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Abstract

I use a supply function equilibrium framework to show how increased renewable genera-
tion can increase electricity generators’ incentive to withhold capacity. As a result, strategic
behavior from conventional generators attenuates the impact of low marginal cost generation
on the market price. Taking advantage of detailed data on the largest wholesale electricity mar-
ket in the United States, I provide direct evidence that horizontally integrated firms that own
wind turbines and conventional generation will withhold their conventional generation when
their own wind turbine is generating electricity. As a result, over 30% of wind generation is
replacing withheld units suggesting a decrease in potential consumer surplus of 3.3 billion US
Dollars from 2014 to 2016.
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1 Introduction

Since 2008, over half of new electricity generation capacity in the US has been in the form of

renewable energy (EIA, 2017). As a result, wholesale electricity markets have been inundated

with a large quantity of electricity generated at a low marginal cost, substantially decreasing the

market clearing price. As much as traditional electricity generators lament over this lower price,

it is equally seen as a benefit to the consumers of electricity (AWEA, 2014). However, the extent

to which the private benefit associated with lower operating cost are transfered to consumers, or

retained as profits by producers, depends on the conduct of firms competing in the market (Weyl

and Fabinger, 2013). Correctly quantifying the incidence of these large private benefits, taking

into account the strategic behavior of existing electricity generators, is important for understanding

investment incentives, policy implications, and for informing market design.

Wholesale electricity markets are typically structured as hourly multi-unit auctions where the

uniform price is set by the marginal unit. In such markets there is a known incentive for electricity

generators to withhold output to increase their own revenue (Ausubel et al., 2014). This incentive

increases in proportion to the infra-marginal market share of the electricity generator (Wolfram,

1998). For the firms that own renewable resources, increased renewable generation is a large,

exogenous, short-run increase in their infra-marginal market share, intensifying their incentive to

withhold their generation. This physical withholding can lead to inefficiency in the wholesale

market, which has direct implications for consumer surplus.1

This paper evaluates the incentives for strategic withholding of conventional electricity gen-

erators in response to renewable generation, and quantifies how this can impact the market price

of electricity.2 First I use a simple equilibrium framework to show the important role of competi-

tive conduct in determining how renewable generation impacts the price of electricity. Modifying

Klemperer and Meyer’s (1989) Supply Function Equilibrium model, I show diverse market partic-

1Physical withholding is a reduction in the quantity offered to the market, at a given price, with the intent to influence
the market price. This is in comparison to economic withholding, which involves bidding a generator’s quantity at a
higher price.

2Conventional electricity generators include steam, combustion, nuclear, and hydrological alternating current genera-
tors.
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ipants that own wind turbines and other assets have an incentive to withhold their other assets in

response to their own wind generation.3,4

I exploit detailed microdata on hourly firm-level ex-ante supply curves to provide direct evi-

dence of strategic withholding in response to increased renewable generation. Identification comes

from variation in the quantity offered by a market participant at a given price within a year-month-

hour (e.g. June, 2016, 4pm). While my empirical strategy is most similar to Fabra and Reguant’s

(2014) analysis of emission cost pass-through, the use of within offer price variation is novel. I

find the market participants that own more wind capacity withhold their output more, and they

withhold their output more in response to their own wind generation in comparison to wind gen-

eration from others. This is robust to concerns regarding congestion constraints and net exports.

With this detailed data I am able to make rare and credible claims regarding consumer surplus from

renewable generation by re-constructing the market equilibrium and calculating an expression for

the price reduction from renewable generation under alternative strategic scenarios.

Many papers have evaluated the integration of renewable generation in electricity markets,

uncovering a “merit order effect” where generation displaces high cost generation and lowers the

market price, as shown in Figure 1. These papers either consider a simulation model (Sensfuß,

Ragwitz, and Genoese 2008; McConnell et al. 2013), or empirically estimate the change in price

due to renewable generation (Woo et al. 2011; Cludius et al. 2014; Clò, Cataldi, and Zoppoli 2015;

Woo et al. 2015, 2016). The results are location specific, often determined by the fuel mix and fuel

prices, and are large. For example, Woo et al. (2016) find that a one gigawatt hour (GWh) increase

of wind generation in California lowers the wholesale market price by $1.5 to $11.4 per megawatt

hour. This implies average hourly wind generation can lower total market revenue by millions of

dollars per day.5 While the estimates provided in these papers are informative, they either assume a

3This paper uses the term diverse to define market participants that own wind turbines and conventional electricity
generators.

4 As shown by Acemoglu, Kakhbod, and Ozdaglar (2017) in the case of Cournot competition and Ben-Moshe and
Rubin (2015) in a general oligopoly setting, this incentive has the potential to fully dissipate the impact renewable
generation has on the price of electricity.

5The average hourly wind generation in California during 2017 was around 1.5 GWh and the average hourly load is 24
GWh. If 1.5 GWh of wind generation reduces the price by 9.75 $/MWh, for 24,000 MWh in a hour, for twenty-four
hours, revenue declines by 5.6 million USD that day.
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competitive economic dispatch or provide no context for how we would expect the price to change

if electricity generators were acting strategically.

[Figure 1]

My contribution to this literature is three-fold. First, I derived an analytical expression for

the merit order effect as a function of fundamental market components: the slope of supply, the

slope of demand, and a parameter for every market participant’s conduct. This provides intuition

for the conditions under which renewable generation is expected to have the largest impact on

price. Second, I showcase the importance of economic incentives. Overwhelmingly the literature

on the Merit Order Effect does not consider how the increased renewable generation might change

the strategies of electricity generators, despite the theoretical relevance of competitive conduct

(Acemoglu, Kakhbod, and Ozdaglar, 2017; Ben-Moshe and Rubin, 2015). I show the cumulative

response by conventional generators is large. If consumer benefit is one of the goals for policies

supporting renewable energy, a policy that ignores how diverse electricity generators respond to

renewable generation will not be effective.6 Third, the observed shuffling of electricity generation

by resource type within a particular market participant’s portfolio has important implications for

our understanding of wholesale electricity markets. It suggests that low cost electricity generating

units might not always replace the highest cost resources. This inefficiency reduces total economic

surplus, and transfers the surplus from consumers to producers of electricity.

This paper is a transparent exercise using detailed data to showcase fundamental economic

concepts. Rarely is it possible to directly observe a supply curve at such a fine level of detail.7

Because electricity generated from wind turbines is determined almost entirely by weather patterns,

the short-run variation in wind generation is effectively exogenous. From this variation we are

6Policies that support investment in renewable energy are typically concerned with unpriced emission externalities
and insufficient research and development funding. Regardless, lobbying groups often use the consumer benefit of
renewable generation as a motivation for enacting policies that support renewable energy.

7A number papers, starting with Wolak (2001), use similar data to recover the slope of the residual demand and
estimate a structural model of price-cost margins in a number of settings including Spain (Reguant, 2014), Canada
(Wolak, 2015), New Zealand (McRae and Wolak, 2009), and India (Ryan, 2017) with examples in the United States
including Texas (Hortacsu and Puller, 2008), California (Borenstein, Bushnell, and Wolak, 2002), MISO (Mercadal,
2015), and PJM (Kim, 2017).
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able to learn exactly how a shift in aggregate supply impacts the market price. For the market

participants that own wind turbines, wind generation is an exogenous change in their infra-marginal

market share, having a direct impact on their incentives to withhold output. This provides an

opportunity to test theoretical predictions on bid-shading in multi-unit auctions.

Finally, this paper provides an update on the status of competitive conduct in wholesale elec-

tricity markets. Ever since the California electricity crisis in 2000 and 2001, regulators and market

monitors have worked to ensure that wholesale electricity markets approximate the competitive

outcome. As a result, wholesale electricity markets in the US are currently perceived as competi-

tive by economic researchers (Bushnell, Mansur, and Novan, 2017), regulators (FERC, 2011), and

independent market monitors (Potomac Economics, 2018). This is partly because of long term

forward contracts, a forward wholesale market, and vertical commitments between producers and

consumers of electricity. As the electricity grid transitions towards more renewable generation, it is

important to consider the ways in which a firm’s ability and incentive to exert market power might

change, and to develop tools to characterize and diagnose imperfectly competitive behavior.8

The paper proceeds as follows, section 2 outlines a general framework for understanding how

renewable generation, in particular wind, impacts the price of electricity in wholesale markets.

Section 3 provides context by describing key details regarding the MISO including an introduction

to the data. Section 4 focuses on estimating and calculating the how wind generation should

impact the price of electricity. Section 5 turns to micro-data on firm strategies, showing evidence

of physical withholding during windy hours. Section 6 summarizes the implications of withholding

for consumer surplus, section 7 concludes.

8Overall, Independent Market Monitors do a good job identifying and mitigating blatant exertion of market power in
wholesale electricity markets. In Appendix B I outline exactly how this is done for the MISO, as well as characterize
the market in terms of forward contracts and vertical commitments.
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2 Wind generation in wholesale electricity markets

The high fixed costs of electricity generation, transmission, and distribution lends itself to a model

of natural monopoly and has historically been served by vertically integrated investor, or munic-

ipality, owned utilities operating under cost of service regulation. Since the 1980s the electricity

industry has undergone deregulation and restructuring at the state and federal level largely moti-

vated by the success seen in other industries (such as rail and natural gas), and analysis showing the

potential for increased efficiency (for example Joskow, Schmalensee et al. (1988)).9 Restructured

wholesale electricity markets emerged, where competitive supply and demand bids are submitted

to a centralized and impartial Independent System Operator, who then decides which units to dis-

patch and the price they receive. As of 2012, these market cover 60% of generation capacity within

the US and they are effective in reducing production cost by reallocating output (Cicala, 2017).

The following is intended to model a wholesale electricity market operating as a multi-unit uni-

form price auction that allows for diverse market participants and a degree of low variable cost re-

newable generation. Demand for electricity is determined by Load Serving Entities, predominately

utilities, that charge customers a rate for electricity in the retail market.10 These Load Serving Enti-

ties submit demand bids for each hour that can be price sensitive, but are overwhelmingly inelastic

with respect to price. I model demand in the wholesale market at time t as Dt(p) = dt(p)+ εt

where dt(p) is the deterministic component of demand as a function of price that can be forecasted

and εt is a random variable representing fluctuations in the quantity demanded. I model εt to be an

i.i.d. random variable with expectation equal to zero.

Supply in the wholesale electricity market is provided by market participants, which I denote

by the subscript o, who own multiple electricity generating assets including coal, gas, nuclear, or

9Public Utilities Regulatory Policy Act (PURPA) of 1978 encouraged alternative fuels and introduced independent
power producers (IPPs). Federal Energy Regulatory Commission (FERC) orders 888 and 889 in 1996 laid the ground
work for competitive wholesale electricity markets. FERC order 2000, promulgated in 1999, encouraged the forma-
tion of Regional Transmission Organizations to serve as planning bodies over a larger geographic area. State policies
have introduced retail competition and forced divestiture of vertically integrated assets.

10Load Serving Entities in wholesale markets can also be generators of electricity if they are vertically integrated.
The commercial and retail rate of electricity is typically a time-invariant rate or increasing block pricing. Industrial
consumers typically have peak demand charges as well.
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hydrological based resources. Each conventional unit owned by market participant o, denoted by

the subscripts k ∈ Ko, submits a unit-specific supply curve as a function of price, skt(p). This

offer curve represents the quantity the market participant o is willing to produce from unit k at

time t for price p. As a simplification, I consider the market participant’s aggregate supply sans

wind generation as Sot(p) = ∑k∈Ko skt(p). When the uniform market clearing price is p̂, the market

participant will produce Sot (p̂) = ∑k∈Ko skt (p̂) with costs Cot (Sot (p̂)) and revenue p̂Sot (p̂).

The quantity of electricity generated by wind turbines at time t is modeled by an aggregate

quantity, Wt . Because weather conditions are imperfectly forecast-able, it is most realistic to de-

compose wind generation into a deterministic forecast-able quantity and a random variable repre-

senting the forecast error. Here I abstract from the random component, as it does not contribute to

any of the comparative statics in this section.11 The aggregate quantity, Wt , is common knowledge

to all market participants and perfectly forecast-able. The proportion of wind that is owned by

market participant o at time t is denoted by θot ∈ [0,1], with ∑o θot = 1. This implies the amount

of wind generated by market participant o at time t is θotWt . In this model I assume that wind

generation always clears at the equilibrium because of its low variable cost. 12

The price concept most common in U.S. wholesale electricity markets is a Locational Marginal

Price (LMP). This price represents the marginal cost of increasing energy production at any given

moment and at any given location within the market, and therefore varies by location (at different

pricing nodes) and by time (typically at 5 minute intervals). The LMP can be decomposed into

three distinct components: the Marginal Energy Component (MEC) determined as the price where

supply equals demand at a load-weighted reference node, marginal congestion cost associated with

the shadow price of system transmission constraints and out of merit dispatch, and marginal losses

associated with transmitting the electricity over long distances. At any given moment, the MEC is

11Acemoglu, Kakhbod, and Ozdaglar (2017) shows the incentives to withhold output remain when wind generation is
a random value, and with private information.

12I assume the variable cost of production for wind turbines is zero as it does not require fuel. There are other vari-
able operation and management cost associated with wind turbines, but the Federal Renewable Energy Production
Tax Credit is larger than these costs. It is possible that wind generation can be curtailed manually, however the
market I study, MISO, has incorporated wind generation as part of the economic dispatch since 2011, resulting in a
curtailment rate of less that 1%.
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the same at every location within the market while the losses and congestion components vary by

node.13 Analytically, I consider the price p to represent the MEC of the LMP.14 For most hours,

the MEC is the largest component of the LMP.

2.1 Market Equilibrium and the Analytical Merit Order Effect

Moving forward, I will suppress the time subscript for notational ease. The market operator takes

the supply offers as given, observes the realized demand shock, ε , to solve for the dispatch quantity

for each firm and the price received in accordance with a security constrained dispatch algorithm.

Outside of security constraints and reliability concerns, we can think of the market clearing as

follows:

d(p)+ ε︸ ︷︷ ︸
demand D(p)

= ∑
o

So(p)︸ ︷︷ ︸
conventional supply

+ W︸︷︷︸
wind

(1)

Implicitly differentiating the market clearing condition with respect to total wind generation, W ,

gives the equilibrium effect of increased renewable generation on wholesale market price.15

d p
dW

=−
1+∑o

∂So(p)
∂W

∑S′o(p)−d′(p)
(2)

Where ′ denotes the partial derivative with respect to the function’s main argument. Equation 2

is the rate at which an increase in renewable generation impacts the equilibrium price, what I am

calling the analytical merit order effect. This value depends on the supply function slope, demand

slope, and the strategic response by market participants. The intuition of Equation 2, when the

slope of demand and ∂So(p)
∂W are equal to zero, is shown in Figure 1 where the change in the price

of electricity is determined by the difference in price submitted for the marginal unit, − 1
∑o S′(p) .

This can be thought of as the pass-through of increased renewable generation. This is related to,

13Some markets are known for very high and sometimes negative prices at times, this is typically because of the
congestion and loss components.

14This is in contrast to Mercadal (2015), who explicitly uses the cross-sectional variance in transmission cost and
losses to cluster MISO into multiple smaller markets.

15I assume that the quantity demanded does not depend on the quantity of wind generated, that is ∂D(p)
∂W = 0.
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but different from, the conventional pass-through rate of a cost shock or tax. To show this, consider

the market equilibrium with a unit tax, d(p) = ∑So(p− t), under perfect competition. Implicitly

differentiating the market equilibrium with respect to t uncovers the well-known pass-through

formula d p
dt =

∑S′o
∑S′o−d′ =

1
1+ εD

εS

where εD and εS denote the own-price and market supply elasticities

respectively. The denominators of Equation 2 and the conventional pass-through equation are

identical, representing a marginal deviation from the market equilibrium. This value will increase,

decreasing the pass-through, when supply or demand is more inelastic. The numerator is different

because the shock impacts supply differently. An increase in wind generation impacts the total

quantity supplied, while the tax impacts the cost of production.16

Electricity markets are often considered to be imperfectly competitive because of capacity and

transmission constraints, a degree of market power, as well as vertical and horizontal relations.

I incorporate competitive conduct into Equation 2 with the inclusion of ∂So(p)
∂W in the numerator.

Without placing structure on the market or market participants’ incentives it is impossible to sign

this value. The sign of this term suggests the extent to which increased renewable generation

has a pro- or anti- competitive effect on market participants’ behavior. If the term is positive the

market participant offers more generation quantity to the market at any given price in response to

increased renewable generation. This pro-competitive outcome arises if the firm is trying to ensure

their generation clears in the market, and is not displaced by the increased renewable generation.17

The implications is that renewable generation would decrease the price by more than the change in

cost. Conversely, when the term is negative, the supplier is offering less quantity to the market at

any given price. This anti-competitive outcome could be an attempt by the firm to keep the price

high, offsetting the lower price associated with increased renewable generation.

16This is related to the concept exogenous quantity pass-through described by Weyl and Fabinger (2013). It differs
in that wind generation is an increase in the aggregate market quantity, while Weyl and Fabinger (2013) model the
exogenous quantity as a firm specific, identical across firms.

17Ciarreta, Espinosa, and Pizarro-Irizar (2017) finds evidence of this in the Spanish electricity market by looking at
the difference in the offer curves over long periods of time.
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2.2 Market Participants’ Strategy and Testable Predictions

To understand how a firm might change their strategy in response to increased renewable genera-

tion, I consider two models of the market participants’ behavior. One model assumes that market

participants choose their strategies as if they are in a perfectly competitive wholesale electricity

market, the other uses a supply function equilibrium framework. These will provide two different

predictions for ∂So(p)
∂W , implying different values for the analytical merit order effect, d p

dW . For each

prediction, I use the detailed data I have on market hourly supply and demand to explicitly calcu-

late the analytical merit order effect. I then test which one is better realized in the observed market

price.

In a perfectly competitive market, firms are price takers and submit a supply function that

outlines the inverse of their marginal cost of production. This would be independent of W implying

that ∂So(p)
∂W = 0. Substituting this into Equation 2 we have that

d pcomp

dW
=− 1

∑S′o(p)−d′(p)
(3)

and for an observed quantity of wind based generation in an hour, the total price effect would be

d pcomp =−
1

∑S′o(p)−d′(p)
dW (4)

From an incidence perspective, this represents the upper bound of the price reduction associated

with increased renewable generation and can be used to calculate to the potential consumer surplus

available.

Conversely a firm with market power might internalize the benefits associated with increased

renewable generation. Figure 2 provides the intuition. When a market participant with market

power is considering the incentives to withhold, they are comparing a higher price and smaller

quantity to a lower price and larger quantity. When this market participant owns a wind turbine

that is also generating electricity, they receive additional benefit of increasing the price directly
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proportional to the quantity of electricity generated by their wind turbine. This is because they

receive additional revenue from the infra-marginal wind turbine but do not incur any cost.

[Figure 2]

I use the supply function equilibrium framework (SFE) outlined by Klemperer and Meyer (1989)

to derive the market participant’s best response function. Market participants choose the So(p) that

maximizes their expected profit, with the expectation taken over the uncertainty in price due to

demand shocks. Appendix A proves the optimal strategy of market participant o with conventional

assets and wind turbines can be characterized by

p−C′o(So(p)) =− So(p)+θoW
d′(p)−∑ j 6=o S′j(p)

(5)

It is clear that an increase in the amount of electricity produced by wind, W , will be associated

with a reduction in the supply curve offered to the market. For simplicity I assume that the marginal

cost is constant near the equilibrium price, C′′o (S(p)) = 0, and that market participants do not

change the slope of their offer curve in response to increased renewable generation, ∂S′i(p)/∂W =

0,∀i, near the equilibrium price.18 This provides ∂So(p)
∂W = −θo, a market participant will reduce

their generation offer in response to a unit increase in renewable generation by the proportion of

total wind generation they are producing.

More broadly, this comparative static suggests that a market participant will withhold their

conventional generation by the quantity of wind generated, one for one.19 Overall they are gen-

erating the same quantity of electricity, however they are replacing their conventional generation

with wind generation. From this we can get a number of testable predictions for how firm’s will

respond to increased wind generation under a supply function equilibrium model:

18This assumption greatly simplifies the analysis. In the context of forward markets, an “additive separability” assump-
tion with similar implications is common Hortacsu and Puller (2008); Mercadal (2015). In application, I find some
market participants do change the supply slope, in-line with the theoretical prediction on bid shading. I consider it
to be a second order effect, and the assumption plays no direct role in any of my results.

19In particular we are talking about physical withholding, where the quantity offered is reduced. This is in comparison
to economic withholding, in which market participants are submitting their offer curves above the marginal cost of
production.
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Testable Predictions

(A) Only market participants that own wind turbines will reduce their quantity offered in re-

sponse to more wind generation. Market participants that do not own wind turbines will

not change their offer curve in response to more wind generation. For these firms θo = 0 at

all times implying ∂So(p)
∂W = 0 always.

(B) Market participants that generate a larger share of the total wind generation will reduce

the quantity offered by a larger amount in response to more wind generation. This follows

from ∂ 2So(p)
∂W∂θo

=−1 < 0

(C) Market participants will only change their offer curve in response to their own wind gen-

eration, not in response to the wind generation of other market participants. This can be

seen by noting that only the market participant’s own wind generation, θoW, appears in

Equation 5. Their optimal strategy does not depend on ∑ j 6=o θ jW.

Substituting the values of ∂So(p)
∂W into Equation 2, we have that the analytical merit order effect is

d pSFE

dW
=−

(
1− ∑

o∈V
θo

)
1

∑S′o(p)−d′(p)
(6)

where V is the set of market participants that own both wind turbines and conventional assets. In

aggregate this strategic withholding implies increased renewable generation will have the following

impact on the market price

d pSFE =−

(
1− ∑

o∈V
θo

)
1

∑S′o(p)−d′(p)
dW (7)

This shows the impact on price paid by consumers in wholesale electricity markets depends on the

ownership of the wind turbines. If all wind turbines are owned by market participants that also

own conventional assets, then ∑o∈V θo = 1 and there would be no effect on price. Conversely, if

wind turbines were owned exclusively by independent producers that own only wind turbines, then

∑o∈V θo = 0 and the expected price change would be identical to Equation 4. In section 4, I directly
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calculate values of Equation 4 and Equation 7 and test which one is more fully represented in the

market price.

3 The Midcontinent Independent System Operator and Data

The Midcontinent Independent System Operator (MISO) was formed in 1998 and approved as the

first Regional Transmission Organization in the US by the Federal Energy Regulatory Commission

in 2001.20 The operator serves as a non-profit organization managing transmission and dispatch

of electricity generating units within its footprint through a variety of market operations, focusing

on reliability, efficiency, and the development of electricity resources. Since the incorporation of

the Southern Region in 2013, MISO has become the the largest wholesale electricity market in the

United States with a total of 180 gigawatts of generation capacity, and conducts market operations

from North Dakota to Michigan to Louisiana as shown in Figure 3. The distribution of wind

turbines and conventional electricity generating assets within in MISO is shown in Figure 4. The

largest concentration of wind turbines in the United States is in the Great Plains, extending from

Western Iowa to the Texan panhandle.

[Figure 3] [Figure 4]

MISO operates a number of markets in combination with planning and oversight to achieve its

goals in distribution and reliability including a day ahead and real time wholesale electricity market

similar to the model described in section 2. These markets capture almost all electricity generation

and transmission activities within MISO’s footprint that are not part of bilateral contracts.21 Sup-

plemental information on MISO, its markets, regulated utility operations, wind turbine ownership,

and market monitoring are provided in the Appendix B.

MISO publishes data regarding their market operations on their website as Market Reports. The

primary data I use are the daily real time generation offers by generation units from January of 2014
20MISO was formerly known as the Midwest Independent System Operator up until 2013.
21A market report from 2011-2012 suggests 20 to 30% of electricity generated in a year is through bilateral contracts.

These bilateral contracts include agreements with groups outside of MISO as well as grandfathered contracts within
MISO.
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to December of 2016.22 I focus on the real time market because there are no purely financial players

in the real time market, increasing the benefits from withholding output. These data provide, for

every hour, a time consistent unit and owner identification code, the generating unit type (steam,

combustion, wind turbine, hydro), the ex-post quantity generated and LMP received at five minute

intervals, as well as details on the generating unit’s supply bid. Unit-level data on the hourly

LMP received and the quantity generated for all units are summarized in Table 1. The sample

average unit LMP is $27.42/MWh with wind turbines receiving a lower than average LMP and

combustion turbines receiving the highest LMP on average. This is because the LMP is lower

when wind turbines generate electricity, while the combustion turbines only generate electricity

when the LMP is high. In terms of unit level generation, steam turbines and combined cycle units

produce the most electricity per hour. To give context to the units, households in the United States

consume approximately 1 MWh of electricity in a month on average. Overall I observe a total of

1,324 units during the sample, of which 211 are wind turbines.

[Table 1]

As show by Equation 7, the impact of renewable generation on the price of electricity can

depend on who owns the wind turbines so it is important to know the portfolio of unit types owned

by every market participant. I take advantage of the time-invariant owner code associated with

the generating units in the supply offer data to measure market participants portfolios, as all units

with the same owner code are owned by the same market participant. I consider the maximum

quantity generated by a unit during the sample period as a measure of its capacity to calculate the

portfolio of assets for every owner code. Figure 5 shows the portfolio for the thirty largest market

participants and their corresponding owner code. It is evident that almost all of these market

participants have diverse assets, and that some of the largest market participants own a sizable

amount of wind generation capacity.

[Figure 5]
22The start date is a few months after when the Southern Region was integrated into MISO. The end date is when

MISO stopped reporting unit specific identification numbers to preserve the privacy of the asset owners.

14



In addition to the micro-data on unit level offers, MISO’s market reports include hourly market

level information on average LMP, the marginal energy component (MEC) of the LMP, the hourly

fuel mix, the number of binding transmission constraints, the shadow price of relieving the binding

constraints, wind forecasts, and net exports. I supplement these data with daily weather measures

from the National Oceanic and Atmospheric Administration averaged across all states in MISO, as

well as daily day-ahead natural gas prices at Henry Hub from the Intercontinental Exchange. The

first panel in Table 2 summarizes these data. This market is large, clearing 71 GWh in a hour on

average. A little more than half this is provided by coal based generators, and a fourth by natural

gas. Wind generation provides almost 5 GWh on average, with a maximum of 13.7 GWh. While

wind generation is a small portion of the market overall, there are moments when wind turbines

produce more electricity than all the nuclear plants with MISO, and wind can meet up to 20% of

load during periods of low demand.

[Table 2]

Hourly unit level supply offer data include up to ten price-quantity pairs that outline the quantity

each unit is willing to produce at a given market price. Additional data include minimum and

maximum generation quantities, a flag if the unit ‘must run’, and a flag if the offer curve is a piece-

wise linear or step function. I reconstruct unit specific supply curves for the hour by interpolating

the price-quantity pairs on a common support (e.g. from -10 dollars to 100 dollars at an interval of

1 dollar). When appropriate, I extrapolate or truncate the quantity offered using the maximum and

minimum quantity available. To ensure the function is everywhere differentiable and monotonic

I smooth the offer curve using a normal kernel following Wolak (2001). For a set of price and

quantity pairs, pikt qikt , i = 1 . . .N, for unit k at time t, the smoothed supply function is

ŝkt(p) = ∑
i

qiktΦ

(
p− pikt

h

)

where Φ is the standard normal cumulative distribution function and h is smoothing parameter.23

23I use a bandwidth of three dollars, as does Kim (2017). Changing the bandwidth does not alter the results presented
below.
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I aggregate these unit level supply functions by market participant. Figure 6 shows all offer curves

of two sample market participants for one hour of the day in a month.

[Figure 6]

To find the slopes at equilibrium, I aggregate all of the generating unit supply curves within

MISO to obtain a market supply curve.24 I go through an identical process of interpolating and

aggregating using the demand bids by the Load Serving Entities. To find the market equilibrium,

I find the price where supply is equal to demand as shown in Figure 7.25 At this equilibrium I

calculate the local slope of supply and demand as the difference in the quantity, along the curve,

for a one step increase in price. The equilibrium prices and slopes are summarized in Panel B of

Table 2. This price should correspond to the Marginal Energy Component of the LMP.

[Figure 7]

4 Empirical Impact on Price

I use the slope of supply and demand, summarized in Panel B of Table 2 to calculate an exact

expression of Equation 3 for every hour in my sample. I do the same for Equation 6 where I use

the fraction of wind owned by diverse market participants in that hour for the value of ∑o∈V θo.

Table 2 shows that on average the proportion of wind owned by diverse market participants is

72%. The resulting values are summarized as “Analytical Merit Order Effect, Competitive” and

“Analytical Merit Order Effect, SFE” respectively in Table 3. For a one GWh increase in wind

generation for a given hour, we’d expect the price to decrease by $0.65/MWh if market participants

were acting competitively, and $0.19/MWh if market participants were withholding according to
24Here I define the entire MISO region as a single market. I’ve considered other market definitions including subre-

gions within MISO and price clusters similar to Mercadal (2015). Because the Marginal Energy Component is the
same for all units in MISO, and I am interested in how wind impacts the Marginal Energy Component, any other
market definition is inappropriate.

25Because I am interested in the impact of wind on the price of electricity, I define the equilibrium without using the
supply bids by the wind generating units. In addition I use generation within the market instead of demand, as this is
a measure of demand net of imports. I consider alternative equilibriums, including wind and ignoring exports, and
the results presented below do not change.
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their incentives. For context, the same increase in wind has been associated with a 3.18% price

decline in Spain (Böckers, Giessing, and Rösch, 2013), 0.8 to 2.3e/Mwh price decline in Germany

(Cludius et al., 2014), 1.5 to 11.4 $/Mwh price decline in California (Woo et al., 2016), and 3.9 to

15.2$/Mwh price decline in Texas (Woo et al., 2011).26

To find the total price effect, I take the analytical merit order effect for an hour and multiply

this by the quantity of electricity generated by wind for that hour. This provides values of d pcomp

and d pSFE from Equation 4 and Equation 7. The total price effect is $3.7/MWh in a perfectly

competitive market and around $1/MWh according to the supply function equilibrium framework.

These values vary tremendously, ranging from near zero to over $100/MWh. This is consistent

with the wholesale market where prices fluctuate greatly and can reach over $1,000/MWh.

[Table 3]

As a validity check, I also estimate the empirical merit order effect for MISO. I consider the

following equation to estimate the reduced form price effect of increased renewable generation:

Pricet =β1WindGWht +β2ClearedGWht +β3NetExportst +β4WindForcastErrort+

β5GasPriced +β6Temperatured +λymh + εt

(8)

where Pricet is the hourly, market wide, price measured as the Marginal Energy Component

(MEC) or the mean Locational Marginal Price (LMP). β1, the coefficient on the quantity of wind

energy generated for hour t, is the parameter of interest. ClearedGWht in combination with

NetExportst control for demand within the market and addresses any simultaneity issues. The

remaining variables, hourly wind forecast error, daily gas price, and daily temperature are impor-

tant determinants of the price of electricity. Month of sample by hour fixed effects control for

omitted trending variables that might be correlated with wind generation and electricity prices. As

an example, these fixed effects compare the market price during windy instances of 4pm in Septem-

26It is important to note these numbers include the impact on wind generation on congestion and transmission. Which
in part explains why the estimates are different. In addition, the fuel mix in MISO is more coal heavy than in the
other regions.
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ber of 2014 to the less windy instances of 4pm in September of 2014. Since wind generation is

determined by the weather patterns, the remaining variation is as good as random.

[Table 4]

Table 4 shows the results from estimating Equation 8 on the full sample. I observe a one GWh

increase in wind generation is associated with a decline in price of 1.35 $/MWh on average if

considering the LMP, and 0.77 $/MWh if looking at the MEC. The difference in these values is the

average effect that wind generation has on the congestion and transmissions losses component of

the LMP. This estimated change in price is the same order of magnitude and sign as the analytical

merit order effect in Equation 2. Although comparable, the estimates of the merit order effect

presented in Table 3 and Table 4 are conceptually different. The measure from Equation 8 is

the average effect of wind on price conditional on other factors that are observed in the data. In

contrast, the expression calculated from Equation 3 and Equation 6 is the theoretical price change

if there were a unit increase in wind generation based only on the slope of supply and demand.

4.1 Pass-through of Analytical Merit Order Effect

To test which assumption on conduct, price taking competition or the supply function equilibrium

with withholding, better characterizes the change in price from increased renewable generation, I

estimate the following equation

Pricet =ρ1
[
d p(comp,SFE)

]
t +ρ2ClearedGWht +ρ3NetExportst +ρ4WindForcastErrort+

ρ5GasPriced +ρ6Temperatured +ρ7ShadowPriceo fConstraintst +λmhy + εt

(9)

with identification, notation, and covariates similar to Equation 8. Here I include the analytical

total price effect d p calculated from equations Equation 4 and Equation 7 instead of the quantity of

wind generation. The shadow price of constraints is included as a control to account for how wind

impacts congestion and dispatch that is out of merit order. I am interested in the coefficient ρ1 and

how close it is to one. If the analytical price change is perfectly represented in the market price,
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ρ1 is equal to one exactly. Comparing the value of ρ1 between assumptions on conduct informs

which assumption on firm conduct best represents the market.

Table 5 presents the results from estimating Equation 9 on the full sample using the MEC as

the price measure. Because there are a number very large negative values for the analytical merit

order effect, columns 2, 3, 5, and 6, show the estimates from a 1% left tail winsorized sample. This

effectively replaces any values of d p less than the first percentile with the first percentile.27 Overall

the estimate of ρ1 is closer to one for d pSFE than d pcomp. Consider the hypothesis test Ho : ρ1 = 1

versus Ha : ρ1 6= 1. For the winsorized sample can reject the null hypothesis at the 0.01 significance

level under the assumption of perfect competition, but fail to reject the null hypothesis at the 0.1

under the assumption of strategic withholding in a supply function equilibrium framework.

[Table 5]

Overall, the estimates imply 45 to 54 % of the expected price change under perfect competition

is realized in the market price, while over 100 % of the expected price change is observed under the

assumption of strategic withholding. This suggests that the true price effect is somewhere between

the perfectly competitive price change and the supply function equilibrium price change. Columns

(3) and (6) of each table shows how the estimate of ρ1 changes during peak and off peak hours.28

It is clear that the analytical merit order effect is realized in the market price more so during the

off-peak hours when it more difficult to exert market power. However, the point estimate for the

supply function equilibrium model during on peak hours is equal to one suggesting that the price

effect of renewable generation with strategic withholding is fully realized when market participants

benefit the most from strategic withholding.

27The first percentiles are the −30.10 and −8.08 for the competitive and supply function equilibrium analytical merit
order effects respectively. The large negative values are a result of d p being a local approximation to the price
change and the supply curve being convex.

28I define peak hours as 3pm to 8pm inclusive.
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5 Evidence of Strategic Withholding

While the merit order effects presented in Table 3 are informative, they rely on modeling assump-

tions. Here, I instead use detailed data on the strategies of all market participants for all hours to

directly test for physical withholding. I begin by aggregating the conventional unit supply curves,

described in section 3, by owner codes for every hour. This gives me a hourly supply curve of the

conventional assets for every market participant on a common support, every $3 interval between

0 and 60 dollars. These curves are defined by a set of b = 1 . . .21 price quantity pairs, (pb,qotb),

for owner o at time t. The set of pb are the same for all market participants, for all hours, only the

quantities offered at these prices change.

To directly test for strategic physical withholding, I see how the quantity offered at a given

price changes in response to increased renewable generation. The general estimating equation of

interest is

qotb = γ0ClearedGWht + γ1NetExportst +δWindGWht +Xβ +ηopbymh + εotb (10)

where qotb is the quantity offered, in MWh, by market participant o at time t and price bin pb. X

represents other determinants of a market participant’s strategy including daily temperature mea-

sures, daily natural gas prices, the hourly number of binding constraints in MISO, and the hourly

shadow price of all constraints. Identification comes from owner specific, month-of-sample by

hour, fixed effects for every price bin, ηopbymh. This captures the average quantity offered by mar-

ket participant o at price pb within a month-of-sample hour (e.g. September 2014, 4pm). Therefore

the coefficient δ is identified off the deviation from the market participants month-of-sample hour

average supply curve. Because these data represent the ex-ante strategy of a firm, withholding the

quantity offered at a given price would imply that δ < 0. The supply function equilibrium theory

presented in section 2 suggests the coefficient of δ should be (A) negative only for diverse market

participants that own both wind turbines and conventional assets, (B) increasing in the share of

total wind owned by the diverse market participant, and (C) negative only in response to a market
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participants own wind generation.

[Table 6]

Table 6 shows the estimate of the δ in Equation 10 is negative. Overall, a 1 GWh increase

in wind generation in an hour is associated with a 2.8 MWh reduction it the quantity offered

at a given price on average across all market participants. In column (2), I interact WindGWht

with a indicator variable for if a market participant owns wind turbines and conventional assets.

This shows that diverse market participants reduce the quantity offered by 13 MWh on average,

while the independent market participants only reduce the quantity offered by 1.2 MWh. Finally,

in column (3) I decompose WindGWht into the quantity of electricity generated by independent

wind turbines and the quantity of electricity generated by wind turbines owned by diverse market

participants. This shows that the quantity offered by diverse market participants is reduced the

most in response to diverse wind generation.

The estimates presented in Table 6 are the average effects for all market participants, or at best

separated by if a market participant owns wind turbines. I expect there to be substantial hetero-

geneity in how market participants respond to increased renewable generations because they vary

in the portfolio of wind based generation and their bidding sophistication.29 I interact WindGWht

in Equation 10 with the owner code of every market participant to get a unit specific estimate of

δo. In particular, I estimate the parameters in the following equation

qotb = γ0ClearedGWht + γ1NetExportst +δoWindGWht ·OwnerCodeo +Xβ +ηopbymh + εotb

(11)

and plot the density of the coefficients in Figure 8 by if the market participant is diverse.30 To

ensure I am looking only at relevant bid prices, I discard any observations where the market price is

more than the price bin plus three, pb+3.31 This shows the coefficients for the market participants
29Hortacsu and Puller (2008) show evidence of imperfect bidding behavior by market participants in Texas’s ERCOT

market.
30Both densities use a Epanechnikov kernel with a bandwidth of 2 MWh.
31I add three to the price bin because the price bins are at three dollar intervals.
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that do not own wind generation are near zero, where as the density for diverse market participants

has an obvious left skew and is centered below zero.

[Figure 8]

As shown in section 2, a firm’s incentive to withhold increases with the amount of electricity

they generate from wind turbines. I match the estimates for owner-specific withholding coefficients

for diverse market participants, δ̂o, with the total capacity of all wind turbines owned by each

market participant. Figure 9 shows how there are a few market participants that are withholding

the most in response to wind generation, and these market participants also own the most wind

turbine capacity.

[ Figure 9]

Finally, we expect market participants to only withhold their output when their own wind tur-

bines are generating wind. This is because they are withholding output to increase the revenue

received by their wind turbines and not to prevent price suppression on the conventional assets. To

show evidence for this I estimate the parameters from the following equation

qotb =γ0oClearedGWht + γ1oNetExportst +δopbOwnWindGWht · pb+

χopbOtherWindGWht · pb +Xβo +ηpbymh + εtb

(12)

where δopb represents how owner o changes the quantity offered at price pb in response to elec-

tricity generated from their own wind turbines, and χopb is how a market participant o changes the

quantity offered in response to electricity generated by all other wind turbines. This is estimated

separately for each market participant because it is computational intensive. Figure 10 shows these

estimates for two market participants that own a large share of total and wind generation. It is

clear that these market participants are responding more so to their own wind generation then the

electricity generated form other wind turbines.

[Figure 10]
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These results are robust to concerns regarding transmission congestion. Ideally, I would be

able to spatially differentiate the electricity generators and see how their behavior depends on

transmission congestion near their pricing node. Unfortunately, my data is not that granular in the

cross section. In all the specifications I control the system wide number of binding constraints,

and the total shadow price of the binding constraints, which captures some of the variation of

interest. Re-estimating all of the equations above for the subsample of hours for which there

are zero binding constraints, or a low shadow price, does not change the estimates significantly.

Regardless if a market participant expects their own wind turbines to contribute to congestion and

wish to produce less as a result, they should not submit a different ex-ante offer curve, representing

their cost, to the market operator.

6 Implications for Consumer Surplus

Using the analytical merit order effect for the expected price change due to increased renewable

generation it is possible to make claims regarding consumer surplus in the wholesale electricity

market. I model consumer surplus from electricity during hour t at market price p as

CSt(p) =
∫

∞

p
Dt(x)dx

where Dt(x) is the demand for electricity at time t and price x. To see how consumer surplus

changes due to an increase in the quantity of wind, Wt , I take the total derivative to get

dCSt

dWt
=−Dt(p)

d p
dW t

implying the change in consumer surplus during the entire sample period would be

∆CS =−∑
t

Dt(p)
d p
dW t

dWt . (13)
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When calculating consumer surplus, I consider three alternative values for d p
dW . One is the pre-

diction under the assumption of price taking behavior, where d pcomp
dW t =−

1
∑o S′o(p)−d′(p) . For the sec-

ond, I considered a supply function equilibrium framework with d ps f e
dW t =− [1−∑o∈V θo]

1
∑o S′o(p)−d′(p)

where ∑o∈V θo is the proportion of wind owned by diverse market participants. Third, I use the

estimates of physical withholding for diverse market participants from Equation 11 as an estimate

of ∂So
∂W . Table 7 shows the estimates of δo for all diverse market participants. The sum of these esti-

mates, presented in the bottom of Table 7, suggests that over 30% of wind generation is replacing

withheld offers by diverse market participants.

[Table 7]

All together this provides me with three separate estimates of consumer surplus, all varying in

the degree to which market participants withhold their generation offer

∆CScomp = ∑
t

Dt(p)
1

∑o S′ot(p)−d′t(p)
dWt (14)

∆CSSFE = ∑
t

Dt(p)
1−∑o∈V θot

∑o S′ot(p)−d′t(p)
dWt (15)

∆CSobs = ∑
t

Dt(p)
1−∑o∈V δ̂o

∑o S′ot(p)−d′t(p)
dWt (16)

I calculate the value of Equation 14, Equation 15, and Equation 16 using all hours between January

1st 2014 and December 24th 2016.32 I do this in two ways to account for import and exports of

electricity within MISO. One uses net generation within MISO as a proxy for demand net of

imports. This is making claims on all electricity generated within MISO. The other considers total

demand within MISO.

Table 8 presents all estimates of the total change in consumer surplus, as well as market revenue

over the sample period. I normalized these totals to a value per person per year assuming 50

million people live within MISO’s footprint.33 The potential consumer surplus from increased

32I consider alternative ∆CSobs that weights the withholding estimate by the owner specific wind generation, but the
results do not change.

33This population estimate is my best guess given that 61 million individuals live in the states of Arkansas, Illinois,
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renewable generation, according to Equation 14, is huge, seven to ten billion USD over three years,

equivalent to 50 to 69 USD per person per year. This number is greatly diminished if diverse market

participants withhold perfectly, as calculate by Equation 15. The total consumer surplus would be

only 2 to 2.8 billion USD, or 14 to 19 USD per person per year. Using the observed withholding

coefficients to calculate consumer surplus, as in Equation 16, the surplus per person per year is 34

to 47 USD, suggesting that observed withholding by diverse market participants reduces consumer

surplus by 16 to 22 USD per person per year.

[Table 8 ]

7 Conclusion

The increase in renewable generation capacity within the United States has created immense value

by providing low marginal cost electricity. I first derive an analytical expression for how increased

renewable generation should impact the price of electricity. I show the strategic response of con-

ventional electricity generators to increased wind generation is an important factor to consider in

price formation. In particular, a supply function equilibrium model with horizontally integrated

generating units predicts that diverse market participants will reduce their generation offer in re-

sponse to an increase of their own wind generation. Using detailed data on supply and demand

from 2014 to 2016 in MISO’s wholesale electricity market, I quantify the expected price reduction

under a model of perfect competition and a supply function equilibrium model with withholding.

I directly test for evidence of physical withholding by diverse market participants using month-

of-sample by hour, price, owner fixed effects. Indeed, it is the diverse market participants that

reduce the quantity offered, and they do it more in response to their own wind generation. This has

important implications for consumer surplus and overall economic efficiency if this withholding

leads to less efficient units having merit in the dispatch order. The analytical merit order effect

I calculate and withholding coefficients I estimate imply increased renewable generation has the

Indiana, Iowa, Louisiana, Michigan, Minnesota, Mississippi, Missouri, North Dakota, Wisconsin according to the
2016 US Census Bureau estimates.
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potential to increase consumer surplus by 50 to 69 USD per person per year, however observed

withholding by diverse market participants reduces consumer surplus by 16 to 22 USD per person

per year. This has implications for the market monitor in these wholesale electricity markets, as

increased renewable generation might be associated with anti-competitive behavior.

There are several of policy implications that come from these results as well as avenues for

future research. For one, the ownership of the renewable generation assets is not neutral to the

incidence of consumer and producer surplus. Wind turbines and solar panels owned by diverse

market participants in wholesale markets will not reduce the price of electricity by as much as

the same assets owned by independent market participants or assets compensated by purchasing

power agreements. Moving forward, it is important to quantify how renewable generation impacts

producer surplus in these wholesale electricity markets. Producers can benefit from increased

renewable generation because it reduces their fuel cost, or can be harmed if it decreases the price

they receive. With accurate information on the cost of production, it would be straight forward

to calculate producer surplus and compare them to my estimates of consumer surplus. Finally,

this paper shows that wind generation might not be replacing the most inefficient generation units

because of profit motives. There might be technical reasons for this in addition to the economic

incentives shown here. Better understanding why this might be the case can increase the value

derived from renewable generation.
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Figure 1: The Merit Order Effect of Increased Renewable Generation. Electricity markets are conceived as a Merit
Order, where the lowest cost resources have merit and are dispatched first. When wind turbines generate electricity,
it is believed they displace higher cost units as wind generation shift the supply curve to the right. As a result of the
supply shift the equilibrium price of electricity decreases, from P0 to P1, displacing higher cost electricity generating
units. This does not consider how increased wind generation might impact the incentive to withhold capacity.
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Figure 2: Incentive for diverse market participants to withhold output. When a firm with market power considers the
incentives to withhold their output they trade off a lower price with a larger quantity with a higher price and a smaller
quantity. This trade off is represented in the top figure, for the firm that submits a bid corresponding to the red step, by
the area of the only blue cross hatch and the only red cross hatch rectangles. When the market participant is diverse,
owning wind turbines and conventional generators, they receive additional revenue from a high price on their wind
based assets. In the bottom panel, the green cross hatch represents the revenue from the wind turbine if the firm does
not withhold and the additional red only cross hatch rectangle shows the revenue received from the wind based asset
if they withhold their output.
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Figure 3: MISO’s foot print and nodal prices in MISO during one moment during the sample period. Cross sectional
variance is determined by congestion and transmission losses. Lower prices are darker in color.

Figure 4: The locations of all electricity generating units in MISO according to the Energy Information Agency form
860 for the year 2016. Wind turbines are blue diamonds while conventional generators are red circles. The size of the
point is proportional to the log of the generating unit’s capacity.
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Table 1: Unit Level Summary Statistics

Unit-Hour LMP Unit-Hour MWh
Mean Std. Dev. Mean Std. Dev. Num. Units Unit-Hour Obs.

Steam Turbine 28.55 29.01 224.14 235.98 411 6,072,029
Combustion Turbine 34.91 46.19 148.07 157.24 441 981,114
Hydro Powered 29.87 33.06 23.08 45.06 83 1,252,130
Combined Cycle 29.55 28.91 299.35 146.04 76 672,407
Wind Turbine 22.97 26.80 28.75 39.44 211 4,504,944
Other 31.97 39.91 33.66 65.56 102 292,701
Total 27.42 30.73 136.17 194.97 1,324 13,775,325

Notes: Unit-Hour observations come from MISO Real Time Cleared Offers Market Report From January 1, 2014 to
December, 24, 2016. The sample includes all electricity generating units that produced positive output. LMP stands for
location marginal price and is given is USD per MWh. The MWh produced and price received are reported at 5 minute
intervals within a single hour. The Unit-Hour observations are the hourly average of these values.

Figure 5: The capacity and portfolio of the thirty largest market participants in MISO. Capacity is measured as the
maximum MWh produced by a unit during the entire sample period. The bar labels are the Market Participant’s coded
identification number. This shows large market participants own wind generation and conventional assets. There are
approximately 220 small market participants that appear during the sample period.
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Table 2: Market Level Summary Statistics

Mean Std. Dev. Min Median Max Obs.

Panel A
Market LMP, USD/MWh 27 20.8 -26.8 23.7 1,571 26,117
Market MEC, USD/MWh 29.9 22.7 -28.7 25.8 1,806 26,117
Market GWh Generated 71.4 12.6 42.1 70.4 116 26,117
Coal GWh 36.8 8.46 16.5 36.6 56.8 26,117
Gas GWh 15.9 6.21 4.57 15.3 43.4 26,117
Hydro GWh .988 .5 .305 .843 3.29 26,117
Nuclear GWh 11.4 1.23 6.1 11.7 13.3 26,117
Other GWh 1.35 .852 .295 1.07 7.74 26,117
Wind GWh 4.96 2.79 .132 4.61 13.7 26,117
Wind GWh, Diverse 3.58 2.1 .0551 3.29 10.2 26,117
Wind GWh, Independent 1.37 .722 .0693 1.3 3.61 26,117
Shadow Price of Constraints -.947 1.28 -17.3 -.506 0 26,117
Number of Binding Constraints 3.79 2.65 0 3.17 19.2 26,117
Max Daily Temperature, C 17.6 10.4 -11.7 19.5 33.4 26,117
Natural Gas Price, USD/MMBtu 3.13 1.01 1.49 2.84 7.88 26,117
Net Exports GWh 4.41 1.99 -1.77 4.27 11.6 26,117
Wind Forecast Error, GWh -.00594 .965 -4.13 .00101 4.32 26,093

Panel B
Equilibrium Price, USD/MWh 28.8 8.47 17 26 118 26,117
Supply Slope, ∆MWh/∆

USD
MWh 2,627 1,512 17.5 2,307 7,432 26,117

Demand Slope, ∆MWh/∆
USD
MWh -4.98 7.49 -67.7 -1.25 0 26,117

Notes: Market-Hour observations from January 1, 2014 to December, 24, 2016. Market LMP, from the Nodal
LMP Market Report, is taken as the average of all LMPs with an hour. The MEC is found by subtracting the
Loss and Congestion Component from the LMP for each hour. Generation quantity in GWh comes from the Fuel
Mix Market Report. The decomposition of Wind into Diverse and Independent Owners comes from the Cleared
Offers Market Report. Diverse is defined as wind generation that is owned by a market participant that owns
assets other than wind turbines. Independent wind comes from market participants that own only wind based
resources. Shadow Price, in thousand USD, and Number of Binding Constraints comes from MISO’s Real Time
Binding Constraint Market Report. Temperature data is an average of all temperature readings within MISO’s
footprint from the Global Historical Climatology Network operated by NOAA. Wind Forecast Error and day
ahead Henry Hub natural gas price and comes from Yes Energy. The wind data is missing one day of data from
June of 2015. Equilibrium Price, Supply Slope, and Demand Slope are recovered from the offer supply and
demand curves. The equilibrium is where the offered supply net of wind equals the demand less of net exports.
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Figure 6: Set of all offer curves by two market participants in a single year-month-hour. An offer curve is the hourly
supply curve offered by the market participant for a given hour, this represents the ex-ante quantity they are willing
to produce across all units for a given market price. This also showcases the type of variation used in the bid level
regression that include year-month-hour fixed effects. Darker lines are associated with windier hours.
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Figure 7: The reconstructed market supply and demand curves, in black, for a sample hour form the equilibrium
price. The equilibrium is denoted by the dashed blue lines. The calculated merit order effect for a one unit increase
is shown by the dashed red line. Walking down the merit order effect from the equilibrium shows the expected price
reduction at with the yellow dashed lines.

Table 3: Analytical Merit Order Effect

Mean Std. Dev. Min Max Obs

Analytical Merit Order Effect, Competitive -0.65 1.05 -57.10 -0.13 26,117
Analytical Merit Order Effect, SFE -0.19 0.29 -15.64 -0.03 26,117
d pcomp,USD -3.73 8.87 -477.07 -0.04 26,117
d ps f e,USD -1.02 2.36 -130.66 -0.02 26,117

Notes: Analytical Merit Order Effect comes from the theoretical prediction of the impact of 1 GWh of wind on
the price of electricity with the corresponding assumptions on the price of electricity. Competition corresponds
to Equation 3, the supply function equilibrium (sfe) corresponds to Equation 6. The values of d pcomp,s f e come
from Equation 4 and Equation 7 respectively, where the analytical merit order effect is multiplied by the GWh
of wind based electricity. The slopes of supply and demand come from the equilibrium without wind bids and
demand less of net exports. The value of ∑o∈V θo is set equal to the proportion of wind that is generated by
diverse market participants in a hour.
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Table 4: Estimated Merit Order Effect

(1) (2)
Market LMP, USD/MWh Market MEC, USD/MWh

Wind GWh -1.345∗∗∗ -0.765∗∗∗

(0.167) (0.127)

Market GWh Generated 0.749∗∗∗ 0.839∗∗∗

(0.101) (0.114)

Net Exports GWh 0.390 0.329
(0.222) (0.215)

Max Daily Temperature, C -0.476∗ -0.394
(0.205) (0.215)

Natural Gas Price, USD/MMBtu 3.508 4.136
(2.286) (2.070)

Wind Forecast Error, GWh 0.296 0.557∗

(0.175) (0.226)

Year-Month-Hour Fixed Effects Yes Yes
Observations 26,093 26,093
R-squared 0.36 0.36

Notes: Market-hour data comes from MISO Market Reports and NOAA, from January 1, 2014 to December,
24, 2016. Column one estimates the effect of 1 GWh of wind generation on the hourly Locational Marginal
Price (LMP). Column two estimates the impact of 1 GWh wind on the Marginal Energy Component (MEC) of
the LMP. Standard errors, in parenthesis, are clustered by month of sample. ∗, ∗∗, ∗∗∗ denote p-value less than
0.1, 0.05, and 0.01 respectively for hypothesis test H0 : β = 0 vs. H1 : β 6= 0.
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Table 5: Pass-through of Calculated Merit Order Effect on Market Level Prices

MEC, USD/MWh
(1) (2) (3) (4) (5) (6)

d pcomp,USD 0.10∗∗∗ 0.45∗∗∗

(0.04) (0.14)

d ps f e,USD 0.31∗∗∗ 1.41
(0.15) (0.48)

Off Peak× d pcomp,USD 0.54∗∗∗

(0.17)

On Peak× d pcomp,USD 0.32∗∗∗

(0.12)

Off Peak× d ps f e,USD 1.70
(0.59)

On Peak× d ps f e,USD 1.00
(0.39)

Market GWh Generated 0.45∗∗∗ 0.47∗∗∗ 0.47∗∗∗ 0.45∗∗∗ 0.47∗∗∗ 0.47∗∗∗

(0.04) (0.04) (0.05) (0.04) (0.05) (0.05)

Net Exports GWh 0.55∗ 0.51∗ 0.50∗ 0.55∗ 0.52∗ 0.52∗

(0.22) (0.22) (0.22) (0.23) (0.22) (0.22)

Max Daily Temperature, C -0.45∗ -0.46∗∗ -0.46∗∗ -0.45∗ -0.46∗∗ -0.46∗∗

(0.17) (0.17) (0.17) (0.17) (0.17) (0.17)

Natural Gas Price, USD/MMBtu 2.69 3.14 3.21 2.68 3.08 3.15
(2.33) (2.26) (2.25) (2.34) (2.29) (2.28)

Wind Forecast Error, GWh 0.61∗∗∗ 0.52∗∗ 0.51∗∗ 0.62∗∗∗ 0.55∗∗ 0.54∗∗

(0.17) (0.15) (0.16) (0.17) (0.16) (0.16)

Shadow Price of Constraints -6.80∗∗∗ -7.00∗∗∗ -7.01∗∗∗ -6.78∗∗∗ -6.93∗∗∗ -6.93∗∗∗

(1.05) (1.09) (1.09) (1.05) (1.07) (1.07)

Year-Month-Hour Fixed Effects Yes Yes Yes Yes Yes Yes
d p Winsorized No Yes Yes No Yes Yes
Observations 26,093 26,093 26,093 26,093 26,093 26,093
R-squared 0.44 0.45 0.45 0.44 0.44 0.44

Notes: Data comes from MISO market reports, NOAA, and Yes Energy from January 1, 2014 to December 24, 2016.
The sample includes all market-hour observations from January 1st 2014 to December 24th. Peak hours are between
3pm and 8pm, inclusive. Standard errors, in parenthesis, are clustered by month of sample. ∗, ∗∗, ∗∗∗ denote p-value
less than 0.1, 0.05, and 0.01 respectively for each hypothesis test. The hypothesis test conducted on the coefficients of
d pcomp,s f e and its interactions is H0 : ρ = 1 vs. H1 : ρ 6= 1. The hypothesis test for all other coefficients is H0 : β = 0
vs. H1 : β 6= 0. The sample size varies because of missing wind forecast observations.37



Table 6: Withholding of Offer Curve in Response to Wind Generation

(1) (2) (3)
Market GWh Generated 3.345∗∗∗ 3.345∗∗∗ 3.347∗∗∗

(0.536) (0.536) (0.535)

Wind GWh -2.787∗∗∗

(0.736)

Not Diverse Owner ×Wind GWh -1.256∗∗∗

(0.258)

Diverse Owner ×Wind GWh -13.23∗∗

(4.665)

Not Diverse Owner ×Wind GWh, Indpendent -2.653
(1.586)

Diverse Owner ×Wind GWh, Indpendent -8.437
(12.26)

Not Diverse Owner ×Wind GWh, Diverse -0.778
(0.631)

Diverse Owner ×Wind GWh, Diverse -14.85∗

(6.283)
Owner-Price-Year-Month-Hour Fixed Effects Yes Yes Yes
Observations 28,777,140 28,777,140 28,777,140
R-squared 0.97 0.97 0.97

Notes: Data comes from MISO Real Time Offer Market Reports January 1, 2014 to December 24, 2016. This
sample is all offers by market participants during peak hours, defined as 3pm to 8pm inclusive. Offer curves
are are interpolated and defined at 3$ intervals between 0 and 60 USD. All unit level offers are aggregated
to the market participant. One observation is the quantity offered by all units owned by the same market
participant at a given price for that hour. Diverse market participants own wind turbines and conventional
electricity generating assets. Wind Based GWh, Independent, is wind based electricity generated by market
participants that own only wind turbines. Likewise, Wind Based GWh, Diverse is wind based electricity
generated by diverse market participants. All specifications include fixed effects for the average quantity
offered by the market participant at the price for a given month-hour. Other controls include daily temperature,
daily natural gas price, hourly number of binding constraints, hourly shadow price of all constraints. Standard
errors, in parenthesis, are clustered by month of sample and owner. ∗, ∗∗, ∗∗∗ denote p-value less than 0.1,
0.05, and 0.01 respectively for each hypothesis test. The hypothesis test for all coefficients is H0 : β = 0 vs.
H1 : β 6= 0.
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Figure 8: Kernel density of withholding coefficients for ever market participant separated by the market partici-
pant’s portfolio diversity. Withholding coefficients are how the market participants offer curve changes in response
to increased wind generation controlling for the month/year/hour/price/owner average quantity. Both densities use a
Epanechnikov Kernal with a bandwidth of two dollars.
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Figure 9: Owner specific withholding coefficient and owner total wind turbine capacity for diverse market partici-
pants. Withholding coefficients are estimates from Equation 11, turbine capacity is the sum of each turbine’s maximum
output in the sample period. Note the horizontal axis is in log10 and the vertical axis is log2).
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Figure 10: Withholding coefficients at every price bin for a select number of large and diverse market participants.
Estimates come from estimating Equation 10 with flexible price bins interacted with WindGWh, separately for each
market participant. Confidence interval uses robust standard errors.
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Table 7: Owner Specific Withholding of Diverse Market Participants

Quantity Offered, MWh
(1) (2)

Owner Code=122062454 ×Wind GWh -15.04∗∗∗ (2.805) -20.84∗∗∗ (3.220)
Owner Code=122062463 ×Wind GWh 0.235 (1.095) -1.194 (1.313)
Owner Code=122062474 ×Wind GWh -1.798 (1.120) -3.010∗ (1.302)
Owner Code=122062480 ×Wind GWh -19.03∗∗∗ (3.394) -24.87∗∗∗ (3.317)
Owner Code=122062486 ×Wind GWh -2.111 (1.529) -3.115 (1.673)
Owner Code=122062512 ×Wind GWh -13.64∗∗∗ (1.627) -20.05∗∗∗ (1.855)
Owner Code=122062521 ×Wind GWh -1.291 (1.048) -2.459 (1.228)
Owner Code=122062548 ×Wind GWh -1.809 (1.221) -3.042 (1.509)
Owner Code=122062550 ×Wind GWh -33.76∗∗∗ (1.912) -36.44∗∗∗ (2.050)
Owner Code=122062561 ×Wind GWh -3.642∗ (1.535) -5.146∗∗ (1.643)
Owner Code=122062564 ×Wind GWh 0.162 (1.131) -1.375 (1.347)
Owner Code=122062581 ×Wind GWh -6.737∗∗∗ (1.765) -7.468∗∗ (2.122)
Owner Code=122062590 ×Wind GWh -97.41∗∗∗ (3.234) -104.9∗∗∗ (3.870)
Owner Code=122062603 ×Wind GWh -1.814 (1.364) -3.690∗ (1.628)
Owner Code=122062624 ×Wind GWh -1.824 (1.048) -2.815 (1.361)
Owner Code=122062627 ×Wind GWh -0.524 (1.116) -2.029 (1.401)
Owner Code=122062642 ×Wind GWh -8.172∗∗ (2.851) -7.649∗ (3.136)
Owner Code=122062646 ×Wind GWh -1.437 (1.090) -2.513 (1.405)
Owner Code=122062647 ×Wind GWh -3.649∗∗∗ (0.688) -7.097∗∗∗ (0.954)
Owner Code=122062649 ×Wind GWh -14.39∗∗∗ (1.660) -15.40∗∗∗ (1.603)
Owner Code=125767546 ×Wind GWh -1.519 (1.417) -2.416 (1.570)
Owner Code=576468110 ×Wind GWh -62.20∗∗∗ (2.516) -66.40∗∗∗ (2.737)
Owner Code=576468116 ×Wind GWh -11.70∗∗∗ (2.082) -14.57∗∗∗ (1.771)

Owner-Price-Year-Month-Hour Fixed Effects Yes Yes
Controls for Demand Yes Yes
Peak No Yes
Sum of Coefficients -303.10 -351.40
Standard Error of Sum 14.36 17.10
Observations 9,532,246 2,596,242
R-squared 0.97 0.97

Notes: Data comes from MISO Real Time Offer Market Reports January 1, 2014 to December 24, 2016.
This sample is all offers by diverse market participants. Column (1) uses the full sample, while column (2)
is only for peak hours, defined as 3pm to 8pm inclusive. Offer curves are are interpolated and defined at $3
intervals between 0 and 60 USD. All unit level offers are aggregated to the market participant. One observation
is the quantity offered by all unit owned by the same market participant at a given price for the hour. Sample
includes all diverse market participants. All specifications include a fixed effect for the average quantity offered
by the market participant at the price for a given month-hour, and control for demand. Other controls include
daily temperature, daily natural gas price, hourly number of binding constraints, hourly shadow price of all
constraints. Standard errors, in parenthesis, are clustered by month of sample and owner. ∗, ∗∗, ∗∗∗ denote p-
value less than 0.1, 0.05, and 0.01 respectively for each hypothesis test. The hypothesis test for all coefficients
is H0 : β = 0 vs. H1 : β 6= 0.
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Table 8: Impact of Withholding on Consumer Surplus

Net Demand Miso Demand

Total, Bil.USD Annual USD/person Total, Bil.USD Annual USD/person
Revenue 58.70 393.93 55.33 371.34
∆CScomp, no curtail 7.38 49.51 10.22 68.62
∆CSobs, observed 5.01 33.60 6.94 46.57
∆CSs f e, full curtail 2.03 13.61 2.78 18.66

∆CScomp−∆CSobs 2.37 15.91 3.29 22.05
∆CScomp−∆CSs f e 5.35 35.90 7.44 49.96

Notes: Time period of interest is from January 1st, 2014 to December 24th, 2016. All calculations come from Equation 14,
Equation 15, Equation 16. Revenue is the sum of Market MEC and market generation quantity in MWh for all hours. “Net
Demand” uses the analytical merit order effect and production quantity at the equilibrium where supply net of wind equals
demand less net imports. “MISO Demand” uses the equilibrium where supply net of wind equals total demand within
MISO. Bil. stands for billion. Annual per person calculations divides the total quantity by 2.98 years and 50 million people.
This number is the authors best guess for the population within MISO’s footprint based on the cumulative population of
61 million in the states of Arkansas, Illinois, Indiana, Iowa, Louisiana, Michigan, Minnesota, Mississippi, Missouri, North
Dakota, Wisconsin according to the 2016 US Census Bureau estimates. All numbers are in nominal US dollars.
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Appendices

A Firm’s incentives

Given the notation presented in 2, market participant o’s profit at time t is characterized by

Πo(So(p)) = p[So(p)+θoW ]−Co(So(p)) (17)

Where p is the market price, θo ∈ [0,1] is the fraction of total wind generation produced by market

participant o, W is the perfectly forecast-able quantity of electricity generated by wind turbines,

and Co(So(p)) is the cost of producing So(p).34 All market participants have perfect information

on the cost of production of all other market participants.

Demand is composed of a forecast-able quantity and a random forecast error, D(p) = d(p)+ε ,

where ε is an i.i.d. random variable with expectation equal to zero.35 Taking the strategies of

the other market participants as given, all uncertainty in the market participant’s payoff is from

the demand forecast error, ε . Market participants choose a supply function mapping the ex-post

market price to the quantity they want to produce. The Nash-equilibrium is defined by all market

participants choosing the supply function that maximizes their expected profits, taking the other

(profit-maximizing) supply functions as given. Because the equilibrium in this model is defined

by a system of differential equations with considerable asymmetry, I only consider the firm’s best

response.

To characterize the equilibrium, I show that every realization of ε is associated with one price-

quantity pair which outlines the optimal supply function for that firm, following Klemperer and

Meyer (1989). If we first assume the profit maximizing price-quantity pairs can be characterized

by a supply function qo = So(p), the profit maximizing price associated with a realization of ε will

tell us the optimal quantity profit maximizing. Also noting that the quantity produced by market

participant is defined by the residual demand RD(p,ε) = d(p)+ε−∑ j 6=o S j(p)−W , we can write

34Cost are strictly increase and weakly convex in So(p)
35Demand is strictly decreasing in price.
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the market participants profit function as

p[RD(p,ε)+θoW ]−Co(RD(p,ε)) (18)

with the first order condition with respect to price provides

p−C′(RD(p,ε)) =−RD(p,ε)+θoW
RDp(p,ε)

(19)

where RDp(p,ε) is the slope of the residual demand with respect to price (d′(p)−∑ j 6=o S′j(p)).

This implicitly defines the optimal price as a function of the demand shock ε , p∗o(ε), tak-

ing forecast-able demand, the strategy of other players, and the forecast-able wind generation as

given. The corresponding profit maximizing quantity is RD(p∗o(ε),ε) ≡ q∗o(ε), providing a locus

of parametrized profit maximizing price-quantity pairs: p∗o(ε),q
∗
o(ε). As long as there is a one to

one mapping between ε and p∗o, we have that p∗o(ε) is invertible and the optimal supply function is

So(p) = qo((p∗o)
−1(p)).

Finally, substituting So(p) for RD(p∗o(ε),ε) ≡ q∗o(ε) and d′(p)−∑ j 6=o S′j(p) for RDp(p,ε) in

Equation 19 we have

p−C′(So(p)) =− So(p)+θoW
d′(p)−∑ j 6=o S′j(p)

(20)

B Institutional Details on MISO

B.1 Markets in MISO

Markets in MISO include a day ahead and real time wholesale electricity market to balance gen-

eration supply and load demand, a market for financial transmission rights to manage the risk of

congestion, a market for ancillary services that ensure reliability through frequency regulation,

and an annual capacity market. Other important components of MISO include revenue sufficiency

guarantee charges to those that are causing ramping and the related make-whole payments.
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Both the day ahead and real time wholesale markets serve as multi-unit uniform price auctions.

Each generation unit submits the amount they are willing to generate at a given price and a number

of bid parameters for every hour.36 The day ahead market serves as a forward market, with all bids

submitted by 11 am the day before market operations. The quantities are cleared and the dispatch

order is determined by 3 pm the day before market operations. The real time market serves as

a spot market for last minute adjustments, with all bids submitted at least 30 minutes before the

market hour. All quantities in the forward market are cleared again in the real time market unless

modified.

Concurrently to the submission of generation offers, municipalities and other load serving enti-

ties may submit physical demand bids in the day ahead and real time market while financial market

participants may submit virtual demand bids in the day ahead market only. A few of the physical

bids are price sensitive, however they are predominately price invariant representing inelastic de-

mand for electricity in the short-run. Within MISO there are market participants offering demand

response, however they bid into the supply side of the market with a curtailment price and target

MW reduction.

A computer program uses the generation offers, demand bids, and constraint parameters to

solve for the dispatch generation quantity for each unit and the market price they receive.37 MISO’s

equilibrium concept is a set of locational marginal prices (LMP) at different geographic pricing

nodes. The price at each node represents the market clearing price for that location as well as

the marginal congestion cost and the cost of loss from transporting electricity over a significant

distance. If there are no transmission constraints or transmission losses, the LMP will be the same

at every location within that market.

Intermittent, or variable generation, can be a problem for the operators of transmission net-

works such as MISO, as unexpected deviations from the forecasted generation can impact the

36These parameters include cost estimates, the minimum and maximum they can produce in economic and emergency
scenarios, as well as if the unit must run.

37The current computer programs used to determine dispatch include Security-Constrained Unit Commitment (SCUC)
and Security-Constrained Economic Dispatch (SCED). SCED is used in real time. This was changed in late 2014 to
compensate quickly ramping technologies.
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ability to meet security commitments. MISO addressed this in 2011 by integrating wind generat-

ing units as Dispatchable Intermittent Resources that can bid into the wholesale market. This has

greatly reduced the number of manual curtailments.38 Relatedly, the day ahead forecasts that helps

determine the wind based generation offers have greatly increased in accuracy in recent years.

A survey of the generation offers submitted by wind turbines show they are invariably inelastic,

showing a fixed quantity, however their ex-post generation quantity does differ from their ex-ante

supply offer.

B.2 Utility Structure and Turbine Finance

Most states in MISO other than Michigan and Illinois never passed laws to de-regulate their elec-

tricity market. The implication is that a number of the electricity generating units are part of a

vertically integrated utility, buying the electricity they are selling within MISO’s wholesale market.

This can mitigate the incentives to increase the wholesale price (Bushnell, Mansur, and Saravia,

2008). I use data from the U.S. Energy Information Agency to better characterize the operations

of utilities. Table 9 shows details on the total capacity and wind capacity for the ten utilities in

MISO with the largest installed wind capacity in MISO according to EIA-860 form. I use EIA-861

form to show the total Tera-watt hours (TWh) of electricity they provide during the year 2016, as

well as the percent of the total TWh that is sourced from wholesale markets and the percent that

is deposited as sale for resale. The sale for resale percentage is the amount of electricity that is

not sold to retail customers, and is instead sold to a third party like the wholesale market. We can

see that for a number of large utilities, the quantity that is purchased from the wholesale market is

less than the quantity that is sold into the wholesale market, on average in a year. This implies that

these market participants would benefit from increasing the wholesale price within MISO.

38Wind turbines can curtail the amount of electricity they generate by changing the angle of their blades.
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Table 9: Operations of Utilities with Large Wind Capacity in MISO, 2016

Utility Capacity Wind Capacity TWh % Wholesale Purchase % Sale for Resale

MidAmerican Energy Co 9504 4083 33.2 0.12 0.26
Northern States Power Co - MN 9563 852 48.6 0.27 0.26
ALLETE, Inc. 2098 520 14.7 0.33 0.41
DTE Electric Company 11955 449 47.3 0.21 0.05
Wisconsin Electric Power Co 7397 339 36.8 0.29 0.26
Basin Electric Power Coop 5176 287 29.6 0.37 0.94
Wisconsin Power & Light Co 4173 269 14.8 0.39 0.24
Consumers Energy Co 7639 212 38.6 0.58 0.08
Interstate Power and Light Co 3217 200 17.1 0.53 0.12
Montana-Dakota Utilities Co 547 157 3.5 0.25 0.01

Notes: Capacity is total installed, operating, capacity in megawatts. Wind capacity is the capacity of all wind turbines.
All data comes from EIA-860 and EIA-861 for the year 2016. TWh stands for terawatt-hour, and represents the thousand
of gigawatt-hours sourced and dispositioned that year. Of the total amount sources, the % Wholesale Purchase represents
the amount of electricity they purchased from the wholesale market, the remaining percent (from 100) is the share they
generated. The % Sale for Resale is the percentage of total disposition that was sold to a third party (e.g. the wholesale
market) the remaining share was sold to retail customers.

The predominate way to finance renewable energy electricity generation projects is through

long term purchasing power agreements. Here the owner of the electricity generating resource

signs a contract with an offtaker, who agrees to purchase a set amount of electricity at a fixed

price.39 The electricity generators that sign this contract still sell in the wholesale market, in

which case the off-taker pays the difference between the preset rate and the market rate. When the

wholesale price is higher than the preset rate, the off-taker receives the revenue in excess of the

preset rate. Projects financed in this way have no incentive to increase the market price. Ideally I

would be able to identify these projects in the MISO data, however it is impossible given how the

owner information is coded. Instead I present data from the American Wind Energy Association

WindIQ database on all wind turbine projects on-line within MISO’s footprint.

Figure 11 shows the total capacity in megawatts of all wind projects in MISO and the purchase

type that finances them. Of the projects that are financed by only one purchase type, the most

common purchase type is direct use by the utility that owns the wind project. To the extent to

which the utility is selling the electricity in the wholesale market, these projects benefit from a

higher wholesale market price. There are a number projects that are financed through merchant

39This differs from a hedge contract in that it is a purely financial arrangement.

48



purchase type and purchase power agreements. Merchant projects, but not the power purchasing

agreement projects, also benefit from a higher wholesale electricity price. With the data provided

it is impossible to determine which percentage of the project is financed by a purchasing power

agreement of through merchant sales.

Figure 11: Notes: The sum of total project capacity by generation purchase type, for purchase for all wind turbine
projects online in MISO as of June 2018. Contract: Hedge is a physical contract for differences. Merchant projects
sell electricity to the wholesale market. Direct Use: Utility-Owned is direct use of the wind turbine by the utility that
owns the project. Contract: PPA is a purchasing power agreement that is a virtual contract for differences. There are a
number of projects that have multiple purchase types listed.

B.3 Market Monitoring and Mitigation

To address concerns of uncompetitive conduct in the wholesale electricity market, independent

system operators will contract with an independent market monitor. These monitors continuously

monitor the market for uncompetitive conduct and release semi-annual reports detailing the overall

competitiveness of the market. MISO’s independent market monitor is Potomac Economics. As of

2016, the assessment from Potomac is that MISO’s markets are competitive except for local areas
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that experience chronic transmission constraints (Potomac Economics, June 2017). This is based

off characterizations of the market structure and direct evaluation of market conduct.

The market structure is characterized by a Herfindahl-Hirschman Index (HHI) and the number

of hours when at least one firm’s output is necessary to meet total demand. In MISO, the HHI varies

from 600 (not concentrated) to over 3750 (very concentrated) depending on the region. While the

number of pivotal firm’s is informative, a firm can still influence the price and not be pivotal.

Taking a more micro approach, Potomac directly looks the conduct of market participant by

evaluating their price-cost markup, and looking for instances of economic and physical withhold-

ing.40 The price-cost markup is found by comparing a simulated market price under two different

scenarios, for all hours. One with the market participants actual bids, another using a “reference

level” based on the suppliers start-up cost, no-load cost, and incremental energy cost. These two

simulated market prices are averaged over a year, with the difference of the two averages being

the price-cost markup. Overall MISO finds these mark ups to be small, almost zero (Potomac

Economics, June 2017). This could be the case because only the averages are being compared.

A generation offer is considered to be an instance of economic or physical withholding if it

fails a conduct threshold test. Potomac has different conduct thresholds depending on if a electric-

ity generation facility is in chronically constrained area, call a Narrowly Constrained Area (NCA),

or in an area that is temporarily constrained with a limited number of firms, called a Broad Con-

strained Area (BCA). For example, in a BCA, a plant fails the economic withholding conduct

threshold if there is a binding transmission constraint and the energy offer is more than the mini-

mum of the reference level generation price plus $100/MWh or the the reference level generation

price times four. A market participant in a BCA fails the physical withholding conduct test if a

plant is taking an unapproved deration or outage, there is a binding transmission constraint, and

they are withholding the minimum of 5% of their portfolio or 200 MW (MISO, 2018). Overall, in

2016, Potomac identifies 5 to 10% of the total capacity in MISO was a derating or outage.

40Economic withholding is when a market participant submits an offer above their marginal cost in an attempt to
increase the market price. Physical withholding is when a unit that should be able to produce at the prevailing
market price instead withholds some or all of its output. The model presented in this paper is most concerned with
physical withholding.
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For Potomac to mitigate a generation offer, it must fail a conduct test for physical or economic

withholding and it must fail an impact test. An impact test evaluates if the generation offer, instead

of the reference level default bid, increases the market price beyond an acceptable level. For a

Broad Constrained Area, the impact threshold is the minimum of 3 times the reference Energy

LMP or the reference LMP plus $100/MWh. It’s likely that the type of anti-competitive behavior

I model in this paper would not fail an impact test. This is because the incentive is to allow the

wind generation to replace the market participants more expensive generation plants. This behavior

would not create a significant increase in the market price, but instead prevent it from decreasing

by the amount of the merit order effect. Table 3 suggest this value, on average is $3.73/MWh.
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