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Abstract

Yes. We state closed-form expressions for steady state gains from trade that apply in a class of
dynamic trade models that includes dynamic versions of the Krugman (1980), Melitz (2003), and
customer capital (e.g., Arkolakis, 2010) models. The gains are a function of the domestic trade
share and the long-run elasticity of trade with respect to iceberg trade costs, similar to Arkolakis,
Costinot, and Rodríguez-Clare (2012). In contrast to static settings, in a dynamic world this long-
run elasticity cannot be estimated in one step by relying on tari variation as shifters of trade costs.
We show, instead, that this object can be recovered by combining two tari elasticity estimates:
the long- and the short-run. Thus, the short-run tari elasticity indirectly enters the formula for
the steady state gains from trade. Our main substantive nding is that the gains from trade are
large. They depend crucially on the short-run tari elasticity, and can be arbitrarily large even if
the long-run tari elasticity is high. Accounting for the transition path has a minor impact on the
magnitude of the gains from trade, relative to simply comparing steady states.
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1. Introduction

Dynamic trade models have a tradition going back to at least the 1960s (e.g. Bardhan, 1965, 1966;
Oniki and Uzawa, 1965; Inada, 1968; Stiglitz, 1970). While this line of research has been a continuous
presence in the trade literature, the last decade has seen a veritable explosion of work employing
dynamic quantitative trade models. While modeling and quantication have ourished, there are
few analytical characterizations of the gains from trade in dynamic environments. In particular, we
currently lack compact and intuitive gains from trade formulas in the spirit of Arkolakis, Costinot,
and Rodríguez-Clare (2012, henceforth ACR) for dynamic economies.

This paper makes three contributions. Our theoretical contribution is to state ACR-like closed-
form expressions for the gains from trade (GFT) that apply in dynamic models in steady state. Our
measurement contribution is to show how empirical elasticity estimates at multiple time horizons can
be used to recover the structural parameters required to calculate the GFT in a dynamic setting. The
quantication contribution computes the resulting GFT, highlights the importance of the short-run
trade elasticities, and compares the steady state gains implied by the formula to the gains from trade
that explicitly account for the transition path between the trade regimes.

To illustrate themodel features important for the results, we start with a simple dynamic Krugman
(1980) model. There are multiple countries and rms. Firms face downward-sloping demand in
destination markets and are monopolistically competitive. Within a period, they earn positive ow
prots. In order to enter a destination market, a rm has to pay a stochastic sunk cost. A rm enters
a destination market if the net present value of its expected prots from selling there cover the sunk
costs of entry. This feature introduces forward-looking behavior and gradual adjustment to shocks.
Following a trade cost shock, two forces will act on the welfare of the domestic agents: the gain from
imported varieties, captured by the domestic trade share as in ACR; and the loss in domestic varieties.
It turns out that under the inverse Pareto distributional assumption on the sunk costs, the loss of
domestic varieties is a power function of the domestic trade share. Thus, the domestic trade share is a
sucient statistic for the welfare change, modulo the relevant elasticity. This elasticity is a function of
the Dixit-Stiglitz substitution elasticity between rms, and the curvature of the sunk cost distribution.
Intuitively, this curvature regulates how strongly domestic variety responds to foreign competition.

We then state a general set of conditions under which the closed-form expression for the gains
from trade applies. The rst two conditions coincide with ACR: trade is balanced; and the ratio of
aggregate prots to aggregate sales is constant. The third condition puts structure on supply and
demand. Total bilateral exports can without loss of generality be written as a product of sales per
unit mass of rms and the mass of rms. The result requires that (i) domestic demand per unit
mass of rms is CES (closely related to ACR’s third assumption), and (ii) the mass of rms is a
power function of sales per rm normalized by the source country wage. The assumption (ii) is an
additional restriction required in a dynamic environment. While it is sensible that the mass of rms
would be an increasing function of per-rm sales relative to factor cost, the power functional form of
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this relationship is a non-trivial restriction.
Under these conditions, we show that the ratio of steady state real consumption levels under trade

relative to autarky is given by 
  

 1
(1+)0 ,

where    is the share of domestically-produced goods in total spending, 0 is the elasticity of the
CES demand per unit mass to unit costs, and  is the exponent governing the relationship between
the mass of rms and per-rm sales. Importantly, (1+ )0 is also the long-run elasticity of trade with
respect to the iceberg trade costs.

This formula is essentially ACR. Our theoretical contribution is to derive it in a general dynamic
environment. In the process we show that in a dynamic setting the long-run trade elasticity is
governed by dierent structural parameters than in static settings. Most importantly, the curvature
of the response of entry to destination-specic sales, , does not appear in the ACR formulas. In the
dynamic Krugman model, 0 is simply 1 − , where  is the Dixit-Stiglitz substitution elasticity. We
next show that the conditions of the proposition are satised by two additional important dynamic
models: the customer base model à la Arkolakis (2010) with the cost of acquiring customers taking
a power form; and the Melitz (2003) model with Pareto productivity and inverse Pareto sunk cost
distributions.

Next, we turn to measurement. While the domestic trade shares are fairly straightforward to
obtain, the long-run elasticity of trade with respect to iceberg costs is harder to pin down, because we
do not normally observe iceberg trade costs. Instead, the predominant approach in the literature is to
use tari variation, as taris are often the only ad valorem component of trade costs that is relatively
easily observed.1

The distinction between iceberg trade costs and taris is innocuous in static settings, as the
iceberg elasticity can be easily recovered from the tari elasticity. It is no longer innocuous in
dynamic environments. To make this explicit, we state a generalization of the main proposition to an
environment with both iceberg costs and taris. The GFT formula still requires the long-run elasticity
of trade to iceberg costs. However, in a dynamic world the long-run elasticity of trade with respect
to iceberg trade costs cannot be recovered from the long-run elasticity with respect to taris alone.
In addition, the formula now features an adjustment for tari revenue. This type of adjustment was
derived in a static setting by Felbermayr, Jung, and Larch (2015). We show that in a dynamic setting,
computing this adjustment requires not only the long-run trade elasticity, but also knowledge of 0
and  individually.

To summarize, implementing the dynamic gains from trade formula faces two hurdles: (i) the
long-run iceberg trade cost elasticity cannot be directly computed from the long-run tari elasticity,
and tari elasticities are often the only reliable empirical estimates available; and (ii) implementing

1At least 20 papers have used tari variation to estimate the trade elasticity in the past 25 years. See Head and Mayer
(2014) and Boehm, Levchenko, and Pandalai-Nayar (2023) for bibliographies.
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the tari adjustment requires knowing not just the long-run iceberg elasticity, but 0 and  separately.
We propose a solution: these two parameters can be inferred from two tari elasticities at dierent
time horizons: the short- and the long-run. Intuitively, the short-run tari elasticity is a function of 0,
while the long-run tari elasticity is a function of both 0 and . Thus, with two empirical estimates
– the short- and the long-run – one can recover both deep parameters.

Finally, with this approach in hand, we turn to quantication. We perform three exercises. First,
we report the dynamic gains from trade for a large set of countries according to our formula and
accounting for taris. Our preferred short– and long-run tari elasticity estimates are taken from
Boehm, Levchenko, and Pandalai-Nayar (2023). The gains from trade are large, with gains of 25-30%
for even the largest countries such as the US and Brazil, and gains of over 100% for several countries.
At the same time, the tari revenue adjustment plays a small role in all but a handful of economies.
Second, we highlight the role of the short-run trade elasticity by setting the long-run tari elasticity at
a conventional high value of −5, but varying the short-run elasticity. It turns out that conditional on a
xed long-run elasticity, the short-run elasticity is decisive for the overall gains from trade. In fact, in
the limit as the short-run elasticity goes to -1, the gains from trade become innite even with a high
long-run elasticity. Most available estimates of the short-run elasticity are low (Fitzgerald and Haller,
2018; Boehm, Levchenko, and Pandalai-Nayar, 2023; Auer, Burstein, and Lein, 2021), suggesting that
gains from trade are likely quite large, regardless of the long-run elasticity.

Third, we compare the gains implied by the formula with the gains from trade that also account
for the transition path from one trade regime to another. The length of the transition path – and
therefore its quantitative importance for welfare – is disciplined by the amount of time it takes the
trade elasticity to converge to the long-run value. Boehm, Levchenko, and Pandalai-Nayar (2023) nd
that the transition takes 7-10 years. While steady state comparisons are unambiguous, the dynamic
path of consumption will dier depending on whether the world is transitioning from autarky to
trade, or from trade to autarky. Thus, we simulate both scenarios.

There are two main ndings. First, the disparity between steady state formula-implied gains and
the full welfare change over the transition path is relatively minor. Second, the steady state formula
overstates the dynamic gains of moving from autarky to trade, but understates the gains from staying
open to trade compared to the dynamic path of moving from trade to autarky. The intuition is as
follows. When moving from autarky to trade, we start with the autarky steady state, and transition
to the trade steady state slowly. Over this transition, consumption is lower than eventual steady
state consumption, because agents need to invest in setting up exporting rms, and doing so requires
forgoing consumption over the transition path. As a result, the dynamic gains of going from autarky
to trade are below the steady state comparison. Moving from trade to autarky, countries’ accumulated
exporting capital has become useless, but they need to increase the mass of domestic rms to replace
imports. Thus, when shocked with an unanticipated increase in trade costs, countries also decrease
consumption below the eventual autarky steady state, as they accumulate domestic rms. This
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reduces the value of the consumption path towards autarky – eectively the denominator of the GFT
– relative to steady state, and thus raises the implied GFT.

Literature. While the eld of international trade has always been interested in the gains from trade,
the literature on the quantication of GFT was given fresh impetus by the landmark contribution of
Arkolakis, Costinot, and Rodríguez-Clare (2012), who stated closed-form expressions for the GFT in
a wide class of static trade models.2 This led to an active literature exploring various analytical and
quantitative properties of the sucient statistics formulas, such as sectoral comparative advantage
(Costinot and Rodríguez-Clare, 2014; Levchenko and Zhang, 2014) or trade elasticities (Ossa, 2015;
Imbs and Mejean, 2017). The formulas have also been extended in a variety of directions, such as
variable markups (Arkolakis et al., 2019), non-constant trade elasticities (Melitz and Redding, 2015;
Feenstra, 2018; Adão, Arkolakis, andGanapati, 2020), gains frommultinational production (Ramondo
and Rodríguez-Clare, 2013), non-representative agent settings (Galle, Rodríguez-Clare, and Yi, 2023),
and accounting for tari revenue (Felbermayr, Jung, and Larch, 2015; Lashkaripour, 2021), to name
a few. In static settings, Melitz and Redding (2015) and Feenstra and Weinstein (2017) highlight that
allowing for changes in the mass of (potential) rms leads to welfare gains that dier from the ACR
formula, implying that the GFT can then be sensitive to microfoundations. In our dynamic trade
setting the mass of rms also changes, contributing to the gains from trade. Aside from the fact that
ours is a dynamic setting, our contributions relative to these papers are to (i) analytically characterize
the mapping between the mass of rms and the domestic trade share, yielding ACR-like GFT welfare
formulas that account for endogenous mass adjustment; and (ii) establish this mapping in a class of
models that covers multiple microfoundations.

The literature on analytical GFT characterizations in dynamic environments is more limited.
Arkolakis, Eaton, and Kortum (2011) and Chen et al. (2024) develop results for a dynamic version of
the Eaton-Kortummodel, andAtkeson and Burstein (2010) andAlessandria, Choi, and Ruhl (2021) for
a dynamic heterogeneous rm model. On the quantitative side, a number of papers compute gains
from trade numerically in dynamic models, including accounting for the transition path (see, among
others, Alvarez, 2017; Brooks and Pujolas, 2018; Mutreja, Ravikumar, and Sposi, 2018; Ravikumar,
Santacreu, and Sposi, 2019, 2024; Anderson, Larch, and Yotov, 2020). We provide a more general
characterization that applies to steady state comparisons in a broad class of dynamic trade models.
Unlike the Eaton-Kortum setting, our analytical results cover cases inwhich there is net rm entry and
prots. We also emphasize the importance of measurement, in particular the information contained
in trade elasticities at multiple horizons in conditioning the steady state gains from trade.

The rest of the paper is organized as follows. Section 2 fully lays out the simplest dynamicmodel to
illustrate the mechanics behind the result. Section 3 states the general proposition and establishes the
mappings to other dynamic models. Section 4 quanties the gains from trade. Section 5 concludes.

2Antecedents that stated similar formulas in specic settings include Eaton and Kortum (2002) for the Ricardian model,
Eaton and Kortum (2005) for the Armington model, and Arkolakis et al. (2008) for the Melitz model.
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2. Warmup: Welfare Gains in a Dynamic Krugman Model

This section derives the gains from trade formula in the simplest possible setup: a dynamic version
of the Krugman (1980) model. It serves to introduce the notation maintained throughout the paper,
and to demonstrate what features are essential for the result to go through.

2.1 Model Setup

Consider a dynamic economy with  countries indexed by  and , and discrete time indexed by .
Each country is populated by a representative consumer who consumes  and inelastically supplies
labor  .

Households. Consumers in country  maximize

max
{}

∞
=0


1−



1 − 

subject to the budget constraint

 +


1 + 
=  +Π + 

 + −1 , (2.1)

and a no-Ponzi game condition. Here,  is the consumption price index in country ,  are
bond holdings,  is the nominal interest rate,  the nominal wage, Π aggregate prots, and


 are government tari revenues rebated to the household. The parameters  and  denote the
household’s discount factor and the coecient of relative risk aversion, respectively. We assume that
rms producing in country  are exclusively owned by the consumer in , and hence the consumer
receives all prots as income.3

Optimal behavior implies that consumption follows the Euler equation


1 + 


−

+1 = −
 ,

where 1 +  =

1 + 




+1 is the real interest rate in country .
The consumption bundle  is a CES aggregate of quantities  () supplied by rms indexed

by , from all countries  serving market :

 =




∫
Ω 

 ()
−1
 

 
−1

.

Ω  denotes the endogenous set of varieties produced in country  and available for purchase in
3All the results go through if we instead assume that the home consumers receive a constant fraction of aggregate prots.
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country  and  > 1 is the demand elasticity. Demand for each variety  and the ideal price index
satisfy:

 () = 



 ()


−
, (2.2)

 =




∫
Ω 



 ()

1−


 1
1−

,

where 
 () is the price faced by the consumer in country .

Firms. Firms are monopolistically competitive, face the downward-sloping demand curve given by
(2.2), and take the ideal price index as given. The production function is linear in labor. Shipments
from country  to  are subject to iceberg transport costs   , so that

 () = 1
 

  () ,

where  () is the rm’s labor input for producing for market . The marginal cost of serving market
 is therefore   . Prot-maximizing rms charge a constant markup over marginal cost:


 () =



 − 1  ,

where 
 () is the price received by the exporter. As a result, per-period prots are a constant

fraction of rm revenue:

  () = 1


 ()  () = 1


 () . (2.3)

Entry. Every period there is a unit mass of potential rms that can enter market  from . Entry is
subject to a stochastic sunk cost of 

 () units of country ’s labor. A rm  from  that pays the
sunk costs in period  sells to  from  + 1 until it exits. Exit is random and occurs with probability .
The value of exporting is therefore

 () = 1
1 + 


 +1 () + (1 − ) +1 ()


. (2.4)

A potential entrant enters if the value of exporting exceeds the sunk cost of entry. The marginal rm’s
sunk costs ̄

 satisfy
 () =  ̄


 () . (2.5)

Denote by  the mass of exporters from  to . Its law of motion is

 = (1 − ) −1 + 

̄
−1


,
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where  denotes the cumulative distribution function of 
 .

Taris, Aggregation, andMarket Clearing. Let   denote gross ad valorem taris.4 Then the prices
paid by the consumers and prices received by the exporters satisfy 

 () =   
 (), and the

government collects (  − 1)
 () revenue per unit sold.

Total exports from  to  non-inclusive of tari payments are:

 =
∫
Ω 

 ()  =   . (2.6)

The tari revenue of government  is


 =





  − 1


 .

Prots in country  are

Π =



∫
Ω

  ()  −



∫
Ω





 () . (2.7)

whereΩ
 =


 ∈ [0, 1] : ̄

 ≥ 
 ()


is the set of entrants. Trade is balanced, so that in all countries

 and periods 

 +Π + 
 =


=1

 . (2.8)

Trade balance trivially implies that all bond positions are zero:  = 0. We include the bond in the
households’ optimization problem only to pin down the interest rates.

2.2 Steady State Welfare Gains from Trade

In this subsection, we abstract from tari revenues:   = 1 for all  and , implying that 
 = 0. Since

all operating rms in the model have identical quantities and prices, we will drop the rm subscript
 going forward. The steady state objects are denoted by suppressing the time subscripts. From the
budget constraint (2.1), real consumption is:

 =
 +Π


. (2.9)

We will denote the gross proportional gains from trade as the ratio of real consumption under the
current trade regime relative to autarky:

 =





.

4In this notation, a 5% ad valorem tari implies   = 1.05.
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In the tradition following Eaton and Kortum (2002) and Arkolakis, Costinot, and Rodríguez-Clare
(2012), we seek to express (2.9) as a function of the domestic trade share and exogenous parameters.
We start with the standard step that the domestic trade share is:

   ≡
  


=

 



−1

1−
1−



, (2.10)

where  ≡  is total expenditure. Solving this expression for the price index and combining the
result with equation (2.9) implies that real consumption satises:

 ∝
 +Π


− 1

1−
  

1
1−
 

. (2.11)

Fromhere, we proceed to show that (i) aggregate prots are a constant fraction of the labor income;
and that (ii) the mass of domestic rms   is a power function of    . To compute prots and the
mass of entrants, we must make a distributional assumption on the sunk costs of entry. We assume
that the sunk costs are drawn from an inverse Pareto distribution:

 () = () , (2.12)

where  > 0 is the Pareto dispersion parameter and  > 0 is the location parameter, that denes over
the domain of this distribution: 0 <  ≤ 1

 . We assume throughout that  is suciently small to
ensure that not all potential entrants nd it worthwhile to enter in any given period (̄

 <
1
 for all

). Under this assumption the steady state mass of rms becomes

 =
1



̄




. (2.13)

Since 1 +  = 1/ in the steady state, the value of selling to  is:

 =


1 −  (1 − )  =


1 −  (1 − )
1

 ,

and the threshold sunk cost of entry is:

̄
 =



1 −  (1 − )
1





. (2.14)

Equations (2.13) and (2.14) imply that themass ofrms is a power function of per-unit sales normalized
by the cost of production:

 ∝






. (2.15)

Combining (2.7), (2.8), (2.13), and (2.14) leads to the desired result that total prots are a constant
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multiple of labor income:

Π =

1



1 − 

+1


1−(1−)


1 − 1



1 − 

+1


1−(1−)
 . (2.16)

Finally, starting with the expression for steady state   in (2.13), and combining it with (2.14),
(2.16), and the expression for domestic sales   leads to:

  ∝ 


1+
  . (2.17)

Combining (2.11) with (2.16) and (2.17) yields the result that real consumption is proportional to
the domestic trade share:

 ∝ 
1

1−
  

− 1
1−

  = 
1

(1−)(1+)
  . (2.18)

Since in autarky    = 1, (2.18) is also the gains from trade.

Note the dierencewith the ACR formula for the static Krugmanmodel, 
1

1−
  , whichwould obtain

in a setting in which   is either exogenously xed or constant across equilibria. Compared to the
classic case and holding  xed, the gains from trade are moderated because international trade leads
to the reduction in domestic varieties. The log change in real consumption following a change in the
domestic trade share can be written as:

 ln =
1

1 − 
 ln   − 1

1 − 

 ln  

 ln  
 ln  

=
1

1 − 
 ln  

Gain from foreign varieties

− 1
1 − 



1 + 
 ln  

Loss of domestic varieties

. (2.19)

Therst term is the usual direct eect of the change in the interior trade share, interpreted as the utility
gains from the availability of foreign goods. It increases with trade openness (recall that an increase
in trade openness is a fall in   ). The second term is the utility reduction from the loss of domestic
varieties, as an increase in trade openness unambiguously lowers   . It contributes negatively to the
gains from trade. In this case, however, the net gain from openness is positive.

Two further points are worth noting. First, the loss of domestic varieties was modeled and quan-
tied by Melitz and Redding (2015) and Feenstra and Weinstein (2017) in specic static models. We
build on these contributions by deriving a parsimonious functional form (2.17) that relates domestic
variety to the domestic trade share, which in turn leads to the closed-form GFT expression (2.18)
requiring only data on    . As we show below, this property extends to several alternative micro-
foundations, implying these models admit the same analytical GFT formula. Second, (2.19) together
with (2.15) highlight the role of the Pareto dispersion parameter . As evident from (2.15),  is the
elasticity of the mass of domestic varieties to the domestic prot opportunities. When  is high,
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domestic variety is very sensitive to the prot opportunities, and so the fall in prots due to import
competition leads to a large fall in domestic variety, and a large second term in (2.19). When  is low,
the opposite is true: import competition does not move domestic variety much, and thus the second
term in (2.19) is smaller.

The long-run trade elasticity. An important reason behind the appeal of the ACR result is that the
exponent on the domestic trade share is the inverse of the trade elasticity. We now show that the
dynamic GFT formula shares this feature. Recall that bilateral trade ows are given by (2.6). The
long-run trade elasticity with respect to iceberg trade costs therefore has the following components:

 ln

 ln 
=

 ln 

 ln 
+  ln 

 ln 

It is immediate that the  ln 

 ln 
= 1 − , as usual. From (2.13) and (2.14),  ln 

 ln 
= (1 − ). Together,

the long-run trade elasticity is
 ln

 ln 
= (1 − ) (1 + ) ,

and thus the gains from trade formula (2.18) features the inverse of the trade elasticity. Note that
as in ACR and everywhere else in the literature, this is a partial elasticity, that ignores the general-
equilibrium changes in expenditures, wages, and prices.

3. General Result

We now state the set of conditions under which the dynamic GFT formula applies.

Proposition 3.1. Consider a class of dynamic models that satisfy the following three conditions in their steady
state:

A.1 For all countries , trade is balanced (expenditure = revenue):

 =  +Π ,

where  =  .

A.2 For all countries , prots are a constant share of GDP:

Π


= 

A.3 For all country pairs

 , 


trade ows satisfy

 =  (3.1)
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where

 ∝






(3.2)

and domestic per-unit-mass sales satisfy

  ∝ 






0
(3.3)

for some constant  > 0 and where 0 ≡  ln / ln  < 0 is the elasticity of exports per unit mass
with respect to iceberg trade costs.

Then
 ∝


  

 1
0 (1+) (3.4)

where    =



, and 0(1 + ) is the long-run elasticity of trade ows with respect to iceberg trade costs.

Proof. See Appendix A. □

Note that since    = 1 in autarky, (3.4) is also the gross proportional gains from trade in steady
state. Assumptions A.1 and A.2 are identical to R1 and R2 in ACR. Assumption A.3 puts structure
on supply and demand. Condition (3.1) stipulates that total exports from  to  can be written as
a product of some generic mass  and sales per unit mass of sellers  . This in and of itself is
without loss of generality, as we can in principle always express total exports as some (average) sales
per rm/variety/HS code/etc. times the total number/mass of those units. The rest of A.3 puts
structure  and  . Condition (3.3) states that domestic demand per unit mass is CES. It essentially
corresponds to ACR’s R3. Note that the proposition is stated in terms of the functional form for
domestic sales. This is done to cover a greater range of models. In some models, such as Krugman
and customer capital, international trade ows  take the same form, modulo iceberg costs   . In
the Melitz model, domestic sales per unit mass satisfy (3.3), while export sales contain additional
terms, as will become clear below.

Finally, condition (3.2) is an additional restriction required in a dynamic environment. It puts a
specic structure on how entry occurs. Qualitatively, it is intuitive: entry increases in the ratio of sales
to unit costs. Section 2, in particular equations (2.3) and (2.5), illustrate how this can arise: the value
of exporting scales with per period prots, which are in turn proportional to sales (numerator). Sunk
costs are paid in terms of domestic labor (denominator). However, the proposition requires more
than an increasing relationship: it requires that entry is a power function of this ratio. This places a
restriction on the nature of the entry decision. Section 2 shows that the inverse Pareto distribution of
sunk costs satises this restriction.
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3.1 Mapping from specic models

Section 2 shows that the dynamic Krugman model satises the conditions of Proposition 3.1. In that
model, 0 = 1−. We now go through two additional commonly used dynamicmodels: the customer
base model and the Melitz-Pareto model.

Customer base model. In the customer base model (e.g. Arkolakis, 2010; Drozd and Nosal, 2012;
Gourio and Rudanko, 2014; Fitzgerald, Haller, and Yedid-Levi, 2023), rms gradually build up the
mass of customers they serve. Let there be a country  representative rm that faces downward-
sloping demand (2.2) per unit mass of customers in country . As above, its prots per unit mass
of customers are given by (2.3). Let  be the mass of customers that the rm serves. This mass
depreciates at rate  and can be built up by investment  , that acts with a one-period lag. Thus, the
customer mass evolves according to:

 = (1 − ) −1 + −1. (3.5)

Investment has a cost  (). The rm chooses the path of customer base investment to maximize the
present value of prots:

max
{+}

∞
=0


 ,+


+ + −  


+

 
(3.6)

subject to (3.5), where 
 ,+ is the rm’s discount factor. The rst-order conditions of this problem

can be manipulated to yield:
  ′





=  (3.7)

 =
1

1 + 


 +1 + (1 − ) +1


, (3.8)

where we assumed that the discount factor of the rm coincides with that of the representative
consumer. Let the cost of accessing customers be given by the following functional form:






=



(1 + ) 



 1
+1 . (3.9)

Then, in steady state:

 =
1

 =








. (3.10)

In turn, combining (2.3) and (3.8) yields the proportionality of  to  , verifying assumption A.3 in
Proposition 3.1.

To see that Assumption A.2 is satised, note that aggregate prots can be written as:

Π =




1

 − 



(1 + ) 



 1
+1


. (3.11)
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Since  is proportional to  , and 
1


  is proportional to / (see 3.10 for both),



 1
+1 is

proportional to  , and  cancels out in the consumer base cost term.
The deeper microfoundation, and thus the interpretation of some equilibrium quantities (e.g., )

or parameters (e.g. ) are dierent from the Krugman model. However, this model is isomorphic to
dynamic Krugman in its predictions for aggregate trade ows, and the functional forms of the trade
elasticities.

Melitz-Pareto. The dynamic Melitz (2003) model diers from the Krugman model in Section 2 in
two ways. First, rms are heterogeneous in productivity, denoted (). Continuing to assume
constant Dixit-Stiglitz markups, the rm ’s price becomes:


 () =



 − 1
 

() . (3.12)

We assume that () is distributed Pareto:





= 1 −







. (3.13)

Second, the rm in  needs to pay a per-period xed cost  denominated in units of ’s labor in order
to serve market .

As in Section 2, each rm must pay a stochastic sunk cost 
 () to enter market , drawn from

an inverse Pareto distribution (2.12). Paying this sunk cost also reveals to the rm its productivity for
serving market . Thus, the entry decision is made based on expected prots. Further, due to the
per-period xed cost not all rms that pay a sunk cost will end up exporting. The marginal rm earns
variable prots that just cover the per-period xed costs: 1

  () = . Combining (2.2) and (3.12)
(and noting that without taris 

 () = 
 ()) leads to the productivity cuto for selling from  to

:


 =



 − 1 









 1

−1

. (3.14)
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Total sales from  to  are:

 =
∫

 () 

= 

∫ ∞














=  



 







 − ( − 1)

 1
1−



 − 1
 




 −1−
−1




1−




, (3.15)

where the last line comes from applying the Pareto distribution. Relative to the Krugman model,
there is the extra complication that the average sales per rm are aected by entry/exit of themarginal
rms – movements in 

 . Combining (3.14) and (3.15) leads to the following expression for 
 :


 =






 − ( − 1)




 1


. (3.16)

In turn, combining (3.15) and (3.16) produces the following expression for  :

 ∝





 −(−1)
−1




 



−
. (3.17)

Equation (3.17) claries that in the Melitz model, cross-border sales involve an additional term
/

 −(−1)
−1 that is absent from Krugman and customer capital models. This term arises due to the

extensive margin, whereby the cuto for serving a market is a function of market size  , scaled by
the domestic unit costs: if market size increases, more and more marginal rms will enter, increasing
sales per unit mass.5 Even though foreign sales do not follow a simple CES demand functional
form, domestic sales do. If A.2 holds, then the ratio / is constant and   conforms to (3.3) in
Proposition 3.1. We show below that A.2 holds.

In steady state, at the time sunk costs are paid, the expected prots are:



  ()


=

1

 − 








. (3.18)

Combining with (3.16) leads to the familiar result that expected prots are a constant fraction of
5Recall sales per unit mass  =

 ∞













is not the same as the average sales of rms serving a market, which

is /(1 − (
 )). When market size increases, 

 falls – less productive rms enter. This increases  since a higher
fraction of rms per unit mass sell to the market. At the same time, the average sales fall, as less productive rms can serve
larger markets.

14



expected sales: 

  ()


= −1




 . Since (2.13) and (2.14) hold unchanged in the Melitz model (with
the qualication that here,  is sales per unit mass of rms rather than representative rm sales),
they lead to (3.2), and Assumption A.3 is satised.

To see that A.2 is satised, note that the steady state prots to country  rms from selling to  are:

Π  =
 − 1


1

 − 

∫ ̄


0
  ()  (3.19)

=
 − 1


1

 − 

 + 1
 − 1


 (3.20)

=


1 − 



 + 1


 − 1


 , (3.21)

where the second line uses the distributional assumption on the sunk costs  . Summing across
destinations and imposing trade balance delivers Assumption A.2.

We obtain the familiar result that the elasticity of  with respect to trade costs 0 is no longer a
function of the elasticity of substitution, but of the dispersion parameter in the Pareto productivity
distribution. Relative to the Krugman model, following a change in trade costs, average sales per unit
mass  will change both because of the intensive margin (all rms’ sales change) and the extensive
margin (marginal rms entering/exiting). As in Arkolakis et al. (2008) and ACR, when it comes to
 , those two margins’ net eect is captured by −.

Dierently from those static models, and along the lines of the Krugman model in Section 2, the
gains from trade are conditioned not just by , but also by the curvature of the sunk costs , due to
the adjustment of the mass of rms that pay the sunk costs to obtain productivity draws   . Thus,
the Melitz extension retains the intuitions laid out in Section 2.

3.2 Generalization to Taris

Often, trade elasticities are estimated using variation in taris. To build up towards measurement
and quantication, we state a generalization of Proposition 3.1 to a case with taris.

Proposition 3.2. Consider a class of dynamic models that satisfy the following three conditions in their steady
state:

A.1’ For all countries , trade is balanced (expenditure = revenue):

 =  +Π + 
 ,

where  =  and 
 =




  − 1


 .

A.2’ For all countries , prots are a constant share of labor income:

Π


= 
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A.3’ For all country pairs

 , 


trade ows satisfy

 =  (3.22)

where

 ∝






(3.23)

and domestic per-unit-mass sales satisfy

  ∝ 






0
(3.24)

for some constant  > 0 and where 0 ≡  ln / ln  < 0 is the elasticity of exports per unit mass
with respect to iceberg trade costs.

Then

 ∝ 
1

0 (1+)
 


1 −






−1− 
1+

1
0



, (3.25)

and 0(1 + ) is the long-run elasticity of trade ows with respect to iceberg trade costs.

Proof. See Appendix A. □

Note that since    = 1 and 
 = 0 in autarky, (3.25) is also the gross proportional gains from

trade in steady state. Because taris generate revenue, (3.25) diers from (3.4) by the multiplicative
factor that is a function of one minus the tari revenue share in nal expenditure. This multiplicative
factor is greater than 1 as long as tari revenue is positive. Thus, it amplies the gains from trade
relative to the no-tari formula, conditional on the same    . In static models, this tari adjustment to
the ACR formula was to our knowledge rst stated by Felbermayr, Jung, and Larch (2015). We show
that it operates in a similar way in a dynamic setting. As in Felbermayr, Jung, and Larch (2015), the
exponent on the tari adjustment term cannot be recovered from the long-run trade elasticity alone.
We show below how to recover this exponent from estimates of short- and long-run trade elasticities.

The data requirements for computing (3.25) are low. In addition to the domestic trade share, all
it additionally requires is the total tari revenue as share of GDP. This information is often available
from statistical authorities. For the quantication below, we will require bilateral ad valorem tari
rates. Thus, it will be convenient to state the following alternative functional form for this adjustment
factor:

1 −





=



1
 

  ,

where   ≡  


is the tari-inclusive expenditure shares on goods from .
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We note that the Melitz-Pareto model with taris is not covered by Proposition 3.2, because taris
also aect the extensive margin conditional on drawing the sunk cost, in a way that is not captured by
(3.24). Proposition A.1 in Appendix A is an extension of Proposition 3.2 that also covers the Melitz-
Pareto model with taris. The extended proposition is identical to Proposition 3.2 except for a strictly
more general functional form for average sales  . This generalization only aects the exponent on

the tari adjustment term

1 − 






, and leaves the component of the GFT related to    unaected.

As we show in the quantication below, the tari adjustment term is not quantitatively important. In
addition, the non-linearity introduced by the extensivemargin in theMelitz-Paretomodel vanishes as
the rm size distribution approaches a power law with exponent close to −1, the empirically relevant
case (Axtell, 2001; Di Giovanni, Levchenko, and Rancière, 2011; Di Giovanni and Levchenko, 2013).
Appendix A contains the detailed discussion.

4. Measurement and Quantification

This section takes the dynamic trade formulas to the data. Wemake four main points. The rst is that
in a dynamic world the long-run trade elasticity with respect to iceberg costs required by the formula
cannot be recovered from a single empirical estimate of the elasticity of trade with respect to taris.
Second, we compute the gains from trade under our preferred estimates of the trade elasticities, taken
from Boehm, Levchenko, and Pandalai-Nayar (2023). This exercise shows that the gains from trade
are large, and that the quantitative impact of the tari adjustment to the GFT formula in (3.25) is
generally minor. Third, we highlight the point that in the dynamic world, the long-run tari elasticity
is not sucient for computing the gains from trade, and that GFT can vary widely even conditional
on the same long-run tari elasticity. Along the way, we also compare the dynamic gains from trade
to those obtained from the static ACR models. Finally, the fourth part of the section compares the
GFT implied by the formula to those computed numerically taking into account the transition path.

4.1 Data

The quantication relies on several sources of data. First, computing the gains from trade using (3.4)
requires the domestic absorption share    . Typically, domestic absorption is measured from standard
datasets such as the OECD Inter-Country Input Output tables (ICIO). The ICIO contains information
on all bilateral sectoral expenditures, covering manufacturing and services, and intermediate and
nal goods. Importantly, it also contains information on expenditure on domestic sectors. However,
the ICIO does not contain information on bilateral tari revenues, so aggregate expenditure and
expenditure shares constructed from this source are not tari-inclusive.

Computing the gains from trade when ad valorem taris are non-zero (3.25) requires the total tari
revenue as a share of total (tari-inclusive) spending. Aggregate tari revenues are available from
the World Bank. However, the full quantitative implementation of the dynamic model additionally
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requires all tari-inclusive bilateral expenditure shares   . Therefore, aggregate tari revenues are
not sucient for our purposes.

To construct bilateral tari revenue, we obtain tari data from the TRAINS dataset. This database
reports the applied tari by country pair at the Harmonized System (HS) 6-digit level. We link these
data to trade ows at the HS-6 level from the BACI version of UN-COMTRADE. To compute tari
revenue, we multiply the bilateral, product-level applied taris obtained from TRAINS with bilateral
trade ows from BACI:


 =




BACI
 


TRAINS
  − 1


,

where 
 is bilateral tari revenue from goods trade and  is an HS-6 product. BACI does not contain

information on services trade ows. We assume that services trade ows are subject to no tari, so
the aggregate bilateral tari rate imposed by  on  consistent with goods tari revenues 

 is:

  − 1 =




 ICIO
 

,

where  ICIO
  is total expenditure of  on goods and services from , sourced from the OECD ICIO

database. We can then calculate all tari-adjusted trade shares   :

  =
  ICIO

 
   ICIO

 

.

Our baseline sample includes 67 countries and a rest-of-the-world in 2006.6 We validate our tari
revenue measures by comparing 

 =


 

 with national tari revenue obtained from the World

Bank. As the World Bank tari revenue data are provided in local currency, we convert them to US
dollars using an annual exchange rate obtained from the same source. Appendix Figure A1 illustrates
that our baseline tari revenue measures are very similar to those obtained from the World Bank.

The implementation of the full dynamic path in the quantitative model in Section 4.4 additionally
requires data on real GDP, which we obtain from the Penn World Tables.

4.2 Measurement: Trade Elasticities

As inACR, the gains from trade in this class of dynamicmodels is a function of the domestic absorption
share and exogenous parameters. Propositions 3.1-3.2 state that the domestic share is exponentiated
with the inverse of the long-run iceberg trade elasticity. In dynamic models, this long-run trade
elasticity is a function of dierent structural parameters than the “trade elasticity” in static models.
We now show that this has important implications for how this long-run elasticity can be recovered

6Three percent of the observations show positive bilateral goods trade ows in the ICIO but have no taris declared in
TRAINS. In these cases, we assume there is 0 tari revenue associated with these pairs.
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from the data.
The exponent in the gains from trade formula is the inverse of the long-run elasticity of trade with

respect to iceberg trade costs   :

 ≡  ln

 ln 
=

 ln 

 ln 
+  ln 

 ln 
= 0(1 + ). (4.1)

Though a fewpapers have used shipping cost data to compute the trade elasticity (e.g.Hummels, 2001;
Shapiro, 2016; Adão, Costinot, and Donaldson, 2017), the large majority of existing trade elasticity
estimates use taris. However, the trade elasticity with respect to taris diers from that with respect
to iceberg costs. The tari elasticity is:

 ≡
 ln

 ln  
=

 ln 

 ln  
+  ln 

 ln  
= (0 − 1) (1 + ) , (4.2)

The two elasticities dier because iceberg costs are reected in the border price, whereas taris are
not. Most (though not all) of the literature that estimates trade elasticities in the context of static
models recognizes this distinction. In static models, this distinction is fairly innocuous: to account
for it, one could either add 1 to the tari elasticity to recover the iceberg cost elasticity, or use trade
ows inclusive of tari payments in estimation. In a dynamic setting, however, neither of these simple
adjustments work, requiring another strategy to recover the iceberg elasticity.7

Fortunately, it is possible to use tari elasticity estimates at dierent horizons to reconstruct the
long-run elasticity that enters the gains from trade formula. The key is to use estimates of both short-
and long-run tari elasticities to separately pin down 0 and 1 + . Knowledge of 0 and 1 + 

separately is also required to compute the tari revenue adjustment to the GFT formula as in (3.25).
Wewill call the “short run” a time period overwhich  can adjust but  cannot. This is consistent

with the model laid out in Section 2, in which  only starts adjusting with a one-period lag. The
short-run tari elasticity is then:

0 ≡
 ln

 ln  
=

 ln 

 ln  
= 0 − 1. (4.3)

It is immediate that with both the short- and long-run tari elasticities (4.2)-(4.3) in hand, one can
recover both 0 and 1+ , and reconstruct the object needed for the welfare gains formula, (4.1). This
is the strategy we pursue in the quantication that follows.

7For example, in a static Armington or Krugman model the tari elasticity is −, while the iceberg cost elasticity is
1− . So simply adding 1 to the tari elasticity would recover the iceberg elasticity. It is immediate from (4.1)-(4.2) that this
won’t work in the dynamic setting. It is also easy to verify that the long-run tari elasticity of tari-inclusive trade ows
 ln


   


/ ln   also does not recover the needed iceberg elasticity (4.1).
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Figure 1: Steady State Gains from Trade
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Notes: This gure depicts the welfare gains from trade as a function of the domestic absorption share    . The blue line
implements the formula (3.4). The red dots implement the formula that adjusts for tari revenue, (3.25).

4.3 Steady State Gains from Trade

Figure 1 plots the gains from trade for a sample of countries based on (3.25). It uses the long-run tari
elasticity estimate  = −2, and a short-run tari elasticity estimate 0 = −1.25 (Boehm, Levchenko,
and Pandalai-Nayar, 2023). The blue line is simply the formula (3.4) that ignores taris and only
uses information on the domestic trade share. The red dots are (3.25), and thus make the tari
adjustment using country-specic tari revenue data. Conditional on a xed    , the tari adjustment
unambiguously increases the gains from trade. However, the tari adjustment is small quantitatively
for all but a few countries.

The gains from trade are large. Even the most closed countries – the US, Brazil, China – gain on
the order of 25-30% from trade. Jordan’s welfare triples, and Malta’s quadruples, when it goes from
autarky to trade.

To highlight the role of dynamics and the short-run elasticity in conditioning the gains from trade,
we now perform the following thought experiment. Suppose the value of the long-run tari elasticity
 is known. This is the object most commonly estimated (or, at least, intended to be estimated) in
the literature. To make the results stark, suppose that the value of this long-run elasticity is high, for
example −5 (Costinot and Rodríguez-Clare, 2014).

A researcher working on static models covered by ACR would simply add 1 to yield a long-run
elasticity with respect to iceberg costs of −4, and compute the gains from trade based on this. As
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ACR and Costinot and Rodríguez-Clare (2014) highlight, the basic single-sector ACR formula under
this level of trade elasticity yields fairly small gains from trade. These are depicted by the red line in
Figure 2.

However, even holding  xed at −5, in a dynamic world an additional piece of information is
required, that can be supplied by the short-run tari elasticity. The elasticity required in Propositions
3.1-3.2 can be rewritten in terms of the (potentially) estimable tari elasticities as:

0(1 + ) = 0(1 + )
0
 − 1
0 − 1

= (0 − 1)(1 + )


0
0 − 1

= 
0 + 1
0

.

This expressionmakes it clear that a high long-run tari elasticity  is consistent with very high gains
from trade if the short-run tari elasticity is low enough. Indeed, as 0 ↑ −1, the gains from trade
become innite. The green and black lines in Figure 2 plot the gains from trade according to (3.4)
under an identical long-run  = −5, but for two values of 0, −1.1 and −2. The dierence in the gains
from trade is drastic. Indeed, the black line is not too far from our baseline gains from trade plotted
under the long-run elasticity of 2, despite a much higher long-run elasticity that it uses. However,
even with an unreasonably high short-run elasticity of 2, the dynamic gains from trade are higher
than in the static ACR implementation.

4.4 The Transition Path and Welfare Gains

In the nal exercise, we answer the question of how costly it is that the formula compares steady
states, and thus ignores the transition path. To do this, we compute welfare taking into account the
transition between trade regimes. This requires calibrating the full model, and thus taking a stand on
all the parameters.

We employ the Krugman model from Section 2. In addition to  and , calibrated as above using
short- and long-run tari elasticity estimates, we require the depreciation rate , risk aversion ,
the discount factor , and the Inverse Pareto scale parameter . Of these, the most important one
is , as it controls the speed of transition. The lower is , the slower the transition, and the greater
the discrepancy between steady state and fully dynamic gains. When depreciation is full ( = 1),
transition occurs in 1 period. This parameter is disciplined by the speed of convergence of the trade
elasticity to the long-run. To be conservative, we assume the transition takes 15 years; this implies
 = 0.25. Boehm, Levchenko, and Pandalai-Nayar (2023) reports that convergence occurs at around
10 years. We use this as robustness, as a shorter transition lowers the role of transition dynamics.
The remaining parameter choices are standard. Table 1 summarizes the baseline calibration. We
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Figure 2: Steady State Gains from Trade: the Role of the Short-Run Elasticity
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Notes: This gure depicts the welfare gains from trade as a function of the domestic absorption share    . The red line
depicts the ACR formula with elasticity −4, −1/4  . The other lines implement the formula (3.4) for dierent values of 
and 0.

consider alternative parameter choices for robustness in Table 2. Appendix B.1 details the procedure.
We solve the model for the 13 largest countries in the world by total GDP, a fourteenth country and a
rest-of-the-world aggregate. We vary the fourteenth country across simulations to obtain quantitative
gains from trade estimates for a larger group of countries.

While steady state comparisons are unambiguous, in a dynamic settingwe have to specifywhether
the world is transitioning from autarky to trade, or from trade to autarky, and the welfare comparison
between trade and autarky will dier in those two scenarios. Figure 3 reports three sets of gains
from trade: (i) comparing autarky and trade steady states according to the formula (3.25) (blue); (ii)
transitioning from autarky to the current levels of trade openness (red); and (iii) transitioning from
the current levels openness to autarky (black). For scenarios (ii) and (iii) we begin in the initial steady
state and then unexpectedly and permanently change trade costs   at time 1 to the value in the
terminal steady state. When computing the welfare gains for country , we make this adjustment to
trade costs for all  ≠ . The GFT numbers for each country and each scenario are listed in Appendix
Table A1.

Two conclusions stand out from the gure. First, the disparity between steady state gains and the
full dynamic gains is relatively minor. On average in this sample, the autarky-to-trade gains are 13.1
percent smaller, and trade-to-autarky gains are 8.5 percent larger. Second, the steady state gains are
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Table 1: Baseline Calibration

Parameters Value / Target / Source Notes

 1.25 Short-run tari elasticity
 0.6 Inverse Pareto shape parameter
 0.97 Discount factor
 2 Relative risk aversion
 0.25 Exit rate
 1 Inverse Pareto scale parameter
  BACI, TRAINS Average bilateral tari
    from BACI, ICIO, TRAINS Non-tari trade costs
 Relative real GDP from PWT Labor endowment

Notes: The table presents the baseline calibration.

Figure 3: Steady State Gains vs. Gains over the Transition Path
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Notes: The blue dots depict the GFT formula for steady state comparisons (3.25). The red dots depict the dierence in
real consumption from starting in autarky and moving to the observed levels of trade,relative to remaining in autarky
forever. The black dots depict the dierence in real consumption between staying at the observed levels of trade forever
and transitioning to autarky. Dashed lines represent an exponential t between the gains from trade and the domestic
absorption shares.

always in between those two.
To illustrate the intuition for this ranking of gains, Appendix Figure A2 plots the dynamic paths
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Figure 4: Mass of Firms in the Transition Path, Malaysia
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Notes: This gure shows the transition paths of the masses of Malaysian rms after a sudden change in the trade
regime. The dark line denotes the mass of Malaysian rms serving the domestic market   and the light lines denote
the masses of Malaysian rms serving the other countries  ,  ≠ . The left panel plots the paths following a sudden
decrease in iceberg transport costs   that takes the model from autarky to trade. The right panel plots the paths
following a one-time increase in iceberg transport costs   that takes the model from trade to autarky.

of consumption, and Figure 4 plots the evolution of the masses of rms for one country, Malaysia.
Whenmoving from autarky to trade, we start with the autarky steady state, and transition to the trade
steady state slowly. Over this transition, consumption is lower than in the terminal steady state. This
is because agents need to invest in “exporting capital”  ,  ≠  starting from a level of 0, as illustrated
in the left panel of Figure 4, and doing so requires forgoing consumption over the transition path. As
a result, the dynamic gains of going from autarky to trade are below the steady state comparison.

Moving from trade to autarky, countries’ accumulated exporting capital  has become useless,
because ow exports along the intensive margin  is zero under innite trade costs. At the same
time, rms invest in their domestic operations, increasing the mass of domestic rms   as shown
in the right panel of Figure 4. The result is an immediate drop in consumption below the level of the
autarky steady state, and a gradual convergence of consumption to the autarky steady state level from
below (Appendix Figure A2). This reduces the present value of consumption relative to the steady
state – eectively the denominator of the GFT formula – and thus raises the implied GFT relative to
the steady state comparison.

Robustness. We recompute the quantitativemodelwith alternative parameter values to evaluate the
role of transition dynamics in alternate settings. As discussed above, the most important parameter
is , governing the speed of the transition. We consider alternative values of  = 0.35 and  =

0.15 corresponding to transitions from autarky to trade of around 10 years (the estimate of Boehm,
Levchenko, and Pandalai-Nayar (2023)) and 30 years respectively. Additionally, we consider higher
and lower demand elasticities  = 1.5 and  = 1.15. Finally we vary the curvature of adjustment
costs , allowing for high curvature  = 1 and low curvature  = 0.3. The results are in Table 2.
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Table 2: Robustness: Alternative parameter values

Average Steady Average Dynamic Gains
State Gains Autarky to Trade Trade to Autarky

dierence dierence
baseline 0.464 0.406 -12.5% 0.502 7.58%
 = 0.35 0.464 0.420 -9.36% 0.492 5.72%
 = 0.15 0.464 0.376 -18.9% 0.523 11.3%
 = 1.5 0.210 0.188 -11.1% 0.225 6.69%
 = 1.15 0.893 0.780 -12.7% 0.921 3.02%
 = 1 0.359 0.313 -12.7% 0.406 11.71%
 = 0.3 0.596 0.532 -10.7% 0.621 4.05%

Notes: The table presents results from parameter robustness for the quantitative model with transition dynamics. The
rst column shows the average gains from trade relative to autarky in steady state, using the formula in (3.4). Columns
2 and 3 show the absolute and relative gains in the quantitative dynamic Krugman model with transition dynamics,
moving from autarky to trade. Columns 4 and 5 show the absolute and relative gains in the dynamic Krugman model
with transition dynamics moving from trade to autarky. The rows show alternative parameter choices. The rst row
shows the baseline calibration in Table 1. The next two rows change the speed of transition to a fast transition in 5 years
( = 0.35) and a slow transition ( = 0.15). The next to rows change the short-run iceberg elasticity . The last two rows
change the convexity of adjustment .

Across all calibrations, the steady state gains from trade implied by the formula in (3.4) remains a
good approximation of quantitative gains from trade including transition dynamics, with average
dierences ranging from 4.5% to −18.9%. As expected, the largest average dierence is with a much
slower transition of 30 years, moving from autarky to trade. Even here, the steady state gains from
trade are a reasonable approximation. In all cases, the steady state gains from trade remain in between
those computed in the full model going from autarky to trade and trade to autarky.

5. Conclusion

Research employing dynamic trade and spatial models has exploded in recent years. We provide
closed-form gains from trade formulas that apply in a wide class of dynamic trade models. After
stating the theoretical result, we emphasize measurement. We show that the short-run tari elasticity
is a crucial object even in evaluating the long-run steady state gains. In our quantication, the gains
from trade are large, because the short-run elasticity is typically found to be small. Finally, we show
that accounting for the transition path has amodest eect on themagnitude of the gains. Whether the
steady-state formula over- or under-states the transition path gains depends onwhether the transition
is from autarky to trade or in the opposite direction.
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A. Theory Appendix

Proof of Proposition 3.1. From A.1 and A.2, real consumption is proportional to the real wage:

 ∝



. (A.1)

From A.3, the price index

 ∝ 
1
0
  

− 1
0

  . (A.2)

From A.3, the mass of rms
  ∝ 


1+
  , (A.3)

where we also used A.1. Putting (A.1)-(A.3) together yields the rst result.
To derive the last claim, note that:

 ln

 ln 
=

 ln 

 ln 

 ln 

 ln 
+  ln 

 ln 
.

It is immediate from A.3 that  ln 

 ln 
= −0, and  ln 

 ln 
= , which gives the result.

Proof of Proposition 3.2. From A.1’,

 =


1 −






−1 
 +Π


(A.4)

From A.2’,

 ∝

1 −






−1



(A.5)

From A.3’,



= 

− 1
0

  
1
0
  (A.6)

Also from A.3’,

  ∝ 


1+
 


1 −






− 
1+

, (A.7)

Putting (A.5)-(A.7) together yields the rst result. This last step also uses the fact that (A.4) and A.2’ imply that



∝

1 − 





−1
. The proof of the claim about the trade elasticity is identical to Proposition 3.1.

Proposition A.1. Consider a class of dynamic models that satisfy the following three conditions in their steady state:

A.1’ For all countries , trade is balanced (expenditure = revenue):

 =  +Π + 


where


 =




  − 1




and trade balance holds


  =


  .
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A.2’ For all countries , prots are a constant share of labor income:

Π


= 

A.3” For all country pairs

 , 


trade ows satisfy

 = 

where

 ∝






and domestic per-unit-mass sales satisfy

  ∝





1







0
(A.8)

for some constants 1 > 0 and  > 0, and where 0 ≡  ln / ln  < 0 is the elasticity of exports per unit mass
with respect to iceberg trade costs.

Then

 ∝

1 −






−1− 1
0


1+− 1

0




1
0

1
1+

  (A.9)

where    =



, and 0(1 + ) is the long-run elasticity of trade ows with respect to iceberg trade costs.

Proof. Derivations of (A.4) and (A.5) are identical to the steps in the proof of Proposition 3.2. From A.3”,




= 

1
0
  

− 1
0

 






− 1

0
.

Also from A.3”,

  ∝

  





 
1+

.

Thus,




∝



1
1+
 






−1− 
1+

 1
0

. (A.10)

Putting (A.5) and (A.10) together yields the rst result. This last step also uses the fact that (A.4) and A.2’ imply

that 


∝

1 − 





−1
. The proof of the claim about the trade elasticity is identical to Proposition 3.1.

□

Discussion. The conditions required for Proposition A.1 are identical to the conditions in Proposition 3.2 in
every way except the per-rm sales (A.8). This functional form for sales is a strict generalization of (3.24), that
allows per-rm sales to depend non-linearly on home market size and bilateral taris (recall from (A.4),  is a

function of total tari revenue). The resulting gains from trade formula (A.9) diers from (3.25) by

1 − 





 1

0 .

Note that the alternative formulation for per-rm sales only aects the tari adjustment component of the GFT
formula. The non-tari component is unchanged, and    is still raised to the power of the trade elasticity.
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Proposition A.1 covers the Melitz (2003) model with taris. In that case, rm ’s sales are given by

 () = 1
 





  

 − 1
  

 () 

1−
, (A.11)

and the cuto rm has productivity


 =



 − 1  


 






 1

−1

. (A.12)

Combining these, the average rm sales are:

 ∝

1
 





 
−1−1 1

 



  



−
. (A.13)

Intuitively, taris andmarket size in theMelitz model aect the extensive margin, and thus appear non-linearly
in the average rm sales. This property of the Melitz model with taris was pointed out by Felbermayr, Jung,
and Larch (2015). It is easy to verify that theMelitz model with taris satises all the conditions for Proposition
A.1 to hold. As equation (A.13) makes clear, the Melitz model satises A.3” for 1 = 

−1 − 1.
What is notable about this functional form for 1 is that it goes to zero as 

−1 → 1. Di Giovanni, Levchenko,
and Rancière (2011) and di Giovanni and Levchenko (2013) show that the distribution of sales to any destination
in theMelitz-Paretomodel follows a power lawwith exponent− 

−1 . Further, these papers document that in the
data, rm sales follow a power law with exponent close to −1, known as Zipf’s Law (see also Axtell, 2001). This
implies that when calibrated to the observed rm size distribution, 

−1 ≈ 1 and therefore 1 ≈ 0. Intuitively,
1 appears because taris aect the extensive margin of exports conditional on drawing the sunk cost. As the
rm size distribution approaches Zipf’s Law, the extensive margin plays no role in the aggregate outcomes (see
di Giovanni and Levchenko, 2013, for a detailed treatment of this result).
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B. Quantitative Appendix

B.1 Dynamic Path Simulations
This section details the procedure to compute the dynamic welfare gains presented in Figure 3 and Table A1.
We use the 30-country sample listed in Table A1 and simulate two scenarios: (i) going from autarky to trade,
and (ii) going from trade to autarky.

We rst compute the steady state of the model under trade and under autarky. The steady state under trade
matches the observed expenditure shares and taris for 2006. Then, we infer the change in non-tari trade
costs   to generate the dierence between the two steady states. In both scenarios, we consider an unexpected
permanent shock to the non-tari trade costs in period 1. The direction of the shock depends on the scenario.
The the non-tari trade costs decrease in the rst scenario and increase in the second scenario. We use the
Newton algorithm in order to simulate the transition path of the model variables for 42 periods, where period
0 represents the initial steady state and period 41 represents the nal steady state. All parameters other than
non-tari trade costs remain constant throughout the simulations.

We base the gains from trade calculations over the transition path on consumption equivalent variation.
We dene the present value of consumption in period 1 1 as

1 =
∞
=1






1−
1 − 

,

where  is the discount factor and  is the factor of relative risk aversion.

Autarky to trade. Consider the transition path from autarky to trade. Let the superscript  denote the
transition path under trade and superscript  denote the initial steady state under autarky. We then compute
the present value of consumption under the transition path to trade as


1 =

∞
=1








1−
1 − 

.

Now, assume a case where the household receives a constant consumption equivalent  ,
 in every period,

such that

 ,
1 =

∞
=1




 ,



1−
1 − 

,

where the superscript  denotes the consumption equivalent.
Setting 

1 =  ,
1 gives

 ,
 =


1 − 

 ∞
=1







1− 1
1−

,

which is our measure of welfare in the transition path to trade. The dynamic gains from trade under the rst
scenario are dened as

→
 =

 ,





.

Trade to autarky. In the second scenario, we analyze the transition path from trade to autarky. Now, the
superscript  denotes the transition path under autarky and superscript denotes the initial steady state under
trade. We compute the present value of consumption under the autarky transition path as


1 =

∞
=1








1−
1 − 

.
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Following similar steps as in the previous case, the welfare measure in the transition path under autarky is

,
 =


1 − 

 ∞
=1







1− 1
1−

.

The dynamic gains from trade in this second scenario are

→
 =




,


.
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Figure A1: Tari Revenue Comparison
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Notes: Figure shows comparison between (log) tari revenues calculated from BACI-TRAINS and (log) customs and
duties from the World Bank for the year 2006.
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Table A1: Dynamic gains from trade

Country Steady
state
comp.

Dynamic
path,

autarky
to trade

Dynamic
path,

trade to
autarky

Country Steady
state
comp.

Dynamic
path,

autarky
to trade

Dynamic
path,

trade to
autarky

MYS 2.617 2.337 2.797 ESP 1.520 1.453 1.564
THA 2.469 2.229 2.627 FRA 1.500 1.436 1.542
SAU 2.236 2.043 2.363 ZAF 1.497 1.437 1.536
BEL 2.149 1.971 2.268 TUR 1.491 1.431 1.532
EGY 1.966 1.817 2.048 GBR 1.490 1.427 1.530
PHL 1.835 1.719 1.910 ITA 1.472 1.412 1.511
NLD 1.750 1.646 1.819 PAK 1.463 1.418 1.495
SWE 1.747 1.645 1.816 ARG 1.404 1.358 1.435
POL 1.717 1.620 1.783 AUS 1.382 1.336 1.412
MEX 1.673 1.582 1.733 IND 1.376 1.331 1.403
CAN 1.663 1.573 1.722 NGA 1.359 1.319 1.385
KOR 1.647 1.560 1.700 CHN 1.312 1.274 1.335
DEU 1.578 1.501 1.628 JPN 1.296 1.261 1.319
ROW 1.555 1.480 1.601 USA 1.285 1.251 1.307
IDN 1.526 1.461 1.570 BRA 1.240 1.214 1.257

Notes: Table presents the numerical results for the dynamic GFT from Figure 3. The GFT
formula for steady state comparisons follows (3.25), while the dynamic path calculations follow
Appendix B.1.
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