ,η)∈Θ̂0×Ĥ0

|f(θ, η)− f̂(θ, η)| < γ/4; dH(Ŝ0, S0, || · ||1) < κ).

Then because sup(θ,η)∈Θ̂0×Ĥ0
|f(θ, η) − f̂(θ, η)| = Op(cn) and dH(Ŝ0, S0, || · ||1) = Op(an)

by Lemma B1, we have that ||θ̂− θ0,n||1 + ||η̂ − η0,n||1 < ϵ with probability approaching one

(wpa1). So ||θ̂ − θ0,n||1 = op(1) and ||η̂ − η0,n||1 = op(1).

Now I show the rate of convergence for ||θ̂ − θ0,n||1 and ||η̂ − η0,n||1. Let {ϵn}n∈N be a

decreasing sequence where ϵn > 0 and ϵn → 0. Let

S0 := {(θ, η) ∈ Θ0,n×H0,n : f(θ, η) ≤ f(θ0,n, η0,n)+ζ; ||θ−θ0,n||1+||η−η0,n||1 < min{C3, C5}/2},

Ŝ0 := {(θ, η) ∈ Θ̂0 × Ĥ0 : f(θ0,n, η0,n) + ζ; ||θ − θ0,n||1 + ||η − η0,n||1 < min{C3, C5}/2}, and

S := {(θ, η) ∈ Θn×H : f(θ, η) ≤ f(θ0,n, η0,n)+ζ; ||θ−θ0,n||1+ ||η−η0,n||1 < min{C3, C5}/2}.

By the consistency of θ̂ and η̂, (θ̂, η̂) ∈ Ŝ0 wpa1, so since Ŝ0 ⊆ Θ̂0 × Ĥ0,

(θ̂, η̂) = argmin
(θ,η)∈Ŝ0

f̂(θ, η) wpa1.

Similarly to before, let τn = dH(S0, {(θ0,n, η0,n)}, || · ||1) and let Nϵ(θ0,n, η0,n) be an open ϵ-ball

centered at (θ0,n, η0,n) so that S0∩N c
min{ϵn,τn/2}(θ0,n, η0,n) ̸= ∅ for all n. Because S0 is compact

for each n, so S0 ∩N c
min{ϵn,τn/2}(θ0,n, η0,n) is compact for each n.

By Assumption 3.2.5, for any (θ, η) ∈ Θ0,n ×H0,n, we have that

|f(θ0,n, η0,n)− f(θ, η)| ≥ C4min{||θ − θ0,n||γ11 + ||η − η0,n||γ11 , C3}.

Then for sufficiently large n, 2ϵγ1n < C3 so

νn := min
(θ,η)∈S0∩Nc

ϵn(θ0,n,η0,n)

f(θ, η)− f(θ0,n, η0,n) ≥ 2C4ϵ
γ1
n

for all (θ, η) with ||θ−θ0,n||1, ||η−η0,n||1 ≤ ϵn. Also by Assumption 3.2.5, for all (θ1, η1), (θ2, η2) ∈
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S,

C6|f(θ1, η1)− f(θ2, η2)|γ2 ≤ ||θ1 − θ2||1 + ||η1 − η2||1.

Let κn = C6/4ν
1/γ2
n . So when κn < C5, ||θ − θ0,n||1 + ||η − η0,n||1 < κn implies |f(θ1, η1) −

f(θ2, η2)| < ν
1/γ2
n /4. Let Sκn

0 denote the closed κn blowup of S0 using the || · ||1 norm. We

have that for all (θ, η) ∈ Sκn
0 , in which case we obtain that:

min
(θ,η)∈Sκn

0 ∩Nc
min{ϵ,τn/2}(θ0,n,η0,n)

f(θ, η)− f(θ0,n, η0,n) > 3/4ν1/γ2
n .

Therefore, since dH(Ŝ0, S0; || · ||1) < κn implies Ŝ0 ⊂ Sκn
0 , it follows that for n sufficiently

large

P (||θ̂−θ0,n||1+||η̂−η0,n||1 < ϵn) ≥ P (|f(θ̂, η̂)−f(θ0,n, η0,n)| ≤ 3/4ν1/γ2
n ; dH(Ŝ0, S0, ||·||1) < κn).

Let

(θp, ηp) = argmin
(θ,η)∈Ŝ0

||θ − θ0,n||1 + ||η − η0,n||1.

If dH(Ŝ0, S0, || · ||1) < κn, then ||θp − θ0,n||1 + ||ηp − η0,n||1 < κn and therefore f(θp, ηp) <

f(θ0,n, η0,n) + ν
1/γ2
n /4. By definition of θ̂ and η̂, f̂(θ̂, η̂) ≤ f̂(θp, ηp). This implies

f(θ̂, η̂)− f(θp, ηp) ≤ |f̂(θ̂, η̂)− f(θ̂, η̂)|+ |f̂(θp, ηp)− f(θp, ηp)|.

Thus f(θp, ηp) < f(θ0,n, η0,n)+ν
1/γ2
n /4 and |f̂(θ̂, η̂)−f(θ̂, η̂)|+ |f̂(θp, ηp)−f(θp, ηp)| < ν

1/γ2
n /4

together imply f(θ̂, η̂)− f(θ0,n, η0,n) < ν
1/γ2
n /2, in which case ||θ̂− θ0,n||1 + ||η̂− η0,n||1 < ϵn.

Therefore, we have that

P (||θ̂ − θ0,n||1 + ||η̂ − η0,n||1 < ϵn)

≥ P (|f̂(θ̂, η̂)− f(θ̂, η̂)|+ |f̂(θp, ηp)− f(θp, ηp)| < ν1/γ2
n /4; dH(Ŝ0, S0, || · ||1) < κn)

≥ P (2 sup
(θ,η)∈Θ̂0×Ĥ0

|f(θ, η)−f̂(θ, η)| < (2C4)
1/γ2ϵγ1/γ2n /4; dH(Ŝ0, S0, ||·||1) < C6/4(2C4)

1/γ2ϵγ1/γ2n .)
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= P (( sup
(θ,η)∈Θ̂0×Ĥ0

|f(θ, η)− f̂(θ, η)|)γ2/γ1 < (2C4)
1/γ1ϵn/4

γ2/γ1 ; (dH(Ŝ0, S0, || · ||1))γ2/γ1

< (C6/4)
γ2/γ1(2C4)

1/γ1ϵn),

where the second inequality follows from νn > 2C4ϵ
γ1
n and κn = C6/4ν

1/γ2
n > C6/4(2C4)

1/γ2ϵ
γ1/γ2
n .

Then because sup(θ,η)∈Ŝ0
|f(θ, η)−f̂(θ, η)| = Op(cn) and dH(Ŝ0, S0, ||·||1) = Op(max{λδ, λη, an})

by Lemma B1, for any sequence {ϵn}n∈N with ϵn > 0 and ϵn/(max{λδ, λη, an, cn}γ2/γ1) → ∞,

we have that P (||θ̂ − θ0,n||1 < ϵn) → 1 and P (||η̂ − η0,n||1 < ϵn) → 1. Therefore,

||δ̂ − δ0,n||1 + ||η̂ − η0,n||1 ≤ ||θ̂ − θ0,n||1 + ||η̂ − η0,n||1 = Op(max{λδ, λη, an, cn}γ2/γ1).

Proof of Lemma 2.1: Let γ = (δ, ηq) and γ̂ = (δ̂, η̂q) where ηq is the q-th row of η. Since

the q-th element on the orthogonalized sample moment conditions M̂q for q ∈ {1, ...,m} are

twice continuously differentiable in γ, for each q there exists γ̄ with ||γ̄−γ0,n||1 ≤ ||γ̂−γ0,n||1

such that:

√
n(M̂q(β0,n, γ̂)−M̂q(β0,n, γ0,n)) =

√
n∂γM̂q(β0,n, γ0,n)(γ̂−γ0,n)+

√
n(γ̂−γ0,n)

′∂2
γM̂q(β0,n, γ̄)(γ̂−γ0,n).

The magnitude of the first term on the right-hand side is less than or equal to

√
n||∂γM̂q(β0,n, γ0,n)||∞||γ̂ − γ0,n||1 ≤

√
nOp(log(J)/

√
n)op(1/ log(J)) = op(1).

The second term on the right-hand side is equal to

√
n(δ̂ − δ0,n)

′∂2
δM̂q(β0,n, γ̄)(δ̂ − δ0,n) + 2

√
n(η̂q − η0,n,q)∂δĝ(β0,n, δ̄)(δ̂ − δ0,n).

In the linear case,
√
n(δ̂ − δ0,n)

′∂2
δM̂q(β0,n, γ̄)(δ̂ − δ0,n) = 0 and ∂δĝ(β0,n, δ̄) = ∂δĝ(θ0,n) =

∂δĝ(θ̂). Therefore,

||(η̂q − η0,n,q)∂δĝ(β0,n, δ̄)(δ̂ − δ0,n)||∞ =
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||η̂q∂δĝ(θ̂)(δ̂ − δ0,n)− η0,n,q∂δĝ(θ0,n)(δ̂ − δ0,n)||∞ ≤

(||η̂q∂δĝ(θ̂)||∞+||η0,n,q∂δĝ(θ0,n)||∞)||δ̂−δ0,n||1 = (||η̂q∂δĝ(θ̂)||∞+||∂δM̂q(θ0,n, η0,n)||∞)||δ̂−δ0,n||1

= (Op(log(J) log(n)/
√
n) +Op(log(J)/

√
n))op(1/(log(J) log(n))) = op(1/

√
n).

Otherwise, for the non-linear case, there exists δ̄∗ such that ||δ̄∗ − δ0,n||1 ≤ ||δ̂ − δ0,n||1 and

∂δĝ(β0,n, δ̄) = ∂δĝ(θ0,n) + (δ̄ − δ0,n)
′∂2

δ ĝ(β0,n, δ̄
∗).

Therefore, using Assumptions 2.1.2 and 2.1.4,

√
n||(η̂q − η0,n,q)∂δĝ(β0,n, δ̄)(δ̂ − δ0,n)||∞ ≤

√
n||η̂q − η0,n,q||1(||∂δĝ(θ0,n)||∞||δ̂ − δ0,n||1

+ max
s∈{1,...,Q}

|(δ̄ − δ0,n)
′∂2

δ ĝs(β0,n, δ̄
∗)(δ̂ − δ0,n)|)

≤
√
nop(n

−1/4/
√

log(J))Op(log(J))op(n
−1/4/

√
log(J))

+
√
nop(n

−1/4/
√

log(J))||δ̂ − δ0,n||22 max
s∈{1,...,Q}

max eig(∂2
δ ĝs(β0,n, δ̄

∗)).

Then, using ϵ > 0 defined by Assumption 2.1.3, because ||δ̄∗ − δ0,n||1 ≤ ||δ̂ − δ0,n||1 < ϵ

wpa1, then wpa1,

max
s∈{1,...,Q}

max eig(∂2
δ ĝs(β0,n, δ̄

∗)) ≤ max
s∈{1,...,Q}

sup
δ:||δ−δ0,n||1<ϵ

max eig(∂2
δ ĝs(β0,n, δ)) = Op(log(J)) and

max eig(∂2
δM̂q(β0,n, γ̄)) ≤ sup

γ:||γ−γ0,n||1<ϵ

max eig(∂2
δM̂q(β0,n, γ)) = Op(log(J)).

Hence,
√
n||(η̂q − η0,n,q)∂δĝ(β0,n, δ̄)(δ̂ − δ0,n)||∞ ≤

≤
√
nop(n

−1/4/
√

log(J))Op(log(J))op(n
−1/4/

√
log(J))
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+
√
nop(n

−1/4/ log(J))op(n
−1/2/ log(J))Op(log(J)) = op(1).

Also,

|
√
n(δ̂ − δ0,n)

′∂2
δM̂q(β0,n, γ̄)(δ̂ − δ0,n)| ≤

√
n||δ̂ − δ0,n||22max eig(∂2

δM̂q(β0,n, γ̄))

≤
√
nop(n

−1/2/ log(J))Op(log(J)) = op(1).

Therefore,
√
n(M̂q(β0,n, γ̂)− M̂q(β0,n, γ0,n)) = op(1),

for each q ∈ {1, ...,m}.

Proof of Proposition 2.1: I first show the consistency of β̃GMM . Note that

||M̂(β, δ̂, η̂)− M̂(β, δ0,n, η0,n)||2 = ||η̂ĝ(β, δ̂)− η0,nĝ(β, δ0,n)||2 ≤ ||η̂||2||ĝ(β, δ̂)− g(β, δ̂)||2

+||η̂||2||g(β, δ̂)− g(β, δ0,n)||2 + ||η̂ − η0,n||2||g(β, δ0,n||2

+||η0,n||2||g(β, δ0,n)− ĝ(β, δ0,n)||2.

Note that since ||η0,n||2 = O(1) and ||η̂−η0,n||2 = op(1), ||η̂||2 = Op(1). Then supβ∈B ||g(β, δ̂)−

g(β, δ0,n)||2 = op(1) by the continuous mapping theorem, and supβ∈B ||ĝ(β, δ̂)− g(β, δ̂)||2 =

op(1) and supβ∈B ||g(β, δ0,n)− ĝ(β, δ0,n)||2 = op(1) by Assumption 2.1.1. Hence,

sup
β∈B

||M̂(β, δ̂, η̂)− M̂(β, δ0,n, η0,n)||2 = op(1).

Therefore, since Wn
p→ W where W is positive definite, we have that

sup
β∈B

|M̂(β, δ̂, η̂)′WnM̂(β, δ̂, η̂)− M̂(β, δ0,n, η0,n)
′WnM̂(β, δ0,n, η0,n)| = op(1).

Let Q̂(β) be equal to the objective function from equation (5). Combining this with As-
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sumption 2.1.1 and Wn
p→ W gives supβ∈B |Q̂(β)−Q(β)| = op(1), where

Q(β) = M(β, δ0,n, η0,n)
′WM(β, δ0,n, η0,n).

Let ϵ > 0. By the definition of β̃GMM , Q̂(β̃GMM) < Q̂(β0,n) + ϵ/3. Then by the uniform

convergence we have that Q(β̃GMM) < Q̂(β̃GMM) + ϵ/3 and Q̂(β0,n) < Q(β0,n) + ϵ/3 wpa1.

Combining these inequalities gives Q(β̃GMM) < Q(β0,n)+ϵ wpa1. By the strong identification

condition of Assumption 2.2.4 and W being positive definite, for some C̄ > 0, ||β̃GMM −

β0,n||22/C̃ ≤ C2||M(β̃GMM , δ0,n, η0,n)||22/C̃ ≤ Q(β̃GMM) < ϵ wpa1. So we have that β̃GMM −

β0,n
p→ 0.

By Assumption 2.2.4, ∂2
βQ(β0,n) = ∂βM(θ0,n, η0,n)

′W∂βM(θ0,n, η0,n) → M ′
βWMβ and

M ′
βWMβ is positive definite. Using Assumption 2.2.2 and the consistency of δ̂ and η̂,

∂2
βQ̂(β0,n) = ∂β ĝ(β0,n, δ̂)

′η̂′Wnη̂∂β ĝ(β0,n, δ̂)−∂βM(θ0,n, η0,n)
′W∂βM(θ0,n, η0,n)

p→ 0. So ∂2
βQ̂(β0,n)

p→

M ′
βWMβ. Since Q̂(β) is twice continuously differentiable,

Q̂(β̃GMM) = Q̂(β0,n) + ∂βQ̂(β0,n)(β̃GMM − β0,n) + (β̃GMM − β0,n)
′∂2

βQ̂(β̄)(β̃GMM − β0,n)/2,

for some β̃ with ||β̃ − β0,n||2 ≤ ||β̃GMM − β0,n||2. Then since Q̂(β̃GMM) ≤ Q̂(β0,n), we have

that

0 ≥ ∂βQ̂(β0,n)(β̃GMM − β0,n) + (β̃GMM − β0,n)
′∂2

βQ̂(β̄)(β̃GMM − β0,n)/2.

Using Assumption 2.2.2 and the consistency of β̃GMM ,

||∂2
βQ̂(β̄)− ∂2

βQ̂(β0,n)||2 ≤ sup
β:||β−β0,n||2<||β̃GMM−β0,n||2

||∂2
βQ̂(β)− ∂2

βQ̂(β0,n)||2 = op(1).

Then

0 ≥ ∂βQ̂(β0,n)(β̃GMM−β0,n)+(β̃GMM−β0,n)
′M ′

βWMβ(β̃GMM−β0,n)/2+op(||β̃GMM−β0,n||22).
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Multiplying both sides by n
(1+

√
n||β̃GMM−β0,n||2)2

gives

√
n||β̃GMM − β0,n||2

(1 +
√
n||β̃GMM − β0,n||2)2

√
n∂βQ̂(β0,n)

+
√
n(β̃GMM − β0,n)

′M ′
βWMβ

√
n(β̃GMM − β0,n)/2 + op(1) ≤ 0.

Then if
√
n||β̃GMM − β0,n||2 → ∞,

√
n(β̃GMM − β0,n)

′M ′
βWMβ

√
n(β̃GMM − β0,n)/2 ≤ op(1).

But since ′M ′
βWMβ is positive definite, this implies that

√
n(β̃GMM − β0,n) = op(1) which is

a contradiction. Therefore,
√
n(β̃GMM − β0,n) = Op(1).

I now show that asymptotic normality of
√
n(β̃GMM − β0,n) when Assumption 2.2.6

additionally holds. Since β0,n is bounded away from the boundary of B, wpa1 the first order

condition is satisfied,

M̂(β̃GMM , δ̂, η̂)′Wn∂βM̂(β̃GMM , δ̂, η̂) = 0.

Using the Mean Value Theorem, for some β̄ such that ||β̄ − β0,n||2 ≤ ||β̃GMM − β0,n||2, we

have that

(M̂(β0,n, δ̂, η̂) + ∂βM̂(β̄, δ̂, η̂)(β̃GMM − β0,n))
′Wn∂βM̂(β̃GMM , δ̂, η̂) = 0.

Therefore,
√
n(β̃GMM − β0,n) =

(∂βM̂(β̄, δ̂, η̂)′Wn∂βM̂(β̃GMM , δ̂, η̂))−1∂βM̂(β̃GMM , δ̂, η̂)′Wn

√
nM̂(β0,n, δ̂, η̂).

Using the adaptivity condition of Lemma 2.1,

√
nM̂(β0,n, δ̂, η̂) =

√
nM̂(θ0,n, η0,n) + op(1)

d→ N(0, VM).

Again using Assumption 2.2.2, ∂βM̂(β̄, δ̂, η̂)−∂βM̂(θ0,n, η0,n) = op(1) and ∂βM̂(β̃GMM , δ̂, η̂)−
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∂βM̂(θ0,n, η0,n) = op(1). Then since ∂βM̂(θ0,n, η0,n) = ∂βM(θ0,n, η0,n) + op(1) = Mβ + op(1)

and Wn
p→ W , we have that

√
n(β̃GMM − β0,n)

d→ N(0, V ),

where (M ′
βWMβ)

−1M ′
βWVMWMβ(M

′
βWMβ)

−1.

I now show the asymptotic normality of β̃OS. Because M̂ is twice continuously differen-

tiable, using the Mean Value Theorem,

√
n(β̃OS − β0,n) =

√
n(β̃GMM−β0,n−(∂βM̂(β̃GMM , δ̂, η̂)′Wn∂βM̂(β̃GMM , δ̂, η̂))−1∂βM̂(β̃GMM , δ̂, η̂)′WnM̂(β̃GMM , δ̂, η̂))

=
√
n(β̃GMM − β0,n)

+
√
n(∂βM̂(β̃GMM , δ̂, η̂)′Wn∂βM̂(β̃GMM , δ̂, η̂))−1∂βM̂(β̃GMM , δ̂, η̂)′WnM̂(β0,n, δ̂, η̂)

−
√
n(∂βM̂(β̃GMM , δ̂, η̂)′Wn∂βM̂(β̃GMM , δ̂, η̂))−1∂βM̂(β̃GMM , δ̂, η̂)′Wn∂βM̂(β̄, δ̂, η̂)(β̃GMM−β0,n).

As shown above, ∂βM̂(β0,n, δ0,n, η0,n)
p→ Mβ, ∂βM̂(β̄, δ̂, η̂)

p→ Mβ, and ∂βM̂(β̃GMM , δ̂, η̂)
p→

Mβ. Using this along with Wn
p→ W and the adaptivity condition of Lemma 2.1, the second

term is equal to

(∂βM̂(β̃GMM , δ̂, η̂)′Wn∂βM̂(β̃GMM , δ̂, η̂))−1∂βM̂(β̃GMM , δ̂, η̂)′Wn

√
nM̂(θ0,n, η0,n) + op(1)

= (M ′
βWMβ)

−1M ′
βW

√
nM̂(θ0,n, η0,n) + op(1)

and (∂βM̂(β̃GMM , δ̂, η̂)Wn∂βM̂(β̃GMM , δ̂, η̂)′)−1∂βM̂(β̃GMM , δ̂, η̂)Wn∂βM̂(β̄, δ̂, η̂)′
p→ Ip. Then

because
√
n(β̃GMM − β0,n) = Op(1),

√
n(β̃GMM − β0,n) multiplied by

(Ip − (∂βM̂(β̃GMM , δ̂, η̂)Wn∂βM̂(β̃GMM , δ̂, η̂)′)−1∂βM̂(β̃GMM , δ̂, η̂)Wn∂βM̂(β̄, δ̂, η̂)′),
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is converging in probability to zero. Therefore, we have that

√
n(β̃OS − β0,n) =

(M ′
βWMβ)

−1M ′
βW

√
nM̂(θ0,n, η0,n)

d→ N(0, V ).

Proof of Proposition 3.1: The proof proceeds by verifying Assumption 3.1 of Sun

(2013) and then replicating the argument in the proof of Theorem 3.1 of Sun (2013) for the

case with the sample moment conditions being M̂(β, δ̂, η̂) and with drifting sequences of the

true parameter β0,n. Proposition 2.1 holds so ||β̃GMM −β0,n||1
p→ 0. Assumption 2.2 imposes

that β0,n is an interior point of B bounded away from the boundary and Assumption 2.1

imposes that ĝ is twice continuously differentiable in θ which implies that M̂(β, δ̂, η̂) is twice

continuously differentiable in β. Then note that for λn, r ∈ [0, 1],

⌊rn⌋∑
i=1

∂βM̂i(β0,n + λn(β̃GMM − β0,n), δ̂, η̂) = η̂(

⌊rn⌋∑
i=1

∂βgi(β0,n + λn(β̃GMM − β0,n), δ̂)/n−

η̂

⌊rn⌋∑
i=1

∂βgi(β0,n + λn(β̃GMM − β0,n), δ0,n))/n+ η̂

⌊rn⌋∑
i=1

∂βgi(β0,n + λn(β̃GMM − β0,n), δ0,n)/n.

The difference between the first and second terms is converging in probability to zero

uniformly in λn, r ∈ [0, 1] by Assumption 3.2.1. Therefore, by Assumption 3.2.3 and ||η̂ −

η0,n||1 = op(1), we have that

⌊rn⌋∑
i=1

∂βM̂i(β0,n + λn(β̃GMM − β0,n), δ̂, η̂)
p→ rMβ,

uniformly in λn, r ∈ [0, 1]. Also, Mβ is full rank by Assumption 2.2. By Lemma 2.1* in

Appendix B and Assumption 3.2.4,

V
−1/2
M

n∑
t=1

ϕk(
t

n
)η̂gt(β0,n, δ̂)/

√
n
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= V
−1/2
M

n∑
t=1

(ϕk(
t

n
)− ϕk(

t+ 1

n
))(

t∑
i=1

η̂gi(β0,n, δ̂)/
√
n)

V
−1/2
M

n∑
t=1

(ϕk(
t

n
)− ϕk(

t+ 1

n
))(

t∑
i=1

η0,ngi(θ0,n)/
√
n) + op(1)

= V
−1/2
M

n∑
t=1

ϕk(
t

n
)η0,ngt(θ0,n)/

√
n+ op(1)

d→ ξk,

for each k ∈ {0, ..., K}, where I have normalized ϕk(
n+1
n
) = 0.

I now extend the proof of Theorem 3.1 of Sun (2013). Let St(β) =
∑t

i=1 η̂gi(β, δ̂). Then

since the moment conditions are twice continuously differentiable in β,

St(β̃GMM)/
√
n = St(β0,n)/

√
n+ (

t∑
i=1

∂βgi(β̃t)/n)
√
n(β̃GMM − β0,n),

where β̃t = β0,n + λn ◦· (β̃GMM − β0,n) for some λn ∈ [0, 1]p where ◦· denotes the element-wise

product. From Proposition 2.1 and W = Im,

√
n(β̃GMM − β0,n) =

√
n(M ′

βMβ)
−1M̂(β0,n, δ̂, η̂) + op(1) = (M ′

βMβ)
−1Sn(β0,n)/

√
n+ op(1).

Therefore,

St(β̃GMM)/
√
n = St(β0,n)/

√
n+ (

t∑
i=1

∂βgi(β̃t)/n)((M
′
βMβ)

−1Sn(β0,n) + op(1))

= St(β0,n)/
√
n− i

n
Sn(β0,n)/

√
n+ op(1),

uniformly over t. Then,

n∑
i=1

ϕk(
i

n
)η̂gi(β̃GMM , δ̂)/

√
n =

n∑
i=1

(ϕk(
i

n
)− ϕk(

i+ 1

n
))

1√
n
(Si(β0,n)−

t

n
Sn(β0,n)) + op(1)
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=
1√
n

n∑
i=1

ϕk(
i

n
)(η̂gi(β0,n, δ̂)−

1

n
Sn(β0,n)) + op(1) =

1√
n

n∑
i=1

ϕk(
i

n
)η̂gi(β0,n, δ̂) + op(1).

Again, for convince defining ϕk(
n+1
n
) = 0. Then

V
−1/2
M

n∑
i=1

η̂ϕk(
t

n
)gi(β̃GMM , δ̂)/

√
n

d→ ξk,

jointly for k = 0, 1, ..., K. Therefore,

K − p+ 1

K
Wn

d→ K − p+ 1

K
ξ′0(

K∑
k=1

ξkξ
′
k/K)−1ξ0 = Fp,K−p+1

and

tn
d→ ξ20/

√√√√ K∑
k=1

ξ2k/K = tK

when p = 1.

Proof of Proposition 4.1: I first verify that Assumption 3.1 holds when Assumptions

4.1 and 4.2 hold. Assumption 3.1.1 holds because Dn = ∆J is compact for all J , f(θ, η) =

||δ||22 + ||η||22, and ĝ and g are linear in δ. For Assumption 3.1.2, note that for each q ∈

1, ..., Q− 1,

sup
δ∈∆J

|Zpre
q (Y pre′

0 − Y pre′

J δ)/T0 − E[Zpre
q (Y pre′

0 − Y pre′

J δ)/T0]|

= sup
δ∈∆J

|Zpre
q (Y pre′

0 − Y pre′

J δ)/T0 − E[Zpre
q fpre/T0](µ0 − µJ δ)|

≤ sup
δ∈∆J

{|(Zpre
q fpre/T0 − E[Zpre

q fpre/T0])(µ0 − µJ δ)
′|

+|Zpre
q (ϵpre

′

0 − ϵpre
′

J δ)/T0|} ≤

max
0≤j≤J

||µ0 − µj||2||Zpre
q fpre/T0 − E[Zpre

q fpre/T0]||2 + 2 max
0≤j≤J

|Zpre
q ϵpre

′

j /T0|

= O(1)Op(1/
√
n) +Op(log(J)/

√
T0).
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Similarly,

sup
β,δ∈∆J

|
∑
t∈T1

(Y0t − YJ ,tδ)/T1 − β − (E[
∑
t∈T1

ft/T1](µ0 − µJ δ) + β0,n − β)|

≤ max
0≤j≤J

||
∑
t∈T1

ft/T1 − E[
∑
t∈T

ft/T1]||2||µ0 − µj||2 + 2 max
0≤j≤J

|
∑
t∈T1

ϵjt/T1|

= Op(1/
√

T1)O(1) +Op(log(J)/
√
T1).

Therefore, supθ∈Θn
||ĝ(θ)− g(θ)||∞ = Op(log(J)/

√
min{T0, T1}). This also shows that

sup
θ∈Θn

||∂δĝ(θ)− ∂δg(θ)||∞ = Op(log(J)/
√

min{T0, T1}),

so Assumption 3.1.2 holds with an, bn = log(J)/
√
min{T0, T1}. Because f̂(θ, η) = f(θ, η),

Assumption 3.1.3 holds trivially with cn = 0.

By Assumption 4.2.3, there exists a subset of I instruments with |I| = R and the

minimum singular value of E[Zpre
I fpre/T0] is bounded below by some constant C > 0. For

Assumption 3.2.4, with loss of generality, assume that the row of Zpre are order so that the

indices in I correspond to the first R rows of Zpre. Note that for any δ, there exists δ̃ where

δ̃j = δj for j > R + 1 and µ0 = µJ δ̃ because µ0 has R elements. Then,

E[Zprefpre/T0](µ0 − µJ δ) = E[Zprefpre/T0](µ0 − µJ δ̃)− E[Zprefpre/T0]µJ (δ − δ̃)

= E[Zprefpre/T0]µI(δ̃I − δI).

Therefore, following page 1262 of Chernozhukov et al. (2007),

||g(θ)||∞ ≥ ||g(θ)||2/
√

Q ≥ ||E[Zprefpre/T0](µ0 − µJδ)||2/
√

Q ≥ C||δ̃I − δI ||2/
√

Q

≥ C/
√

QR||δ̃I − δI ||1 = C/
√

QR||δ̃ − δ||1 ≥ C/
√

RQ||δ −D0,n||1
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where the last inequality follows from δ̃ ∈ D0,n. Similarly, note that for any η ∈ H, there

exists η̃ such that η̃ ∈ H0,n for all n and ηq = η̃q for all q > R. Then

||η∂δg(δ)||∞ ≥ ||(η − η̃)∂δg(δ)||∞ = ||(η − η̃)E[Zprefpre/T0]||∞

≥ C||(ηR − η̃R)E[Zpre
I fpre/T0]||2/

√
R

≥ C||ηI − η̃I ||2/
√
R ≥ C||ηI − η̃I ||1/R = C/R||η − η̃||1,

where C is equal to the smallest singular value ∂δIg(δ) and the equality follows from the fact

that ηQ = η̃Q = 1. Therefore, Assumption 3.1.4 holds.

For the first part of Assumption 3.1.5, note that the for each n the identified setD0,n×H0,n

and the set

S = {(δ, η) : ||δ||22 + ||η||22 ≤ ||δ0,n||22 + ||η0,n||22}

are convex. By the separating hyperplane theorem, there exists a hyperplane described by

the linear equations Ax = b such that for all γ = (δ, η) ∈ S we have that Aγ ≥ b and

for all γ ∈ D0,n × H0,n, Aγ ≤ b. Then since (δ0,n, η0,n) ∈ S and (δ0,n, η0,n) ∈ D0,n × H0,n,

A(δ0,n, η0,n) = b so (δ0,n, η0,n)
′γ ≥ 0 for all γ in the half space with Aγ ≤ b. Then it follows

from the Law of Cosines that

||γ||22 − ||(δ0,n, η0,n)||22 ≥ ||γ − (δ0,n, η0,n)||22

for all γ ∈ D0,n × H0,n. Because δ0,n only takes non-zero values for the elements in P and

||δ0,n||1 = ||δ||1 = 1, so

||δ − δ0,n||1 = ||δP − δ0,n,P ||1 + ||δPc ||1 = ||δP − δ0,n,P ||1 + (1− ||δP ||1)

= ||δP − δ0,n,P ||1 + (||δ0,n,P ||1 − ||δP ||1) ≤ 2||δP − δ0,n,P ||1 ≤ 2
√

|P|||δP − δ0,n,P ||2,
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where the second to last inequality follows from the reverse triangle inequality. Since the

dimension of η is always equal to Q, ||η − η0,n||1 ≤
√
Q||η − η0,n||2. Therefore,

||γ||22 − ||(δ0,n, η0,n)||22 ≥ ||γ − (δ0,n, η0,n)||22 ≥ (2
√
|P|||δ − δ0,n||1 +

√
Q||η − η0,n||1)2.

Therefore, we have that for all n, for all θ ∈ Θ0,n and η ∈ H0,n,

|f(θ, η)− f(θ0,n, η0,n)| ≥ C4(||δ − δ0,n||1 + ||η − η0,n||1)2 = C4(||θ − θ0,n||1 + ||η − η0,n||1)2

for some constant C4 > 0 which does not depend on θ, η, or n.

For the second part of Assumption 3.1.5, note that for any δ1, δ2 ∈ Dn,

2||δ1 − δ2||1 ≥ 2||δ1 − δ2||2 ≥ (||δ1||2 + ||δ2||2)| ||δ1||2 − ||δ2||2| = 2| ||δ1||22 − ||δ2||22|.

Similarly, for any δ1, δ2 ∈ Dn and η1, η2 ∈ H, if C5 ≥ ||δ1||22 + ||η1||22 ≥ ||η1||22 and C5 ≥

||δ2||22 + ||η2||22 ≥ ||η2||22 for some C5 > 0, then,

2C5||η1 − η2||1 ≥ 2C5||η1 − η2||2 ≥ (||η1||2 + ||η2||2)| ||η1||2 − ||η2||2 | = | ||η1||22 − ||η2||22 |.

Then for any n and any θ1, θ2 ∈ Θn and η1, η2 ∈ H with f(θ1, η1), f(θ2, η2) ≤ C5,

||θ1 − θ2||1 + ||η1 − η2||1 ≥ ||δ1 − δ2||1 + ||η1 − η2||1 ≥ |f(θ1, η1)− f(θ2, η2)|/max{2C5, 2}.

Therefore, Assumption 3.1.5 holds with γ1 = 2 and γ2 = 1. I now verify the conditions of

Assumption 2.1. Since Assumption 3.1 holds, by Lemma 3.1 we have that

||δ̂ − δ0,n||1 = Op(max{log(J)/
√

min{T0, T1}, λδ, λη}
1
2 ) = op(1/(log(J) log(min{T0, T1}))).
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For Assumption 2.1.4, ĝ is linear in θ and

||η̂∂δĝ(θ)||∞ ≤ λη = Op(log(J) log(min{T0, T1})/
√
min{T0, T1}).

Assumption 2.1.3 holds trivially since ĝ is linear in θ and Assumption 2.1.2 is shown above.

To verify Assumption 2.1*, first note that η0,n satisfies,

∑
t∈T0

Q−1∑
q=1

E[η0,n,qZqtYJ ,t]/T0 +
∑
t∈T1

E[YJ ,t]/T1 =

(
∑
t∈T0

Q−1∑
q=1

E[η0,n,qZqtft]/T0 +
∑
t∈T1

E[ft]/T1)µJ = 0.

Therefore, ∑
t∈T0

Q−1∑
q=1

E[η0,n,qZqtft]/T0 +
∑
t∈T1

E[ft]/T1 = 0,

for each η0,n. As a result, Assumption 4.2.3 implies that η0,n → η∗ for some η∗. Then for par-

tial sums of the population moment conditions with pre-treatment time periods {−t0, ...,−1}

and post-treatment time periods {0, ..., t1 − 1},

−1∑
i=−t0

Q−1∑
q=1

E[η0,n,qZqiYJ ,i]/T0 +

t1−1∑
i=0

E[YJ ,i]/T1 → 0

as T0, T1 → ∞, uniformly over t0 ≤ T0 and t1 ≤ T1, so Assumption 2.1.1* holds. For

Assumption 2.1.2*,

||
−1∑

i=−t0

Q−1∑
q=1

η0,n,qZqiYJ ,i/T0 +

t1−1∑
i=0

YJ ,i/T1 −
−1∑

i=−t0

Q−1∑
q=1

E[η0,n,qZqiYJ ,i]/T0 −
t1−1∑
i=0

E[YJ ,i]/T1||∞ ≤

||η0,n||1(||
−1∑

i=−t0

Q−1∑
q=1

ZqiϵJ ,i/T0||∞ + ||
−1∑

i=−t0

Q−1∑
q=1

(E[Zqifi]− Zqifi)µJ /T0||∞
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+||
t1−1∑
i=0

(E[fi]− fi)µJ /T1||∞ + ||
t1−1∑
i=0

ϵJ ,i/T1||∞)

= O(1)Op(log(J)/
√

T0) +O(1)Op(log(J)/
√
T1) = Op(log(J)/

√
min{T0, T1})

uniformly over 1 ≤ t0 ≤ T0 and 1 ≤ t1 ≤ T1 as T0, T1 → ∞. Assumption 2.1.3* holds

trivially because ĝ is linear in θ.

I now verify the conditions of Assumption 2.2. Since

sup
θ∈Θn

||ĝ(θ)− g(θ)||2 = Op(log(J)/
√

min{T0, T1})

and log(J)/
√

min{T0, T1} → 0, Assumption 2.2.1 holds. Because g(θ) and ĝ(θ) are lin-

ear in θ, Assumption 2.2.2 holds. Also ∂βM(β0,n, δ0,n, η0,n) = −1 ̸= 0 and ||β1 − β2||2 =

||M(β1, δ0,n, η0,n)−M(β2, δ0,n, η0,n)||2 for all β1, β2 ∈ B so Assumption 2.2.4 holds. Then for

Assumption 2.2.5, since there is single moment condition we can set Wn = W = 1 and

M̂(β, δ0,n, η0,n)−M(β, δ0,n, η0,n) = η0,n(ĝ(0, δ0,n)− g(0, δ0,n))
p→ 0

as shown above. I prove Assumption 2.2.3 along with Assumption 3.2.

Assumption 4.3 directly guarantees that Assumption 3.2.2 is satisfied. For Assump-

tion 3.2.1, it holds trivially because gi(θ) is linear in θ. Similarly for Assumption 3.2.3,

∂βM̂(β, δ, η) = ηQ, so

⌊rn⌋∑
i=1

∂βM̂(β0,n + λn(β̃GMM − β0,n), δ̂, η̂)/n− r∂βM(θ0,n, η0,n) = −rη̂Q + rη0,n,Q
p→ 0

where ∂βM(θ0,n, η0,n) = −η0,n,Q is full rank since η0,n,Q = 1 ̸= 0.

Note that we can equivalently define the optimal control weights as

δ0,n = argmin
δ∈∆J :µ0=µJ δ

||δ||22.
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However, the elements of δ0,n are only taking non-zero values for indices in P by Assumption

4.3.3, δ0,n must also be equal to zero for all indices not in P and if P ⊆ J , then

δ0,n,P = argmin
δ∈∆|P|:µ0=µPδ

||δ||22,

where δ0,n,P denotes the subvector of δ0,n with indices in P . As a result, for sufficiently large

J so that P ⊆ J , δ0,n,P does not vary with J or n.

Then for Assumption 3.2.4 and 2.2.3, first note that for q ∈ {1, .., Q − 1} and k ∈

{0, 1, ..., K},

∑
t∈T0

ϕk(
t

T0

)gq,t(θ0,n)/
√

T0 =
∑
t∈T0

ϕk(
t

T0

)Zqt(ϵ0t −
∑
j∈P

δ0,n,jϵjt)/
√

T0,

=
∑
t∈T0

ϕk(
t

T0

)Zqtϵ0t/
√
T0 +

∑
j∈P

δ0,n,j
∑
t∈T0

ϕk(
t

T0

)Zqtϵjt/
√
T0

and similarly for q = Q,

∑
t∈T1

ϕk(
t

T1

)gq,t(θ0,n)/
√

T1 =
∑
t∈T1

ϕk(
t

T1

)(βt−β0,n)+
∑
t∈T1

ϕk(
t

T1

)ϵ0t+
∑
j∈P

δ0,n,j
∑
t∈T1

ϕk(
t

T1

)ϵjt/
√

T1

because µ0 = µJ δ0,n and the sparsity of δ0,n. As noted earlier, for T0 and T1 sufficiently

large, δ0,n does not vary with n. Therefore, the limit in equation (10) does exist and is equal

to Vg, for some fixed positive definite matrix Vg. Then because of Assumption 4.3.1 and

T1/T0 → a > 0, the conditions of Lemma B3 are satisfied for the sequence of random vectors


√

min{T0,T1}
T0

g1t(θ0,n)

...√
min{T0,T1}

T0
gq−1.t(θ0,n)



with t ∈ T0 and the sequence of random variables
√

min{T0,T1}
T1

gQt(θ0,n) with t ∈ T1. Then, by
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Lemma B3, we have that

V −1/2
g

√
min{T0, T1}



∑
t∈T0 ϕk(

t
T0
)g1,t(θ0,n)/T0

...∑
t∈T0 ϕk(

t
T0
)gQ−1,t(θ0,n)/T0∑

t∈T1 ϕk(
t
T1
)gQ,t(θ0,n)/T1



= V −1/2
g



∑
t∈T0 ϕk(

t
T0
)
√

min{T0,T1}
T0

g1,t(θ0,n)/
√
T0

...∑
t∈T0 ϕk(

t
T0
)
√

min{T0,T1}
T0

gQ−1,t(θ0,n)/
√
T0∑

t∈T1 ϕk(
t
T1
)
√

min{T0,T1}
T1

gQ,t(θ0,n)/
√
T1


d→ ζk,

jointly for k ∈ {0, 1, ..., K} with ζk ∼ iidN(0, IQ). Then since VM(θ0,n, η0,n) = η0,nVg(θ0,n)η0,n

and M̂(θ0,n, η0,n) = η0,nĝ(θ0,n) we also have that

V
−1/2
M

√
min{T0, T1}η0,n



∑
t∈T0 ϕk(

t
T0
)g1,t(θ0,n)/T0

...∑
t∈T0 ϕk(

t
T0
)gQ−1,t(θ0,n)/T0∑

t∈T1 ϕk(
t
T1
)gQ,t(θ0,n)/T1


d→ ξk,

jointly for k ∈ {0, 1, ..., K} with ξk ∼ iidN(0, 1) so Assumptions 2.2.3 and 3.2.4 hold.

Appendix B

Lemma B1 (Rate of Convergence of the Estimated Identified Set) Suppose that

the conditions of Lemma 3.1 hold. Let S0 := {(θ, η) ∈ Θ0,n×H0,n : f(θ, η) ≤ f(θ0,n, η0,n)+ζ}

and Ŝ0 := {(θ, η) ∈ Θ̂0 × Ĥ0 : f(θ, η) ≤ f(θ0,n, η0,n) + ζ} for some ζ > 0. Then dH(Ŝ0, S0, || ·

||1) = Op(max{anλδ, λη}).

Proof:

Note that by the identification condition on g in Assumption 3.1.4, for any (θ, η) ∈ Ŝ0,
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C2min{||θ −Θ0,n||1 + ||η −H0,n||1, C1} ≤ ||g(θ)||∞ + ||η∂δg(θ)||∞ ≤

||ĝ(θ)||∞ + ||g(θ)− ĝ(θ)||∞ + ||η∂δĝ(θ)||∞ + ||η(∂δg(θ)− ∂δĝ(θ))||∞

≤ λδ + ||g(θ)− ĝ(θ)||∞ + λη + ||η||1||∂δg(θ)− ∂δĝ(θ)||∞.

By Assumption 3.1.1, sup(θ,η)∈Ŝ0
||η||1 ≤ sup(θ,η)∈Θn×H:f(θ,η)≤f(θ0,n,η0,n)+ζ ||η||1 = O(1). Then

because λδ, λη, supθ∈Θn
||g(θ)− ĝ(θ)||∞, supθ∈Θn

||∂δg(θ)−∂δĝ(θ)||∞ = op(1), this implies that

sup(θ,η)∈Ŝ0
||θ −Θ0,n||1 + ||η −H0,n||1 < C1 wpa1. Then wpa1,

sup
(θ,η)∈Ŝ0

||θ−Θ0,n||1+||η−H0,n||1 ≤ λδ+λη+sup
θ∈Θn

||g(θ)−ĝ(θ)||∞+ sup
(θ,η)∈Ŝ0

||η∥1||∂δg(θ)−∂δĝ(θ)||∞

= λδ + λη +Op(an) +O(1)Op(an) = Op(max{λδ, λη, an}).

Also note that since sup(θ,η)∈S0
||ĝ(θ)||∞ ≤ supθ∈Θ0,n

||ĝ(θ)||∞ = Op(bn),

sup
(θ,η)∈S0

||∂δηg(θ)||∞ ≤ sup
(θ,η)∈S0

||η||1||∂δĝ(θ)− ∂δg(θ)||∞ = O(1)Op(bn) = Op(bn),

and max{λδ, λη}bn → 0, supθ∈Θ0,n
||ĝ(θ)||∞ < λδ and supθ∈Θ0,n,η∈H0,n

||∂δηĝ(θ)||∞ < λη wpa1.

Hence, S0 ⊂ Ŝ0 wpa1. Therefore, dH(S0, Ŝ0, || · ||1) = Op(max{an, λδ, λη}).

Lemma B2 (Convergence of Maximum of Averages) For random vectors {Xi}i∈N

with Xi is taking values in RJ where J is growing with n, suppose that {Xi}i∈N is α-mixing

with exponentially decaying mixing coefficients, mean-zero, bounded four moments, and

there exists constants C1, C2, q > 0 such that supi P (|Zji| > a) ≤ c1exp(−c2a
q)) for all

a > 0. Then as n, J → ∞, max1≤j≤J |
∑n

i=1Xjt/n| = Op(log(J)/
√
n).

Proof: By Lemma 1 of Dendramis et al. (2021),
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P (| 1√
n

n∑
i=1

Xji| > a) ≤ c3[exp(−c4a
2) + exp(−c5(

a
√
T0

log2 T0

)q/(q+1))]

for all a > 0 where c3, c4, and c5 do not depend on i and j. Then let a = κ log J/2 for some

κ so that,

P ( max
i∈{1,...,J}

| 1
n

n∑
i=1

Xji| > κ log J/2) ≤

J∑
j=1

P (| 1√
n

n∑
i=1

Xji| > κ log J/2
√
n) ≤

Jc3 exp(−c4(κ/2)
2 log J) + Jc3 exp(−c5(

κ log J/2
√
n

log2 n
)q/(q+1)) := rJ + rJ,n.

First consider the case where J → ∞. Let γ > 0. Then we can choose κ such that

c4(κ/2)
2 > 1 + γ. Then rJ ≤ J exp(−(1 + γ) log J) = c3J

−γ → 0 as J → ∞.

Furthermore, if J = o(nζ) for some δ > 0. Then we have n
1
4 ≥ J

1
4ζ and n

1
4 > 2 log2(n)

as n → ∞. Then

c5(
κ log J/2

√
n

log2 n
)q/(q+1) ≥ c5(κ(J

1
4ζ

√
log J)q/(q+1) > (1 + γ) log J

as J → ∞. Therefore, 0 ≤ rJ,n ≤ rJ → 0 as n, J → ∞. Hence maxj≥1 | 1n
∑n

i=1Xji| = op(1) .

Applying Lemma B2: Suppose (Zt, ϵt)t∈Z is α-mixing with exponentially decaying

mixing coefficients, E[ϵjt|Zqt] = 0 for all q ∈ {1, ..., Q − 1}, j ∈ {1, ..., J}, supi,t E[ϵ4it] < ∞

and supq,tE[Z4
qt] < ∞, and

sup
i,t

P (|ϵit| > a) ≤ c1 exp(−c2a
q1) and sup

f,t
P (|Zqt| > a) ≤ c1 exp(−c2a

q2)

for all a > 0 for some q1, q2 > 0 and c1, c2 > 0 which do not depend on i, t and q. By

Lemma A4 in Dendramis et al. (2021), an exponential tail bound also holds for products of

the idiosyncratic shocks and factors so, for example, supi,t,k P (|Zqtϵit| > a) ≤ c1exp(−c2a
q)
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for all a > 0 where q = q1q2/(q1+q2). Also supq,j,tE[(Zqtϵjt)
4] = supk,j,t E[Z4

kt]
1
2E[ϵ4jt]

1
2 < ∞,

E[ϵjtZqt] = E[ϵjt|Zqt]E[Zqt] = 0. As a result, the conditions of Lemma B2 is satisfied

so max1≤j≤J |
∑

t∈T0 Zqtϵjt/T0| = Op(log(J)/
√
T0) for each q ∈ {1, ..., Q − 1}. The same

reasoning can be applied to show that max1≤j≤J |
∑

t∈T1 ϵjt/T1| = Op(log(J)/
√
T1).

Lemma B3 (Applying a Functional Central Limit Theorem) Suppose {ϕk(x)}Kk=0

satisfies Assumption 3.2.2 and there is a stochastic process {Xi}i∈N with E[Xi] = 0, E[X2
i ] <

∞ for all i ∈ N, and E[(
∑n

i=1Xi)
2/n] → σ2 for some σ2 > 0. Further suppose that

the sequence is α-mixing with mixing coefficients α(k) and there exists γ > 2 such that

supi∈N E[|Xi|γ] < ∞ and
∑∞

k=1 α(k)
1−2/γ < ∞. Then

σ−1/2

n∑
i=1

ϕk(
i

n
)Xi/

√
n

d→ ξk,

jointly for k ∈ {0, 1, ..., K} with ξk ∼ iidN(0, 1).

Proof: The conditions of Theorem 0 of Herrndorf (1985) are satisfied, which provides

a Functional Central Limit Theorem for partial sums for α-mixing processes. Therefore,

the partial sums function B̂(r) =
∑⌊rn⌋

i=1 Xi/(σ
√
n) converges weakly to the standard Wiener

measure.

As pointed out by Phillips (2005) (see page 119), when Assumption 3.2.2 holds and

B̂(r) is converging weakly to the standard Wiener measure, then standard functional limit

arguments and Wiener integration show that

σ−1/2

n∑
i=1

ϕk(
i

n
)Xi/

√
n

d→
∫ 1

0

ϕk(r)dB(r) = ξk,

where ξk ∼ N(0, 1), jointly for k ∈ {0, 1, ..., K}. Then, due to the orthogonality property

of the basis functions, these ξk are uncorrelated and since they are jointly normal this also

means that they are independent.

Lemma 2.1* (Partial Sums Adaptivity Condition) Suppose (β0,n, δ0,n) ∈ Θ0,n, η0,n

satisfies equation (3), and Assumptions 2.1 and 2.1* hold. Then, uniformly over t with
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1 ≤ t ≤ n,
√
n(

t∑
i=1

η̂gi(β0,n, δ̂)/n−
t∑

i=1

η0,ngi(β0,n, δ0,n)/n) = op(1).

Proof: Let γ = (δ, ηq) and γ̂ = (δ̂, η̂q) where ηq is the q-th row of η. Since the q-th

element on the orthogonalized sample moment conditions M̂q for q ∈ {1, ...,m} are twice

continuously differentiable in γ, for each q there exists γ̄t for each t with 1 ≤ t ≤ n and

||γ̄t − γ0||1 ≤ ||γ̂ − γ0||1 such that:

√
n(

t∑
i=1

Mqi(β0,n, γ̂)/n−
t∑

i=1

Mqi(β0,n, γ0)/n) =
√
n∂γ

t∑
i=1

Mqi(β0,n, γ0)/n(γ̂ − γ0)

+
√
n(γ̂ − γ0)

′∂2
γ

t∑
i=1

Mqi(β0,n, γ̄t)/n(γ̂ − γ0).

The magnitude of the first term on the right-hand side is less than or equal to

√
n||∂γ

t∑
i=1

Mqi(β0,n, γ0)/n||∞||γ̂ − γ0||1 ≤
√
nOp(log(J)/

√
n)op(1/ log(J)) = op(1).

The second term on the right-hand side is equal to

√
n(δ̂ − δ0,n)

′∂2
δM̂q(β0,n, γ̄t)(δ̂ − δ0,n) + 2

√
n(η̂q − η0,n,q)∂δ

t∑
i=1

gi(β0,n, δ̄)/n(δ̂ − δ0,n).

In the linear case,
√
n(δ̂ − δ0,n)

′∂2
δ

∑t
i=1Mqi(β0,n, γ̄t)/n(δ̂ − δ0,n) = 0 and

∂δ

t∑
i=1

gi(β0,n, δ̄)/n = ∂δ

t∑
i=1

gi(θ0,n)/n = ∂δ

t∑
i=1

gi(θ̂)/n.

Therefore,

||(η̂q − η0,n,q)∂δ

t∑
i=1

gi(β0,n, δ̄)/n(δ̂ − δ0,n)||∞ =

||η̂q∂δ
t∑

i=1

gi(θ̂)(δ̂ − δ0,n)/n− η0,n,q∂δ

t∑
i=1

gi(θ0,n)(δ̂ − δ0,n)/n||∞ ≤

73



(||η̂q∂δ
t∑

i=1

gi(θ̂)/n||∞ + ||η0,n,q∂δ
t∑

i=1

gi(θ0,n)/n||∞)||δ̂ − δ0,n||1

= (||η̂q∂δ
t∑

i=1

gi(θ̂)/n||∞ + ||∂δ
t∑

i=1

Mqi(θ0,n, η0,n)/n||∞)||δ̂ − δ0,n||1

= (Op(log(J) log(n)/
√
n) +Op(log(J)/

√
n))op(1/(log(J) log(n))) = op(1/

√
n).

Otherwise, for the non-linear case, there exists δ̄∗t for each t with 1 ≤ t ≤ n, such that

||δ̄∗t − δ0,n||1 ≤ ||δ̂ − δ0,n||1 and

∂δ

t∑
i=1

gi(β0,n, δ̄)/n = ∂δ

t∑
i=1

gi(θ0,n)/n+ (δ̄ − δ0,n)
′∂2

δ

t∑
i=1

gi(β0,n, δ̄
∗
t )/n.

Therefore, using Assumptions 2.1.2 and 2.1.4,

√
n||(η̂q − η0,n,q)∂δ

t∑
i=1

gi(β0,n, δ̄)/n(δ̂ − δ0,n)||∞ ≤

√
n||η̂q − η0,n,q||1(||∂δ

t∑
i=1

gi(θ0,n)/n||∞||δ̂ − δ0,n||1

+ max
s∈{1,...,Q}

|(δ̄ − δ0,n)
′∂2

δ

t∑
i=1

gsi(β0,n, δ̄
∗
t )/n(δ̂ − δ0,n)|)

≤
√
nop(n

−1/4/
√

log(J))Op(log(J))op(n
−1/4/

√
log(J))

+
√
nop(n

−1/4/
√
log(J))||δ̂ − δ0,n||22 max

s∈{1,...,Q}
max eig(∂2

δ

t∑
i=1

gsi(β0,n, δ̄
∗
t )/n).

Then, using ϵ > 0 defined by Assumption 2.1.4, because ||δ̄∗t − δ0,n||1 ≤ ||δ̂ − δ0,n||1 +

||η̂q − η0,n,q||1 < ϵ wpa1, then wpa1

max
s∈{1,...,Q}

max eig(∂2
δ

t∑
i=1

gsi(β0,n, δ̄
∗
t )/n)
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≤ max
s∈{1,...,Q}

sup
δ:||δ−δ0,n||1<ϵ

max eig(∂2
δ

t∑
i=1

gsi(β0,n, δ)/n) = Op(log(J)) and

max eig(∂2
γ

t∑
i=1

Mqi(β0,n, γ̄t)/n) ≤ sup
γ:||γ−γ0||1<ϵ

max eig(∂2
γ

t∑
i=1

Mqi(β0,n, γ)/n) = Op(log(J)).

Hence,
√
n||(η̂q − η0,n,q)∂δ

t∑
i=1

gi(β0,n, δ̄)/n(δ̂ − δ0,n)||∞ ≤

≤
√
nop(n

−1/4/
√

log(J))Op(log(J))op(n
−1/4/

√
log(J))

+
√
nop(n

−1/4/ log(J))op(n
−1/2/ log(J))Op(log(J)) = op(1).

Also,

|
√
n(δ̂ − δ0,n)

′∂2
δ

t∑
i=1

Mqi(β0,n, γ̄t)/n(δ̂ − δ0,n)/n|

≤
√
n||δ̂ − δ0,n||22max eig(∂2

δ

t∑
i=1

Mqi(β0,n, γ̄t)/n)

≤
√
nOp(log(J))op(n

−1/2/ log(J)) = op(1).

Therefore, uniformly over t with 1 ≤ t ≤ n,

(
t∑

i=1

Mqi(β0,n, γ̂)− M̂qi(β0,n, γ0))/
√
n = op(1),

for each q ∈ {1, ...,m}.

Sufficient Condition for Assumption 2.2.2: Suppose that Θn is compact, ĝ(θ) −

g(θ)
p→ 0 point-wise in θ, and there exists α > 0 and Bn = Op(1) such that for all θ1, θ2 ∈ B,

supθ∈Θn
||ĝ(θ1)−ĝ(θ2)||2 ≤ Bn||θ1−θ2||α2 . Then since g is continuous, the conditions of Lemma

2.9 of Newey and McFadden (1994) are satisfied when J is fixed, so supθ∈Θn
|ĝ(θ)−g(θ)| p→ 0

as n → ∞ with J fixed.
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Appendix C

I estimate the power with the true value of βt being -.5 in each post-treatment time

period. Table 4 contains the size-adjusted power results.

Table 4: Size-Adjusted Power Results

Orthogonalized End-of-Sample Conformal Cross-Fitting Subsampling Placebo
SCE t-test Instabilty test Inference t-test Method Method

Rejection Rates with α = .1

T0 = 30,T1 = 4 0.826 0.705 0.696 0.780 0.120 0.887
T0 = 30,T1 = 16 0.867 0.779 0.364 0.547 0.994 0.985
T0 = 60,T1 = 16 0.968 0.799 0.779 0.886 0.991 0.987
T0 = 30,T1 = 32 0.734 0.753 0.009 0.444 0.938 0.936
T0 = 60,T1 = 32 0.952 0.786 0.058 0.610 0.978 0.976
Rejection Rates with α = .05

T0 = 30,T1 = 4 0.660 0.527 0.574 0.552 0.120 0.803
T0 = 30,T1 = 16 0.765 0.000 0.235 0.399 0.989 0.975
T0 = 60,T1 = 16 0.902 0.668 0.366 0.710 0.977 0.972
T0 = 30,T1 = 32 0.556 0.640 0.005 0.278 0.938 0.820
T0 = 60,T1 = 32 0.843 0.679 0.015 0.380 0.955 0.939
Rejection Rates with α = .01

T0 = 30,T1 = 4 0.226 0.348 0.367 0.213 0.120 0.621
T0 = 30,T1 = 16 0.324 0.000 0.084 0.110 0.974 0.846
T0 = 60,T1 = 16 0.607 0.458 0.142 0.191 0.977 0.938
T0 = 30,T1 = 32 0.202 0.379 0.000 0.092 0.938 0.530
T0 = 60,T1 = 32 0.469 0.421 0.001 0.137 0.955 0.685

Notes: All simulations are conducted with a thousand replications.
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