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Abstract

This paper establishes statistical properties of deep neural network (DNN) estimators
under dependent data. Two general results for nonparametric sieve estimators directly
applicable to DNN estimators are given. The first establishes rates for convergence in
probability under nonstationary data. The second provides non-asymptotic probability
bounds on L2-errors under stationary β-mixing data. I apply these results to DNN es-
timators in both regression and classification contexts imposing only a standard Hölder
smoothness assumption. The DNN architectures considered are common in applications,
featuring fully connected feedforward networks with any continuous piecewise linear acti-
vation function, unbounded weights, and a width and depth that grows with sample size.
The framework provided also offers potential for research into other DNN architectures
and time-series applications.
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1 Introduction

Deep neural networks (DNNs) have proven useful in the analysis of time series in economics and

finance (e.g., Gu et al., 2020; Bucci, 2020; Criado-Ramón et al., 2022; Lazcano et al., 2024) and

have become increasingly popular in empirical modeling (e.g., Sadhwani et al., 2021; Maliar

et al., 2021; Leippold et al., 2022; Murray et al., 2024). However, the statistical properties

of DNN estimators with dependent data are largely unknown, and existing results for general

nonparametric estimators are often inapplicable to DNN estimators. As a result, empirical use

of DNN estimators often lacks a theoretical foundation.

This paper aims to address this deficiency by first providing general results for nonparametric

sieve estimators that offer a framework that is flexible enough for studying DNN estimators

under dependent data. These results are then applied to both nonparametric regression and

classification contexts, yielding theoretical properties for a class of DNN architectures commonly

used in applications. Notably, Brown (2024) demonstrates the practical implications of these

results in a partially linear regression model with dependent data by obtaining
√
n-asymptotic

normality of the estimator for the finite dimensional parameter after first-stage DNN estimation

of infinite dimensional parameters.

DNN estimators can be viewed as adaptive linear sieve estimators, where inputs are passed

through hidden layers that ‘learn’ basis functions from the data by optimizing over compo-

sitions of simpler functions.1 Some general conditions that are sufficient to obtain statistical

properties of certain nonparametric estimators have been studied under independent and iden-

tically distributed data (i.i.d.) (e.g., Shen and Wong, 1994; Chen, 2007), and dependent data

(Wooldridge and White, 1991; Chen and Shen, 1998; Chen and Christensen, 2015). Different

from the extant literature, I provide two results for general sieve estimators that are applicable

to DNN estimators in settings with dependent data that takes values on unbounded sets. The-

orem 1 provides rates of convergence in probability in a setting similar to that of Wooldridge

1See Subsection 3.1 for a description of DNN architectures. See Chen (2007) for a treatment of sieve
estimators, and Farrell et al. (2021) for more discussion on framing DNN estimators in the context of more
familiar nonparametric estimation procedures.
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and White (1991), which differs from previous results, such as those in Chen and Shen (1998)

and Chen and Christensen (2015), by not requiring stationarity. Theorem 2 extends Farrell

et al. (2021, Theorem 2) beyond DNNs and i.i.d. settings, to provide non-asymptotic proba-

bility bounds on both the theoretical and empirical L2-errors of general sieve estimators under

stationary β-mixing data. These results are well suited to the study of DNN estimators for

two key reasons. First, they accommodate general sieve extremum estimation and are not re-

stricted to series methods treated by Chen and Christensen (2015), as verifying basis function

properties is impractical with DNNs’ adaptive structure. Second, they avoid conditions on the

sieve spaces, relying on entropy with bracketing or interpolation between L∞ and L2 norms

(e.g. Chen and Shen, 1998, Conditions A.3 and A.4), which are not feasible for DNNs when

network depth diverges with sample size.

Using these general results, I derive statistical properties for DNN estimators with architec-

tures that reflect modern applications: (i) fully connected feedforward networks with contin-

uous piece-wise linear activation functions; (ii) no parameter constraints; and (iii) depth and

width that grow with sample size.2 While early research focused on shallow, often single layer

networks with smooth activation functions (e.g. White and Gallant, 1992; Makovoz, 1998; An-

thony and Bartlett, 1999), modern applications favor deep networks with many hidden layers

(Szegedy et al., 2016; Schmidt-Hieber, 2020). To mitigate the increased computational demands

of deep networks, modern implementations do not impose parameter constraints and often use

non-smooth activation functions (e.g., Glorot et al., 2011). Among DNN architectures, fully

connected feedforward DNNs are standard in practice (Almeida, 2020; Criado-Ramón et al.,

2022), and are frequently applied in time-series settings (e.g. Dudek, 2016; Borghi et al., 2021;

AlShafeey and Csáki, 2021). Recently, the most popular activation function has been the recti-

fied linear unit (ReLU), ϕ(x) = max{0, x} (LeCun et al., 2015), which will be the main focus of

this paper’s DNN results.3 However, Subsection 3.4 shows that my results apply to DNNs with

2Fully connected feedforward neural networks with more than three hidden layers are often referred to as
multilayer perceptrons in the DNN literature.

3Compared to smooth activation functions, ReLU activation functions have also been shown to offer im-
proved properties both empirically (e.g., Sadhwani et al., 2021) and theoretically (e.g., Glorot et al., 2011).
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any continuous piecewise-linear activation function, and discusses how similar results could be

obtained for alternative DNN architectures, including those with sigmoid activation functions.4

Two results are obtained for these DNN estimators in nonparametric regression settings

with mixing processes and unbounded regressors. Theorem 3 applies Theorem 1, to obtain

convergence rates for the L2-error with non-stationary α-mixing data, and Theorem 4 applies

Theorem 2 to obtain error bounds with stationary β-mixing data. When the regressors are

bounded, Theorem 4 implies a convergence rate differing from the rate of that obtained by

Farrell et al. (2021, Theorem 1) under i.i.d. data by only a poly-logarithmic factor, making this

result useful for inference in some semiparametric settings, as discussed below.

The third DNN result pertains to classification, one of the most common applications for

neural networks. I apply Theorem 1 to obtain convergence rates in logistic binomial autore-

gression models with covariates. A similar approach could also yield results for multinomial

or non-logistic models using the ideas from Farrell et al. (2021, Lemma 9). Previous studies

on DNN estimators in classification contexts have considered their empirical performance with

dependent data (see Fawaz et al., 2019 for a review) or their statistical properties in i.i.d. set-

tings (e.g., Kim et al., 2021; Yara and Terada, 2024; and citations therein). To the best of my

knowledge, this work is the first to derive their statistical properties with dependent data.

Finally, I demonstrate how these results enable valid large-sample inference in partially

linear regression models with dependent data (see Robinson, 1988). I establish
√
n asymptotic

normality of the finite-dimensional parameter following first-stage DNN estimation of infinite-

dimensional components. Using an approach similar to Chen et al. (2022), I do this without

sample-splitting which is often impractical with dependent data. This exercise demonstrates the

practical implications of my DNN results and suggests potential applications to more complex

econometric models.

Much of the recent theoretical work for DNN estimators focuses on estimating regression

functions with additive or hierarchical structures, under i.i.d. data Kohler and Krzyżak (2017),

4Recurrent neural networks are also an important class of DNNs for time series settings not considered in
this paper. See Subsection 4 for a brief discussion of these architectures.
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Bauer and Kohler (2019), Schmidt-Hieber (2020), Kohler and Langer (2021), and dependent

data Kohler and Langer (2021), Kurisu et al. (2024). The compositional nature of neural net-

works makes them well-suited for estimating these restricted function classes. These studies use

this to obtain rapid, near minimax convergence rates, in some cases surpassing traditional non-

parametric estimators (Schmidt-Hieber, 2020). While this literature offers possible theoretical

insights into why DNNs have outperformed traditional estimators in some empirical work (e.g.,

Gu et al., 2020; Bucci, 2020), my approach differs by establishing a more flexible framework

for studying various DNN estimators in more general settings under time series data. I provide

statistical properties for a common class of DNN architectures, considering both nonparametric

regression and classification, under a Hölder smoothness condition, which is more general than

these restricted classes. My work also adds generality by not placing bounds on the parameters,

which can be critical for feasible implementation (see Farrell et al., 2021 for discussion).

Recently, Kurisu et al. (2024) provided closely related general results for DNN estimators

and sparse-penalized adaptive DNN estimators for nonparametric regression under nonstation-

ary β-mixing data. My work adds generality to their results since they require parameter

constraints, focus only on regression settings, and impose structural assumptions on the re-

gression function when applying their findings, although their general results do not explicitly

make this restriction. While I do not address adaptive network architectures, empirical gains

from sparsity penalties or other regularization techniques are often unclear (Zhang et al., 2017),

and in many cases my general results could apply to similar adaptive DNNs in contexts be-

yond nonparametric regression, following the ideas discussed in Subsection 3.4. Theorem 3 of

this paper also offers some added generality by allowing nonstationary α-mixing data, rather

than β-mixing. One advantage of Kurisu et al. (2024) is that they offer some consideration

of β-mixing coefficients with polynomial decay, whereas my DNN results only focus on mixing

coefficients with exponential decay.

The rest of the paper is organized as follows. Section 2 considers a general nonparametric

estimation setting and gives the main results for general sieve estimators. Section 3 describes
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the class of DNN architectures considered in this paper and applies the results of Section 2 to

derive properties of DNN estimators in nonparametric regression and classification contexts. A

discussion of extensions to alternative architectures is also provided. Section 4 concludes and

discusses avenues for future research. An appendix provides general measurability results for

sieve estimation settings, technical proofs for all of the results presented in the paper, and a

complete description of the notation used in the paper.

2 General sieve estimators

This section considers the problem of non-parametric sieve extremum estimation with depen-

dent data. The two main results for general sieve estimators will be given in Subsections 2.2

and 2.3.

Consider the following setting. Let (Ω,A, P ) be a complete probability space. Let {Zt}t∈N

be a stochastic sequence on (Ω,A, P ), with coordinates given by random vectors Zt : Ω → Z ⊆

RdZ for some dZ ∈ N and each t. The parameter space, F , is a space of functions with elements

f : Z → R measurable-B(Z)/B(R). Let q : Z × R → R be the single observation criterion

function which is assumed to be measurable-
(
B(Z) ⊗ B(R)

)
/B(R), and q

(
Zt(·), f(Zt(·))

)
∈

L1(Ω,A, P ), for each t and f ∈ F .5 The empirical criterion function is

Qn(f) = Q
(
{Zt}nt=1, f

)
:=

1

n

n∑
t=1

q(Zt, f(Zt)), n ∈ N, f ∈ F .

The true parameter f0 ∈ F is defined by E[Qn(f0)] ≤ E[Qn(f)], for all f ∈ F .

This setting covers a wide range of non/semi-parametric models. I give two examples that

illustrate it’s breadth. Example 1 is the regression model from Kurisu et al. (2024), and Example

2 considers a classification problem in a logistic binomial autoregression model. Generalizations

of these examples will be considered in Section 3 as applications of this section’s general results

on sieve estimation. To apply these examples with the notation used above, note that when

5Requiring that q be defined on Z × R instead of the subset Z × F(Z), where F(Z) := ∪z∈Z
{
f(z) : f ∈

F
}
⊆ R, is only for notational convenience later on and is without loss of generality by Stinchcombe and White

(1992, Lemma 2.14).
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Zt = (Yt,X t) any mapping X t 7→ f(X t) can trivially be defined on Z using the coordinate

projection πX(Zt) = X t.

Example 1. (Nonparametric Time-Series Regression) For all t ∈ N, let Zt := (Yt,X t) ∈

Z ⊆ R× Rd for some d ∈ N, such that Yt ∈ L2(Ω,A, P ) and

Yt = f0(X t) + η(X t)υt (2.1)

where η ∈ L2
(
P{Xt}t∈N

)
, υt ∈ L2(Ω,A, P ), and E[υt|X t] = 0. Then, F = L2

(
P{Xt}t∈N

)
,

f0 = E[Yt|X t], and q(Zt, f) =
(
Yt−f(X t)

)2
. This nonparametric location-scale model includes

many popular models, such as a nonlinear AR(p)-ARCH(r) model by letting 1 ≤ p, r ≤ d and

X t = (Yt−1, . . . , Yt−d)
T, given initial conditions Y0, . . . , Y1−d. See Kurisu et al. (2024) for other

special cases of (2.1).

Example 2. (Logistic Autoregression) For all t ∈ N, let Zt := (Yt,X t) such that Yt ∈ {0, 1}

and X t = (V t−1, Yt−1, . . . Yt−r) for some random vector of covariates V t ∈ Rd−r for d > r.

Suppose for any y ∈ {0, 1}, t ∈ N,

P
(
Yt = y

∣∣ {V t}∞t=0, Yt−1, Yt−2, . . .
)
= P

(
Yt = y

∣∣X t

)
,

and E[Yt|X t] = ef0
[
1 + ef0

]−1
where |f0(x)| <∞ for all x ∈ Rd. Then,

f0 = log

(
E[Yt|X t]

1− E[Yt|X t]

)
, and q(Zt, f(Zt)) = −Ytf(X t) + log

(
1 + ef(Xt)

)
.

Note that V t−2, . . .V t−r can trivially be included by replacing V t−1 with V ∗
t−1 := (V t−1, . . .V t−r).

2.1 Sieve extremum estimation and measurability

The target function f0 can be estimated using the method of sieves (Grenander, 1981 Chen,

2007). This approach covers a wide variety of nonparametric estimation methods. For a

textbook treatment of sieve estimation see Chen (2007).

Let {Fn}n∈N be a sequence of sieve spaces such that Fn ⊆ F , and sup
f∈Fn

∥f∥∞ < ∞. If

θn : Ω → [0,∞) is a random variable, such that θn = oP (1), then f̂n ∈ Fn is an approximate
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sieve estimator if

Qn(f̂n) ≤ inf
f∈Fn

Qn(f) + θn. (2.2)

θn is often referred to as the “plug-in” error, and whenever feasible θn := 0. In this case f̂n is

referred to as an exact sieve estimator.

In general, the infimum over Fn in (2.2), and the mapping ω 7→ f̂n from Ω to Fn, may not

be measurable when Fn is uncountable. Definition 1, and Propositions 1 and 2, provide easily

verifiable conditions that assure measurability in many sieve estimation settings (see Section 3

and Remark 1 for example). Appendix B includes the proofs and a discussion of similar results.

The definition of pointwise-separability that follows has many similar forms, see e.g., van der

Vaart and Wellner (1996, Example 2.3.4).

Definition 1. (Pointwise-Separable) Let G be a set of functions with elements g : Z → R

that are measurable-B(Z)/B(R). We say G is pointwise-separable if there is a countable subset

{gj}j∈N ⊆ G where for every g ∈ G, z ∈ Z, and δ > 0, there exists j = j(z, δ, g) ∈ N such that

|gj(z)− g(z)| < δ.

The next result uses Definition 1, to provide conditions that ensure the measurability of

infimum over Fn. Clearly, Proposition 1 will similarly apply to suprema, such as those in the

proofs of this paper’s results.

Proposition 1. Let G be a pointwise-separable class of functions. Then, for any n ∈ N and

Un : Ω× Rn → R that is measurable-(A⊗ B(Rn))/B(R), the mappings

ω 7→ inf
g∈H

Un

(
ω ,
{
g(Zt(ω))

}n
t=1

)
, ∀H ⊆ G, H ̸= ∅,

from Ω to R, are measurable-A/B(R).

With some abuse of notation, if Fn is pointwise-separable, then sup
f∈H

Qn(f) is measurable,

for any H ⊆ Fn. This follows by applying Proposition 1 to the functions

inf
f∈H

Un

(
· ,
{
f(Zt(·))

}n
t=1

)
:= inf

f∈H

1

n

n∑
t=1

q
(
Zt(·), f(Zt(·))

)
: Ω → R.
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since q is measurable-
(
B(Z)⊗ B(R)

)
/B(R).6 However, for f̂n as in (2.2), this does not ensure

the mapping ω 7→ f̂n is measurable. This will be dealt with using outer integrals/probability

in Subsection 2.2 (defined therein). Everywhere else in this paper, we will use the following

proposition which adds structure to F and Fn to ensure the existence of a measurable mapping

for f̂n.

Proposition 2. Let 1 ≤ r <∞ and n ∈ N. Suppose G ⊂ Lr(P{Zt}nt=1
) is a pointwise-separable

class of functions such that {g(z) : g ∈ G} ⊂ R is compact for each z ∈ Z. Let Un : Ω×Rn → R

be such that for each x ∈ Rn the function Un(·,x) : Ω → R is measurable-A/B(R), and for each

ω ∈ Ω the function Un(ω, ·) : Rn → R is continuous. Then, there exists a function s : Ω → G

such that for each ω ∈ Ω

s(ω) ∈
{
g ∈ G : Un

(
ω ,
{
g(Zt(ω))

}n
t=1

)
= inf

g∈G
Un

(
ω ,
{
g(Zt(ω))

}n
t=1

)}
̸= ∅,

and s is measurable-A/B(G), where B(G) uses the topology on G generated by ∥·∥Lr(P{Zt}nt=1
).

The conditions on Un in Proposition 2 are somewhat stronger than those used in Proposition

1 since they imply that Un is measurable-(A ⊗ B(Rn))/B(R) by using Aliprantis and Border

(2006, Lemma 4.51). Notably, Qn will satisfy this stronger condition for many common choices

of q, such as least squares or logistic loss.

Proposition 2 implies that a mapping ω 7→ f̂n from Ω → Fn exists and is measurable

whenever q(Zt(ω), ·) : R → R is continuous for all ω ∈ Ω, and F ⊆ Lr(P{Zt}nt=1
) is a pointwise-

separable class of functions such that {f(z) : f ∈ Fn} ⊂ R is compact for each z ∈ Z.

Proposition 2 is closely related to Wooldridge and White (1991, Theorem 2.2), which is com-

monly used to ensure the existence and measurability of sieve estimators (e.g., Chen, 2007).

Although Wooldridge and White (1991, Theorem 2.2) is applicable to metric spaces (Fn, ρ)

6To see this, note that, for any t, the mapping (ω, x) 7→ (Zt(ω), x), from Ω × R to Z × R, is measurable-(
A⊗ B(R)

)
/
(
B(Z) ⊗ B(R)

)
(Aliprantis and Border, 2006, Lemma 4.49). Consequently, the function (ω, x) 7→

q(Zt(ω), x), from Ω × R to R, is measurable-
(
A ⊗ B(R)

)
/B(R) since q is measurable-

(
B(Z) ⊗ B(R)

)
/B(R).

Then, by Aliprantis and Border (2006, Lemma 4.52), the mapping (ω, x1, . . . , xn) 7→ Un(ω, x1, . . . , xn) :=

1

n

n∑
t=1

q(Zt(ω), xt), from Ω× Rn to R, is measurable-(A⊗ B(Rn))/B(R), and Proposition 1 can be applied.
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where ρ may not be induced by an Lr-norm, they require that (Fn, ρ) be a compact metric

space. Therefore, Proposition 2 adds generality by only requiring Fn ⊂ ∥·∥Lr(P{Zt}nt=1
) such that

{f(z) : f ∈ Fn} ⊂ R is compact for all z ∈ Z, which does not imply that (Fn, ∥·∥Lr(P{Zt}nt=1
))

is a compact metric space. This will be crucial when the sieve spaces are constructed using

DNNs with unbounded weights as in Section 3.

2.2 Convergence rates without stationarity

This section gives a convergence rate result for sieve estimators applicable to very general

estimation settings where {Zt}t∈N is possibly non-stationary. To control the complexity of Fn

we will use a covering number as defined below. The space (M, ∥·∥) is referred to as a metric

space, with the metric induced by the norm ∥·∥.

Definition 2. (Covering Number) Let δ > 0, and let (M, ∥·∥) be a semi-metric space.

(i) For G ⊂ M, the δ-covering number of G, denoted as N(δ,G, ∥·∥), is the smallest J ∈ N

such that there exists a collection {mj}Jj=1 ⊆ M, where

G ⊆
J⋃

j=1

{
g ∈ G : ∥g −mj∥ < δ

}
,

and if no such J ∈ N exists let N(δ,G, ∥·∥) = ∞.

(ii) When M is a space of functions with elements f : Z → R, then, for any a ∈ N,

define M|{Zt}at=1
:=
{(
f(Z1), f(Z2), . . . , f(Za)

)
: f ∈ M

}
. For any r ≥ 1 we write

N(∞)
r (δ,M, a) := sup

{
N
(
δ,M|{Zt(ω)}at=1

, ∥·∥r,a
)
: ω ∈ Ω

}
.

For G ⊂ F and a sample {Zt}at=1, note that N
(
δ,G|{Zt}at=1

, ∥·∥r,a
)
depends on ω ∈ Ω, but

N(∞)
r (δ,G, a) does not. We adopt the usual convention, if G = ∅ then N(δ,G, ∥·∥) = 1, for any

δ > 0.

Theorem 1 is the first main result of this section. It provides a rate of convergence in

probability using an approach similar to the consistency results in Wooldridge andWhite (1991).

For generality, the following will not impose the conditions of Proposition 2 to ensure the

10



measurability of f̂n. Instead, we will use outer probability, P
∗, defined as in van der Vaart and

Wellner (1996, §1.2), i.e., for an arbitrary set B ⊆ Ω

P ∗(B) = inf
{
P (A) : A ⊇ B, A ∈ A

}
.

Theorem 1. For each n ∈ N let (F , ρn) be a (semi-) metric space. Let Fn be a pointwise-

separable class. Suppose there exist {f̂n}n∈N satisfying (2.2), and {ϵn}n∈N such that θn =

OP (ϵ
2
n). Then, ρn(f̂n, f0) = OP ∗(ϵn), if the following conditions hold:

(a.1) There exists a non-stochastic sequence {f̃n}n∈N such that f̃n ∈ Fn and ρn(f̃n, f0) ≤ ϵn, for

all n.

(a.2) There exist constants C1, C2 > 0 such that, for any n ∈ N and f ∈ Fn,

C1 ρn(f, f0)
2 ≤ E

[
Qn(f)

]
− E

[
Qn(f0)

]
≤ C2 ρn(f, f0)

2.

(a.3) There exist mn : Z → [0,∞), measurable-B(Z)/B([0,∞)), and a positive, non-decreasing

sequence {Mn}n∈N, such that, for each n ∈ N,

(i) for any f, f ′ ∈ Fn and z ∈ Z we have∣∣q(z, f(z))− q
(
z, f ′(z)

)∣∣ ≤ mn(z)
∣∣f(z)− f ′(z)

∣∣;
(ii) lim

n→∞
P

(
max

t∈{1,...,n}
mn(Zt) ≥Mn

)
= 0; and

(iii) for some C3 > 0 not depending on n,

sup

{
E
[∣∣q(Zt, f(Zt)

)∣∣1{mn(Zt)≥Mn}

]
: f ∈ Fn, t ∈ {1, ..., n}

}
≤ C3 ϵ

2
n.

(a.4) There exists λ(q)n : (0,∞) → (0,∞) such that,

(i) for any δ > 0, and f ∈ Fn,

P

(
1

n

∣∣∣∣ n∑
t=1

(
q
(
Zt, f(Zt)

)
1{mn(Zt)<Mn} − E

[
q
(
Zt, f(Zt)

)
1{mn(Zt)<Mn}

])∣∣∣∣ ≥ δ

)
≲ λ(q)n (δ);

(ii) and, for any fixed δ > 0 sufficiently large,7

lim
n→∞

{
λ(q)n

(
δ ϵ2n
)
· N(∞)

1

(
δ ϵ2n/Mn, Fn, n

)}
= 0.

7Fn in the covering number may be replaced with
{
f ∈ Fn : ϵn

√
(δ2 + C2 + 4C3)/C1 ≤ ρn(f, f0)

}
⊆ Fn.
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Condition (a.2) is a curvature condition on q near f0 that is standard in nonparametric

estimation (see e.g., Chen and Shen, 1998; Chen, 2007; Farrell et al., 2021). Condition (a.3)(i) is

a Lipschitz condition on q. In many estimation settings, these requirements are met by common

choices of q, such as least squares or logistic regression (Farrell et al., 2021). Conditions (a.3)(ii)

and (a.3)(iii) are requirements on the tail behavior of mn and q, which are often satisfied when

the extrema of {Zt}nt=1, and Fn, grow sufficiently slowly with n. In many cases (a.3)(ii) will

imply (a.3)(iii). This will be demonstrated in Subsection 3.2, with the use of Lemma 1.

The regularity conditions imposed by (a.3) are more general than those typically used in

the nonparametric sieve estimation literature. For instance, Farrell et al. (2021) requires that

Z be compact, and q satisfy a Lipschitz condition like (b.5)(i), except mn must be a constant.

Condition A.4 of Chen and Shen (1998) requires that there exist s ∈ (0, 2), γ > 4, and

C > 0 such that, for any δ > 0, sup
{f∈Fn:ρn(f,g)≤δ}

|q
(
z, f(z)

)
− q
(
z, h(z)

)
| ≤ δsmn(Zt), and

sup
n

E[mn(Zt)
γ] < C. In either case, these conditions imply (a.3).

Letting ρn vary with n is often necessary in settings where {Zt}t∈N is non-stationary. For

instance, when ρn is the metric induced by ∥·∥L2(P ∗
{Zt}nt=1

) condition (a.2) is easily verified in

many estimation settings (see Appendix E.1 for example). Note that this is often not the case

for fixed ρn = ρ such as ∥·∥L2(P ∗
{Zt}∞t=1

).

Condition (a.4)(i) can often be met by using an exponential inequality to obtain λ(q)n , such

as Wooldridge and White (1991, Theorem 3.4), or Merlevède et al. (2009, Theorem 1). These

inequalities can be applied without requiring q to be bounded, due to (a.3)(i) and the inclusion of

1{mn(Zt)<Mn} in (a.4)(i), provided that Fn satisfies a boundedness condition, such as sup
f∈Fn

∥f∥∞ ≲

Mn.

2.3 Nonasymptotic error bounds with stationarity and β-mixing

This section gives finite sample error bounds for sieve estimators in a setting where {Zt}t∈N

is strictly stationary and β-mixing. When {Zt}t∈N is stationary we write PZ = PZt for all

t ∈ N. The following definition for the β-mixing coefficient is from Dehling and Philipp (2002,

12



Definition 3.1, p.19), and is equivalent to many standard definitions.

Definition 3. (β-Mixing) The β-mixing coefficient is defined as,

β(j) := E

[
sup

{∣∣∣P(B|σ
(
{Zt}k1

))
− P

(
B
)∣∣∣ : B ∈ σ

(
{Zt}∞k+j

)
, k ∈ N

}]
, for j ∈ N.

We say {Zt}t∈N is β-mixing (or absolutely regular) if lim
j→∞

β(j) = 0.

Conditions to ensure β-mixing properties of stochastic sequences have been heavily studied

(e.g., Doukhan, 1994; Bradley, 2005), and there are many examples of interesting processes that

are β-mixing with exponentially decreasing coefficients, also referred to as geometric β-mixing.

For instance, conditions to ensure stationarity and geometric β-mixing for ARMA processes are

given by Mokkadem (1988), and for GARCH processes by Chen and Chen (2000), and Carrasco

and Chen (2002). The following corollary provides one such example, using Chen and Chen

(2000, Theorem 1) with the discussion from Dinh Tuan (1986, pp. 292,293).

Corollary 1 (Chen and Chen, 2000). Consider model (2.1) with X t = (Yt−1, . . . , Yt−d)
T. Given

an initial condition X0 = (Y0, . . . , Y1−d)
T ∈ Rd, if

(i) {υt} is i.i.d. with a strictly positive and continuous density, such that E[υt] = 0 and υt is

independent of X t−j for all j ∈ N;

(ii) the function s0 is uniformly bounded;

(iii) there exists a constant c such that for all δ ≥ 0,

0 < c ≤ inf
x∈Rd:∥x∥2,d≤δ

η(x) ≤ sup
x∈Rd:∥x∥2,d≤δ

η(x) <∞;

(iv) there exist constants C > 0, c
(s)
j ≥ 0, and c

(η)
j ≥ 0, for j = 0, . . . , d such that

|s0(x)| ≤ c
(s)
0 +

d∑
j=1

c
(s)
j |xj|, η(x) ≤ c

(η)
0 +

d∑
j=1

c
(η)
j |xj|, ∀x ∈ Rd : ∥x∥2,d ≤ C,

and
d∑

j=1

{
c
(s)
j + c

(η)
j |υj|

}
< 1;

then, {Zt}t∈N is strictly stationary and β-mixing such that there exist constants C ′
β, Cβ > 0

where β(j) ≤ C ′
βe

−Cβj.
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This section’s main result will use the pseudo-dimension to control the complexity of the

sieve spaces Nn. The following definition is from Bartlett et al. (2019, Definition 2).

Definition 4. (Pseudo-dimension) Let S be a class of functions from X → R. The

pseudo-dimension of S, denoted as Pdim(S), is the largest p ∈ N for which there exists

(x1, . . . , xp, y1, . . . , yp) ∈ Xp × Rp such that for any (b1, . . . , bp) ∈ {0, 1}p there exists s ∈ S

such that 1{s(xi)− yi > 0} = bi, for all ∀ i = 1, . . . , p.

Pseudo-dimension, along with related complexity measures like Vapnik–Chervonenkis di-

mension, (see e.g. Bartlett et al., 2019, Definition 1) is often described as ‘scale insensitive’

because, unlike the covering number, it does not depend on a specific threshold δ > 0. Scale-

insensitive complexity measures are particularly well-suited with function classes constructed

with DNNs that have unbounded parameters, for which Bartlett et al. (2019) provides nearly

tight pseudo-dimension bounds. Pseudo-dimension can also be used to bound the covering

number with Anthony and Bartlett (1999, Theorem 12.2) (also see Lemma 9 herein).

Theorem 2 extends Farrell et al. (2021, Theorem 2) to general nonparametric sieve estimators

in settings with dependent data that may take values in unbounded sets. This extension relies

on stationarity and β-mixing to apply a standard independent blocking technique, and an

exponential inequality from Merlevède et al. (2009). Following Farrell et al. (2021), the proof

of Theorem 2 differs from classic sieve analysis (e.g., Wooldridge and White, 1991; van der

Vaart and Wellner, 1996, §3.4; Chen and Shen, 1998) by using a localization approach with

scale-insensitive measures of complexity to offer straightforward applicability to DNN estimators

that have unbounded parameters (see Farrell et al., 2021 for more discussion).

Theorem 2. Let {Zt}t∈N be strictly stationary, (F , ∥·∥L2(PZ)) be a (semi-) metric space, q(Zt(ω), ·) :

R → R be continuous for all ω ∈ Ω, and Fn be a pointwise-separable class such that {f(z) :

f ∈ Fn} ⊂ R is compact for each z ∈ Z and n ∈ N. Suppose ∥f0∥∞ ≤ 1, and the following

conditions hold:

(b.1) {Zt}t∈N is β-mixing with β(j) ≤ C ′
βe

−Cβ j for some Cβ, C
′
β > 0.
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(b.2) For each n ∈ N, there exists a non-stochastic f̃n ∈ Fn where ϵ̃n := ∥f̃n−f0∥∞ is such that

lim
n→∞

ϵ̃n(log n)(log log n) = 0.

(b.3) There exist constants C1, C2 > 0 such that, C1 ≤ 1, and for any n, f ∈ Fn,

C1∥f − f0∥2L2(PZ) ≤ E
[
Qn(f)

]
− E

[
Qn(f0)

]
≤ C2∥f − f0∥2L2(PZ).

(b.4) Fn is such that Pdim(Fn) ≥ 1 for all n, and for some non-decreasing sequence {Bn}n∈N

such that B1 ≥ 2, and sup
f∈Fn

∥f∥∞ ≤ Bn <∞ for each n, we have

lim
n→∞

Bn√
n

[√
Pdim(Fn) log(n) +

√
log log(n)

]
= 0.

(b.5) There exists mn : Z → [0,∞), measurable-B(Z)/B([0,∞)), such that, for each n,

(i) for any f, f ′ ∈ Fn, z ∈ Z we have
∣∣q(z, f(z))− q

(
z, f ′(z)

)∣∣ ≤ mn(z)
∣∣f(z)− f ′(z)

∣∣;
and

(ii) there exists a constant C4 ≥ 1 and a strictly positive sequence {µn}n∈N such that

min

{
BnE

[
mn(Zt)1{mn(Zt)>C4Bn}

]
, sup

f∈{Fn∪{f0}}
E
[∣∣q(Zt, f(Zt)

)∣∣1{mn(Zt)≥C4Bn}

]}
≤ µn,

and lim
n→∞

µn = 0.

Then, there exists a constant C > 0, depending only on C1, C2, C4, Cβ, and C
′
β, such that for

any n ≥ max
{
5 , 2Pdim(Fn) , 16B

2
n/log(n)

}
, measurable mapping ω 7→ f̂n satisfying (2.2),

and constants a ∈ N, δ > 0 where

max

{
2 ,

ϵ̃n(log n)(log log n)

Bn

}
< a ≤ n/2, and

√
δ ≥ ϵ̃n

√
n

Bna− ϵ̃n(log n)(log log n)
,

we have

P
(
∥f̂n − f0∥L2(PZ) ≤ C ϵn(δ, a)

)
≥ 1− e−δ − 2 log(n)

[
nβ(a)

a
+ 2P

(
max

t∈{1,...,n}
mn(Zt) ≥ C4Bn

)]
, and

P
(
∥f̂n − f0∥2,n ≤ C ϵn(δ, a)

)
≥ 1− 4e−δ − 6 log(n)

[
nβ(a)

a
+ 2P

(
max

t∈{1,...,n}
mn(Zt) > C4Bn

)]

where ϵn(δ, a) := Bn

√
a

n

[√
Pdim(Fn) log(n) +

√
log log(n) + δ

]
+
√
ϵ̃2n + µn + θn.

The existence of a measurable mapping ω → f̂n is not be an extra assumption, as it will

follow from Proposition 2 and the assumptions in the statement of Theorem 2. Therefore it is

not necessary to use outer probabilities/integrals when dealing with f̂n.
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The requirement that a >
ϵ̃n(log n)(log log n)

Bn

will not be binding for large n. This follows

because (b.2) and (b.4) imply lim
n→∞

ϵ̃n(log n)(log log n)

Bn

= 0.

Note that n ≥ 16B2
n/ log(n) and n ≥ 2Pdim(Fn) for all n sufficiently large is implied by

(b.4). Requiring that C4 ≥ 1 and C1 ≤ 1 is also without loss of generality. To see this, if

(b.5)(ii), or (b.3) hold with C4 < 1 or C1 > 1, respectively, then they will also hold with the

constant replaced by one. However, this requirement can be dropped if n is large enough or

(4 · 288)C4/C1 ≥
√
38 (see first paragraph of Appendix D.5.4 for more detials).

Conditions (b.3) and (b.5)(i) are analogous to Conditions (a.2) (a.3)(i), and the discussion

following Theorem 1 still applies. Condition (b.5)(ii) is related to (a.3)(iii), but Condition

(b.5)(ii) is somewhat more general since the uniform integrability type requirement on q can

be replaced with lim
n→∞

Bnmn(Zt)1{mn(Zt)>C4Bn} = 0.

Although Theorem 2 does not explicitly require lim
n→∞

P
(

max
t∈{1,...,n}

mn(Zt) > C4Bn

)
= 0,

like Condition (a.3)(iii), this will be necessary for the error bounds to hold with probability

approaching one. In light of this, the requirement that q(Zt(ω), ·) : R → R be continuous for

all ω ∈ Ω, imposes very little additional structure, since Condition (b.5)(i) will imply this with

probability approaching one whenever lim
n→∞

P
(

max
t∈{1,...,n}

mn(Zt) > C4Bn

)
= 0.

Theorem 2 may also imply a rate of convergence by choosing δ = δn and a = an such that

δn and an go to infinity with n at an appropriate rate. For this, note that for any {an}n∈N such

that lim
n→∞

an/ log(n) = ∞ we have log(n)nβ(an)
an

= 0. To see this, choose bn = anCβ log
−1(n), so

by Condition (b.1) we have

log(n)nβ(an)

an
≲

log(n)ne−Cβan

an
=

log(n)n1−bn

an
=

log(n)n1−
anCβ
log(n)

an
.

3 DNN estimators

This section applies the general results of Section 2 to obtain theoretical properties for a class

of DNN estimators commonly used in applications. The proofs for this section are included in

Appendix E.
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Throughout this section, {Zt = (Yt,X
T
t )

T}t∈N will be a stochastic sequence on the complete

probability space (Ω,A, P ), such that, Yt ∈ R and X t ∈ [0, 1]d for each t. The object to be

estimated is f0 : [0, 1]
d → [−1, 1], which satisfies the following Hölder smoothness assumption.

Assumption 1. (Smoothness) For a smoothness parameter p ∈ N, and each multi-index

k ∈
{
N ∪ {0}

}d
with

d∑
j=1

kj ≤ p− 1, the regression function f0 : [0, 1]
d → R is such that Dkf0

is continuous, and ∥Dkf0∥∞ ≤ 1.

This type of smoothness assumption is standard in the nonparametric estimation literature

(e.g. Stone, 1982; Chen and Shen, 1998; Chen, 2007; Chen and Christensen, 2015; Farrell

et al., 2021), and DNNs have been shown to approximate these functions functions well by

Yarotsky (2017). Note that this assumption is weaker than the structural assumptions imposed

in much of the DNN literature (e.g., Kohler and Krzyżak, 2017; Schmidt-Hieber, 2020; Kohler

and Langer, 2021).

For most of the results in this section, β-mixing will be stronger than necessary. In these

cases, we use α-mixing, defined as follows (see Dehling and Philipp, 2002, Definition 3.1).

Definition 5. (α-Mixing) The α-mixing coefficient is defined as,

α(j) := sup

{∣∣∣P(A∩B
)
−P (A)P (B)

∣∣∣ : A ∈ σ
(
{Zt}k1

)
, B ∈ σ

(
{Zt}∞k+j

)
, k ∈ N

}
, for j ∈ N.

We say {Zt}t∈N is α-mixing (or strong mixing) if lim
j→∞

α(j) = 0.

Sufficient conditions for a process to be α-mixing have been heavily studied (e.g. Doukhan,

1994, §2.4; or Bradley, 2005), and an example is included in Corollary 2 of Subsection 3.3. It

is well known that α(j) ≤ β(j), so any β-mixing process is also α-mixing with a rate at least

as fast. Consequently, Corollary 1 can also be used to imply α-mixing.

3.1 DNN sieve spaces (Nn)

The sieve spaces used here, Nn, will be constructed using fully connected feedforward DNNs,

also known as a multilayer perceptron. For concreteness, we focus on DNNs equipped with the
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Figure 1: Example of Nn architecture graph structure where Ln = 2, Hn,1 = 3, Hn,2 = 2,
Wn = 20, and d = 2.

ReLU activation function ϕ(x) = max{0, x}. However, Corollary 3, shows that all results in

the following subsections apply for any continuous piecewise-linear activation function. Con-

siderations for other feedforward architectures and activation functions are also discussed in

Subsection 3.4.

For n ∈ N the graph structure of the architecture Nn is characterized by its depth Ln ∈ N,

and width vector Hn = [Hn,0, Hn,1, . . . , Hn,Ln ] ∈ NLn+1 where Hn,0 = d for all n. Each hidden

layer, l ∈ {1, . . . , Ln}, is comprised of Hn,l “hidden” computational units, referred to as nodes,

and denoted as ul,h. The d inputs x = [x1, . . . , xd]
′ ∈ [0, 1]d are fed into each node in the first

hidden layer l = 1. Then each node in layer l = 1 feeds into each node of the next layer l = 2.

This process repeats with each node in layer l − 1 passing its output into each node in layer l

up to the last hidden layer l = Ln. Finally, each node in the last hidden layer, l = Ln, feeds

into the output layer of the network, l = Ln + 1, which consists of only one computation unit.

Note that nodes in layer l receive inputs only from nodes in layer l − 1, and none from layers

l − 2 or earlier. See Figure 1 for an example of an Nn architecture.

Each node is a function taking values in R which depends on a real-valued vector of pa-

rameters γ l,h, and takes as arguments the outputs of all nodes in the previous layer, which

ultimately depend on the original input x. The parameters for each node consist of a scalar
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intercept term γl,h,0,
8 and weights γl,h,1, . . . , γl,h,Hn,l−1

such that

γ l,h = [γl,h,0, γl,h,1, . . . , γl,h,Hn,l−1
]T ∈ RHn,l−1+1.

The parameters for the entire network are collected together as

γWn
:= {γl,h,k}∀ l,h,k ∈ RWn ,

whereWn is the total number of parameters in the network. For a set of parameters, the output

of node h, in layer l, is denoted as ul,h(x | γWn
) and the single node in the last layer (l = Ln+1)

is denoted as uLn+1,1(x | γWn
) where the dependence on γWn

will often be suppressed. Then

each node can be written as

ul,h
(
x | γWn

)
:=



ϕ

( d∑
i=1

γ1,h,i · xi + γ1,h,0

)
, l = 1,

ϕ

(Hn,l−1∑
i=1

γl,h,i · ul−1,i(x) + γl,h,0

)
, 2 ≤ l ≤ Ln,

Hn,Ln∑
i=1

γLn+1,1,i · uLn,i(x) + γLn+1,1,0, l = Ln + 1.

(3.1)

With this notation, uLn+1,1 : [0, 1]
d × RWn → R, and we define the architecture Nn as

Nn = N (Ln,Hn, Bn) :=
{
f = uLn+1,1

(
· |γWn

)
: γWn

∈ RWn , sup
x∈[0,1]d

|uLn+1,1

(
x | γWn

)
| ≤ Bn

}
. (3.2)

A particular network f ∈ Nn can be written as f(x) = uLn+1,1

(
x | γWn

)
.

Remark 1. Nn as in (3.2) has the following useful properties:

(i) The functions uLn+1,1 : [0, 1]d × RWn → R are continuous. This follows because for each

l ∈ {1, . . . , Ln + 1}, h ∈ {1, . . . , Hn,l} the function ul,h is composed of compositions of

the ReLU activation function (ϕ) and linear combinations of γ l,h and {ul−1,h}
Hn,l−1

h=1 (or

x ∈ [0, 1]d when l = 1).

(ii) Nn is a pointwise separable class. To see this, let Q denote the rationals and define

NQ
n :=

{
f ∈ Nn : γWn

∈ QWn
}
. Then, NQ

n is a countable dense subset of Nn, since

uLn+1,1(x| · ) : RWn → R is continuous for each x ∈ [0, 1]d, and Q is a countable dense

8The machine learning literature often refers to γl,h,0 as the bias, or threshold. To avoid confusion with
similarly named objects in the econometrics literature I refer to this as the intercept term.
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subset of R (for the standard topology on R).

(iii) Note that for each n and x ∈ Z we have {f(x) : f ∈ Nn} = [−Bn, Bn], which is compact.

To see this, consider the subset of Nn where all parameters are equal to zero except for

the intercept term in the output node, i.e.

N ∗
n :=

{
f ∈ Nn : γLn+1,1,0 ∈ [−Bn, Bn], and γl,h,k = 0 ∀{l, h, k} ≠ {Ln + 1, 1, 0}

}
.

Clearly f ∗(x) = γLn+1,1,0 for any f ∗ ∈ N ∗
n , x ∈ [0, 1]d. Thus, {f ∗(x) : f ∗ ∈ N ∗

n} =

[−Bn, Bn] for each x ∈ [0, 1]d. Then the result follows sinceN ∗
n ⊂ Nn and sup

f∈Nn

∥f∥∞ = Bn

by (3.2).

In what follows, the mappings ω 7→ f̂n from Ω to Nn will be considered measurable. This

will follow using Remark 1 since Proposition 2 will be applicable in the estimation settings

considered throughout this section.

3.2 DNNs for nonparametric regression

I consider a general nonparametric regression estimation setting, that includes Example 1 as a

special case. Theorem 3 will apply Theorem 1 to show the convergence of DNN estimators in a

very general setting without assuming stationarity. Theorem 4 will apply Theorem 2 to obtain

non-asymptotic probability bounds on the empirical and theoretical error of DNN estimators

with stationary β-mixing data.

The goal is to estimate the function f0 = E[Yt|X t], with a DNN sieve estimator f̂n as in

(2.2), using the least squares criterion

q(Zt, f) := (Yt − f(X t))
2,

and the DNN sieve spaces Fn =
{
f(πX(·)) : f ∈ Nn

}
. The regressands {Yt}t∈N will be assumed

to satisfy the following conditions.

Assumption 2. For all t ∈ N, suppose Yt ∈ L2(Ω,A, P ) such that there exists a non-decreasing
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sequence {Bn}n∈N with B1 ≥ 2, where

lim
n→∞

P

(
max

t∈{1,...,n}
|Yt| ≥ Bn

)
= 0.

This assumption will be the key to ensuring Conditions (a.3)(ii)(iii) and (b.5)(ii) hold in

this setting. The two main results of this section will also specify some additional condi-

tions to control the dependence of {Zt}t∈N and ensure Bn grows sufficiently slowly. In both

cases, these requirements will be quite general for nonparametric estimation as they will hold

without Yt taking values on a compact set (Farrell et al., 2021, Assumption 1), and without

E[Y 2
t |{X t, Yt−1}nt=1] being uniformly bounded or E[Y 2+δ

t ] < ∞ for some δ > 0 (Chen and

Christensen, 2015, Assumption 2).

Assumption 2 can be verified using results from extreme value theory for a wide variety

of {Yt}t∈N that are not uniformly bounded almost surely. The following proposition gives

two examples that use Leadbetter et al. (1983, Theorem 3.4.1), and Leadbetter et al. (1983,

Theorem 6.3.4). See Appendix E for a proof showing these results can be applied.

Proposition 3. Suppose {Yt}t∈N is α-mixing and one of the following holds:

(i) {Yt}t∈N is stationary, and lim
n→∞

nP (|Y1| > Bn) = 0;9 or

(ii) {Yt}t∈N is (possibly nonstationary) such that for each n ∈ N the joint distribution of

{Yt}nt=1 is an n-dimensional normal distribution; α(j) < (36
√
2)−1 for any j ∈ N;

lim
j→∞

α(j) log2(j) = 0; lim
n→∞

∑n
t=1 P (|Yt| ≥ Bn) = 0; and

lim
n→∞

min
t∈{1,...,n}

(
min

{
Bn − E(−Yt)√

Var(Yt)
,
Bn − E(Yt)√

Var(Yt)

})
= ∞.

Then, in either case, lim
n→∞

P
(

max
t∈{1,...,n}

|Yt| ≥ Bn

)
= 0.

The following lemma shows that Assumption 2 implies a form of uniform integrability that

will be used to verify (b.5)(ii) and (a.3)(iii) for this subsection’s main results. See Appendix E

for the proof of Lemma 1.

9Note that α-mixing is stronger than necessary and could be replaced with Leadbetter et al. (1983, Condition
D(un), p.53) which is implied by α-mixing (see discussion on p.54 therein).
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Lemma 1. If Assumption 2 holds then lim
n→∞

{
max

t∈{1,...,n}
E
[
Y 2
t 1|Yt|≥Bn

]}
= 0.

The first main result of this section is Theorem 3, which applies Theorem 1, to obtain a rate

of convergence in probability for DNN estimators in general nonparametric regression settings

with nonstationary α-mixing data.

Theorem 3. Suppose Assumptions 1 and 2 hold with Bn ≲ nKB for some KB ∈ [0, 1/4).

Let {Zt}t∈N be an α-mixing process with α(j) ≤ C ′
αe

−Cα j for some Cα, C
′
α > 0. Let Nn =

N (Ln,Hn, Bn) be defined as in (3.2) where the sequences {Ln}n∈N, {Hn,l}n∈N for each l ∈ N,

are non-decreasing, Hn,l ≍ Hn, and

Ln ≍ log(n), Hn ≍ n(
d

p+d/2)(1/4−KB) log2(n). (3.3)

Suppose {f̂n}n∈N satisfies (2.2) and there exists {ϵn}n∈N such that θn = OP (ϵ
2
n), and for some

υ > 0,

ϵn ≳ max

{
n−( p

p+d/2)(1/4−KB) log2+υ(n) , max
t∈{1,...,n}

√
E
[
Y 2
t 1|Yt|≥Bn

]}
.

Then, ∥f̂n − f0∥L2(P{Xt}nt=1
) = OP (ϵn).

Theorem 3 shows that DNN estimators are consistent in very general settings, however

the convergence rate is strictly slower than n−1/4. The next result uses Theorem 2 to obtain

nonasymptotic error bounds which can imply faster rates of convergence in probability when

{Zt}t∈N is stationary and β-mixing.

Theorem 4. Suppose Assumptions 1 and 2 hold with Bn ≍ nKB for some KB ∈ [0, 1/2). Let

{Zt}t∈N be a strictly stationary β-mixing process with β(j) ≤ C ′
βe

−Cβ j for some Cβ, C
′
β > 0.

Let Nn = N (Ln,Hn, Bn) be defined as in (3.2) where the sequences {Ln}n∈N, {Hn,l}n∈N for

each l ∈ N, are non-decreasing, Hn,l ≍ Hn, and

Ln ≍ log(n), Hn ≍ n(
d

p+d)(1/2−KB) log2(n).

Then, for {f̂n}n∈N satisfying (2.2), and

ϵn = n−( p
p+d)(1/2−KB) log6(n) +

√
E
[
Y 2
t 1{|Yt|≥Bn}

]
+ θn,
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there exists a constant C > 0 independent of n, such that for all n sufficiently large

P
(
∥f̂n − f0∥L2 ≤ C ϵn

)
≥ 1− e−n(

p
p+d)(1/2−KB)

−
2C ′

βn
1−Cβ log(n)

log(n)
− 4 log(n)P

(
max

t∈{1,...,n}
|Yt| ≥ Bn

)
,

P
(
∥f̂n − f0∥2,n ≤ C ϵn

)
≥ 1− 4e−n(

p
p+d)(1/2−KB)

−
12C ′

βn
1−Cβ log(n)

log(n)
− 24 log(n)P

(
max

t∈{1,...,n}
|Yt| ≥ Bn

)
.

This result can imply convergence rates as fast as n−( p
2(p+d)) log6(n) when Yt is almost surely

bounded and θn converges sufficiently quickly. In this case, the rate only differs by a factor of

log2(n) from the rate implied by Farrell et al. (2021, Theorem 1) for settings where {Zt}t∈N

forms an i.i.d. sequence and Yt takes values in a compact set. Notably, Brown (2024) demon-

strates that the rates implied by Theorem 4 can be sufficiently fast to obtain
√
n-asymptotic

normality of a finite-dimensional parameter following first stage nonparametric estimation of

conditional expectations with DNN estimators in a partially linear regression under stationary

β-mixing data with unbounded regressands.

The convergence rates from Theorem 3 and the rate implied by Theorem 4 will not depend on

α(j) and β(j) respectively, provided they are geometrically mixing. Although, the probability

bound from Theorem 3 will depend on Cβ, C
′
β.

3.3 DNNs for binomial autoregressions with covariates

This section considers logistic binomial autoregression models, building upon the setting from

Example 2. The main result of this section is Theorem 5, which demonstrates the applicability

of Theorem 1 for DNN estimators in categorical autoregressive settings. Such settings are of

particular interest for DNNs since they are frequently employed for classification problems.

Although this binomial logistic setting is a simple case of the classification problem, similar

results for multinomial and non-logistic settings could be attained with the methods employed

here. Also see Farrell et al. (2021, Lemma 9) for an example of how the criterion functions for

Poisson, Gamma, and multinomial logistic models can be shown to satisfy the requirements of

Theorem 1.

The setting will be a special case of the models considered in Truquet (2021). For all t ∈ N,
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let Zt := (Yt,X t) such that Yt ∈ {0, 1} and X t = (V t−1, Yt−1, . . . Yt−r) ∈ [0, 1]d−r × {0, 1}r ⊂

[0, 1]d for some random vector of covariates V t ∈ [0, 1]d−r, where d > r. Suppose

Yt = s
(
V t−1, Yt−1, . . . , Y1−r, υt

)
:= s

(
X t, υt

)
, ∀t ∈ N, (3.4)

where υt ∈ R is some random noise, and the function s : [0, 1]d−r × {0, 1}r × R → {0, 1} is

measurable. The estimation target will be a scaled version of the function log
(

E[Yt|Xt]
1−E[Yt|Xt]

)
under

the following logistic regression assumption.

Assumption 3. For all t ∈ N, let E[Yt|X t] = eBf0
[
1 + eBf0

]−1
for some B ≥ 2, and f0 :

[0, 1]d → [−1, 1].

It will be convenient to write the assumption this way since ∥f0∥∞ ≤ 1 under Assumption

1. Indeed, Assumption 3 is equivalent to the usual assumption E[Yt|X t] = es0
[
1+ es0

]−1
where

it is also assumed that ∥s0∥∞ ≤ B, by setting f0 = s0/B. In what follows, the particular value

of B will play no role in the convergence rate of the estimator. Also note that Assumption

1 will require f0 to be defined on [0, 1]d, which imposes some additional structure on f0 since

X t ∈ [0, 1]d−r × {0, 1}r ⊂ [0, 1]d.

The goal is to estimate f0 = B−1 log

(
E[Yt|X t]

1− E[Yt|X t]

)
, using a DNN sieve estimator f̂n as

in (2.2) where the criterion is

q(Zt, f) := −YtBf(X t) + log
(
1 + eBf(Xt)

)
,

and the DNN sieve spaces are Fn =
{
f(πX(·)) : f ∈ Nn

}
.

Theorem 5. Suppose Assumptions 1 and 3 hold. Let {Zt}t∈N be an α-mixing process with

α(j) ≤ C ′
αe

−Cα j for some Cα, C
′
α > 0. Let Nn = N (Ln,Hn, 2) be defined as in (3.2) where the

sequences {Ln}n∈N, {Hn,l}n∈N for each l ∈ N, are non-decreasing, Hn,l ≍ Hn, and

Ln ≍ log(n), Hn ≍ n
1
2(

d
p+d) log2(n). (3.5)

For {f̂n}n∈N satisfying (2.2) if there exists {ϵn}n∈N such that θn = OP (ϵ
2
n), and

ϵn ≳ n− 1
2(

p
p+d) log5(n),
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then ∥f̂n − f0∥L2(P{Xt}nt=1
) = OP (ϵn).

To the best of my knowledge, this is the first result providing a convergence rate for DNN

estimators in classification settings with dependent data. Theorem 5 provides a convergence

rate in settings with nonstationary α-mixing data that is identical, up to a logarithmic factor,

to the rate implied by Farrell et al. (2021, Theorem 1) under i.i.d. data. In addition, this

convergence rate is unaffected by the rate of decay of the α-mixing coefficient, provided it is

geometric mixing.

Theorem 5 allows for very general forms of dependence, and includes many interesting

examples. The following corollary provides two examples of settings in which Theorem 5 can be

applied without directly assuming the mixing condition for {Zt}t∈N. Corollary 2(i) follows from

Truquet (2021, Theorem 1) and point 2 of the discussion following their result, since Assumption

3 implies P (Yt = 1|X t) ∈
[
e−B/

(
1 + e−B

)
, eB/

(
1 + eB

)]
. Corollary 2(ii) follows from Truquet

(2021, Theorem 3, Proposition 1).10 Using these results, one can also obtain similar sufficient

conditions for mixing properties of {Zt}t∈N in the multinomial case, Yt ∈ {0, 1, . . . , N}. Let

the mixing coefficient for {V t}∞t=0 and {Zt}t∈N be denoted as αV and αZ respectively.

Corollary 2 (Truquet, 2021). Consider the model from (3.4). Suppose {V t}∞t=0 is strictly

stationary and one of the following holds:

(i) {V t}∞t=0 is α-mixing such that αV (j) = O
(
e−Cj

)
for some C > 0, and {υt}t∈N is an i.i.d.

sequence, independent of {V t}∞t=0, such that for any y ∈ {0, 1}

P
(
Yt = y

∣∣ {V t}∞t=0, Yt−1, Yt−2, . . .
)
= P

(
Yt = y

∣∣V t−1, Yt−1, . . . , Yt−r

)
≡ P

(
Yt = y

∣∣X t

)
;

or

(ii) {V t}∞t=0 is α-mixing such that αV (j) = O
(
e−Cj2

)
for some C > 0, and {υt}∞t=0 is uni-

formly distributed on (0, 1) such that, for each t ∈ N, υt is independent of σ
(
{V t−j, υt−j}tj=1

)
10To apply Truquet (2021, Proposition 1) note that ergodicity of {V t} is implied by stationarity and α-mixing

(see e.g. Bradley, 2005).
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and for any y ∈ {0, 1}

P
(
Yt = y

∣∣V t−1, Yt−1, Yt−2, . . .
)
= P

(
Yt = y

∣∣V t−1, Yt−1, . . . , Yt−r

)
≡ P

(
Yt = y

∣∣X t

)
;

and the model (3.4) satisfies

s
(
X t, υt

)
= 0 ⇐⇒ 0 < υt ≤ E[Yt|X t].

Then, {Zt}t∈N is strictly stationary and α-mixing with αZ(j) = O
(
e−Cαj

)
, for some Cα > 0.

Corollary 2(i) allows general distributions for υt but imposes a strict exogeneity assumption

with respect to {V t}∞t=0. Corollary 2(ii) requires {υt}∞t=0 to be i.i.d. with a uniform distribution,

and {V t} to be mixing at a faster rate, but allows for some endogeneity, since V t can depend

on υt, provided V t is independent of υt−j, for j = 1, . . . , t. These results are somewhat stronger

than needed for Theorem 5, since the stationarity of {Zt}t∈N, or {V t}∞t=0 is not required.

Truquet (2021) suggests these results could generalize to the non-stationary case, but further

work is needed to verify this.

3.4 Extensions to alternative DNN architectures

While the networks considered in the previous sections are standard, similar results can be

obtained for other architectures. The key to this will be obtaining results for the complexity–

either covering number or pseudo-dimension–and approximation power of the DNN sieve spaces

under consideration. This section demonstrates that this is possible and provides extensions of

this paper’s results to alternative feedforward DNN architectures.

Remark 2. In this section, and in the proofs for Section 3’s results, we will use bounds on the

the Vapnik Chervonenkis dimension (see Bartlett et al., 2019, Definition 1) of DNNs that take

values in {0, 1} from Anthony and Bartlett (1999) and Bartlett et al. (2019). This is without

loss of generality since these results can be directly applied to the pseudo-dimension of real

valued DNNs using Anthony and Bartlett (1999, Theorem 14.1) (also see discussion following

Bartlett et al., 2019, Definition 2).
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Figure 2: Example of N FFN
n,φ architecture graph structure where Ln = 2, Wn = 17, and d = 2.

The first result uses Yarotsky (2017, Proposition 1) to show that Theorems 3, 4, and 5 are

directly applicable to fully connected feedforward networks with any continuous piecewise-linear

activation function, φ, that has a fixed number of breakpoints, b ∈ N. One important example

of this is the ‘leaky’ ReLU (LReLU) activation function

φLReLU(x) =


cx, x < 0,

x, x ≥ 0,

for some small constant c > 0 (often set to c = 0.01) that is predetermined before optimizing

over the parameters γWn
. The LReLU is often used in practice to address the vanishing gradient

problem that arises with the ReLU where certain computation units may never have non-zero

outputs.

Corollary 3. Let b ∈ N be a constant and φ : R → R be any continuous piece-wise linear

function with b breakpoints. Let Nn,φ be defined as in (3.2) except with the ReLU activation

function replaced by φ. Then, Theorems 3, 4, and 5 also apply to Nn,φ.

The proofs of Theorems 3, 4, and 5 follow similarly when Nn is replaced with Nn,φ. To see

this, note that with Yarotsky (2017, Proposition 1) the approximation result of Lemma 11 can

be extended to DNNs with a continuous piecewise-linear activation function by only increasing

Hn by a constant factor; and the complexity results of Lemmas 14 and 15 are applications of

Bartlett et al. (2019) and Anthony and Bartlett (1999, Theorem 12.2) which also apply to Nn,φ.

The next result provides a framework to obtain theoretical properties of DNN estimators

with a wide variety of activation functions and any feedforward graph structure, provided an
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approximation result like Lemma 11 exists for the DNN under consideration. These DNNs will

be denoted as N FFN
n,φ , which allow for any graph structure where units in layer l ∈ {1, . . . , Ln+1}

takes inputs from any of the units in layers l′ ∈ {0, . . . , l − 1}. See Figure 2 for an example of

N FFN
n,φ ’s graph structure.

Corollary 4. Let N FFN
n,φ be any feedforward neural network with Ln layers, Wn parameters, Un

computation units and some continuous activation function φ : R → R, such that sup
f∈NFFN

n,φ

∥f∥∞ ≤

Bn. Define the complexity bound Ξn,φ for the following three classes of activation functions:

(i) if φ is piecewise-linear with b ∈ N breakpoints let Ξn,φ := WnLn log(Wn);

(ii) if φ is piecewise-polynomial with b ∈ N breakpoints where each piece is a polynomial with

degree ≤ p ∈ N, let Ξn,φ := WnUn log
(
(p+ 1)b

)
;

(iii) if φ is the sigmoid function, φ(x) = 1
1+ex

, let

Ξn,φ :=
(
(Wn + 2)Un

)2
+ (Wn + 2)Un log2

(
18(Wn + 2)U2

n

)
.

Suppose φ is described by one of the three above classes, then there exists C ≥ 1 such that, for

any n ∈ N, N(∞)
∞
(
δ, Nn, a

)
≤
(

2eBna
δ Ξn,φ

)C Ξn,φ

Pdim(N FFN
n,φ ) ≤ C Ξn,φ, and N(∞)

∞
(
δ, Nn, n

)
≤
(
2eBnn

δ Ξn,φ

)C Ξn,φ

,

for all δ > 0, and a ≥ C Ξn,φ. Consequently, Theorems 1 or 2 can be applied with Fn ={
f(πX(·)) : f ∈ N FFN

n,φ

}
, whenever the conditions of these theorems hold using the complexity

bounds in the previous display.

The pseudo-dimension bounds follow from Bartlett et al. (2019, pp. 5,6) for the piecewise-

linear case, Bartlett et al. (2019, Theorem 10) for the piecewise-polynomial case, and Anthony

and Bartlett (1999, Theorem 8.13) for the sigmoid case. The covering number bound uses

Anthony and Bartlett (1999, Theorem 12.2). To apply Theorems 1 or 2 with Corollary 4, an

approximation result, like Lemma 11, will be needed for N FFN
n,φ to verify Conditions (a.1) or

(b.2) respectively.
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4 Conclusion

This paper addresses the lack of statistical foundation for empirical work using deep neural

network (DNN) estimators for dependent data. By establishing general results for sieve esti-

mators, I provide a flexible framework that applies to various DNN estimators in a wide range

of dependent data settings. These results extend existing work to more complex and realistic

scenarios, allowing for non-i.i.d. data with very general forms of dependence and taking values

in unbounded sets. I apply this framework to derive properties for DNN estimators in both

nonparametric regression and classification contexts, focusing on architectures that reflect mod-

ern applications–featuring ReLU activation functions, unbounded parameters, fully connected

feedforward structures, and depth and width that grow with sample size. Notably, Corollary 3

shows that these results also apply when the ReLU activation function is replaced with any con-

tinuous piecewise-linear activation function, such as the leaky ReLU. The practical relevance of

my DNN results is demonstrated by Brown (2024) which considers a partially linear regression

model with dependent data and unbounded regressands, and shows that the estimator for the

finite-dimensional parameter, constructed using DNN-estimated nuisance components, achieves
√
n-consistency and asymptotic normality.

While this work only considers standard DNN architectures, Subsection 3.4 demonstrates

how the general sieve estimator results presented here offer a pathway for extending the analysis

to more complex architectures. Perhaps the most important avenue for future research on DNN

estimators under dependent data is recurrent neural networks (RNNs). RNNs are a class of

DNN architectures that are specifically designed for time series settings, due to a recursive

feedback loop that gives the network a form of ‘memory’ for past events. While the empirical

results from Lazcano et al. (2024) indicate that the DNN architectures studied here outperform

RNNs in simpler time-series models, RNNs have demonstrated superior empirical performance

in more complex settings, such as in the work by Bucci (2020) on forecasting stock market

volatility. Thus far, very little work has been done on the theoretical properties of RNNs.

While Kohler and Krzyzak (2020) provides an initial study of a specific recurrent architecture
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in time-series nonparametric regression, much remains to be understood, particularly for more

general recurrent architectures, and dependence settings. Following the ideas of Subsection

3.4, the sieve estimator framework introduced in this paper could facilitate future research for

RNNs once their approximation power and complexity are better understood.

Many other important aspects of DNNs are also not considered here, such as computational

efficiency or potential gains from alternative architectures and regularization techniques. An-

other important class of DNNs not considered here are convolutional neural networks, which

are standard in many important DNN applications, such as image recognition. The results

given here could also be adapted for classes of functions beyond the standard Hölder smooth-

ness condition, using approximation results such as Imaizumi and Fukumizu (2019). These

considerations are left for future research.

30



Appendices

A Notation

MISC:

≲,≍: For two sequences of non-negative real numbers {xt}t∈N and {yt}t∈N, the notation xt ≲ yt

means there exists a constant 0 < C < ∞ such that xt ≤ Cyt for all t sufficiently large.

We write xt ≍ yt if xt ≲ yt and xt ≳ yt.

cl(A): For a set A in a topological space, let cl(A) denote the closure of A; i.e. the intersection

of all closed sets containing A. If A ⊆ Rn, then cl(A) is with respect to the standard

topology on Rn.

A⊗ B: For two σ-algebras A,B the product σ-algebra is A⊗ B := σ
({
a× b : a ∈ A, b ∈ B

})
.

1A: For some set X, and A ⊆ X, the indicator function is denoted as 1A : X → {0, 1}, where

1A(x) = 1 if x ∈ A and 1A(x) = 1 if x ∈ X \ A.

SETS:

N: The natural numbers are denoted as N = {1, 2, . . .}.

R: The extended real line is denoted as R := R ∪ {−∞,∞}.

σ ({X t}nk): For a random sequence {X t}t∈N let σ ({X t}nk) denote the σ-algebra generated by {X t}nt=k.

B(X): For a topological space (X,OX), let B(X) := σ(OX) denote the Borel σ-algebra associated

with X.

MEASURES:

PX : For a measurable space (X,B(X)), and X : Ω → X, measurable-A/B(X), define the

measure PX(B) = P (X−1(B)) for any B ∈ B(X).

P ∗: Given a probability space (Ω,A, P ), define outer probability, P ∗, as in van der Vaart and

Wellner (1996) §1.2., i.e. for an arbitrary set B ⊆ Ω

P ∗(B) = inf
{
P (A) : A ⊇ B, A ∈ A

}
.
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NORMS:

∥x∥r,a: For any a ∈ N and x ∈ Ra define the norm

∥x∥r,a =


(
1

a

a∑
t=1

|xt|r
)1/r

r ∈ [1,∞),

max
t∈{1,...,a}

|xt| r = ∞.

∥f∥Lr : Let Lr(Ω,A, P ) denote the space of functions f : (Ω,A, P ) → (R,B(R)) that are measurable-

A/B(R), such that ∥f∥Lr(Ω,A,P ) <∞, for the (pseudo-) norms

∥f∥Lr(Ω,A,P ) :=


(∫

Ω

|f |rdP
)1/r

, for 1 ≤ r <∞,

inf
{
C ≥ 0 : P ({ω ∈ Ω : |f(ω)| ≥ C}) = 0

}
, for r = ∞.

We write Lr(P ) or ∥f∥Lr(P ) when no confusion may arise.

∥f∥∞: For a function f : X → R define ∥f∥∞ := sup
x∈X

|f(x)| ∈ R.

COMPLEXITY MEASUREMENTS:

N(δ,G, ∥·∥): See Definition 2 for the definition of covering number.

Pdim(S): See Definition 4 for the definition of pseudo-dimension.

D(δ,G, ∥·∥): See Definition 6 for the definition of packing number.

RnS: See Definition 7 for the definition of Rademacher complexity.

MIXING COEFFICIENTS

β(j), α(j): See Definitions 3 and 5 for β and α mixing coefficients, respectively (also see Dehling

and Philipp, 2002, Definition 3.1). For a random sequence {Zt}t∈N we write the mixing

coefficients as βZ(j), αZ(j), or simply β(j), α(j) when no confusion may arise.

B Measurability of extrema of random functions

This section provides proofs for the measurability results in Subsection 2.1. The findings pre-

sented here build upon previous work that has addressed similar problems (e.g. Stinchcombe
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and White, 1992; and van der Vaart and Wellner, 1996) by providing general results that offer

straightforward applicability to sieve extremum estimation. Define a metrizable space as in

Aliprantis and Border (2006, Example 2.2-3), i.e., for a topological space (X,OX) the space X

is metrizable if there exists a metric ρ on X that generates the topology OX.

Lemma 2. Let (Ω,A, P ) be a complete probability space, and let M be a complete and separable

metrizable space. For H ⊆ M, suppose the function U : Ω × H → R is measurable-(A ⊗

B(H))/B(R), and the correspondence Ψ : Ω ⇒ H is such that

graph(Ψ) := {(ω, h) ∈ Ω×H : h ∈ Ψ(ω)} ∈ A ⊗ B(H).

Let v(ω) := sup
h∈Ψ(ω)

U(ω, h), then v : Ω → R is measurable-A/B(R).

Proof. Measurability of U and the assumptions on graph(Ψ) imply, for any c ∈ R,

Bc =
{
(ω, h) : U(ω, h) > c, ω ∈ Ω, h ∈ Ψ(ω)

}
∈ A⊗ B(H).

Then, as in Davidson (2022, p.472) equation (22.4), the projection of Bc onto Ω is

v−1
(
(c,∞]

)
:=
{
ω : U(ω, h) > c, h ∈ Ψ(ω)

}
=
{
ω : v(ω) > c

}
.

If A(A) denotes the collection of all A-analytic sets (see Corbae et al., 2009, Definition 7.9.11,

p.433), then v−1
(
(c,∞]

)
∈ A(A) by definition, becauseH is a subset of a complete and separable

metrizable space. Since (Ω,A, P ) is complete (w.r.t.P ), Corbae et al. (2009, Theorem 7.9.12)

implies A(A) = A. Hence, v−1
(
(c,∞]

)
∈ A, which gives the measurability v.

Lemma 2 is a generalization of Stinchcombe and White (1992, Theorem 2.17-a) (also see

Corbae et al., 2009, Theorem 7.9.19-1), since the measurable space (H,B(H)) is not required

to be Souslin.11 Note that requiring H ⊆ M, instead of H = M, allows for cases where H may

not be complete.

11At the expense of additional notation, Lemma 2 can easily be generalized to a ‘measure-free’ version using
Corbae et al. (2009, Theorem 7.9.12). Additionally, requiring H to be a subset of a metric space, rather than
measurably isomorphic to one, is without loss of generality; see the discussion following Stinchcombe and White
(1992, Fact 2.6) for details.
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To apply Lemma 2 in nonparametric sieve estimation settings, the correspondence Ψ is

often defined by the sieve spaces, e.g. Ψ(ω) = {(f(Z1(ω)), . . . , f(Zn(ω))) : f ∈ Fn}. In such a

setting, Proposition 1 shows that if Fn is pointwise-separable, then Lemma 2 can be applied.

Proof of Proposition 1. First, we show the result holds when the supremum is over G.

Let Ψn : Ω ⇒ Rn be the correspondence Ψn(ω) :=
{(
g(Z1(ω)), . . . , g(Zn(ω))

)
: g ∈ G

}
. By

assumption, G is a pointwise-separable class, so there exists {gj}j∈N ⊆ G, such that {g(z) : g ∈

G} = cl({gj(z)}j∈N) ⊆ R, for each z ∈ Z (see Aliprantis and Border, 2006, §2.3, p.28). Thus,

for each ω ∈ Ω,

Ψn(ω) = cl
({(

gj(Z1(ω)), . . . , gj(Zn(ω))
)
: j ∈ N

})
.

This has two implications: first, for all ω ∈ Ω the correspondence Ψn(ω) is closed and conse-

quently equal to its closure; and second by Aliprantis and Border (2006, Corollary 18.14, p.601),

Ψn is a weakly measurable correspondence. With this, Aliprantis and Border (2006, Theorem

18.6, p.596) implies that graph(cl(Ψn)) ∈ A ⊗ B(Rn). Hence, graph(Ψn) ∈ A ⊗ B(Rn), since

graph(Ψn) = graph(cl(Ψn)). Then the result follows from Lemma 2.

Now, we show the result holds when the supremum is over H ⊂ G, with H ≠ ∅. Let

Ψ′
n : Ω ⇒ Rn be the correspondence Ψ′

n(ω) :=
{(
g(Z1(ω)), . . . , g(Zn(ω))

)
: g ∈ H

}
. Since

{gj}j∈N is a countable dense subset of G, and H ⊂ G, then {gj}j∈N ∩ H is a countable dense

subset of H. Hence, for all ω ∈ Ω,

Ψ′
n(ω) = cl

({(
gj(Z1(ω)), . . . , gj(Zn(ω))

)
: gj ∈

{
{gj}j∈N ∩H

}})
.

With this, the result follows using the same argument as before.

Proof of Proposition 2. Throughout the proof consider arbitrary n ∈ N. Let Ψn : Ω ⇒ Rn

be the correspondence Ψn(ω) :=
{
g(Z1(ω)), . . . , g(Zn(ω)) : g ∈ G

}
. Define the function υn :

Ω → R

υn(ω) := min
x∈Ψn(ω)

Un(ω,x) = inf
g∈G

Un

(
ω,
{
g(Zt(ω))

}n
t=1

)
,

which exists because for each ω ∈ Ω, the function Un(ω, ·) : Rn → R is continuous and
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Ψn(ω) ⊂ Rn is compact, since {g(z) : g ∈ G} is compact for each z ∈ Z. Note that Ψn is a

weakly measurable correspondence by the argument from the proof of Proposition 1 since G is

pointwise-separable and Un is measurable-(A⊗ B(Rn))/B(R) by Aliprantis and Border (2006,

Lemma 4.51). With this, and Aliprantis and Border (2006, Theorem 18.19),

∅ ≠

{
x ∈ Ψn(ω) : Un(ω,x) = υn(ω)

}
=

{{
g(Zt(ω))

}n
t=1

: g ∈ G, Un

(
ω,
{
g(Zt(ω))

}n
t=1

)
= υn(ω)

}
, (B.1)

and there exists a function hn : Ω → Rn, measurable-A/B(Rn), such that for all ω ∈ Ω

hn(ω) ∈
{{

g(Zt(ω))
}n
t=1

: g ∈ G, Un

(
ω,
{
g(Zt(ω))

}n
t=1

)
= υn(ω)

}
⊂ Rn. (B.2)

Note that
(
Lr(Z,B(Z), P{Zt}nt=1

), ∥·∥Lr(P{Zt}nt=1
)

)
is a complete and separable metric space,

i.e., a Polish space. This follows because 1 ≤ r < ∞, so Lr(Z,B(Z), P{Zt}nt=1
) is complete by

the Riez-Fisher Theorem, and is separable by Cohn (2013, Proposition 3.4.5) since Z ⊆ RdZ

implies B(Z) is countably generated.12 Then, (G, ∥·∥Lr(P{Zt}nt=1
)) is also a separable metric space

since G ⊂ Lr(Z,B(Z), P{Zt}nt=1
). Hence, there exists a countable subset {gj}j∈N ⊆ G such that

G = cl({gj}j∈N). Then the correspondence Φn : Ω ⇒ G such that

Φn(ω) :=
{
g ∈ G :

{
g(Zt(ω))

}n
t=1

= hn(ω)
}
= cl

({
g ∈ {gj}j∈N :

{
g(Zt(ω))

}n
t=1

= hn(ω)
})

,

is closed since it is equal to the closure of a set, and Φn(ω) ̸= ∅ by (B.1) and (B.2). Thus, by

Aliprantis and Border (2006, Corollary 18.14-1, p.601), Φn is a weakly measurable correspon-

dence. Note that Φn takes values in a Polish space since G ⊂ Lr(Z,B(Z), P{Zt}nt=1
). Then,

by Aliprantis and Border (2006, Theorem 18.13) the correspondence Φn(ω) admits a measur-

able selector, i.e., there exists a function sn : Ω → G that is measurable-A/B(G), such that

sn(ω) ∈ Φn(ω) for all ω ∈ Ω. This implies the desired result since for all ω ∈ Ω

sn(ω) ∈ Φn(ω) ⊆
{
g ∈ G : Un

(
ω,
{
g(Zt(ω))

}n
t=1

)
= υn(ω)

}
by the definition of hn.

12From Cohn (2013, p.102), B(R) is countably generated, where we say a σ-algebra A is countably generated
if there exists a countable subcollection C of A such that σ(C) = A.
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C Proof of Theorem 1

For brevity, we write qt(f) := q
(
Zt, f(Zt)

)
, and mnt := mn(Zt). First, we present an ancillary

lemma for the proof of Theorem 1.

Lemma 3. For some c ≥ 2, let Hn ⊂ Fn be such that c ϵn ≤ ρn(f, f̃n) for each n ∈ N and all

f ∈ Hn. Suppose (a.1), (a.2), and (a.3)(iii) hold. Then, for any δ ≥ 0 and n ∈ N,

sup
f∈Hn

{
1

n

n∑
t=1

[
qt(f̃n)− qt(f)

]
1nt

}
≤ sup

f∈Hn

1

n

n∑
t=1

{[
qt(f̃n)− qt(f)

]
1nt − E

[(
qt(f̃n)− qt(f)

)
1nt

]}
−
(
C1c

2/4− C2 − 2C3

)
ϵ2n,

where 1nt := 1{mn(Zt)<Mn}.

Proof. Recall f̃n ∈ Fn by (a.1). Then, for any f ∈ Fn by (a.2)

E
[
Qn(f̃n)−Qn(f)

]
= E

[
Qn(f̃n)

]
− E

[
Qn(f0)

]
+ E

[
Qn(f0)

]
− E

[
Qn(f)

]
≤ C2 ρn(f̃n, f0)

2 − C1 ρn(f, f0)
2.

By (a.1), ρn(f̃n, f0) ≤ ϵn ≤ c ϵn/2, since c ≥ 2 by assumption. With this, and the triangle

inequality, for any f ∈ Fn such that c ϵn ≤ ρn(f, f̃n),

ρn(f, f0) ≥ ρn(f, f̃n)− ρn(f̃n, f0) ≥ c ϵn − c ϵn/2 ≥ c ϵn/2 > 0.

Combining the previous two displays,

sup
f∈Hn

E
[
Qn(f̃n)−Qn(f)

]
≤ C2 ϵ

2
n − C1c

2ϵ2n/4 =
(
C2 − C1c

2/4
)
ϵ2n. (C.1)

Next, let 1c
nt := 1{mn(Zt)≥Mn}, so we have

−E
[
Qn(f̃n)−Qn(f)

]
=

1

n

n∑
t=1

{
− E

[(
qt(f̃n)− qt(f)

)
1
c
nt

]
− E

[(
qt(f̃n)− qt(f)

)
1nt

]}
≤ 1

n

n∑
t=1

{
E
[∣∣qt(f̃n)− qt(f)

∣∣1c
nt

]
− E

[(
qt(f̃n)− qt(f)

)
1nt

]}
.
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By (a.3)(iii),

sup
f∈Hn

1

n

n∑
t=1

E
[∣∣qt(f̃n)− qt(f)

∣∣1c
nt

]
≤ sup

f∈Hn

1

n

n∑
t=1

E
[(
|qt(f̃n)|+ |qt(f)|

)
1
c
nt

]
≤ sup

f∈Fn

2

n

n∑
t=1

E
[∣∣qt(f)∣∣1c

nt

]
≤ 2C3 ϵ

2
n.

Combining the previous two displays, for any f ∈ Hn,

−E
[
Qn(f̃n)−Qn(f)

]
≤ 2C3 ϵ

2
n −

1

n

n∑
t=1

E
[(
qt(f̃n)− qt(f)

)
1nt

]
. (C.2)

With (C.1) and (C.2),

sup
f∈Hn

{
1

n

n∑
t=1

[
qt(f̃n)− qt(f)

]
1nt

}
= sup

f∈Hn

1

n

n∑
t=1

{[
qt(f̃n)− qt(f)

]
1nt + E

[
Qn(f̃n)−Qn(f)

]
− E

[
Qn(f̃n)−Qn(f)

]}
≤ sup

f∈Hn

1

n

n∑
t=1

{[
qt(f̃n)− qt(f)

]
1nt − E

[(
qt(f̃n)− qt(f)

)
1nt

]}
+
(
C2 − C1c

2/4
)
ϵ2n + 2C3 ϵ

2
n.

For the proof of Theorem 1 it will be convenient to use the packing number, as defined

below.

Definition 6. (Packing Number) Let δ > 0, and let (M, ∥·∥) be a semi-metric space.

(i) A set G ⊆ M is δ-separated if ∥g − g′∥ ≥ δ for any g, g′ ∈ G with g ̸= g′. The δ-packing

number, is the maximum number of δ-separated points in M.

(ii) When M is a space of functions, f : Z → R, for any r ≥ 1, and a ∈ N define

D(∞)
r (δ,M, a) := sup

{
D
(
δ,M|{Zt(ω)}at=1

, ∥·∥r,a
)
: ω ∈ Ω

}
.

For a metric space (M, ∥·∥) the following will be used to create a δ-cover of M using a

δ-separated subset of maximum size. Note that this also implies N(δ,M, ∥·∥) ≤ D(δ,M, ∥·∥) for

any δ > 0 and metric space (M, ∥·∥).

Lemma 4. For a semi-metric space (M, ∥·∥), and any δ > 0, if {fj}Jj=1 ⊆ M is δ-separated
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and J = D(δ,M, ∥·∥) ∈ N, then

M ⊆
J⋃

j=1

{
f ∈ M : ∥f − fj∥ < δ

}
.

Proof. See Kosorok (2008, §8.1, p.132).

Lemma 5. For any nonstochastic f ∗ ∈ F and Hn ⊆ Fn, we have

P

(
sup
f∈Hn

{
1

n

n∑
t=1

[
qt(f

∗)− qt(f)
]
1{mn(Zt)≥Mn}

}
> 0

)
≤ P

(
max

t∈{1,...,n}
mnt ≥Mn

)
.

Proof. Define 1c
nt : Ω → {0, 1} where 1c

nt(ω) := 1{mn(Zt(ω))≥Mn}. Note that
∑n

t=1

[
qt(f

∗) −

qt(f)
]
1
c
nt > 0 implies

[
qt(f

∗)− qt(f)
]
1
c
nt > 0 for at least one t ∈ {1, . . . , n}. Thus,{

ω : sup
f∈Hn

n∑
t=1

[
q
(
Zt(ω), f

∗(Zt(ω)
)
− q
(
Zt(ω), f(Zt(ω)

)]
1
c
nt(ω) > 0

}
⊆
{
ω : max

t∈{1,...,n}

{
sup
f∈Hn

[
q
(
Zt(ω), f

∗(Zt(ω)
)
− q
(
Zt(ω), f(Zt(ω)

)]
1
c
nt(ω)

}
> 0

}
.

Next, max
t∈{1,...,n}

[
qt(f

∗)− qt(f)
]
1
c
nt > 0 implies max

t∈{1,...,n}

[
qt(f

∗)− qt(f)
]
> 0 and max

t∈{1,...,n}
1
c
nt > 0.

Hence,{
ω : max

t∈{1,...,n}

{
sup
f∈Hn

[
q
(
Zt(ω), f

∗(Zt(ω)
)
− q
(
Zt(ω), f(Zt(ω)

)]
1
c
nt(ω)

}
> 0

}
⊆
{
ω : max

t∈{1,...,n}

{
sup
f∈Hn

[
q
(
Zt(ω), f

∗(Zt(ω)
)
− q
(
Zt(ω), f(Zt(ω)

)]}
> 0

} ⋂ {
ω : max

t∈{1,...,n}
1
c
nt(ω) > 0

}
⊆
{
ω : max

t∈{1,...,n}
1
c
nt(ω) > 0

}
.

By definition, 1c
nt = 1 if mn(Zt) ≥Mn, otherwise 1

c
nt = 0. Therefore,{

ω : max
t∈{1,...,n}

1
c
nt(ω) > 0

}
=

{
ω : max

t∈{1,...,n}
mn

(
Zt(ω)

)
≥Mn.

}
Combining the previous three displays implies the desired result.

Proof of Theorem 1. Let c be a constant such that c > max
{
2,
√

4(C2 + 2C3)/C1

}
. By

the triangle inequality

P ∗
(
ρn(f̂n, f0) ≥ 2c ϵn

)
≤ P ∗

(
ρn(f̂n, f̃n) ≥ c ϵn

)
+ P

(
ρn(f̃n, f0) ≥ c ϵn

)
= P ∗

(
ρn(f̂n, f̃n) ≥ c ϵn

)
. (C.3)
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since c > 1 and ρn(f̃n, f0) ≤ ϵn by (a.1). Define

Hn(c ϵn) :=
{
f ∈ Fn : c ϵn ≤ ρn(f, f̃n)

}
.

By (2.2),

f̂n ∈ Hn(c ϵn) =⇒ inf
f∈Hn(c ϵn)

Qn(f) ≤ Qn(f̂n) ≤ inf
f∈Fn

Qn(f) + θn.

Using f̃n ∈ Fn, and − inf
f∈Fn

Qn(f) = sup
f∈Fn

−Qn(f), the previous display implies

P ∗
(
ρn(f̂n, f̃n) ≥ c ϵn

)
≤ P

(
Qn(f̃n) + θn ≥ inf

f∈Hn(c ϵn)
Qn(f)

)
= P

(
sup

f∈Hn(c ϵn)

{
Qn(f̃n)−Qn(f)

}
+ θn ≥ 0

)
.

Let 1nt := 1{mn(Zt)<Mn}, and 1
c
nt := 1{mn(Zt)≥Mn}. With this

P ∗
(
ρn(f̂n, f̃n) ≥ c ϵn

)
≤ P

(
sup

f∈Hn(c ϵn)

1

n

n∑
t=1

{[
qt(f̃n)− qt(f)

]
1nt +

[
qt(f̃n)− qt(f)

]
1
c
nt

}
+ θn ≥ 0

)

≤ P

(
sup

f∈Hn(c ϵn)

{
1

n

n∑
t=1

[
qt(f̃n)− qt(f)

]
1nt

}
+ θn ≥ 0

)

+ P

(
sup

f∈Hn(c ϵn)

{
1

n

n∑
t=1

[
qt(f̃n)− qt(f)

]
1
c
nt

}
> 0

)
. (C.4)

By Lemma 5 and (a.3)(ii), for any υ > 0 there exists Nυ ∈ N, such that for all n ≥ Nυ

P

(
sup

f∈Hn(c ϵn)

{
1

n

n∑
t=1

[
qt(f̃n)− qt(f)

]
1
c
nt

}
> 0

)
≤ P

(
max

t∈{1,...,n}
mnt ≥Mn

)
≤ υ.

Henceforth let n ≥ Nυ. Then, combining the previous display, (C.4), and (C.3),

P ∗
(
ρn(f̂n, f0) ≥ 2c ϵn

)
≤ P

(
sup

f∈Hn(c ϵn)

{
1

n

n∑
t=1

[
qt(f̃n)− qt(f)

]
1{mn(Zt)<Mn}

}
+ θn ≥ 0

)
+ υ. (C.5)

Let

U
(q)
nt (f) := qt(f)1{mn(Zt)<Mn} − E

[
qt(f)1{mn(Zt)<Mn}

]
, and

c :=
√(

C1c2/4− C2 − 2C3

)
/2,
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where c > 0 since c >
√
4(C2 + 2C3)/C1. Then, by Lemma 3, and (C.5),

P ∗
(
ρn(f̂n, f0) ≥ 2c ϵn

)
≤ P

(
sup

f∈Hn(c ϵn)

1

n

n∑
t=1

{
U

(q)
nt (f̃n)− U

(q)
nt (f)

}
+ θn ≥ 2(c ϵn)

2

)
+ υ

≤ P

(
sup

f∈Hn(c ϵn)

1

n

n∑
t=1

{
U

(q)
nt (f̃n)− U

(q)
nt (f)

}
≥ (c ϵn)

2

)
+ P

(
θn ≥ (c ϵn)

2
)
+ υ

≤ P

(
sup

f∈Hn(c ϵn)

∣∣∣∣∣ 1n
n∑

t=1

{
U

(q)
nt (f̃n)− U

(q)
nt (f)

}∣∣∣∣∣ ≥ (c ϵn)
2

)
+ 2υ, (C.6)

where the last inequality follows because θn = OP (ϵ
2
n) by assumption, and c increases with c,

so P
(
θn ≥ C1(c ϵn)

2
)
≤ υ for any υ > 0, when n, and c are sufficiently large.

For κn := (c ϵn)
2/(12Mn), define

Dn(ω) := D
(
κn, Hn(c ϵn)|{Zt(ω)}nt=1

, ∥·∥1,n
)
,

and let {fnj}Dn(ω)
j=1 be a κn-separated set in Hn(c ϵn) with respect to ∥·∥1,n. Define

Gj
n :=

{
f ∈ Hn(c ϵn) : ∥f − fnj∥1,n < κn

}
, j = 1, . . . ,Dn(ω),

and by Lemma 4 we have Hn(c ϵn) ⊆
⋃Dn(ω)

j=1 Gj
n. With this,

P

(
sup

f∈Hn(c ϵn)

1

n

∣∣∣∣∣
n∑

t=1

[
U

(q)
nt (f̃n)− U

(q)
nt (f)

]∣∣∣∣∣ ≥ (c ϵn)
2

)

= P

Dn(ω)⋃
j=1

{
sup
f∈Gj

n

∣∣∣∣∣ 1n
n∑

t=1

[
U

(q)
nt (f̃n)− U

(q)
nt (f)

]∣∣∣∣∣ ≥ (c ϵn)
2

} . (C.7)

By (a.3)(i),∣∣∣∣ 1n
n∑

t=1

U
(q)
nt (f)

∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

t=1

{(
qt(f)− qt(fnj)

)
1nt + qt(fnj)1nt − E

[
qt(fnj)1nt

]
+ E

[(
qt(fnj)− qt(f)

)
1nt

]}∣∣∣∣∣
≤Mn∥f − fnj∥1,n +

∣∣∣∣ 1n
n∑

t=1

{
qt(fnj)1nt − E

[
qt(fnj)1nt

]}∣∣∣∣+MnE
[
∥f − fnj∥1,n

]
.

Then, for any f ∈ Gj
n, ∣∣∣∣ 1n

n∑
t=1

U
(q)
nt (f)

∣∣∣∣ ≤ 2Mnκn +

∣∣∣∣ 1n
n∑

t=1

U
(q)
nt (fnj)

∣∣∣∣.
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Therefore,

sup
f∈Gj

n

∣∣∣∣∣ 1n
n∑

t=1

[
U

(q)
nt (f̃n)− U

(q)
nt (f)

]∣∣∣∣∣ ≤
∣∣∣∣ 1n

n∑
t=1

U
(q)
nt (f̃n)

∣∣∣∣+ sup
f∈Gj

n

∣∣∣∣ 1n
n∑

t=1

U
(q)
nt (f)

∣∣∣∣
≤ 2Mnκn +

∣∣∣∣ 1n
n∑

t=1

U
(q)
nt (f̃n)

∣∣∣∣+ ∣∣∣∣ 1n
n∑

t=1

U
(q)
nt (fnj)

∣∣∣∣.
From this, we obtain

P

(
Dn(ω)⋃
j=1

{
sup
f∈Gj

n

∣∣∣∣∣ 1n
n∑

t=1

[
U

(q)
nt (f̃n)− U

(q)
nt (f)

]∣∣∣∣∣ ≥ (c ϵn)
2

})
≤ P

(
Dn(ω)⋃
j=1

Enj

)
, (C.8)

where

Enj :=

{
2Mnκn +

∣∣∣∣ 1n
n∑

t=1

U
(q)
nt (f̃n)

∣∣∣∣+ ∣∣∣∣ 1n
n∑

t=1

U
(q)
nt (fnj)

∣∣∣∣ ≥ (c ϵn)
2

}

To make Enj defined for j ≥ n, we append the sequence {fnj}Dn(ω)
j=1 by setting fnj := f̃n for all

j > Dn(ω). Let Dn := D
(∞)
1

(
κn,Hn(c ϵn), n

)
. Since Dn is non-stochastic we have

P

Dn(ω)⋃
j=1

Enj

 ≤ P

Dn⋃
j=1

Enj

 ≤
Dn∑
j=1

P
(
Enj

)
≤ Dn max

j∈{1,...,Dn}
P
(
Enj

)
. (C.9)

Recall, κn := (c ϵn)
2/(12Mn), so

2Mnκn =
(c ϵn)

2

6
<

(c ϵn)
2

3
,

which, together with (a.4)(i), implies that for any n, j ∈ N,

P
(
Enj

)
≤ P

(∣∣∣∣ 1n
n∑

t=1

U
(q)
nt (f̃n)

∣∣∣∣ ≥ (c ϵn)
2

3

)
+ P

(∣∣∣∣ 1n
n∑

t=1

U
(q)
nt (fnj)

∣∣∣∣ ≥ (c ϵn)
2

3

)

≤ 2λ(q)n

(
(c ϵn)

2

3

)
. (C.10)

Combining (C.6), (C.7), (C.8), (C.9), and (C.10),

P ∗
(
ρn(f̂n, f0) ≥ 2c ϵn

)
≲ Dn · λ(q)n

(
(c ϵn)

2

3

)
+ 2υ. (C.11)

Note that

Dn ≤ D
(∞)
1

(
κn,Fn, n

)
≤ N

(∞)
1

(
κn/2,Fn, n

)
,

where the first inequality usesHn(c ϵn) ⊆ Fn, and the second uses D
(∞)
1

(
δ, Fn, n

)
≤ N

(∞)
1

(
δ/2, Fn, n

)
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for any δ > 0 (van der Vaart and Wellner, 1996, p.98). With this, and (C.11)

P ∗
(
ρn(f̂n, f0) ≥ 2c ϵn

)
≲ N

(∞)
1

(
(c ϵn)

2

24Mn

, Fn, n

)
· λ(q)n

(
(c ϵn)

2

3

)
+ 2υ,

for any υ > 0 and n, c sufficiently large. Thus, (a.4)(ii) completes the proof by setting η =

3 c 2 = 3(C1c
2 − C2 − 4C3)/2 therein, and choosing c sufficiently large.

D Proof of Theorem 2

The following proof applies a localization analysis technique to obtain a nonasymptotic bound

on the L2 error of sieve estimators. The steps used here follow those used by Farrell et al.

(2021), and are named similarly. However, the results obtained here apply to a wider variety

of estimators in more general estimation settings.

Appendix D.7 lists the ancillary lemmas used in this section. As before, we write qt(f) :=

q
(
Zt, f(Zt)

)
, and mnt := mn(Zt).

D.1 Main decomposition

Let 1nt := 1{mn(Zt) ≤ C4Bn}, and 1
c
nt := 1{mn(Zt) > C4Bn}, then define

gf (Zt) :=
[
qt(f)− qt(f0)

]
1nt, and gcf (Zt) :=

[
qt(f)− qt(f0)

]
1
c
nt.

By (2.2),

0 ≤ −Qn(f̂n) +Qn(f̃n) + θn.

With this, and (b.3),

C1∥f̂n − f0∥2L2(PZ) ≤ E[Qn(f̂n)]− E[Qn(f0)]

≤ E
[
Qn(f̂n)]− E[Qn(f0)

]
−Qn(f̂n) +Qn(f̃n) + θn

= E
[(
Qn(f̂n)−Qn(f0)

)]
−
[
Qn(f̂n)−Qn(f0)

]
+Qn(f̃n)−Qn(f0) + θn

=
1

n

n∑
t=1

{
E
[
gf̂n(Zt)

]
− gf̂n(Zt)

}
︸ ︷︷ ︸

Empirical Process Term

+
[
Qn(f̃n)−Qn(f0)

]︸ ︷︷ ︸
Bias Term

+
1

n

n∑
t=1

{
E
[
gc
f̂n
(Zt)

]
− gc

f̂n
(Zt)

}
︸ ︷︷ ︸

Truncation Term

+ θn. (D.1)

42



D.2 Truncation term

By stationarity, and the triangle inequality

1

n

n∑
t=1

{
E
[
gc
f̂n
(Zt)

]
− gc

f̂n
(Zt)

}
= E

[
gc
f̂n
(Zt)

]
− 1

n

n∑
t=1

gc
f̂n
(Zt)

≤ E
[
|gc

f̂n
(Zt)|

]
+

1

n

n∑
t=1

∣∣gc
f̂n
(Zt)

∣∣. (D.2)

First, by Lemma 5

P

(
1

n

n∑
t=1

∣∣gc
f̂n
(Zt)

∣∣ > 0

)
≤ P

(
sup
f∈Fn

1

n

n∑
t=1

∣∣gcf (Zt)
∣∣ > 0

)

= P

(
sup
f∈Fn

1

n

n∑
t=1

∣∣qt(f)− qt(f0)
∣∣1c

nt > 0

)

≤ P
(

max
t∈{1,...,n}

mn(Zt) > C4Bn

)
. (D.3)

Next, note that E
[
|gc

f̂n
(Zt)|

]
≤ 2µn for µn defined as in (b.5)(ii). To see this, by the triangle

inequality

E
[
|gc

f̂n
(Zt)|

]
≤ E

[∣∣qt(f̂n)− qt(f0)
∣∣1c

nt

]
≤ 2 sup

f∈{Fn∪{f0}}
E
[∣∣qt(f)∣∣1c

nt

]
;

also, using (b.5)(i), sup
f∈Fn

∥f∥∞ ≤ Bn and Bn ≥ 2 by (b.4), with ∥f0∥∞ ≤ 1,

E
[
|gc

f̂n
(Zt)|

]
≤ ∥f̂n − f0∥∞ E

[
mnt1

c
nt

]
≤ (Bn + 1)E

[
mnt1

c
nt

]
≤ 2BnE

[
mnt1

c
nt

]
.

Hence, E
[
|gc

f̂n
(Zt)|

]
< 3µn, since 3µn > 2µn ≥ gc

f̂n
(Zt) becuase {µn}n∈N is strictly positive.

With this, (D.2) and (D.3),

P

(
1

n

n∑
t=1

{
E
[
gc
f̂n
(Zt)

]
− gc

f̂n
(Zt)

}
≥ 3µn

)
≤ P

(
E
[
|gc

f̂n
(Zt)|

]
+

1

n

n∑
t=1

∣∣gc
f̂n
(Zt)

∣∣ ≥ 3µn

)

≤ P

(
3µn +

1

n

n∑
t=1

∣∣gc
f̂n
(Zt)

∣∣ > 3µn

)

= P

(
1

n

n∑
t=1

∣∣gc
f̂n
(Zt)

∣∣ > 0

)

≤ P
(

max
t∈{1,...,n}

mn(Zt) > C4Bn

)
. (D.4)
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D.3 Bias term

By (D.3), for any A > 0,

P
(
Qn(f̃n)−Qn(f0) ≥ A

)
= P

(
1

n

n∑
t=1

{
gf̃n(Zt) + gc

f̃n
(Zt)

}
≥ A

)

≤ P

(
1

n

n∑
t=1

gf̃n(Zt) ≥ A

)
+ P

(
1

n

n∑
t=1

∣∣gcf (Zt)
∣∣ > 0

)

≤ P

(
1

n

n∑
t=1

gf̃n(Zt) ≥ A

)
+ P

(
max

t∈{1,...,n}
mn(Zt) > C4Bn

)
,

By (b.5)(i) and (b.2),
∣∣E[gf̃n(Zt)

]∣∣ ≤ ∥gf̃n∥∞ ≤ C4Bn∥f̃n − f0∥∞ ≤ C4Bnϵ̃n. Hence,∥∥gf̃n(Zt)− E
[
gf̃n(Zt)

]∥∥
∞ ≤ ∥gf̃n∥∞ +

∣∣E[gf̃n(Zt)
]∣∣ ≤ 2C4Bnϵ̃n.

Then, ∣∣E[gf̃n(Zt)
]∣∣ = ∣∣∣E[qt(f̃n)− qt(f0)

]
− E

[
gc
f̃n
(Zt)

]∣∣∣
≤
∣∣∣E[qt(f̃n)− qt(f0)

]∣∣∣+ ∣∣∣E[gcf̃n(Zt)
]∣∣∣

= E
[
qt(f̃n)− qt(f0)

]
+
∣∣∣E[gcf̃n(Zt)

]∣∣∣
≤ C2∥f̃n − f0∥2L2(PZ) + E

[
|gc

f̃n
(Zt)|

]
≤ C2 ϵ̃

2
n + 2µn,

where the first line uses E
[
qt(f̃n)− qt(f0)

]
= E

[
gf̃n(Zt)

]
+E

[
gc
f̃n
(Zt)

]
; the second line uses the

triangle inequality; the third line uses stationarity with E[Qn(f0)] ≤ E[Qn(f̃n)] by the definition

of f0 and f̃n ∈ Fn ⊆ F ; the fourth line uses (b.3); and the last line uses (b.2) and E
[
|gc

f̃n
(Zt)|

]
≤

2µn which was shown in the last section. Then, by Lemma 7, for C5 = 2C4/min{C6, 1}, and

any δ′ > 0,

e−δ′ ≥ P

(
1

n

n∑
t=1

gf̃n(Zt)− E
[
gf̃n(Zt)

]
≥ C5Bnϵ̃n

[
δ′(log n)(log log n)

n
+

√
δ′

n

])

≥ P

(
1

n

n∑
t=1

gf̃n(Zt) ≥ C2 ϵ̃
2
n + 2µn + C5Bnϵ̃n

[
δ′(log n)(log log n)

n
+

√
δ′

n

])
.
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Therefore,

e−δ′+P
(

max
t∈{1,...,n}

mn(Zt) > C4Bn

)
≥ P

(
Qn(f̃n)−Qn(f0) ≥ C2 ϵ̃

2
n + 2µn + C5Bnϵ̃n

[
δ′(log n)(log log n)

n
+

√
δ′

n

])
. (D.5)

D.4 Independent blocks

This step constructs independent ‘blocks’ commonly used when dealing with β-mixing processes

(e.g. Chen and Shen, 1998). By assumption, 1 ≤ a ≤ n/2, so b :=
⌊
n/(2a)

⌋
is well defined.

Then, we can divide {Zt}nt=1 into 2b blocks of length a, and the remainder into a block of length

n− 2ba, using the index sets

T1,j :=
{
t ∈ N : 2(j − 1)a+ 1 ≤ t ≤ (2j − 1)a

}
, j = 1, . . . , b;

T2,j :=
{
t ∈ N : (2j − 1)a+ 1 ≤ t ≤ 2ja

}
, j = 1, . . . , b;

TR :=
{
t ∈ N : 2ba+ 1 ≤ t ≤ n

}
.

As described in Appendix F, we use Berbee’s Lemma to redefine {Zt}nt=1 on a richer probability

space13 where there exists a random sequence {Zt}nt=1 with the following two properties: let

T, T ′ ∈ {T1,1, T2,1, T1,2, . . . , T2,b, TR}, then (i) the block {Zt}t∈T is independent from the blocks

{Zt}t∈T ′ , {Zt}t∈T ′ for any T ′ ̸= T ; and (ii) {Zt}t∈T has the same distribution as {Zt}t∈T , i.e.

P{Zt}t∈T
= P{Zt}t∈T

. By stationarity, all blocks of length a are identically distributed so the

sequence of blocks {Zt}t∈T1,1 , {Zt}t∈T2,1 , {Zt}t∈T1,2 , . . . , {Zt}t∈T2,b
is i.i.d.,14 and we have

P{Zt: t∈∪b
j=1T1,j} = P{Zt}t∈T1,1

× P{Zt}t∈T1,2
× · · · × P{Zt}t∈T1,b

= P{Zt}t∈T1,1
× P{Zt}t∈T1,2

× · · · × P{Zt}t∈T1,b
.

(D.6)

13We will continue to refer to the richer probability space as (Ω,A, P ) since the extension preserves the
distribution of random variables defined on the original space. See Appendix F for details.

14All blocks except {Zt}t∈TR
are of length a, and therefore i.i.d. However, {Zt}nt=1 is not an independent

sequence since elements within a single block, {Zt}t∈T , may be correlated. For more details see Appendix F.
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Next, the usual β-mixing coefficient (e.g. Dehling and Philipp, 2002, Definition 3.1, p.19) can

be equivalently written as (see Eberlein, 1984)

β(m) = sup
A×B∈σ({Zt}kt=1)⊗σ({Zt}∞t=k+m+1)

|P (A×B)− P (A)P (B)|.

Hence, for j ∈ {1, ..., b− 1}

β(a) ≥ sup

{∣∣∣P{Zt: t∈∪b
j=1T1,j}(A×B)− P{Zt: t∈∪k

j=1T1,j}(A) P{Zt: t∈∪b
j=k+1T1,j}(B)

∣∣∣ :
A×B ∈ σ

( {
Zt : t ∈ ∪k

j=1T1,j
} )

⊗ σ
( {

Zt : t ∈ ∪k
j=1T1,j

} )}
.

(D.7)

By (D.7) the conditions for Eberlein (1984) Lemma 2 are satisfied. So we apply this result, and

use (D.6), to obtain, for any measurable set E,∣∣∣P({Zt : t ∈ ∪b
j=1T1,j

}
∈ E

)
− P

({
Zt : t ∈ ∪b

j=1T1,j

}
∈ E

)∣∣∣ ≤ (b− 1)β(a).

Then, by the triangle inequality and b :=
⌊
n/(2a)

⌋
< n/(2a) + 1,

P
({

Zt : t ∈ ∪b
j=1T1,j

}
∈ E

)
≤ P

({
Zt : t ∈ ∪b

j=1T1,j

}
∈ E

)
+
nβ(a)

2a
. (D.8)

D.5 Localization analysis

We begin with some definitions that will be used throughout the rest of this proof. Define the

following norms,

∥f∥T 1,j
:=

(
1

a

∑
t∈T1,j

∣∣f(Zt

)∣∣2)1/2

, for j ∈ {1, . . . , b},

∥f∥T 1
:=

(
1

b

b∑
j=1

∥f∥2
T 1,j

)1/2

=

(
1

ba

b∑
j=1

∑
t∈T1,j

∣∣f(Zt)
∣∣2)1/2

.

(D.9)

The following definition for the Rademacher complexity of a function class is from Bartlett

et al. (2005).

Definition 7. (Rademacher Complexity) For n ∈ N, let {W t}nt=1 be random variables on

(Ω,A, P ) taking values in RdW for dW ∈ N. The Rademacher random variables, {ξt}nt=1, are

i.i.d. random variables that are independent of {W t}nt=1, and ξt ∈ {−1, 1} where P (ξt = 1) =

P (ξt = −1) = 1/2. For a pointwise-separable class of functions S with elements s : RdW → R
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that are measurable-B(RdW )/B(R), define

RnS := sup
s∈S

1

n

n∑
t=1

ξt s(W t).

The Rademacher complexity is E[RnS], and the empirical Rademacher complexity is Eξ[RnS] :=

E
[
RnS

∣∣{W t}nt=1

]
.15

We will write RabS = sup
s∈S

b∑
j=1

∑
t∈T1,j

ξt s(W t), since the double sum is of length a · b.

D.5.1 Step I: Quadratic process bound

Given some radius r > 0, to be specified later, let

f ∈
{
f ∈ Fn : ∥f − f0∥L2(PZ) ≤ r

}
,

throughout this section. This step will show that this implies ∥f − f0∥T 1
≤ 2r with probability

greater than 1− e−δ′ for δ′ > 0 when r satisfies certain conditions.

First note that, E
[
∥f − f0∥2T 1

− ∥f − f0∥2L2(PZ)

]
= 0, since by stationarity and (D.6)

∥f − f0∥2T 1
− ∥f − f0∥2L2(PZ) =

1

b

b∑
t=1

{
∥f − f0∥2T 1,j

− E
[
∥f − f0∥2T 1,j

]}
. (D.10)

For all j ∈ {1, . . . , b}, we have

∥f − f0∥2T 1,j
≤ (Bn + 1)∥f − f0∥T 1,j

≤ 2Bn∥f − f0∥T 1,j
≤ 4B2

n,

by (b.4), with Assumptions 2(iii), 1; and

Var
[
∥f − f0∥2T 1,j

]
≤ E

[
∥f − f0∥4T 1,j

]
≤ (2Bn)

2∥f − f0∥2L2(PZ) ≤ 4B2
nr

2,

since

EP{Zt}t∈T1,j

[
f − f̃n] = EP{Zt}t∈T1,j

[
f − f̃n] = EPZ

[
f − f̃n].

Recall from the previous section that {Zt}t∈T1,1 , {Zt}t∈T1,2 , . . . , {Zt}t∈T1,b
is an i.i.d. sequence,

and consequently so is
{
∥f−f0∥T 1,j

}b
j=1

. Then, by the symmetrization inequality Bartlett et al.

15Note that E[RnS] is well defined by letting {ξt}nt=1 be defined on (Ω,A, P ) whenever (Ω,A, P ) is rich
enough, otherwise we can define {ξt}nt=1 on an auxiliary probability space (Ω(ξ),A(ξ), P (ξ)), and take the expec-
tation over the product probability space (Ω,A, P )× (Ω(ξ),A(ξ), P (ξ)) :=

(
Ω× S,A⊗ S, P × P (ξ)

)
.
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(2005, Theorem 2.1) (with α = 1/2 therein) for any δ′ > 0

e−δ′ ≥ P

(
sup{

f∈Fn:∥f−f0∥L2(PZ )≤r
} 1

b

b∑
t=1

{
∥f − f0∥2T 1,j

− E
[
∥f − f0∥2T 1,j

]}

≥ 3E
[
Rb

{
∥f − f0∥2T 1,j

: f ∈ Fn, ∥f − f0∥L2(PZ) ≤ r
}]

+ 2Bnr

√
2δ′

b
+

28B2
nδ

′

3b

)
(D.11)

By a2 − b2 = (a+ b)(a− b) and the reverse triangle inequality

(f − f0)
2 − (f ′ − f0)

2 =
(
(f − f0) + (f ′ − f0)

)
·
(
(f − f0)− (f ′ − f0)

)
≤ 4Bn

∣∣∣(f − f0)− (f ′ − f0)
∣∣∣.

Then, by Lemma 8

E
[
Rb

{
∥f − f0∥2T 1,j

: f ∈ Fn, ∥f − f0∥L2(PZ) ≤ r
}]

=
1

b
E

sup


b∑
j=1

ξj ·
(
1

a

∑
t∈T1,j

(
f(Zt)− f0(Zt)

)2)
: f ∈ Fn, ∥f − f0∥L2(PZ) ≤ r




≤
4Bn

√
2/a

b
E

sup


b∑
j=1

∑
t∈T1,j

ξt
(
f(Zt)− f0(Zt)

)
: f ∈ Fn, ∥f − f0∥L2(PZ) ≤ r




= 4Bn

√
2aE

[
Rab

{
f − f0 : f ∈ Fn, ∥f − f0∥L2(PZ) ≤ r

}]
Applying this Rademacher complexity bound, (D.10), and b :=

⌊
n/(2a)

⌋
> n/(4a), to (D.11)

we obtain

e−δ′ ≥ P

(
sup

{f∈Fn:∥f−f0∥L2(PZ )≤r}

{
∥f − f0∥2T 1

− ∥f − f0∥2L2(PZ)

}
≥ 12Bn

√
2aE

[
Rab

{
f − f0 : f ∈ Fn, ∥f − f0∥L2(PZ) ≤ r

}]
+ r

√
16 aB2

nδ
′

n
+

112 aB2
nδ

′

3n

)
.

(D.12)

Next suppose

r2 ≥ 12Bn

√
2aE

[
Rab

{
f − f0 : f ∈ Fn, ∥f − f0∥L2(PZ) ≤ r

}]
, (D.13)

and

r2 ≥ 38 aB2
nδ

′

n
. (D.14)
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Note that if (D.14) holds then 2r2 ≥ r

√
16 aB2

nδ
′

n
+ 112 aB2

nδ
′

(3n)
. Therefore, (D.12) implies that for

all r such that (D.13) and (D.14) hold

e−δ′ ≥ P

(
sup

{f∈Fn:∥f−f0∥L2(PZ )≤r}

{
∥f − f0∥2T 1

− ∥f − f0∥2L2(PZ)

}
≥ 3r2

)

≥ P

(
sup

{f∈Fn:∥f−f0∥L2(PZ )≤r}
∥f − f0∥2T 1

≥ 4r2

)

= P

(
sup

{f∈Fn:∥f−f0∥L2(PZ )≤r}
∥f − f0∥T 1

≥ 2r

)
. (D.15)

D.5.2 Step II: Radius one step tightening

Given some initial radius r0 ≥ ∥f̂n − f0∥L2(PZ) and δ′ ≥ 1 such that (D.13) and (D.14) hold,

this step will show that we may use r0 to obtain a tighter bound on ∥f̂n − f0∥L2(PZ) with high

probability, whenever the radius r0 is sufficiently loose. The notion of ‘sufficiently loose’ will

be specified at the end of this step.

For m ∈ {1, 2}, and j ∈ {1, ..., b}, define

G
(m)
j,f :=

1

a

∑
t∈Tm,j

gf (Zt), and G
(m)

j,f :=
1

a

∑
t∈Tm,j

gf (Zt).

With this, the empirical process term from (D.1) can be written as

1

n

n∑
t=1

{
E
[
gf̂n(Zt)

]
− gf̂n(Zt)

}
=

(
ab

n

)
1

b

b∑
j=1

{
E
[
G

(1)

j,f̂n

]
−G

(1)

j,f̂n
+ E

[
G

(2)

j,f̂n

]
−G

(2)

j,f̂n

}
+

1

n

∑
t∈TR

{
E
[
gf̂n(Zt)

]
− gf̂n(Zt)

}
.

Then, by stationarity, for A1, A2 > 0 to be specified later,

P

(
1

n

n∑
t=1

{
E
[
gf̂n(Zt)

]
− gf̂n(Zt)

}
≥ 2A1 + A2

)

≤ 2P

((
ab

n

)
1

b

b∑
j=1

{
E
[
G

(1)

j,f̂n

]
−G

(1)

j,f̂n

}
≥ A1

)
+ P

(
1

n

∑
t∈TR

{
E
[
gf̂n(Zt)

]
− gf̂n(Zt)

}
≥ A2

)

:= 2P1 + P2.

(D.16)
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Consider P2. By (b.5)(i), (b.4), and ∥f0∥∞ ≤ 1,

∥gf̂n∥∞ ≤ C4Bn∥f̂n − f0∥∞ ≤ C4Bn(Bn + 1) ≤ 2C4B
2
n,

hence
∥∥E[gf̂n(Zt)

]
− gf̂n(Zt)

∥∥
∞ ≤ 4C4B

2
n. Denote the cardinality of TR as (#TR) = n − 2ab,

and note (#TR) < 2a, since b :=
⌊
n/(2a)

⌋
implies b > n/(2a)− 1. With this,

1

n

∑
t∈TR

{
E
[
gf̂n(Zt)

]
− gf̂n(Zt)

}
≤ 2a

n

∥∥E[gf̂n(Zt)
]
− gf̂n(Zt)

∥∥
∞ ≤ 8C4B

2
na

n
.

Thus,

P2 = 0, for A2 =
9C4B

2
na

n
. (D.17)

To bound P1 we first apply (D.8) with

E =

{(
ab

n

)
1

b

b∑
j=1

{
E
[
G

(1)

j,f̂n

]
−G

(1)

j,f̂n

}
≥ A1

}
,

to obtain

P1 ≤ P

((
ab

n

)
1

b

b∑
j=1

{
E
[
G

(1)

j,f̂n

]
−G

(1)

j,f̂n

}
≥ A1

)
+
nβ(a)

2a

≤ P

(
1

b

b∑
j=1

{
E
[
G

(1)

j,f̂n

]
−G

(1)

j,f̂n

}
≥ 2A1

)
+
nβ(a)

2a
, (D.18)

since b ≤ n/(2a). We bound the first term on the right side with Bartlett et al. (2005, Theorem

2.1). For any f ∈ Fn, recall ∥gf∥∞ ≤ 2C4B
2
n, and note that

Var
[
G

(1)

j,f

]
≤ E

(1

a

∑
t∈T1,j

gf (Zt)

)2
 ≤ E

(1

a

∑
t∈T1,j
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1
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2
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∣∣2 = E

1
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2
∣∣f(Zt)− f0(Zt)

∣∣2
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2 ∥f − f0∥2L2(PZ) ≤ (C4Bn)
2 r20

where the third inequality uses

J∑
j=1

|xj| =

([ J∑
j=1

1|xj|
]2)1/2

≤

([ J∑
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12
][ J∑
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|xj|2
])1/2

=

(
J

[ J∑
j=1

|xj|2
])1/2

, (D.19)

by the Cauchy-Schwarz inequality, the first equality uses P{Zt}t∈T1,j
= P{Zt}t∈T1,j

for any j ∈

{1, . . . , b}, and the second equality uses stationarity. With this, since {Zt}t∈T1,1 , {Zt}t∈T1,2 ,
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. . . , {Zt}t∈T1,b
is an i.i.d. sequence, we can apply Bartlett et al. (2005, Theorem 2.1) (with

α = 1/2 therein) to obtain,

1− e−δ′ ≤ P
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b
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√
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2
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)
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(
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)
.

Thus by (D.15), since r0 satisfies (D.13) and (D.14),
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(
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b
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(D.20)

Now we address the Rademacher complexity term above. Note that for any f, f ′ ∈ Fn, by (b.5)

and Mn = 4Bn∣∣gf (Zt)− gf ′(Zt)
∣∣ = ∣∣q(Zt, f)− q(Zt, f

′)
∣∣ ≤ C4Bn

∣∣f(Zt)− f ′(Zt)
∣∣

= C4Bn

∣∣∣(f(Zt)− f0(Zt)
)
−
(
f ′(Zt)− f0(Zt)

)∣∣∣,
so we can apply Lemma 8 to obtain

6Eξ

[
Rb

{
G

(1)

j,f : f ∈ Fn, ∥f − f0∥T 1
≤ 2r0

}]

≤ 6C4Bn

√
2

b
√
a

Eξ

sup


b∑
j=1

∑
t∈T1,j

ξj,t
(
f(Zt)− f0(Zt)

)
: f ∈ Fn, ∥f − f0∥T 1

≤ 2r0




= 6C4Bn

√
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(D.21)

Let Dn := min {2Bn, 2r0} , so
{
f ∈ Fn : ∥f − f0∥T 1

≤ 2r0
}
=
{
f ∈ Fn : ∥f − f0∥T 1

≤ Dn

}
,
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since supf∈Fn
∥f − f0∥∞ ≤ Bn + 1 ≤ 2Bn. With this, and Lemma 10
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}
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4a
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2a
. By assumption n/2 > Pdim(Fn) so
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(
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by Lemma 9, and
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(

e2Bnn
υPdim(Fn)

)
> 0 for 0 < υ ≤ Dn. With this, and the Cauchy-Schwarz inequality,16 the

previous display implies,
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where the third inequality chooses α = Dn

√
Pdim(Fn)/n ∈ (0, Dn). Note that Dn > e2Bn/n.

To see this, recall Dn := min {2Bn, 2r0} , then, by assumption, n ≥ 4 > e2/2 which implies

e2Bn/n < 2Bn, and (D.14) implies 2r0 ≥ 2
√

38 aB2
nδ

′/n > e2Bn/n, since a ∈ N and δ′ ≥ 1.

16For any f : R → R and a, b ∈ R such that a < b and f(x) ≥ 0 for all x ∈ [a, b], by the Cauchy-Schwarz
inequality ∫ b

a

√
f(x) dx ≤
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a
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) 1
2
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a
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) 1
2
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2

.
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Hence, log
(

e2Bnn
DnPdim(Fn)

)
< log(n), since Pdim(Fn) ≥ 1 by definition. With this, the previous

display becomes

Eξ

[
Rab

{
f − f0 : f ∈ Fn, ∥f − f0∥T 1

≤ 2r0

}]
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√
2Pdim(Fn)

n
log (n). (D.22)

Combining (D.21) and (D.22),
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With this and (D.20), then using b > n
4a
,
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Applying this to (D.18)
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(D.23)

Now, we can update (D.16) with the bounds on P2 and P1 from (D.17) and (D.23),
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(D.24)

since δ′ ≥ 1 implies 256C4B2
naδ

′

3n
+ 9C4B2

na
n

< 95C4B2
naδ

′

n
. Returning to the main decomposition (D.1),
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and applying (D.5), (D.4), and (D.24) yields
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(D.25)

Therefore, if r0 ≥ ∥f̂n − f0∥2L2(PZ) is given, and r0 is sufficiently larger than

max

{(
Bn

√
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n

)[√
Pdim(Fn) log(n) +

√
δ

]
,
B2

naδ
′

n
, ϵ̃2n ,

Bnϵ̃n
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, µn

}
then (D.25) implies that there exists r1 < r0 such that ∥f̂n − f0∥2L2(PZ) ≤ r1 with probability

greater than 1 − 5e−δ′ − nβ(a)/a − 2P
(
maxt∈{1,...,n}mn(Zt) > C4Bn

)
. This can be done re-

peatedly as long as the new bound satisfies the conditions on r0 given at the beginning of this

step.

D.5.3 Step III: Radius tightening lower bound

This step obtains a critical radius, r, that is a reasonably tight lower-bound for radii such that

the tightening of the last step can be applied. Let x ∨ y = max{x, y}. Define
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√
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n
,

so 2r satisfies (D.14) for δ′ = log(n), and by construction 2r satisfies (D.13). Hence, for the
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{
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}
⊆ Ω,

we can apply (D.15) to obtain P (E) ≥ 1− 1/n.
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Now, consider the case where
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In this case, note that17
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implies r > e2/n, and it follows from the same reasoning used at

the beginning of Step II that r ≤ e2Bnn/(2Pdim(Fn)). Therefore, we can apply (D.22) to the
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Now, returning to the general case, note that
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D.5.4 Step IV: Localization

Now we obtain a final bound on ∥f̂n − f0∥L2 . Define
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(D.27)

Choose

δ′ = δ + log(5J), where J :=
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To apply (D.25) the requirements of Step II must be met. Clearly, r∗ > r so (D.13) is met.

From (D.27), if (4 · 288)C4/C1 ≥
√
38 then (D.14) is met, which is the case since C1 ≤ 1 and

C4 ≥ 1 by assumption. Note that J ≥ 2 so δ′ > δ + log(10) > 1 for any δ > 0. Hence, if it is
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In other words, for this choice of r∗, if P
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where the first term used 5Je−δ′ = e−δ−log(5J) = e−δ, and the second term follows since by

assumption n ≥ 16B2
n/ log(n), which implies
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With (D.29), the proof will be complete by showing r∗ ≤ C ϵn(δ, a), for a suitable constant

C > 0, and ϵn defined as in the statement of Theorem 2. Note that aBn−ϵ̃n(log n)(log log n) > 0
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by the assumption on a in the statement of the theorem, with this
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since n ≥ 4 by assumption, and J ≤ 2 log(n) was shown previously. Using the previous two

displays, we obtain

r∗ = r +
4

C1

(
288C4Bn

√
a√

n

)[√
Pdim(Fn) log(n) +

√
δ′
]

+

√
2

C1

[
95C4

(
B2

naδ
′

n

)
+ C2 ϵ̃

2
n + C5Bnϵ̃n

[
δ′(log n)(log log n)

n
+

√
δ′

n

]
+ 5µn + θn

]1/2
≤ r +

4(288C4)

C1

(
Bn

√
a

n

)[√
Pdim(Fn) log(n) +

√
δ′
]

+

√
192C5

C1

(
Bn

√
a

n

)√
δ′ +

√
2(C2 ∨ 5)

C1

√
ϵ̃2n + µn + θn

≤ C

(
Bn

√
a

n

[√
Pdim(Fn) log(n) +

√
log log(n) + δ

]
+
√
ϵ̃2n + µn + θn

)

=: C ϵn(δ, a),

(D.30)

where

C =

(
816 +

4(3)(288C4)

C1

+

√
192C5

C1

)
∨

√
2(C2 ∨ 5)

C1

.

Recall from Section D.3, C5 = 2C4/min{C6, 1}, and C6 from Lemma 7 only depends on Cβ

and C ′
β. Therefore, C only depends on C1, C2, C4, Cβ, and C

′
β. This proves the first result of

Theorem 2.
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D.6 Empirical error bound

Note that

∥f̂n − f0∥22,n =

 1

n

b∑
j=1

∑
t∈T1,j

[
f̂n(Zt)− f0(Zt)

]2+

 1

n

b∑
j=1

∑
t∈T2,j

[
f̂n(Zt)− f0(Zt)

]2
+

(
1

n

∑
t∈TR

[
f̂n(Zt)− f0(Zt)

]2)
.

Then, by (D.30) and stationarity,

P
(
∥f̂n − f0∥2,n ≥

√
3C ϵn(δ, a)

)
≤ P

(
∥f̂n − f0∥22,n ≥ 3r2∗

)
≤ 2P

 1

n

b∑
j=1

∑
t∈T1,j

[
f̂n(Zt)− f0(Zt)

]2 ≥ 2r2∗

+ P

(
1

n

∑
t∈TR

[
f̂n(Zt)− f0(Zt)

]2 ≥ r2∗

)

:= 2P3 + P4

(D.31)

To bound P3 we first apply (D.8) with

E =

 1

n

b∑
j=1

∑
t∈T1,j

[
f̂n(Zt)− f0(Zt)

]2 ≥ 2r2∗

 ,

and then b ≤ n/(2a), to obtain

P3 ≤ P
(
(ab/n)∥f̂n − f0∥2T 1

≥ 2r2∗

)
+
nβ(a)

2a

≤ P
(
∥f̂n − f0∥2T 1

≥ 4r2∗

)
+
nβ(a)

2a

≤ P

({
∥f̂n − f0∥2T 1

≥ 4r2∗

}
∩
{
∥f̂n − f0∥L2 ≤ r∗

})
+ P

(
∥f̂n − f0∥L2 > r∗

)
+
nβ(a)

2a

≤ P

(
sup

{f∈Fn:∥f−f0∥L2(PZ )≤r∗}
∥f − f0∥2T 1

≥ 4r2∗

)
+ P

(
∥f̂n − f0∥L2 > r∗

)
+
nβ(a)

2a

≤ P

(
sup

{f∈Fn:∥f−f0∥L2(PZ )≤r∗}
∥f − f0∥2T 1

≥ 4r2∗

)

+ e−δ + 2 log(n)

[
nβ(a)

a
+ 2P

(
max

t∈{1,...,n}
mn(Zt) > C4Bn

)]
+
nβ(a)

2a
,

by (D.29). In Section D.5.4 it was shown r∗ and δ′ satisfy (D.13) and (D.14). They are clearly

still met by δ (although δ ≥ 1 may not hold). Hence, by applying (D.15) with δ in place of δ′,
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the previous display becomes

P3 ≤ 2e−δ + 3 log(n)

[
nβ(a)

a
+ 2P

(
max

t∈{1,...,n}
mn(Zt) > C4Bn

)]
, (D.32)

Consider P4. Recall (#TR) := n − 2ab < 2a, from Section D.5.2. Then, by (b.4) and

∥f0∥∞ ≤ 1,

1

n

∑
t∈TR

[
f̂n(Zt)− f0(Zt)

]2 ≤ 2a

n
∥f̂n − f0∥2∞ <

8B2
na

n
< r2∗

where the last inequality has used the definition of r∗ from (D.27), and C4 ≥ 1 by (b.5)(ii).

Therefore,

P4 = P

(
1

n

∑
t∈TR

[
f̂n(Zt)− f0(Zt)

]2 ≥ r2∗

)
= 0. (D.33)

Applying (D.32) and (D.33) to (D.31),

P
(
∥f̂n − f0∥2,n ≥

√
3C ϵn(δ, a)

)
≤ 4e−δ + 6 log(n)

[
nβ(a)

a
+ 2P

(
max

t∈{1,...,n}
mn(Zt) > C4Bn

)]
.

This completes the proof of Theorem 2.

D.7 Supporting Lemmas

This section provides the ancillary lemmas used in Section D. These are simple modifications

of existing results for more direct application to the setting used here.

Lemma 6 is a simplified version of Davidson (2022, Theorem 15.1). For any random sequence

{Xt}t∈N let αX and βX be the mixing coefficients associated with {Xt}t∈N.

Lemma 6. Let U : Z → R be measurable-A/B(R) and define Wt := U(Zt). Then αW (j) ≤

αZ(j) and βW (j) ≤ βZ(j) for any j ∈ N.

Proof. Note that Yt is measurable-σ(Zt)/B(R) for each t ∈ N. Consequently, σ
(
{Yt}k1

)
⊆

σ
(
{Zt}k1

)
and σ

(
{Yt}∞k+j

)
⊆ σ

(
{Zt}∞k+j

)
, for any k, j ∈ N. With this, the desired follows

immediately from Definitions 3 and 5.

Lemma 7 follows from the exponential inequality for α-mixing processes in Merlevède et al.

(2009, Theorem 1). Note that stationarity is not required. See Definition 5 for the definition
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of α-mixing. This result is also applicable to β-mixing processes since β(j) ≥ α(j).

Lemma 7. Let {Zt}t∈N be an α-mixing process with α(j) ≤ C ′
αe

−Cαj for some Cα, C
′
α > 0.

Let f : Z → R be measurable-B(Z)/B(R), such that E[f(Zt)] = 0 for each t and ∥f∥L∞ < B.

Then, there exists C6 > 0 depending only on Cα, C
′
α, such that for any a ≥ 3, and n, δ > 0

P

(∣∣∣∣ 1n
a∑

t=1

f(Zt)

∣∣∣∣ ≥ δB(log a)(log log a)

C6n
+
B
√
δa√

C6 n

)
≤ e−δ.

Proof. By Lemma 6, {f(Zt)}at=1 has an α-mixing coefficient that is less than or equal to α(j)

from the statement of this lemma. Then, by Merlevède et al. (2009, Theorem 1),18 there exists

C6 > 0 depending only on Cα, C
′
α such that for any γ > 0

P

(∣∣∣∣ 1n
a∑

t=1

f(Zt)

∣∣∣∣ ≥ γ

)
≤ exp

[
− C6γ

2n2

aB2 + γnB(log a)(log log a)

]
.

Setting δ = C6γ
2n2
[
aB2 + γnB(log a)(log log a)

]−1
implies

0 = C6γ
2n2 − δγnB(log a)(log log a)− δaB2.

Hence, by the quadratic formula,19

γ =
δnB(log a)(log log a) +

√[
δnB(log a)(log log a)

]2
+ 4C6n2δaB2

2C6n2

≤ 2δnB(log a)(log log a)

2C6n2
+

2nB
√
C6δa

2C6n2
=
δB(log a)(log log a)

C6n
+
B
√
δa√

C6 n
,

since
√
x+ y ≤

√
x+

√
y for any x, y > 0.

Lemma 8 is a contraction inequality for Rademacher complexities of sums that follows from

Maurer (2016, Theorem 3).

Lemma 8. For a, b ∈ N, and let {Tj}bj=1 form a partition of {1, . . . , ab} such that #Tj = a for

each j. Let S be a pointwise separable space. For t ∈ {1, . . . , ab}, let gt : S → R and ht : S → R
18Note that Merlevède et al. (2009, Theorem 1) is for α(j) ≤ e−Cαj . However, this can be generalized to

α(j) ≤ C ′
αe

−Cαj for C ′
α > 0, by adjusting the constants in their results. See (4.13), Lemma 8, and Corollary 11

therein.
19Note that we are only interested in γ > 0 and

δnB(log a)(log log a)−
√[

δnB(log a)(log log a)
]2

+ 4C6n2δaB2 < δnB(log a)(log log a)−
√[

δnB(log a)(log log a)
]2

= 0.
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be such that there exists a constant L > 0, where gt(f) − gt(f
′) ≤ L|ht(f) − ht(f

′)| for each t

and f, f ′ ∈ S. Then,

Eξ

sup
f∈S

b∑
j=1

ξj ·
(
1

a

∑
t∈Tj

gt(f)

) ≤
√

2/aLEξ

sup
f∈S

b∑
j=1

∑
t∈Tj

ξt ht(f)

 ,
where {ξj}bj=1 and {ξt}abt=1 are sequences of i.i.d. Rademacher random variables.

Proof. For x ∈ Ra let ∥x∥E denote the Euclidean norm on Ra. By Maurer (2016, Theorem

3)20 for countable set H and functions ψj : H → R, ϕj : H → Ra, j ∈ {1, . . . , b} such that

ψj(f)− ψj(f
′) ≤

∥∥ϕj(f)− ϕj(f
′)
∥∥
E
, ∀f, f ′ ∈ H, j ∈ {1, . . . , b},

we have, for ϕj = {ϕt}t∈Tj
,

Eξ

[
sup
f∈H

b∑
j=1

ξjψj(f)

]
≤

√
2Eξ

sup
f∈H

b∑
j=1

∑
t∈Tj

ξt ϕt(f)

 .
By assumption S is pointwise separable so choose H to be the countable dense subset of S. Let

ψj(f) =
1

a

∑
t∈Tj

gt(f), and ϕj(f) =
{
Lht(f)/

√
a
}
t∈Tj

.

With this,

ψj(f)− ψj(f
′) =

1

a

∑
t∈Tj

{
gt(f)− gt(f

′)
}
≤ 1

a

∑
t∈Tj

L|ht(f)− ht(f
′)|

≤

(
1

a

∑
t∈Tj

∣∣Lht(f)− Lht(f
′)
∣∣2)1/2

=
∥∥ϕj(f)− ϕj(f

′)
∥∥
E
.

Hence, Maurer (2016, Theorem 3) implies

Eξ

sup
f∈H

b∑
j=1

ξj

(
1

a

∑
t∈Tj

gt(f)

) ≤
√

2/aLEξ

sup
f∈H

b∑
j=1

∑
t∈Tj

ξj,t ht(f)

 .
This completes the proof because the supremum is unchanged when H is replaced by S.

Lemma 9. Let G be a set of real-valued functions such that supf∈G∥f∥∞ ≤ B. Then, for any

20There appears to be a typo in the statement of Theorem 3 in Maurer (2016), the term ψ(s′i) in the
contraction condition should be ψi(s

′), as in Lemma 7 therein.

62



r ∈ [1,∞], δ ∈ (0, 2B], and n ∈ N such that n ≥ Pdim(G),

N(∞)
r (δ, G, n) ≤

(
2eBn

δ · Pdim(G)

)Pdim(G)

.

Proof. By Anthony and Bartlett (1999, Theorem 12.2)

N(∞)
∞ (δ, G, n) ≤

(
2eBn

δ · Pdim(G)

)Pdim(G)

.

For any r ∈ [1,∞], n ∈ N, and x ∈ Rn, we have ∥x∥r,n ≤ ∥x∥∞,n; so any δ-cover with respect

to ∥·∥∞,n is also a cover for ∥·∥r,n. Thus, N
(∞)
r

(
δ, G, n

)
≤ N(∞)

∞
(
δ, G, n

)
.

Lemma 10. Let G be a pointwise separable set of functions with elements f : Z → R such that

∥f∥∞ <∞ for each f ∈ G. Then, for any n ∈ N we have

Eξ

[
Rn

{
f : f ∈ G, ∥f∥ ≤ r

}]
≤ inf

0<α<r

{
4α + 8

√
2

n

∫ r

α

√
log N(υ,G, ∥·∥) dυ

}
,

where ∥f∥ =
(
1
n

∑n
t=1 f(Zt)

2
)1/2

.

Proof. Consider the case where {Zt}nt=1 = {zt}nt=1 is an arbitrary fixed element of Zn. Then{
1√
n

∑n
t=1 ξtf(zt) : f ∈ G, ∥f∥ ≤ r

}
is a zero mean sub-Gaussian empirical process; since

Hoeffding’s inequality for Rademacher random variables implies,21

P

(
1√
n

n∑
t=1

ξtf(zt) ≥ υ

)
≤ 2 exp

[
−υ2n

2
∑n

t=1 f(zt)2

]
≤ 2 exp

[
−υ2

2∥f∥2

]
,

for any f ∈
{
f ∈ G, ∥f∥ ≤ r

}
and υ > 0. Hence, Dudley’s entropy integral can be applied22 to

21This result is a simple modification of Hoeffding (1963, Theorem 2), and can be found in van der Vaart
and Wellner (1996, Lemma 2.2.7).

22This is a well-known result with many formulations. This version, and it’s proof can be found in Bartlett
(2013, p. 11), or in the proof of van der Vaart and Wellner (1996, Theorem 2.2.4). This result is sometimes
referred to as Dudley’s chaining (e.g. Farrell et al., 2021, Lemma 3).
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obtain, for each α ∈ (0, r)

Eξ

[
Rn

{
f : f ∈ G|{Zt}nt=1

, ∥f∥ ≤ r
}]

=
1√
n
Eξ

[
sup

{f∈G,∥f∥≤r}

1√
n

n∑
t=1

ξtf(zt)

]

≤ 1√
n

(
2Eξ

[
sup

{f∈G,∥f∥≤2α}

1√
n

n∑
t=1

ξt
[
f(zt)− f ′(zt)

]]
+ 8

√
2

∫ r

α

√
log N(υ,G, ∥·∥) dυ

)

≤ 2 sup
{f∈G,∥f∥≤2α}

{
1

n

n∑
t=1

∣∣f(zt)− f ′(zt)
∣∣}+ 8

√
2

n

∫ r

α

√
log N(υ,G, ∥·∥) dυ

≤ 4α + 8

√
2

n

∫ r

α

√
log N(υ,G, ∥·∥) dυ.

The desired result follows since this holds for any {zt}nt=1 ∈ Zn and α ∈ (0, r).

E Proofs for Section 3

First, we provide proofs for Lemma 1 and Proposition 3, followed by the proofs for the main

theorems of Section 3. Appendix E.4 lists the additional ancillary lemmas used in this section.

As before, we write qt(f) := q
(
Zt, f(Zt)

)
, and mnt := mn(Zt).

Proof of Lemma 1. Note that sup
t∈N

Y 2
t is measurable-A/B(R). Then,

max
t∈{1,...,n}

E
[
Y 2
t 1|Yt|≥Bn

]
≤ E

[
max

t∈{1,...,n}
{Y 2

t } · max
t∈{1,...,n}

{1|Yt|≥Bn}
]

≤
∫
{ω:max1≤t≤n |Yt(ω)|≥Bn}

sup
t∈N

Y 2
t dP. (E.1)

For any δ > 0, there exists a simple function,23 sδ : Ω → R, such that 0 ≤ sδ ≤ sup
t∈N

Y 2
t , and∫

Ω

sup
t∈N

Y 2
t dP −

∫
Ω

sδ dP ≤ δ/2. (E.2)

We may choose Cδ > 0 such that sup
ω∈Ω

sδ(ω) ≤ Cδ, since a simple function takes on finitely many

values. By Assumption 2 for any constants δ, Cδ > 0 there exists Nδ ∈ N such that, for all

23As usual, a simple function is a function that can be represented as s(ω) =
∑J

j=1 cj1Aj , for some J ∈ N,
and Aj ∈ A, cj ∈ R for j = 1, . . . , J .
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n ≥ Nδ,

P

(
max

t∈{1,...,n}
|Yt| ≥ Bn

)
≤ δ/(2Cδ). (E.3)

By construction, sδ ≤ sup
t∈N

Y 2
t so∫

{ω:max1≤t≤n |Yt(ω)|≥Bn}

(
sup
t∈N

Y 2
t − sδ

)
dP ≤

∫
Ω

(
sup
t∈N

Y 2
t − sδ

)
dP.

Hence, for all n ≥ Nδ,∫
{ω:max1≤t≤n |Yt(ω)|≥Bn}

sup
t∈N

Y 2
t dP ≤

∫
{ω:max1≤t≤n |Yt(ω)|≥Bn}

sδ dP +

∫
Ω

sup
t∈N

Y 2
t dP −

∫
Ω

sδ dP

≤ Cδ P

(
max

t∈{1,...,n}
|Yt| ≥ Bn

)
+

∫
Ω

sup
t∈N

Y 2
t dP −

∫
Ω

sδ dP

≤ δ/2 +

∫
Ω

Y 2
t dP −

∫
Ω

sδ dP

≤ δ,

by (E.3) and (E.2). Applying this to (E.1) completes the proof since δ is arbitrary, Nδ depends

only on δ, Cδ and sδ, Cδ are independent of n.

Proof of Proposition 3. For condition (i), note that {|Yt|}t∈N is stationary and α-mixing

by Lemma 6. Then, {|Yt|}t∈N satisfies Leadbetter et al. (1983, Condition D(un), p.53) (see

discussion on p.54 therein). With this, the desired result follows from the proof of Leadbetter

et al. (1983, Theorem 3.4.1) (also see discussion on p.58 therein).

For condition (ii), we first verify that the conditions of Leadbetter et al. (1983, Theorem

6.3.4, p.132) are met. Let {Y t}t∈N be the standardized version of {Yt}t∈N, i.e., Y t :=
Yt−E(Yt)√

Var(Yt)
.

Note that E
[
Y

4

t

]
= 3 for all t ∈ N, by Papoulis (1991, p.110). By Lemma 6, αY (j) ≤ α(j) since

Yt 7→ Y t is measurable-A/B(R). With this, and since Y t has a standard normal distribution,

we apply Bosq (1998, Corollary 1.1) to obtain for any i, k ∈ N, i ̸= k,

|Cor(Y i, Y k)| = |Cov(Y i, Y k)| ≤ 4
√

2 α(|i− k|)
∥∥Y i

∥∥
L4

∥∥Y k

∥∥
L4 ≤ 36

√
2α(|i− k|) := υ|i−k|,

and |Cor(−Yi,−Yk)| ≤ υ|i−k| by a similar argument. Then, by the assumptions on α(j) we have
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υj < 1 for all j ∈ N and lim
j→∞

υj log(j) = 0. Next

n∑
t=1

P

(
Y t ≥

Bn − E(Yt)√
Var(Yt)

)
=

n∑
t=1

P (Yt ≥ Bn) ≤
n∑

t=1

P (|Yt| ≥ Bn) → 0, and

n∑
t=1

P

(
−Y t ≥

Bn − E(−Yt)√
Var(Yt)

)
=

n∑
t=1

P (−Yt ≥ Bn) ≤
n∑

t=1

P (|Yt| ≥ Bn) → 0,

as n→ ∞ by assumption. Thus, Leadbetter et al. (1983, Theorem 6.3.4, p.132) can be applied

to {Y t}t∈N and {−Y t}t∈N to obtain

P
(

max
t∈{1,...,n}

Yt ≥ Bn

)
= P

(
n⋂

t=1

{
Yt ≥ Bn

})
= P

(
n⋂

t=1

{
Y t ≥

Bn − E(Yt)√
Var(Yt)

})
→ 0, and

P
(

max
t∈{1,...,n}

−Yt ≥ Bn

)
= P

(
n⋂

t=1

{
− Yt ≥ Bn

})
= P

(
n⋂

t=1

{
−Y t ≥

Bn − E(−Yt)√
Var(Yt)

})
→ 0,

as n→ ∞. Which gives the desired result since

P
(

max
t∈{1,...,n}

|Yt| ≥ Bn

)
= P

({
max

t∈{1,...,n}
Yt ≥ Bn

}
∪
{

min
t∈{1,...,n}

Yt ≤ −Bn

})
= P

({
max

t∈{1,...,n}
Yt ≥ Bn

}
∪
{
− max

t∈{1,...,n}
−Yt ≤ −Bn

})
= P

({
max

t∈{1,...,n}
Yt ≥ Bn

}
∪
{

max
t∈{1,...,n}

−Yt ≥ Bn

})
≤ P

(
max

t∈{1,...,n}
Yt ≥ Bn

)
+ P

(
max

t∈{1,...,n}
−Yt ≥ Bn

)
→ 0,

as n→ ∞.

E.1 Proof of Theorem 3

Theorem 3 will follow by showing the conditions of Theorem 1 are met with the following

setting:

• qt(f) = q(Zt, f(Zt)) :=
(
πY (Zt)− f(πX(Zt))

)2
= (Yt − f(X t))

2;

• ρn(f, f
′) := ∥f − f ′∥L2(P{Xt}nt=1

) =

(∫
[0,1]d

[
f(x)− f ′(x)

]2
dP{Xt}nt=1

)1/2

;

• Mn := 4Bn; and

• mn(Zt) := 2 sup
f∈Nn

∣∣Yt − f(X t)
∣∣.

Verification of (a.1). By Lemma 11, and (3.3), there exists f̃n ∈ Nn such that ∥f̃n − f0∥∞ ≲
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n−( p
p+d/2)(1/4−KB). By assumption ϵn ≳ n(

p
p+d/2)(1/4−KB). Thus, there exist constants C,C ′ > 0

such that ∥f̃n−f0∥∞ ≤ Cn(
p

p+d/2)(1/4−KB) ≤ C ′ϵn, (a.1) is met by C ′ϵn. The result follows since

ρn(f̂n, f0) = OP (ϵn) is equivalent to ρn(f̂n, f0) = OP (C
′ϵn) so scaling ϵn by a constant has no

impact on the final rate.

Verification of (a.2). For any n ∈ N, and f ∈ L2
(
P{Xt}nt=1

)
, by iterated expectations,

E[Qn(f)]− E[Qn(f0)] =
1

n

n∑
t=1

E
[
f(X t)

2 − f0(X t)
2 − 2f(X t)Yt + 2f0(X t)Yt

]
=

1

n

n∑
t=1

E
[
f(X t)

2 − f0(X t)
2 − 2f(X t)f0(X t) + 2f0(X t)

2
]

=
1

n

n∑
t=1

E
[
(f(X t)− f0(X t))

2
]

=

∫
Ω

1

n

n∑
t=1

[
f(X t(ω))− f0(X t(ω))

]2
dP

=

∫
[0,1]d

[
f(x)− f0(x)

]2
dP{Xt}nt=1

= ∥f̂n − f0∥2L2(P{Xt}nt=1
).

The desired result follows because Nn ⊂ L2
(
P{Xt}nt=1

)
for any n, since sup

f∈Nn

∥f∥∞ = Bn.

Verification of (a.3). Letmn(Zt) := 2 sup
f∈Nn

∣∣Yt−f(X t)
∣∣, which is measurable-B(Z)/B([0,∞))

because Nn is pointwise-separable. Consider (a.3)(i). For any f, g ∈ Nn we have∣∣q(z, f)− q
(
z, g
)∣∣ = ∣∣∣(f(x) + g(x)

)(
f(x)− g(x)

)
− 2y

(
f(x)− g(x)

)∣∣∣
=
∣∣∣(f(x) + g(x)− 2y

)(
f(x)− g(x)

)∣∣∣
≤
(
2 sup
f∈Nn

∣∣y − f(x)
∣∣)∣∣f(x)− g(x)

∣∣
= mn(z)

∣∣f(x)− g(x)
∣∣. (E.4)

Consider (a.3)(ii). Recall mn(Zt) := 2 sup
f∈Nn

∣∣Yt − f(X t)
∣∣, and sup

f∈Nn

∥f∥∞ ≤ Bn. Then, for

any z = (y,x) ∈ R × [0, 1]d, we have mn(z) ≤ 2
(
|y| + Bn

)
, by the triangle inequality. Hence,

for any ω ∈ Ω, n ∈ N and t ∈ {1, . . . , n},

mn

(
Zt(ω)

)
≤ 2
(
|Yt(ω)|+Bn

)
,
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since Zt(ω) :=
(
Yt(ω), X t(ω)

)
∈ R× [0, 1]d. Thus, for any ω ∈ Ω, n ∈ N,

max
t∈{1,...,n}

mn

(
Zt(ω)

)
≤ max

t∈{1,...,n}
2
(
|Yt(ω)|+Bn

)
,

which implies{
ω : max

t∈{1,...,n}
mn

(
Zt(ω)

)
≥Mn

}
⊆
{
ω : max

t∈{1,...,n}
2
(
|Yt(ω)|+Bn) ≥Mn

}
=
{
ω : max

t∈{1,...,n}
|Yt(ω)| ≥Mn/2−Bn

}
=
{
ω : max

t∈{1,...,n}
|Yt(ω)| ≥ Bn

}
, (E.5)

since Mn := 4Bn. With this, and Assumption 2

P
(

max
t∈{1,...,n}

mn(Zt) ≥Mn

)
≤ P

(
max

t∈{1,...,n}
|Yt| ≥ Bn

)
→ 0, as n→ ∞.

Consider (a.3)(iii). Note that (E.5) implies 1{mn(Zt)≥Mn} ≤ 1{|Yt|≥Bn}, for all n ∈ N and

t ∈ {1, . . . , n}. Hence, for any f ∈ Nn,

E
[∣∣qt(f)∣∣1{mn(Zt)≥Mn}

]
≤ E

[∣∣Y 2
t + f(X t)

2 − 2f(X t)Yt
∣∣1{|Yt|≥Bn}

]
≤ E

[
Y 2
t 1{|Yt|≥Bn}

]
+ E

[
f(X t)

2
1{|Yt|≥Bn}

]
+ 2E

[∣∣f(X t)Yt
∣∣1{|Yt|≥Bn}

]
≤ E

[
Y 2
t 1{|Yt|≥Bn}

]
+B2

nP
(
|Yt| ≥ Bn

)
+ 2BnE

[
|Yt|1{|Yt|≥Bn}

]
, (E.6)

where the last line has used sup
f∈Nn

∥f∥∞ ≤ Bn by (3.2). Note that, with Bn > 0 and Markov’s

inequality,

B2
n P
(
|Yt| ≥ Bn

)
= B2

n P
(
|Yt|1{|Yt|≥Bn} ≥ Bn

)
= B2

n P
(
Y 2
t 1{|Yt|≥Bn} ≥ B2

n

)
≤ E

[
Y 2
t 1{|Yt|≥Bn}

]
,

and,

BnE
[
|Yt|1{|Yt|≥Bn}

]
≤ E

[
Y 2
t 1{|Yt|≥Bn}

]
,

since Bn|Yt|1{|Yt|≥Bn} ≤ Y 2
t when |Yt| ≥ Bn, and Bn|Yt|1{|Yt|≥Bn} = 0 when |Yt| < Bn. Using

the previous two displays with (E.6),

max
t∈{1,...,n}

{
sup
f∈Nn

E
[∣∣q(Zt, f(Zt)

)∣∣1{mn(Zt)≥Mn}

]}
≤ 4
(

max
t∈{1,...,n}

E
[
Y 2
t 1{|Yt|≥Bn}

])
≲ ϵ2n, (E.7)

by the assumptions on ϵn. Then, lim
n→∞

ϵn = 0 under Assumption 2 by Lemma 1 and the

assumptions on ϵn and KB.
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Verification of (a.4). First, mn(Zt) := 2 sup
f∈Nn

∣∣Yt − f(X t)
∣∣, implies

∣∣qt(f)1{mnt<Mn}
∣∣ = (Yt − f(X t)

)2
1{mnt<Mn} ≤

(
mn(Zt)/2

)2
1{mnt<Mn} ≤M2

n/4 = B2
n

For each n ∈ N, by Lemma 6
{
qt(f)1{mnt<Mn}

}n
t=1

has an α-mixing coefficient that is bounded

above by the α-mixing coefficient for {Zt}nt=1. Then, using the same reasoning as the proof of

Lemma 7, by Merlevède et al. (2009, Theorem 1) there exists a constant C ′ > 0 depending only

on Cα, C
′
α such that such that for δ > 0 and all n ≥ 4,

P

(
1

n

∣∣∣∣ n∑
t=1

(
qt(f)1{mnt<Mn} − E

[
qt(f)1{mnt<Mn}

])∣∣∣∣ ≥ δ

)
≤ exp

[
−C ′ δ2 n2

8nB4
n + 2δnB2

n(log n)(log log n)

]
≤ exp

[
−C δ2 n

n4KB + δ n2KB(log n)(log log n)

]
=: λ(q)n (δ),

for some constant C > 0 not depending on n or δ since Bn ≲ nKB by assumption.

Consider (a.4)(ii). Note that

λ(q)n

(
δ ϵ2n
)
= exp

[
−C δ2ϵ4n n

n4KB + δ2ϵ2n n
2KB(log n)(log log n)

]
.

With this, and ϵn ≳ n−( p
p+d/2)(1/4−KB) log2+υ(n) by assumption,

ϵ4n n

n4KB + n2KB(log n)(log log n)
=
[
n−(1−4KB)ϵ−4

n + n−(1−2KB)ϵ−2
n (log n)(log log n)

]−1

≳ n(1−4KB)ϵ4n

≳ n(1−
p

p+d/2)(1/4−KB) log4(2+υ)(n) → ∞, as n→ ∞,

since 1 − p

p+ d/2
> 0 and KB < 1/4 by assumption. Then, Lemma 12 can be applied, with

4Mn = Bn and the definition of λ(q)n , to obtain the following sufficient condition for (a.4)(ii),

lim
n→∞

{[
n(1−4KB)ϵ4n

]−1 · log N(∞)
1

(
4δ ϵ2n/Bn, Nn, n

)}
= 0,

=⇒ lim
n→∞

{
λ(q)n

(
δ ϵ2n
)
· N(∞)

1

(
δ ϵ2n/Mn, Nn, n

)}
= 0.

(E.8)

Henceforth, let n be large enough such that ϵn < 1. By (3.3) and Lemma 14, we have

Pdim(Nn) ≍ n2( d
p+d/2)(1/4−KB) log7(n), which implies lim

n→∞
{n/Pdim(Nn)} = ∞. Then, we can
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apply Lemma 15, with η =

(
d

p+ d/2

)
(1/4−KB) therein, to obtain

log N
(∞)
1

(
4δ ϵ2n
Bn

, Nn, n

)
≲ n2( d

p+d/2)(1/4−KB) log7(n)
[
log (n) + log

(
Bn/ϵ

2
n

) ]
≲ n2( d

p+d/2)(1/4−KB) log8(n) = n(
d/2

p+d/2)(1−4KB) log8(n).

With this, and again using
ϵ4n n

n4KB + n2KB(log n)(log log n)
≳ n(1−4KB)ϵ4n,[

ϵ4n n

n4KB + δ n2KB(log n)(log log n)

]−1

· log N(∞)
1

(
4δ ϵ2n
Bn

, Nn, n

)
≲
[
n−(1−4KB)ϵ−4

n

]
n(

d/2
p+d/2)(1−4KB) log8(n)

= n−(1− d/2
p+d/2)(1−4KB)ϵ−4

n log8(n)

= n−( p
p+d/2)(1−4KB)ϵ−4

n log8(n)

≲ log4υ(n) → 0, as n→ ∞,

where the last line used ϵn ≳ n−( p
p+d/2)(1/4−KB) log2+υ(n), and υ > 0 by assumption.

E.2 Proof of Theorem 4

Theorem 4 will be a consequence of the following proposition.

Proposition 4. Suppose Assumptions 1 and 2 hold with Bn ≍ nKB for some KB ∈ [0, 1/2).

Let {Zt}t∈N be a strictly stationary β-mixing process with β(j) ≤ C ′
βe

−Cβ j for some Cβ, C
′
β > 0.

Let Nn = N (Ln,Hn, Bn) be defined as in (3.2) where the sequences {Ln}n∈N, {Hn,l}n∈N for

each l ∈ N, are non-decreasing, and Hn,l ≍ Hn. For any υ ∈ [0, 1/2−KB) if

Ln ≍ log(n), Hn ≍ n(
d

p+d)(1/2−KB−υ) log2(n), (E.9)

then for {f̂n}n∈N satisfying (2.2), and

ϵn = n−( p
p+d)(1/2−KB−υ) log6(n) +

√
E
[
Y 2
t 1{|Yt|≥Bn}

]
+ θn,
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there exists a constant C > 0 independent of n, such that for all n sufficiently large

P
(
∥f̂n − f0∥L2 ≤ C ϵn

)
≥ 1− e−n(

p
p+d)(1/2−KB−υ)

−
2C ′

βn
1−Cβn

2υ log(n)−2υ

log(n)
− 4 log(n)P

(
max

t∈{1,...,n}
|Yt| ≥ Bn

)
,

P
(
∥f̂n − f0∥2,n ≤ C ϵn

)
≥ 1− 6e−n(

p
p+d)(1/2−KB−υ)

−
12C ′

βn
1−Cβn

2υ log(n)−2υ

log(n)
− 24 log(n)P

(
max

t∈{1,...,n}
|Yt| ≥ Bn

)
.

Note that Theorem 4 follows directly from Proposition 4 by choosing υ = 0. Proposition 4

will follow by applying Theorem 2. We begin by verifying conditions (b.1)-(b.5) hold.

Verification of (b.1). This is assumed directly in Proposition 4.

Verification of (b.2). By Lemma 11, and (E.9), there exists f̃n ∈ Nn such that ∥f̃n−f0∥∞ ≲

n−( p
p+d)(1/2−KB−υ). The desired result follows since 1/2−KB − υ > 0.

Verification of (b.3). For any n ∈ N, and f ∈ L2
(
P{Xt}nt=1

)
, by iterated expectations,

E[Qn(f)]− E[Qn(f0)] = E
[
f(X t)

2 − f0(X t)
2 − 2f(X t)Yt + 2f0(X t)Yt

]
= E

[
f(X t)

2 − f0(X t)
2 − 2f(X t)f0(X t) + 2f0(X t)

2
]

= E
[
(f(X t)− f0(X t))

2
]

= ∥f̂n − f0∥2L2(PX).

The desired result follows because Nn ⊂ L2
(
P{Xt}nt=1

)
for any n, since sup

f∈Nn

∥f∥∞ = Bn.

Verification of (b.4). First, by (3.2) sup
f∈Fn

∥f∥∞ ≤ Bn < ∞ for each n. Next, by (E.9) and

Lemma 14, Pdim(Nn) ≍ n2( d
p+d)(1/2−KB−υ) log7(n). Hence, Pdim(Nn) ≳ log log(n), and

Bn√
n

[√
Pdim(Fn) log(n) +

√
log log(n)

]
≲ n(

d
p+d)(1/2−KB−υ)−(1/2−KB) log4(n) → 0, as n→ ∞,

since KB < 1/4, υ ≥ 0 and d/(p+ d) ∈ (0, 1).

Verification of (b.5). Choose mn(Zt) := 2 sup
f∈Nn

∣∣Yt − f(X t)
∣∣. Then (b.5)(i) follows from

(E.4). For (b.5)(ii) first choose

µn := max
{
4E
[
Y 2
t 1{|Yt|≥Bn}

]
, n−1

}
.
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Then by Assumption 2 and Lemma 1, we have lim
n→∞

µn = 0. By (E.7) and stationarity,

E
[
|qt
(
f
)
|1{mn(Zt)≥4Bn}

]
≤ 4E

[
Y 2
t 1{|Yt|≥Bn}

]
≤ µn. Hence, (b.5)(ii) holds for C4 = 4.

Final Steps for Proposition 4. Now, we verify the remaining requirements for Theorem 2.

By Remark 1(ii) and (iii), Nn is pointwise-separable, and {f(x) : f ∈ Nn} = [−Bn, Bn] ⊂ R is

compact for each x ∈ [0, 1]d. Under Assumption 1, ∥f0∥∞ ≤ 1.

Choose

δ := Cδ n
2( d

p+d)(1/2−KB−υ) log8(n), and a :=
⌈
n2υ log2(n)

⌉
.

for some Cδ > 0. To apply Theorem 2 all that remains is to verify
√
δ ≥ ϵ̃n

√
n

Bna− ϵ̃n(log n)(log log n)
.

Note that by (b.2) lim
n→∞

ϵ̃n(log n)(log log n) = 0 and by (b.4) Bna ≥ 3 for all n, so we have

Bna − ϵ̃n(log n)(log log n) ≳ Bna. Using this with ϵ̃n ≲ n−( p
p+d)(1/2−KB−υ) from the proof for

(b.2), and Bn ≍ n−KB by assumption, we have

ϵ̃n
√
n

Bna− ϵ̃n(log n)(log log n)
≲
n1/2−( p

p+d)(1/2−KB−υ)

Bna
≤ n1/2−( p

p+d)(1/2−KB−υ)

Bnnυ

≍ n(1/2−KB−υ)−( p
p+d)(1/2−KB−υ) = n(

d
p+d)(1/2−KB−υ).

Therefore,

√
δ ≍ n(

d
p+d)(1/2−KB−υ) log4(n) > n(

d
p+d)(1/2−KB−υ) ≳

ϵ̃n
√
n

Bna− ϵ̃n(log n)(log log n)
,

and the desired result follows by choosing Cδ sufficiently large.

Thus, Theorem 2 can be applied. To obtain the rate from Proposition 4 note that Pdim(Nn) log(n) ≍

n2( d
p+d)(1/2−KB−υ) log8(n) ≍ δ, by (E.9) and Lemma 14. Hence,

ϵn(δ, a) := Bn

√
a

n

[√
Pdim(Fn) log(n) +

√
log log(n) + δ

]
+
√
ϵ̃2n + µn + θn

≲ Bn

√
a

n
n−( d

p+d)(1/2−KB−υ) log4(n) +
√
ϵ̃2n + µn + θn

≲ n−( p
p+d)(1/2−KB−υ) log5(n) +

√
µn + θn

≲ n−( p
p+d)(1/2−KB−υ) log5(n) +

√
E
[
Y 2
t 1{|Yt|≥Bn}

]
+ θn,

where the third line has used ϵ̃n ≲ n−( p
p+d)(1/2−KB−υ); and the last line follows from µn :=
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max
{
E
[
Y 2
t 1{|Yt|≥Bn}

]
, n−1

}
with

√
n−1 ≤ n−( p

p+d)(1/2−KB−υ). Then, by Theorem 2, there exists

a constant C > 0 independent of n such that for all n sufficiently large

∥f̂n − f0∥L2 ≤ C

[
n(

p
p+d)(1/2−KB−υ) log5(n) +

√
E
[
Y 2
t 1{|Yt|≥Bn}

]
+ θn

]
with probability greater than

1−e−n(
p

p+d)(1/2−KB−υ)

− 2 log(n)

[
nC ′

βe
−Cβ n2υ log2(n)

n2υ log2(n)
+ 2P

(
max

t∈{1,...,n}
|Yt| ≥ Bn

)]

= 1− e−n(
p

p+d)(1/2−KB−υ)

− 2 log(n)

[
nC ′

βn
−Cβ n2υ log(n)

n2υ log2(n)
+ 2P

(
max

t∈{1,...,n}
|Yt| ≥ Bn

)]

= 1− e−n(
p

p+d)(1/2−KB−υ)

−
2C ′

βn
1−Cβn

2υ log(n)−2υ

log(n)
− 4 log(n)P

(
max

t∈{1,...,n}
|Yt| ≥ Bn

)
.

The result for ∥f̂n − f0∥2,n follows via the same reasoning.

E.3 Proof of Theorem 5

Theorem 5 will follow by showing the conditions for Theorem 1 hold with the following setting:

• qt(f) = q(Zt, f(Zt)) := −YtBf(X t) + log
(
1 + eBf(Xt)

)
,

• ρn(f, f
′) := ∥f − f ′∥L2(P{Xt}nt=1

) =

(∫
[0,1]d

[
f(x)− f ′(x)

]2
dP{Xt}nt=1

)1/2

;

• C1 :=
1

2

(
1

eB2 + e−B2 + 2

)
and C2 := 1/4;

• Mn := 3B for all n ∈ N; and

• mn(z) := 2B, for all n ∈ N, z ∈ Z.

Verification of (a.1). This follows by the same reasoning used in the proof for (a.1) in

Appendix E.1.

Verification of (a.2). For any f ∈ Nn, by iterated expectations

E[Qn(f)]− E[Qn(f0)] = E
[

ef0(X)

1 + ef0(X)
B
(
f0(X t)− f(X t)

)
+ log

(
1 + eBf(Xt)

1 + eBf0(Xt)

)]
.
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Let ga(b) := − ea

1 + ea
(
b−a

)
+log

(
1 + eb

1 + ea

)
, for arbitrary a, b ∈ [−B2, B2]. With this, ga(a) = 0,

d

db
ga(b) =

eb

1 + eb
− ea

1 + ea
, and

d2

db2
ga(b) =

eb

(1 + eb)2
=

1

eb + e−b + 2
.

By Taylor’s Theorem, with the Lagrange form of the remainder for some λ ∈ (0, 1)

ga(b) = ga(a) + (b− a)

[
d

dx
ga(x)

]
x=a

+
(b− a)2

2

[
d2

dx2
ga(x)

]
x=λa+(1−λ)b

=
(b− a)2

2

[
1

ex + e−x + 2

]
x=λa+(1−λ)b

.

Note that
1

2

(
1

eB2 + e−B2 + 2

)
≤ 1

2

[
1

ex + e−x + 2

]
x=λa+(1−λ)b

≤ 1/4 for any λ ∈ (0, 1). Clearly

for all x ∈ [0, 1]d, Bf(x) ∈ [−B2, B2] and Bf0(x) ∈ [−B,B] ⊂ [−B2, B2]. Thus, (a.2) holds

with C1 :=
1

2

(
1

eB2 + e−B2 + 2

)
and C2 := 1/4, since a, b ∈ [−B2, B2] are arbitrary.

Verification of (a.3). For any f, f ′ ∈ Nn,

|qt(f)− qt(f
′)| =

∣∣∣∣YtB(f ′(X t)− f(X t)
)
+ log

(
1 + eBf(Xt)

1 + eBf ′(Xt)

) ∣∣∣∣
≤
∣∣∣YtB(f ′(X t)− f(X t)

)∣∣∣+ ∣∣∣∣ log( 1 + eBf(Xt)

1 + eBf ′(Xt)

) ∣∣∣∣ ≤ 2B
∣∣f ′(X t)− f(X t)

∣∣,
since Yt ∈ {0, 1} and∣∣∣∣ log( 1 + eBf(Xt)

1 + eBf ′(Xt)

) ∣∣∣∣ = log

(
1 + eBf(Xt)

1 + eBf ′(Xt)

)
1f(Xt)>f ′(Xt) + log

(
1 + eBf ′(Xt)

1 + eBf(Xt)

)
1f(Xt)<f ′(Xt)

≤
∣∣∣∣ log(eBf ′(Xt)

eBf(Xt)

) ∣∣∣∣ = B
∣∣f ′(X t)− f(X t)

∣∣.
Thus (a.2)(i) holds for mn := 2B. Then, (a.2)(ii) and (iii) hold trivially by setting Mn = 3B

for all n ∈ N.

Verification of (a.4). Note that, 1{mnt<Mn} = 1 for all n ∈ N, since mn = 2 and Mn = 3.

For any f ∈ Nn,

|q(Zt, f(Zt))| ≤ B
∣∣Ytf(X t)

∣∣+ ∣∣∣ log (1 + eBf(Xt)
) ∣∣∣ ≤ B

∣∣f(X t)
∣∣+ ∣∣∣2 log (eB2

) ∣∣∣ ≤ 3B2

since Yt ∈ {0, 1}, ∥f∥∞ ≤ B, and B ≥ 2. Hence,
∣∣qt(f)− E

[
qt(f)

]∣∣ ≤ 6B2.

By Lemma 6 {qt(f)} inherits the mixing properties of {Zt}nt=1. Then, by Merlevède et al.
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(2009, Theorem 1) there exists a constant C ′ > 0 depending only on Cα, C
′
α such that for any

δ > 0 and all n ≥ 4,

P

(
1

n

∣∣∣∣ n∑
t=1

{
qt(f)− E

[
qt(f)

]}∣∣∣∣ ≥ δ

)
≤ exp

[
−C ′ δ2 n2

6B2n+ 6B2δn(log n)(log log n)

]
≤ exp

[
−C δ n

B2(log n)(log log n)

]
=: λ(q)n (δ),

for some constant C > 0 not depending on n or δ since (log n)(log log n) > 0 for n ≥ 4.

Consider (a.4)(ii). Note that

λ(q)n

(
δ ϵ2n
)
= exp

[
−C δ ϵ2n n

B2(log n)(log log n)

]
.

With this, and ϵn ≳ n− 1
2(

p
p+d) log5(n)

ϵ2n n

(log n)(log log n)
≳
n1− 1

2(
p

p+d) log5(n)

(log n)(log log n)
→ 0, as n→ ∞.

Then, Lemma 12 can be applied, to obtain the following sufficient condition for (a.4)(ii),

lim
n→∞

{[
ϵ2n n

(log n)(log log n)

]−1

· log N(∞)
1

(
δ ϵ2n/3, Nn, n

)}
= 0,

=⇒ lim
n→∞

{
λ(q)n

(
δ ϵ2n
)
· N(∞)

1

(
δ ϵ2n/Mn, Nn, n

)}
= 0

(E.10)

sinceMn = 3 for all n. Henceforth, let n be large enough such that ϵn < 1. By (3.5) and Lemma

14, we have Pdim(Nn) ≍ n(
d

p+d) log7(n), which implies lim
n→∞

{n/Pdim(Nn)} = ∞. Then, we can

apply Lemma 15. with η =
1

2

(
d

p+ d

)
, therein, to obtain

log N
(∞)
1

(
δ ϵ2n/3, Nn, n

)
≲ n(

d
p+d) log7(n)

[
log (n) + log

(
ϵ−2
n

) ]
≲ n(

d
p+d) log8(n).

With this,[
ϵ2n n

(log n)(log log n)

]−1

log N
(∞)
1

(
δ ϵ2n/3, Nn, n

)
≲ n(

d
p+d)−1ϵ−2

n log9(n) (log log n)

≲ n(
d

p+d)−1+( p
p+d) log−1(n) (log log n)

= log−1(n) (log log n) → 0, as n→ ∞.

Thus, the desired result follows from (E.10).
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E.4 Supporting lemmas

Lemma 11. Suppose Assumption 1 holds and let Nn = N (Ln,Hn, Bn) be defined as in (3.2).

There exists a constant C7 > 0 depending only on d and p, such that for any η ∈ (0, 1) and

n ≥ 3, if

Ln ≥ ⌈C7 log(n)⌉ , and min
l∈{1,2,...,Ln}

Hn,l ≥
⌈
C7 n

η log2(n)
⌉
,

then there exists f̃n ∈ Nn where ∥f̃n − f0∥∞ ≤ n−η p
d .

Proof. By Yarotsky (2017, Theorem 1), for any δ ∈ (0, 1), there exists a feed-forward ReLU

DNN architecture, denoted as G, such that: there exists g ∈ G with ∥g − f0∥∞ ≤ δ; and G has

L∗ hidden layers, U∗ hidden nodes, and W ∗ parameters, where

L∗(δ) ≤ C8 log(e/δ), and W ∗(δ), U∗(δ) ≤ C8 δ
− d

p log(e/δ), (E.11)

for a constant C8 independent of δ, depending only on d and p. By Farrell et al. (2021, Lemma

1),

Ln ≥ L∗(δ) and min
l∈{1,2,...,Ln}

Hn,l ≥ L∗(δ) ·W ∗(δ) + U∗(δ), =⇒ ∃ f̃n ∈ Nn, ∋ g = f̃n.

(E.12)

Note that g = f̃n ∈ Nn is feasible with (3.2) since ∥g∥∞ ≤ ∥f0∥∞ + δ ≤ Bn follows from

∥f0∥∞ ≤ 1, Bn ≥ 2, and ∥g − f0∥∞ ≤ δ < 1. For η ∈ (0, 1) set δ = n−η p
d . With this, it follows

from (E.11) and (E.12) that if

Ln ≥ p

d
C8 log(e n) and H(min)

n ≥ 2

(
1 ∨ pC8

d

)2

nη log2(e n),

then there exists f̃n ∈ Nn such that ∥f̃n − f0∥∞ ≤ n−η p
d .

Lemma 12. Let {an}n∈N and {bn}n∈N be strictly positive sequences. If lim
n→∞

bn = ∞. and

lim
n→∞

{log(an)/bn} = 0, then lim
n→∞

{an/ebn} = 0.

Proof. Note that

log(an)

bn
=

1

bn
log
( an
ebn

ebn
)
=

1

bn
log
( an
ebn

)
+ 1.
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Then, by assumption,

lim
n→∞

{
1

bn
log
( an
ebn

)}
+ 1 = lim

n→∞

{
log(an)

bn

}
= 0,

which implies

lim
n→∞

{
1

bn
log
( an
ebn

)}
= −1.

However, bn > 0 for all n, and bn → ∞, then lim
n→∞

1/bn = 0, so it must be the case that24

lim
n→∞

{
log
( an
ebn

)}
= −∞,

hence, lim
n→∞

{an/ebn} = 0.

Lemma 13. Let Nn = N (Ln,Hn, Bn) be defined as in (3.2) where the sequences {Ln}n∈N,

{Hn,l}n∈N for each l ∈ N, are non-decreasing, and Hn,l ≍ Hn for all l ∈ N. Then Wn ≍ H2
nLn.

Proof. First, consider an MLP architecture with W parameters and L hidden layers that each

have H nodes, then

W = H2(L− 1) +H(d+ L+ 1) + 1.

Therefore, for the architecture Nn where the number of nodes may vary between layers, since

Ln ≥ 1, it follows that

Wn ≤
(
H(max)

n

)2
(Ln − 1) +H(max)

n (d+ Ln + 1) + 1,

where H(max)
n := max

l∈{1,2,...,Ln}
Hn,l. By assumption Hn ≍ H(max)

n , so we have

Wn ≍ H2
n(Ln − 1) +Hn(d+ Ln + 1) + 1 ≍ H2

nLn +HnLn ≍ H2
nLn.

Recall the definition of pseudo-dimension from Definition 4.

24To see this, let {fn}n∈N, {gn}n∈N be real-valued sequences such that lim
n→∞

fngn = −1, lim
n→∞

fn = 0 and

fn > 0 for all n. Then, for any δ ∈ (0, 1) there exists N ∈ N such that |fmgm + 1| < δ and 0 < fm < δ(1− δ),
for all m ≥ N . With this, gm < (δ − 1)/fm < 0, and (δ − 1)/fm < (δ − 1)/

[
δ(1 − δ)

]
= −1/δ. This implies,

gm < −1/δ. Since δ ∈ (0, 1) is arbitrary, this implies lim
n→∞

gn = −∞.

77



Lemma 14. Let Nn = N (Ln,Hn, Bn) be defined as in (3.2) where the sequences {Ln}n∈N,

{Hn,l}n∈N for each l ∈ N, are non-decreasing, Hn,l ≍ Hn for all l ∈ N, and

Ln ≍ log(n), Hn ≍ nη log2(n), for some η > 0.

Then, Pdim(Nn) ≍ n2η log7(n).

Proof. By Bartlett et al. (2019, Theorems 3 and 7),25 there exist constants c, C > 0 such that,

for all n ∈ N,

cWnLn log(Wn/Ln) ≤ Pdim(Nn) ≤ CWnLn log(Wn).

Using this, with Wn ≍ H2
nLn by Lemma 13, and Ln ≍ log(n), Hn ≍ nη log2(n) by assumption,

we obtain

Pdim(Nn) ≳ WnLn log(Wn/Ln) ≍ H2
nL

2
n log(Hn) ≍ n2η log6(n) log

(
nη log2(n)

)
≍ n2η log6(n)

(
log(n) + log log(n)

)
≍ n2η log7(n),

and

Pdim(Nn) ≲ WnLn log(Wn) ≍ H2
nL

2
n log(H

2
nLn) ≍ n2η log6(n) log

(
n2η log5(n)

)
≍ n2η log6(n)

(
log(n) + log log(n)

)
≍ n2η log7(n).

Lemma 15. Let Nn = N (Ln,Hn, Bn) be defined as in (3.2), where {Bn}n∈N is non decreasing,

B1 ≥ 2 and Bn ≲ nKB for some KB > 0. and the sequences {Ln}n∈N, {Hn,l}n∈N for each l ∈ N,

are non-decreasing, Hn,l ≍ Hn for all l ∈ N, and

Ln ≍ log(n), Hn ≍ nη log2(n), for some η > 0.

Let {δn}n∈N be a positive sequence such that δn ≤ 1 for all n sufficiently large. Let {an}n∈N

be such that an ∈ N for all n, and an ≥ Pdim(Nn) for all n sufficiently large. Then, for any

25These bounds are written explicitly in display (2) of Bartlett et al. (2019). Display (2) uses the Vapnik-
Chervonenkis dimension instead of Pseudo-Dimension, however, these are equivalent for function classes gener-
ated by a neural network with fixed architecture and fixed activation functions. For details see the discussion
following Bartlett et al. (2019, Definition 2), and Anthony and Bartlett (1999, Theorem 14.1).
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r ∈ [1,∞]

log N(∞)
r

(
δn, Nn, an

)
≲ n2η log7(n)

[
log (n) + log (an) + log

(
δ−1
n

) ]
Proof. By assumption, an ≥ Pdim(Nn) for all n sufficiently large. Hence, Lemma 9 can be

applied to obtain, for some C > 0,

N(∞)
∞
(
δn, Nn, an

)
≲

(
2eBnan

δn · Pdim(Nn)

)Pdim(Nn)

≤
(

2eBnan

δn · Cn2η log7(n)

)Cn2η log7(n)

, (E.13)

where the last bound follows from Pdim(Nn) ≲ n2η log7(n) by Lemma 14, with

2eBnan
δn · x

> e =⇒ ∂

∂x

[(
2eBnan
δn · x

)x ]
=

(
log

(
2eBnan
δn · x

)
− 1

)(
2eBnan
δn · x

)x

> 0,

and

2eBnan
δn · Pdim(Nn)

> e, ∀n sufficiently large,

since Bn is non-decreasing, δn ≤ 1 for all n sufficiently large, and lim
n→∞

an/Pdim(Nn) = ∞. By

(E.13)

log N(∞)
∞
(
δn, Nn, an

)
≲ n2η log7(n) · log

(
2eBnan

δn · n2η log7(n)

)
≲ n2η log7(n)

[
log (Bn) + log (an) + log

(
δ−1
n

)
− (2ηd/p) log (n)

]
≲ n2η log7(n)

[
log (n) + log (an) + log

(
δ−1
n

) ]
,

since Bn ≲ nKB by assumption.

F Independent block construction

This section more rigorously describes the process used to construct the sequence {Zt}nt=1 from

Appendix D.4. Define Y 1 := {Zt}t∈T1,1 , and X1 := {Zt}t∈{{1,...,n}\T1,1}. Clearly, X1 and Y 1

are random variables on (Ω,A, P ) taking values in X := Zn−a and Y := Za, respectively. Now,

let λ be the Lebesgue measure, and consider the product probability space

(Ω′,A′, P ′) = (Ω,A, P ) ×
(
[0, 1],B[0,1], λ

)
:=
(
Ω× [0, 1], A⊗ B[0,1], P × λ

)
.

79



We can extend (Ω,A, P ) to this richer space with the extension26 π : Ω′ → Ω, where π denotes

coordinate projection onto Ω, i.e. π(ω1, ω2) = ω1 ∈ Ω for any (ω1, ω2) ∈ Ω′. Thus, X1 and

Y 1 on (Ω,A, P ) can be redefined as X1 ◦ π and Y 1 ◦ π on (Ω′,A′, P ′), without changing

their distribution. We may refer to X1 and Y 1 as random variables on (Ω′,A′, P ′) with the

understanding that this means X1 ◦ π and Y 1 ◦ π. Then, by Berbee’s Lemma27 there exists a

random variable Y 1 on (Ω′,A′, P ′) that has the same distribution as Y 1 and is independent of

X1.

Set {Zt}t∈T1,1
:= Y 1, then let Y 2 := {Zt}t∈T2,1 , and X2 := {Zt}t∈{{1,...,n}\T2,1} ∪ {Zt}t∈T1,1 .

Then, using the same process as before, we can construct {Zt}t∈T2,1
:= Y 2 independent of X2

and distributed as Y 2. This process can be repeated until the sequence {Zt}nt=1 is constructed

with the desired properties.
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