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Abstract 

We propose a unit root test using the multivariate ARDL framework. This new test yields 
higher power properties compared to the existing multivariate unit root tests based on 
Covariate Augmented Dickey-Fuller (CADF) as well as a few commonly used univariate 
unit root tests. The main advantage of the new test over the CADF test is its consideration 
of possible cointegration relationships between the variable of interest and the 
explanatory variables in the process of testing for unit roots while the latter does not allow 
cointegration. Therefore, the proposed ARDL unit root test avoids model misspecification 
by imposing a valid common factor restriction to improve the power of the test. Several 
sets of experiments for size and power are conducted to check the reliability and 
robustness of the test. The experiments also discover that univariate unit root tests  face 
serious size distortions in testing a cointegrated process. An empirical example using the 
proposed multivariate ARDL unit root test is demonstrated in this paper.   
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1. Introduction 

In applied economic research, it is recommended to pre-test the series for unit 
roots to decide on the next step in the analysis. However, it is commonly acknowledged 
that existing unit root tests are often trapped into inconclusive results due to size distortion 
and low power problems. Inconclusive results may lead researchers to make arbitrary 
decisions based on prior evidence or theoretical arguments. This strategy may lead to an 
incorrect specification in the subsequent analysis, which would adversely affect the 
estimator properties and therefore implications for economic policies.  

Currently, conventional unit root testing applications generally employ univariate 
methods. A weakness of univariate frameworks is that they ignore important variables 
that explain the variable of interest. Consequently, there is a loss of information from 
related time series, producing low levels of fit in the test equation, higher variances of 
parameter estimates, and a loss of power. The notorious low power property in unit root 
tests could be due to the simplicity of their framework.  

Hansen (1995) is the first to address the problems of the univariate unit root tests 
through a multivariate procedure, advocating the addition of related variables to the 
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univariate tests to improve their power. The Covariate Augmented Dickey-Fuller (CADF) 
test proposed by Hansen (1995) includes related covariates (explanatory variables) in the 
Augmented Dickey-Fuller (ADF) equation to improve the fit of the regression. Results 
have shown substantial gains in power over the univariate ADF test. Although the 
multivariate unit root test methodology is not new, it is uncommon. A search of the 
literature shows that only a few approaches based on the multivariate framework, for 
instance, Phillips and Durlauf (1986), Flores et al. (1996), Juhl and Xiao (2003), Elliott 
and Jansson (2003), and Kurozumi et al. (2012). These works represent innovations that 
are based on the CADF framework. 

Building on the CADF framework, the autoregressive distributed lag (ARDL) 
model is a more comprehensive multivariate framework that considers a wider range of 
dynamics for inferring unit root properties with greater power in the tests. This is due to 
the inclusion of the lagged explanatory variables in levels in the ARDL framework, that 
are not found in CADF equation. The omission of lagged level explanatory variables 
makes the CADF test exclude the possibility of cointegration between the testing series 
and its explanatory variables. Kremer (1992) states that the error correction model (ECM, 
or equivalently the subject of interest here, the ARDL model) could yield a more powerful 
test than the Dickey-Fuller test when cointegration exists because the latter imposes an 
invalid common factor restriction. Pesaran and Shin (1999) show that the ARDL-based 
OLS estimator for the long-run parameters (determining stationarity) is super-consistent 
with a faster convergent rate if there is cointegration. Thus, the ARDL test could yield 
better inferences than the CADF test when cointegration exists. In addition, by including 
appropriate lagged changes of variables, the residual serial correlation problem can be 
resolved without affecting the asymptotic properties of the OLS estimator (Pesaran and 
Shin, 1999).  

This paper intends to add to the literature by introducing a new unit root test using 
the multivariate ARDL framework. This ARDL unit root test adopts the framework 
proposed for cointegration testing by Pesaran et al. (2001) (PSS henceforth). The existing 
multivariate unit root tests are primarily based on the CADF frameworks that are typically 
misspecified when cointegration exists. In testing for unit roots, the ARDL framework 
provides a more comprehensive approach that considers possible cointegration 
relationships to avoid model misspecification from imposing an invalid common factor. 
Our proposed new test relies on the t-test for the significance of lagged level of the 
dependent variable and the F-test for the joint significance of the lagged levels of 
independent variables. The flexibility of the ARDL framework helps to determine the 
best fit of the regression describing the dynamics of the dependent variable. More 
importantly, the test allows the related explanatory variables to be endogenous where 
there is contemporaneous correlation and cross-autocorrelation between the error and 
lagged changes of the variables. When the integration order of the explanatory variables 
is I(1), the limiting distributions of the statistics under the null are complicated. It is a 
mixture of non-standard and standard distributions. The limiting distributions of the tests 
are uncertain and depend on nuisance parameters, which are due to the contemporaneous 
correlations between the cross-equation errors and the correlations between the ARDL 
equation error and the explanatory variables. Therefore, to determine the underlying 
distribution effectively during the hypothesis testing, the bootstrap technique is used. The 
underlying distribution can be characterized by bootstrapping because the bootstrap 
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distribution is generated using the information of each empirical data set. By determining 
the underlying distribution, bootstrap is known to correct size distortions and improve the 
power of the tests. Numerous sets of simulation experiments are conducted to examine 
the performance of this new test with finite samples, and a comparison with the 
conventional unit root tests is provided. From the experiments, we found that the 
univariate unit root tests fail to capture the unit root that arises from the nonstationary 
covariates when the process is cointegrated. Hence, these tests face serious size 
distortions in rejecting the null hypothesis of unit root. 

 

2. The Methodology of Multivariate Unit Root Tests 

Today, many unit root tests have been developed to determine the integration 
order of a time series . Generally, these tests are univariate and they share common 
weaknesses, namely, size distortion and low power properties. These unit root tests have 
low power against I(0) alternatives that are close to being I(1), or have size distortions 
when the DGP is not an autoregressive (AR) representation. For instance, Schwert (1989) 
finds that if  is an ARMA process with a large and negative moving average (MA) 
component, then the ADF and Phillips-Perron (PP) tests are severely size distorted. The 
well-known power weakness of these tests has led to the development of more powerful 
alternatives, and the multivariate tests are one strategy towards this end. 

In time series analysis, a series’ DGP may be a more complex generating 
mechanism, including multivariate processes. In macroeconomics a multivariate 
framework is more informative than a univariate model, and this framework could 
provide greater explanatory power of the variable in question. In 1995, Hansen (1995) 
published ‘Rethinking the Univariate Approach to Unit Root Testing,’ emphasizing this 
point. By including correlated stationary covariates (explanatory variables) in the unit 
root testing equation, he finds this increases the power of the test substantially. To be 
specific, Hansen begins with the univariate Augmented Dickey-Fuller regression, 

.  By adding related stationary covariates, , the test 

equation becomes . Then, the t-statistic on the 

estimated coefficient  provides Hansen’s Covariates Augmented Dickey-Fuller 
(CADF) test for a unit root in . Elliott and Jansson (2003) acknowledge the importance 
of including related covariates into the regression, but they found that CADF is not the 
point optimal test in general. They then extend Hansen’s approach by introducing a 
feasible point optimal (CPT) test based on VAR models. The CPT approach gains more 
power than the CADF approach but at a cost of a small size distortion (see Lupi, 2010).  

Hansen’s work shows that a multivariate framework for unit root can improve the 
precision of estimators, producing test statistics that are more powerful than univariate 
alternatives. Building on this principle, the ARDL framework is proposed for multivariate 
unit root testing. The advantage of the ARDL model is that it is capable of accommodating 
a wider range of DGPs, in particular the existence of cointegration between  and its 
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covariates. Note that Hansen’s CADF framework is similar to the ARDL framework of 

PSS: , but it imposes a restriction that the 

cointegrating vector is (1, 0). In other words, it rules out the possibility of cointegration 
between  and  or the absence of long-run effect between  and the covariates . 
Kremer (1992) discusses how the ECM could yield more powerful tests than the Dickey-
Fuller test when cointegration exists because the latter imposes an invalid common factor 
restriction. This issue applies to the CADF framework. The CADF test imposes an invalid 
common factor restriction if  has a cointegrating relationship with , adversely 
affecting its testing power.     

Pesaran and Shin (1999) and PSS developed a cointegration test based on the 
ARDL framework. In presenting the cointegration test, they consider the joint 
significance test of the lagged levels of dependent and independent variables as well as 
the t-test on the lagged level of the dependent variable. PSS prove that these test statistics 
are consistent and follow nonstandard distributions regardless of whether the underlying 
regressors are purely I(0), purely I(1) or mutually cointegrated. To improve the PSS 
ARDL cointegration test, McNown et al. (2018) propose a complementary test on the 
lagged levels of independent variables using a bootstrap method. The introduction of this 
complimentary test allows the use of ARDL framework to test the stationarity of a process. 
Through a similar procedure by using the t-test to test the significance of the lagged level 
of the dependent variable and the complementary F-test for the joint significance of 
lagged levels of independent variables, we can infer the representation of  as 
stationarity or integrated. A stationary process is concluded if the lagged level dependent 
variable is significant but the lagged level independent variables are jointly insignificant. 
Otherwise,  is nonstationary. This is shown in the following section. 

The limiting distributions of the t- and F-tests proposed by McNown et al. (2018) 
under the null are uncertain. They depend on the dimension (number of explanatory 
variables) and the nuisance parameters of contemporaneous correlation of the errors and 
cross-autocorrelation of the error and explanatory variables. It is difficult to determine the 
distribution without prior knowledge of these nuisance parameters. However, the bounds 
testing procedure, as in the ARDL cointegration test, is not conclusive because the test 
statistic(s) could fall between the bounds for the critical values. Thus, to resolve the issue 
of uncertain distributions under the null of the tests, McNown, et al. (2018) propose the 
bootstrap method. It is common to use bootstrap for unit root testing to improve its 
performance, as in Chang and Park (2003), Zou and Politis (2019), Hansen and Racine 
(2018), Cavaliere and Taylor (2008), Davidson (2007), Park (2003), and others. Most 
importantly, Chang et al. (2017) demonstrate that the bootstrap method works effectively 
to improve the CADF approach, while McNown et al. (2018) show that bootstrap is useful 
in the ARDL test.   

 It is rare to see unit root testing with a multivariate framework. Exceptions are 
Phillips and Durlauf (1996), Flores et al. (1996), Juhl and Xiao (2003), Elliott and Jansson 
(2003), and Kurozumi et al. (2012). These approaches underscore the importance of 
including covariates in developing new unit root tests. The ARDL framework uses a 
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single equation that allows the lag length of each of its explanatory variables to be 
different. It also covers a wider range of DGPs, including cointegrating relationships.  

 

3. The Model Framework, Statistical Distributions, and Testing Procedures 

3.1 The ARDL Model and Assumptions 

Let  denote a (1 + k)-vector random process that can be partitioned into 

. The DGP of  is the VAR model of order p: 

        

where L is the lag operator,  and  are unknown (1 + k)-vectors of intercept and trend 

coefficients,  is a (1+k, 1+k) matrix lag polynomial,  is an 

identity matrix of order (1+k), and  are (1+k, 1+k) matrices of unknown coefficients 
(see PSS). Instead of the VAR model, the DGP of  and  can also be represented in 
the form of multivariate conditional ECM specification as follows: 

,  (1) 

,   (2) 

where  is a  vector of I(1) forcing variables and  is a set of first-differenced 
stationary variables. The single-equation (1) is the focus and the subject of the study. 
Equations (1) and (2) together form a system of equations that is identical to the system 
in the PSS ARDL bounds test for cointegration. However, instead of the cointegration 
test, it is now used for unit root testing. For simplicity, we refer to the conditional model 
(1) as ARDL. Note that this single-equation ARDL framework (1) is similar to a 
generalized Dickey-Fuller regression and Hansen’s CADF regression. The LHS of the 
regression is the first difference of the testing series yt and the RHS of the regression 
consists of deterministic term  and , the long-run multipliers , the short-

run multipliers , and  where the variance-covariance matrix for the system 

of equations (1) and (2) is . Similar assumptions in the PSS ARDL 

framework apply to equation (1) to ensure the stability of the model: 

Assumption 1: The roots of  are either outside the unit circle  or 

satisfy . 
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Assumption 2: The vector error process  is ,  is positive 

definite. 

Assumption 3: The  is a vector of stationary processes. 

Assumption 4: No feedback effect from the level of  onto . 

 

Assumption 1 permits the possibility of I(2) if roots for  and  are both unity but 
excludes the possibility of seasonal and explosive roots. Assumption 3 allows a degree of 
contemporaneous correlation between  and  with , 

 and  is independent of . Note that equation (2) complies with 

Assumption 4, which restricts the level effect from  impacting  but it allows an 
effect from . In addition, equation (2) also allows the regressors, , to be 
cointegrated among themselves. These situations allow a level of endogeneity in . 
Under all these assumptions, the OLS estimators for the parameters in equation (1) are 
consistent. 1  The estimated coefficients  are super-consistent while the 

coefficients  are -consistent (see discussion in Pesaran and Shin, 1999, and PSS). 
The ARDL model (1) has the same properties as the PSS framework. We infer the unit 
root property of  through analysis of the long-run multipliers or the coefficients  in 
equation (1). 

 

3.2 Possible Cases  

Consider the ADF and CADF frameworks: 

ADF: ,      (3) 

CADF: .    (4) 

To test for the presence of a unit root in , the ADF and CADF depend on the 
significance of the term . If  is insignificantly different from zero , it indicates  is 
an I(1) process; If  is significantly different from zero, it indicates  is an I(0) process. 
However, as mentioned in Section 2, both frameworks (3) and (4) are restrictive and do 

 
1 In PSS the discussion in the first line of page 308 indicates that if the lagged dependent variable  does 

not enter the sub-VAR model for , while the inclusion of lagged changes of dependent variable, , is 

not ruled out, then  serves as forcing variables. Hence, the ARDL model can be estimated consistently 
by OLS. 
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not allow the possibility of cointegrating relationship between  and . The 
cointegrating vector is restricted to be (1, 0) for the long-run components. The ARDL 
regression (1) relaxes this restriction where the cointegrating vector is not constrained. 
Thus, to determine the presence of a unit root in , we need to test the significance of 
both  and  in equation (1): 

. The significance 

of  and  tells the integration order of the . There are four possible cases in this 
testing framework. 

 

Case I: Nonstationary Process / No Cointegration . 

For a nonstationary process with no cointegration, the ARDL regression in (1) is 

reduced to .    (5) 

It conveys the nonstationarity more clearly if we rewrite the equation as 

.     (6) 

Because the coefficient on  is unity,  is an I(1) process. Equation (5) is also 
equivalent to Hansen’s CADF model under the null of nonstationarity. Note that Case I 
allows  to have a short-run relationship with  through the terms . Of course, it 

can also be described as the ADF equation if all the coefficients of  are zero, i.e., 

.  

 

Case II: Stationary Process / Degenerate Lagged Independent Variables 
. 

The ARDL regression in (1) is reduced to 

,     (7) 

where . Rewriting (7) by adding  to both sides of the equation and we obtain  

,     (8) 

where . Regression (7) is similar to the stationary CADF regression under the 
alternative hypothesis or a stationary ADF regression if none of the  terms are present. 
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Thus, in Case II,  is an I(0) process, and its stationarity is not affected by the presence 

of the stationary variables .  

 

Case III: Second Order Integration Process / Degenerate Lagged Dependent 
Variable . 

Under Case III, the ARDL regression (1) is: 

,     (9) 

or equivalent to  

.    (10) 

This case is special as  involves two sources of non-stationarity, that is from the 
marginal process itself ( ) and from . Since there are two unit root properties in the 
equation,  is an I(2) process.  

 

Case IV: Nonstationary Process / Cointegration . 

This is the exact case of equation (1) with the representation of   

,   (1) 

where  and . Although the marginal process of  itself is stationary (with 
coefficient ),  is also a function of the . Since ~ I(1), the nonstationarity of 

 follows from that of  and therefore  is an I(1) process. The non-stationarity of  
is due to its movements that follow the path of the non-stationary variables through 
cointegration.  

 

3.3 The Null Hypotheses and Limiting Distributions for the ARDL Unit Root Tests 

Based on the four cases presented in section 3.2, individual tests on both   and 
 are necessary to infer the stationarity properties of a time series using the ARDL 

framework. A t-test is proposed to test the significance of the coefficient of the lagged 
dependent variable  and an F- (Wald) test for testing the joint significant of the 
coefficients of the k independent variables . We define the null and alternative 
hypotheses of the tests as follows. 
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The ARDL test equation is: 

  (1) 

The hypothesis for t-test on :  vs   (11) 

The hypothesis for F-test on :  vs   (12) 

 

These t- and F-tests are conducted separately to identify which of the four cases is the 
correct representation for inferring the stationarity of . However, the distributions for 
the t-test and F-test statistics under the null are not simple and straightforward. As 
discussed by Banerjee et al. (1998), the null distribution of the t-statistic for the lagged 
level dependent variable within the ARDL framework, in general, is complicated and 
dependent on the nuisance parameter , the matrix of the covariance between the errors 

of the equations for  and .2 Unless  is strictly exogenous in model (1), the limiting 
distribution of the t-statistic under the null of  is not asymptotically similar. 
To overcome the lack of similarity, Banerjee et al. (1998) follow the strategy proposed 
by Phillips and Loretan (1991) and Saikkonen (1991) by adding the future values of  
into the equation to correct for endogeneity.  

Nevertheless, this distribution for the t-statistic under the null still imposes the 
untested subsidiary hypothesis of  (or equivalent to  in PSS), 
that is, the limiting distribution of the Banerjee test statistic is obtained under the joint 
hypothesis of  and  (  and  in PSS). The limiting 

distribution of the t-statistic under  is not asymptotically similar if .3 
The case becomes more complicated if  Granger-causes  as in equation (2) 
because the limiting distribution is dependent on nuisance parameters based on the ratio 
of short-run multipliers.4  

Note that the PSS distribution of the t-statistic under the null of  
follows the procedures of Banerjee et al. (1998) that impose the untested subsidiary 
hypothesis of , as can be seen from Theorem 3.2 in their paper. However, the 
restriction  will not be imposed on the proposed t-test of  in the ARDL 
unit root test, as  is also under investigation in this new testing procedure. This means 
the distribution for the ARDL unit root t-test is not subject to the restriction  under 
the null, andthe distribution under the null is uncertain and dependent on nuisance 

 
2 See Banerjee et al. (1998), Section 5. 
3 See PSS p. 295, the paragraph after equation (11) and the discussion in p. 303, the paragraph before Table 
CII or the last paragraph in Section 4. 
4 See PSS p. 303, the paragraph before Table CII. 
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parameters. The argument is similar for the distribution of the F-statistic for testing 
 in equation (1). The distribution of the F-statistic depends on nuisance parameters 

as in the distribution of the t-statistic. The distribution of the F-statistic under the null is 
therefore uncertain as well.  

To overcome the uncertainty of the limiting distributions of the t- and F-tests 
under the null, we use the bootstrap method. The bootstrap can determine the exact 
empirical distribution under the null without information about the nuisance parameters. 
As stated by Davidson (2007), the basic idea of bootstrap testing is that when a test 
statistic of interest has an unknown distribution under the null hypothesis, that distribution 
can be characterized by using the information in the data set that is being analyzed. 
Furthermore, Palm et al. (2010) and McNown et al. (2018) previously established the 
usefulness of the bootstrap in the ARDL framework.  

 

4. Methodology of the Monte Carlo Experiments 

4.1 Data Generating Process (DGP)   

 In the experiments, the DGP is based on the ARDL model for generating series 
with multivariate relationships. For simplicity but without loss of generality, a bivariate 
case of  and  is considered in the study. Experiments with bivariate setups are 
common, for example, Hansen (1995), Palm et al. (2010), and McNown et al. (2018).  

The experiments cover a range of DGPs for  including models with no intercept, 
with intercept, and with intercept and trend. These models are generated with the 
properties of no cointegration between  and , stationary process for  and , and 
cointegration between  and . However, the experiments exclude processes with 
quadratic trend. Without loss of generality, the DGPs for  are limited to ARDL(1,1) 
with one lagged difference of both  and .  Two sets of simulation experiments are 
conducted to study the performance of the ARDL unit root test. The first set is based on 
simulations of simple relations between  and , while the second set of experiments 
generates data with greater complexity. 

In the first set of experiments,  is generated according to (13) and (14): 

,    (13) 

.          (14) 

Throughout the experiments, the short-run multipliers are set at 0.5, the intercept  
for the DGPs without intercept, and  for the DGPs with intercept. The coefficient 
on the deterministic trend is  for the DGPs with a trend. , is generated as a 
simple random walk 

.          (15) 
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The error terms  and  both are drawn from i.i.d. normal distributions and are 
uncorrelated with each other. 

For the second set of experiments endogeneity is introduced. The DGP for  
employs the following models 

,    (16) 

.          (17) 

Throughout the second set of experiments, the short-run multipliers are set at -0.3, and 
the intercept and the coefficient on the deterministic trend are set at  and , 
respectively, when they are present. To introduce the endogeneity property in this second 
experiment,  is generated as a nonstationary process with lagged differenced terms on 
both  and : 

,       (18) 

,          (19) 

with the covariance matrix for the two equation errors given by  

,        (20) 

Here  and  are the structural innovations in  and  and they are drawn from 
i.i.d. normal distributions. Through Choleski decomposition, (20) can be orthogonalized 
into  

  and         (21) 

,           (23) 

where . The coefficient  is the contemporaneous correlation between the 
equation errors for  and . In the experiment, we set . 

 

4.2 Residual Bootstrap 

The bootstrap method is well-known and extensively used for hypothesis testing 
in econometric analysis as the bootstrap critical values are often more accurate than the 
asymptotic critical values (Singh, 1981; Beran, 1988). McNown et al. (2018) 
demonstrated that the bootstrap method is also useful to determine the empirical 
distribution of the test statistic given that its time series properties are unknown. Thus, 
bootstrap is useful in the ARDL unit root test to simulate the empirical distribution when 
we do not have prior knowledge about the true distribution.  
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To bootstrap, first, we obtain an optimal ARDL regression that best describes  
in (13) or (16): 

,    (24) 

with lag length according to the DGP and estimated by OLS while excluding the  (or 
) terms to impose the restrictions of the null hypothesis for the four cases described 

above. The estimated restricted regression residuals are saved and resampled with 
replacement and recentered to produce the bootstrap residuals. Then these bootstrap 
residuals are added to the restricted estimated equation to produce the bootstrap 
observations on the dependent variable. After the bootstrap dependent variable, , is 

generated, equation (1) is re-estimated using  and  to compute the test statistics. 
These resampling and re-estimation steps are repeated many times (bootstrap replications) 
to construct a bootstrap distribution. Bootstrap critical values are obtained from the 
percentiles of the bootstrap distribution.  

 

4.3 Size and Power Analysis  

To analyze the statistical size or power of each test, we calculate the rejection 
frequency of the test statistic based on the critical value from the corresponding bootstrap 
distribution described above. In analyzing the statistical sizes of the bootstrap test, the 
Monte Carlo simulation first generates  with the DGP of (13) or (16), while imposing 
the null hypothesis of the test under consideration. Then, regression (24) is estimated 
using these null restricted series to obtain the test statistic. The simulation repeats the 
process N times to obtain N test statistics. Next, we calculate the proportion of these N 
test statistics that reject a true null hypothesis. This proportion is the size of the test. To 
calculate the power of the test, similar steps are followed except the DGP of  is 
generated by imposing the alternative hypothesis instead of the null to compute the 
proportion of times that a false null hypothesis is rejected. 
 

5. Simulation Results and Discussion 

This section presents the results for the size and power analysis of the proposed 
tests. The number of simulation replications used is N = 1000 and bootstrap replications 
is B = 1000. Experiments with a sample size of n = 100 are examined. Nominal testing 
level is set at  or 5% level. Therefore, the t-test critical value is obtained from 
the 5% percentile of bootstrap distribution and 95% percentile for the F-test critical value. 
Two sets of experiments are conducted. The first set of experiments covers cases of DGPs 
without contemporaneous correlation and with exogenous regressors, while the second 
set iinvolves cases with contemporaneous correlation and endogenous regressors. Besides 
the ARDL unit root test analysis, we also include the conventional univariate unit root 
tests such as ADF and DF-GLS for comparison. Following the general practice, a 
regression with intercept is used for time series without atime trend, and a regression with 
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intercept and trend is used for processes with a time trend. This principle fits the general 
specification, a plausible description of the data under both the null and the alternative 
hypotheses (see Hamilton, 1994, p. 501). The ADF and DF-GLS test equation are set at 
one lagged difference, the closest specification to the simulation DGPs. The simulation 
experiments study cases of nonstationary process, cointegrated process, and stationary 
processes, but exclude the case of a degenerate lagged dependent variable, which implies 
that  is an I(2) process.  

 

5.1 Size and Power Analysis for DGPs without Contemporaneous Correlation 

 The rejection rate for the null hypothesis of each test is recorded and summarized 
in tables 1 and 2. The null hypotheses for the bootstrap t-test for lagged level of the 
dependent variable and bootstrap F-test for lagged levels of the independent variables are 

 and , respectively. The null hypotheses for the ARDL, ADF and 
DF-GLS tests imply nonstationary processes. The rejection frequency is recorded if the 
test implies a stationary process. For the ARDL test, stationarity is concluded if the t-test 
is rejected and F-test is not rejected, and the values reported in the “ARDL” column 
indicate the power of this test. Otherwise, nonstationarity is implied, and the reported 
values in this column show the empirical size.  The bold entries indicate that the size of 
the test is reported for that case. Non-bold entries record the power of each test for that 
case. 

 

Table 1. Size and power analysis at 5% nominal level for  with intercept, T=100, 
N=1000, B=1000. 

DGP Integration   ARDL ADF DF-GLS 
1  I(1) 0.0450 0.0510 0.0300 0.0440 0.0580 
2  I(0) 0.4330 0.0550 0.3840 0.3390 0.6170 
3  I(0) 0.8610 0.0490 0.8120 0.8010 0.9030 
4  I(0) 1.0000 0.0430 0.9570 1.0000 0.9980 
5  I(0) 1.0000 0.0430 0.9570 1.0000 1.0000 
6  I(1) 0.9110 0.9690 0.0010 0.0360 0.0350 
7  I(1) 0.8780 0.9950 0.0000 0.0800 0.1300 
8  I(1) 1.0000 1.0000 0.0000 0.5770 0.6210 
9  I(1) 1.0000 1.0000 0.0000 0.9210 0.9040 
10  I(1) 0.8520 1.0000 0.0000 0.0500 0.0580 
11  I(1) 0.9990 1.0000 0.0000 0.0750 0.1150 
12  I(1) 1.0000 1.0000 0.0000 0.3050 0.3900 
13  I(1) 1.0000 1.0000 0.0000 0.6410 0.6690 
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Note: To bootstrap t-test, the restriction of null  is imposed. For the bootstrap F-test, the restriction 

of  is imposed. The entries are the rejection frequencies and entries in bold indicate the size of the 
test. 

 

 Table 1 summarizes the size and power analysis for the model with an intercept. 
The column headed as “Integration” indicates the true order of integration of for each 
DGP. From the results, we can see both the bootstrap t- and F-tests on the individual 
coefficients have proper sizes with rejection rates close to the 5% nominal level when the 
null is true. The tests have high powers when the null is false. Let us focus on the t-test 
(column ). In Case 1 when the null hypothesis is true, the t-test has a reasonable size 
of 4.5% rejection rate. In Case 2 when the null hypothesis is false, the rejection rate is 
high with 43.3% despite the  value of -0.05 is close to the null value of zero. The 
rejection rate increases rapidly with the absolute value of , reaching 86.1% at value of 
-0.1 of  and converging to 100% as the coefficient increases in absolute value. This 
convergence is extremely fast when cointegration exists, that is, from Case 6 to Case 13. 
Case 6 with a coefficient of -0.05 has 91.1% chance of rejecting the null, which is high 
despite the coefficient value being very close to the null of zero. This is explainable 
because the OLS estimates are super-consistent with a faster converging rate within the 
ARDL framework when there is cointegration. Now consider the F-test (column ). The 
F-test maintains a rejection rate around 5% for both the nonstationary process in Case 1 
and the stationary DF processes in Case 2 to Case 5. For cointegration cases 6 to 13, 
similar to the t-test, the F-test also has a very high rejection rate when the null hypothesis 
is false. Based on these results, we can confirm that the bootstrap performs well for the t- 
and F-tests under the ARDL framework.  These results on the individual coefficients of 
the ARDL equation provide preliminary information on the performance of the bootstrap 
tests, which are now combined to examine the tests for unit roots.  

 Next, we combine the t- and F-tests to determine the overall rejection frequencies 
of the ARDL test, which is compared to those of the conventional unit root tests, the ADF 
and DF-GLS. Focus first on the DGPs without cointegration in the first five cases. Overall, 
the results show that both the ADF and DF-GLS tests perform well for these cases, despite 
the univariate framework’s exclusion of information from the lagged independent 
variable. In Case 1 of a nonstationary process, the ADF test has a reasonable size of 4.4% 
given the null of nonstationarity is true, and its power increment is rapid in Cases 2 to 5 
as  increases in absolute value. In these same cases, the DF-GLS test has higher power 
and faster rate of convergence to 100% than the ADF test.  

For the ARDL test, the size of the test is underestimated with a 3% rejection rate 
in Case 1 of a nonstationary process. The underestimated size indicates that the test may 
not be exact with a lower Type I error. This is problematic because usually there is a 
trade-off between Type I and Type II errors. A test that has a smaller size faces a larger 
Type II error when the critical value is not adjusted to make the nominal size and 
empirical size the same. Nevertheless, this trade-off does not arise with the ARDL test, 
which still shows power that is comparable to the other two tests.  
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Next, consider the DGPs with cointegration, Cases 6 to 13. Both the ADF and DF-
GLS tests suffer severe size distortions. The tests have smaller size when the  value is 
close to zero. However, the sizes of the tests are severely biased upwards as the coefficient 

 increases in absolute value. A similar problem exists for Cases 10 – 13 with larger 
values of , although the size distortion is not as severe. The reason for the size 
distortions with these two univariate tests becomes clear from examination of the ARDL 
DGP, which includes the lagged level of the dependent variable. The coefficient on this 
term, , is the focus of the ADF and DF-GLS tests. When the data on is generated 
from the ARDL equation with a non-zero value of , naturally its computed t-statistic is 
likely to be significant with an increasing frequency as  becomes larger in absolute 
value. It is remarkable, however, that cointegration, which is a multivariate property, has 
such a strong adverse effect on univariate tests for a unit root. 

The ARDL test does not face the same problem as the ADF and DF-GLS tests, 
but exhibits extremely low sizes for cointegrated process. It seems contradictory that the 
rejection rates for  and  individually are high, but the rejection rate for the null of 
I(1) with the ARDL test is low. Note that rejecting both null hypotheses of  and 

 implies  is I(1). Therefore, the null hypothesis of nonstationary process in 
ARDL test is rejected with a very small frequency when the rejection rates for  and 

 are high. Similar results are obtained for models with and without intercept and 
deterministic trend; therefore we do not report those results here to save space.5  

 In summary, the combined bootstrap t- and F-tests have reasonably good size and 
high power properties in any environment. The experiments also reveal that the 
misspecification of ignoring the short-run effects from the covariates has minor impact 
on the performance of the ADF and DF-GLS tests. However, the univariate framework 
faces seriously biased inferences when the nonstationary process is cointegrated and the 
unit root property is driven by the covariates in the long run relation. The univariate 
framework is unable to detect the unit root driven by the covariates and therefore misleads 
one to conclude the process is stationary. Finally, the experiments show that the ARDL 
test has low Type I and Type II errors in any environment. Although the ARDL test may 
not be exact, the low Type I error does not sacrifice the power of the test. It shows that 
the ARDL test outperforms the conventional univariate unit root tests, especially when 
the processes are cointegrated.    

 

5.2 Size and Power Analysis for DGPs with Contemporaneous Correlation 

 The first set of experiments examined the proposed t- and F-tests, ADF, DF-GLS 
and ARDL tests for the DGPs without contemporaneous correlations between the 
equation errors. The second set of experiments with DGPs with equation errors that are 
contemporaneously correlated with  is examined in this section. Table 2 
summarizes the results for the model with an intercept. Like the case without correlation, 

 
5 Results can be obtained by request. 
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the individual bootstrap t- and F-tests have proper sizes when the null is true and their 
powers are generally high when the null is false. The t-test has lower power than for the 
DGPs without correlation in Cases 2 and 3. Nevertheless, the power increased 
dramatically when the coefficient  approaches -0.3. The tests are notably high in power 
for the cointegrated processes because OLS is super-consistent under cointegration.  

  

Table 2. Size and power analysis at 5% nominal level for  with intercept, T=100, 
N=1000, B=1000, . 

DGP Integration   ARDL ADF DF-GLS 
1  I(1) 0.0500 0.0670 0.0180 0.0270 0.0270 
2  I(0) 0.1060 0.0640 0.0690 0.0700 0.1610 
3  I(0) 0.1850 0.0590 0.1460 0.1360 0.3690 
4  I(0) 0.7750 0.0600 0.7150 0.8450 0.8880 
5  I(0) 0.9960 0.0690 0.9270 1.0000 0.9560 
6  I(1) 0.6690 0.9550 0.0130 0.0370 0.0020 
7  I(1) 0.8280 0.9460 0.0160 0.0270 0.0080 
8  I(1) 0.9540 0.9530 0.0250 0.0920 0.1630 
9  I(1) 0.9990 0.9780 0.0220 0.4220 0.4780 
10  I(1) 0.8710 1.0000 0.0000 0.0410 0.0050 
11  I(1) 0.9800 1.0000 0.0000 0.0310 0.0090 
12  I(1) 0.9970 1.0000 0.0000 0.0340 0.0550 
13  I(1) 1.0000 1.0000 0.0000 0.1320 0.2000 
Note: To bootstrap t-test, the restriction of null  is imposed. For the bootstrap F-test, the restriction 

of  is imposed. The entries are the rejection frequencies and entries in bold indicate the size of the 
test. 

 

The estimated size of the ADF is slightly smaller in Case 1 and its power is low 
when the coefficient is closer to the null (Case 2 and Case 3). Its power increases quickly 
when the coefficient  is more negative (Case 4 and Case 5). The DF-GLS test has 
slightly higher power than the ADF test in Case 2 and Case 3 but generally both tests’ 
performances are comparable. Similar to the DGPs without correlation, the ADF and DF-
GLS tests perform poorly when processes are cointegrated (Case 6 to Case 13). The ADF 
test is slightly undersized when  has smaller negative values, but its size is seriously 
distorted as  takes on larger negative values. The DF-GLS test has high power and low 
size properties even in some of the cointegration cases. However, this advantage does not 
persist. The size of the test is seriously distorted when the negative values of  become 
larger in magnitude (see Cases 8, 9 and 13). Therefore, although the DF-GLS test 
performs better than the ADF test, it is still performing poorly in some cointegration cases. 
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For the ARDL test, its performance is similar to the DGPs without correlation. The test 
has low Type I and Type II errors in any situation. The ARDL test is excellent to detect 
unit root in cointegrated processes, and the result is almost certainly correct with 
extremely low Type I error. Again, results for the models with and without intercept and 
deterministic trend are not reported as they have results similar to the model with 
intercept.6  

To conclude the findings of the experiments, the simulations show that the 
bootstrap ARDL test works well in estimating the empirical distribution of the test 
statistics. The bootstrap t- and F-tests have proper sizes and high power properties. For 
the ADF test, it performs well for the stationary DF and nonstationary processes if there 
is no cointegration. The unspecified short-run effect from the covariates or the lagged 
level covariates in the univariate framework does not bring significant impact to the 
estimated power. However, the test performs poorly when there is a cointegrating 
relationship. The univariate test is unable to identify the unit root property from the 
covariates. This is similar for the DF-GLS test. The test works well in testing the 
stationary and nonstationary processes without cointegration, although it may have 
misspecified the short-run effect. The test also performs relatively well in some of the 
cointegration cases but is seriously biased when the speed of adjustment gets larger in 
magnitude. The test will mislead one to believe the process is stationary but in fact it is a 
nonstationary process where its nonstationary property comes from the covariates. The 
size distortions for the two univariate tests are understood from the ARDL DGP, which 
includes the lagged level of the dependent variable. Under cointegration the coefficient 
on this term, , is non-zero, and the ADF and DF-GLS test will find its computed t-
statistic to be significant with high frequency. This leads to incorrect rejection of the unit 
root hypothesis and large Type I errors with a frequency that increases as  becomes 
larger in absolute value. It is remarkable that cointegration, which is a multivariate 
property, has strong adverse effects on univariate tests for a unit root. 

The ARDL test, however, is not vulnerable to this problem and performs well in 
all environments. The test has lower Type I and Type II errors than the ADF and DF-GLS 
tests in testing the stationary and nonstationary processes in most cases and extremely 
low Type I error when cointegration exists. The test is reliable in detecting the unit root 
property that is driven by the long run relation with covariates, whereas tests in univariate 
framework, such as ADF and DF-GLS tests, fail to do so.  

 

6. An Empirical Application 

 The inflation rate is a key variable in many economic models (Basher and 
Westerlund, 2008). However, the degree of persistence and order of integration of 
inflation rate is widely debated. Unit root test results vary across countries and time 
periods and depend on the particular statistical methods adopted. The integration order of 
inflation has implications for Fisher’s real interest parity hypothesis, the expectations 
augmented Phillips curve model, the accelerationist hypothesis, the traditional capital 
asset pricing model, monetary policies for controlling money supply growth, among 

 
6 Results can be obtained by request. 
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others. Knowledge on inflation rate stationarity is essential in the implementation of 
monetary policy as well. As discussed by Cecchetti and Debelle (2006), a nonstationary 
inflation rate implies that shocks to inflation have a permanent effect, resulting in higher 
costs for central banks to control inflation through monetary policy. Moreover, the 
selection of the correct econometric method depends on its stationarity as well. If the 
inflation rate is stationary, standard regression methods can be used. Otherwise, the 
cointegration framework may be necessary.  

Many methods are used to investigate the stationarity of the inflation rate, 
including the conventional univariate unit root tests (e.g. Rose, 1988; Lai, 1997; Koustas 
and Lamarche, 2009; Rapach and Weber, 2004) and sophisticated approaches (e.g. Baillie, 
1989; Ozcan, 2013; Culver and Papell, 1997; Gregoriou and Kontonikas, 2006; Cook 
2009). The conclusions on the inflation rate’s order of integration are mixed. In this 
section the multivariate ARDL unit root test is applied to examine the stationarity of 
Malaysia’s inflation rate.  

 To apply the ARDL unit root test, it is necessary to identify a potential covariate 
that can help to explain the dynamics of inflation within the ARDL framework. As 
discussed by Lee and Tsong (2011), international financial markets have become 
increasingly integrated, through globalization and the liberalization of international trade 
and investment flows. These changes improve the degree of integration of markets across 
countries, causing real interest rates, and by extension nominal interest rates and inflation 
rates, to be related across countries. Lee and Tsong (2011) investigate the stationarity of 
the nominal interest rates and inflation rate using the bootstrap CADF test, using data 
from other countries as covariates.  

 In this empirical application, the Malaysian inflation rate, measured by the GDP 
deflator (MAS-I) is the subject of the study, and the covariate is the US inflation rate. The 
sample period is from 1961 to 2019. The data are from the World Bank database. Figure 
1 depicts these two time series.  

 

 

Figure 1. Time series plots for Malaysia and the US inflation rates. 

 

 A visual inspection of Figure 1 shows that the Malaysia inflation rate (MAS-I) 
may be stationary with huge volatility whereas the US inflation rate (US-I) is strongly 
persistent throughout the period. Neither series shows an apparent trend. Hence, a unit 
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root test regression is implemented with only an intercept as deterministic component. 
Five conventional univariate unit root tests were applied to MAS-I with results 
summarized in Table 3. The unit root tests suggest different results for MAS-I. The ADF 
test indicates it is I(1) process, while PP (Phillips-Perron) and KPSS tests suggest it is 
I(0). Even more problematic is that the DF-GLS and NP (Ng-Perron) tests suggest that 
MAS-I has a higher integration order, which does not seem reasonable. For US-I, the 
result is consistent across all univariate tests, concluding that it is I(1). The contradictory 
results on MAS-I could be due to its complex interaction with global inflation, so that a 
univariate framework is inadequate to represent the data, while the multivariate ARDL 
unit root test may be more appropriate for testing this series. 

 

Table 3. Univariate unit root tests. 

Unit Root Tests MAS-I US-I 
Level 1st Difference Level 1st Difference 

ADF -2.5064 -12.0795*** -1.6249 -5.8058*** 
DF-GLS -0.3703 -0.0411 -1.3927 -5.8284*** 

PP -7.5917*** - -1.8726 -5.7435*** 
KPSS 0.0982 - 0.4231* 0.1641 

NP 0.3496 0.0693 0.3952 26.8098*** 
Note: The lag length selection for ADF, DF-GLS, and NP tests are according to modified AIC. For the PP 
and KPSS tests, the spectral estimation method is based on Bartlett kernel and bandwidth with Newey-West 
selection. For the NP test, the spectral estimation method is based on AR GLS-detrended method. The null 
hypotheses for ADF, DF-GLS, PP, and NP tests are H0: series contains a unit root, while the null hypothesis 
for KPSS is H0: series is stationary. *, **, *** indicate significance at 10%, 5% and 1% levels, respectively. 

 

 A bootstrap program is developed to run the ARDL unit root test with MAS-I as 
the dependent variable and US-I as its covariate. The maximum lag length is set at 8, and 
the optimal lag length is selected according to modified AIC. The number of bootstrap 
replications is set at B = 5000 to generate the bootstrap critical values. The ARDL 
equation includes a constant but no trend term. Table 4 summarizes the test results. 
According to the modified AIC, the optimal ARDL model is ARDL(0,2). The estimated 
t-statistic for the lagged level dependent variable and F-statistic for the lagged level 
independent variable are -7.6179 and 3.5897, respectively. Compared to the bootstrap 
critical values, both the t- and F-statistics are significant at 1% level and 10% level, 
respectively. It indicates that the MAS-I is cointegrated with US-I, and the finding of a 
cointegration relationship shows that the movement of MAS-I responds to the movement 
of US-I. Since the US-I is I(1), therefore MAS-I is I(1) also. The ARDL result is in line 
with the ADF test.  

 

Table 4. Multivariate ARDL unit root test for RINT. 

ARDL unit root test in level 
Testing variable MAS-I  Optimal model ARDL(0, 2) 

Covariate US-I  Modified AIC 6.0279 
Regression type Intercept  Bootstrap Rep. 5000 
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t-statistic -7.6179    
F-statistic 3.5897    

     
Significance 

levels 
0.100 0.050 0.025 0.010 

t-critical values -2.8721 -3.2202 -3.5369 -3.9095 
F-critical values 2.8703 4.2725 5.4865 7.2723 

 

 In sum, the conventional unit root tests give mixed results on the order of 
integration for the Malaysia inflation rate. The DF-GLS and NP tests, which are generally 
believed to have higher power properties, suggest that the Malaysia inflation rate has an 
order of integration higher than one. This is unacceptable as the series obviously does not 
display any visual evidence of second order integration. The t- and F-unit root tests in the 
ARDL framework suggest that the Malaysia inflation rate is I(1) and it is cointegrated 
with the US inflation rate. The ARDL framework discovers the cointegration relationship 
between the Malaysia and the US inflation, and this complex dynamic relationship could 
not be detected using the univariate framework. This explains why the conventional unit 
root tests lead to conflicting outcomes. The unit root in the Malaysian inflation rate is 
related to the integrated property of the US inflation rate though cointegration, which 
undermines the validity of the univariate tests.  

 

7. Conclusion 

 The stationarity of a time series is important in applied economic research because 
it informs the methodology that is appropriate for subsequent analysis. Standard 
regression methods are used if the underlying variables are stationary, and a cointegration 
method may be more appropriate with nonstationary variables. Standard unit root tests 
can often lead to contradictory results, and they can be either size distorted or low in 
power. The size and power problems could be due to the univariate framework of the tests 
as demonstrated in this paper. Hansen (1995) is the first to propose a multivariate 
framework unit root test, the Covariate Augmented Dickey-Fuller (CADF) test, which 
includes relevant variables to capture model dynamics. However, the CADF unit root test 
still faces model misspecification problem as it excludes the possibility of cointegration 
with the covariates. If there is a cointegrating relationship, the CADF framework imposes 
an invalid common factor, thus affecting its power. Therefore, to avoid imposing an 
invalid common factor, a multivariate unit root test within autoregressive distributed lag 
(ARDL) framework is proposed and analyzed in this study. 

 The multivariate ARDL unit root test uses two tests to infer the order of integration  
of a time series, namely, the t-test on the lagged level of the dependent variable and the 
F-test on the lagged levels of the independent variables. The stationarity of a process can 
be determined according to the significance of the proposed tests. However, the null 
distributions for the two tests are complicated and nuisance parameter dependent. To 
overcome the uncertainty of the test distributions, the bootstrap method is used. The 
ARDL unit root test using the bootstrap has correct size and excellent power in a variety 
of environments, regardless of whether the time series of interest is a nonstationary, 
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stationary, or cointegrated process. The ARDL unit root test outperforms the conventional 
unit root tests, especially when cointegration exists. The experiments show that when 
there is a cointegrating relationship, the ARDL test has a lower size property which 
indicates a lower Type I error. Usually, this is an issue for a test because with any tests, 
there is a trade-off between Type I and Type II errors. However, the undersized ARDL 
test still shows higher powers compared to the ADF or DF-GLS tests. The experiments 
also show the sizes of the ADF and DF-GLS tests are seriously distorted in testing a 
cointegrated process because they fail to capture the unit root that arises from the 
nonstationary covariates. The existence of cointegration is manifested in a significant 
coefficient on the lagged level of the dependent variable, which leads the standard 
univariate unit root tests to reject the true null hypothesis of a unit root.  

In the re-examination of the inflation rate stationarity, we show the weaknesses of 
the univariate unit root tests with the evidence of data from Malaysia. Five conventional 
unit root tests yield mixed results for the Malaysian inflation rate. Some of the tests even 
suggest that the series has an integration order higher than I(1), which is not plausible 
based on the time series plot. Through the ARDL test, the evidence suggests the 
Malaysian inflation rate is I(1), and its nonstationary property comes from its 
cointegration with the US inflation rate. 
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