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Abstract

We develop a quantitative theory to study disease dynamics and the welfare

consequences of endogenous travel choices. Travel responds to and influences

disease dynamics, serving as an infection avoidance strategy and a vector for

pandemic transmission. We integrate a metapopulation SIRD epidemiological

framework with an economic model to recover consistent travel choices. We

analytically characterize the role of travel as an infection avoidance mecha-

nism, distinct from and in addition to home isolation. We then quantify its

relative importance during a pandemic. We show local pandemic policies lead

to suboptimal Nash equilibrium outcomes and train surrogate models to assess

parameter impacts.
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1 Introduction

The interconnection of regions via travel is a crucial component in the emergence of
pandemics. Dating back to the Plague of Justinian in the 6th Century, it is travel that
ultimately puts the “pan” in pandemics. While travel constitutes a small fraction of
a typical household’s time and budget, its key role in disease spread makes it a
primary policy concern. Household travel choices, responding to differences in
infection rates, may lead to intermixing of populations and will likely influence the
trajectory of a pandemic, especially in presence of uncoordinated, unilateral, public
policy interventions across different locales (“pandemic federalism”).

In this paper, we develop a coupled epidemiological-economic (epi-econ) meta-
population model to examine how individuals’ travel decisions interact with the
spread of disease. Our quantitative theory comprises two heterogeneous popu-
lations connected through interregional travel. At its core, our framework inte-
grates a standard SIRD epidemiological system, capturing individuals’ transitions
through disease states (Susceptible, Infectious, Recovered, Deceased), with an eco-
nomic model, where the SIRD compositions of each population segment influence
agents’ decisions regarding travel, consumption, labor, and home isolation. Central
to our approach is establishing the connection between epidemiological dynamics
and economic behavior through the probability of disease transmission. These in-
fection probabilities dictate the pandemic’s course, shaping individual activity and
travel decisions, which in turn affect transmission probabilities, creating a feedback
loop. Our theoretical framework leads to sharp analytical results, which we use to
cleanly calibrate parameters and interpret our quantitative findings.

We analytically characterize travel and home isolation choices during a pan-
demic. In our metapopulation model, susceptible individuals (those at risk of be-
coming sick) can either isolate at home or travel in response to disease progression
in their region. We show travel can act as either an infection avoidance asset or
liability, depending on whether traveling to a foreign region reduces or increases
the likelihood of getting infected. We further identify the conditions under which
travel is preferred over home isolation as an avoidance strategy. In this context, we
highlight key drivers, including activity-specific contact rates with infected individ-
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uals and the relative share of infectious in home and foreign populations. We also
demonstrate that travel is preferred to home isolation when infection rates are low.

We calibrate our metapopulation model to the U.S. economy. In order to con-
duct positive and normative analysis for regions of different size, we focus on a
two-region version of our model. This environment leads to a fast solution algo-
rithm that allows us to explore over one million epidemiological-economic param-
eter configurations. Our quantitative analysis is conducted in two policy-relevant
scenarios: one with regions of similar size (symmetric) and another where one re-
gion is significantly smaller than the other (asymmetric).

Our positive analysis focuses on the feedback loop between the economic and
epidemiological modules. We first study how susceptible individuals respond to the
evolution of the pandemic. In the symmetric case, susceptible individuals prefer
travel to isolation at the onset and ending of a pandemic. Our theory shows that in
these circumstances, isolation is less effective than travel due to both low infection
rates and the high utility cost of foregone travel. In the asymmetric case, suscepti-
bles in the small region use travel and susceptibles in the large region use isolation
for avoidance throughout the pandemic. In both environments, the role of travel as
infectious avoidance asset or liability evolves over time and is quantitatively driven
by both relative contact rates and differential rates of exposure at home and abroad.
We then investigate how the disease dynamics are affected by these behavioral re-
sponses. To isolate the connectivity role of travel, we compare a metapopulation
model without travel against different specifications of the model incorporating ex-
ogenous and endogenous travel choices. Both exogenous and endogenous travel
synchronizes peak infectious across regions. When regions are asymmetric, en-
dogenous traveling behavior leads to a nearly threefold increase in peak infectious
in the small region.

Our normative analysis of pandemic federalism reveals that the Nash game be-
tween local planners leads to the classic Prisoner’s Dilemma outcome. Local pol-
icymakers’ best responses are to impose the most stringent travel restrictions on
incoming travelers (to mitigate the externality effect), while at same time impose
no restrictions on their own citizens’ outgoing travel, such that they can take ad-
vantage of the avoidance and utility benefits of travel. With both policymakers
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following this strategy, the resulting equilibrium is very close to that under travel
autarky (effectively a travel ban), leading to significant welfare losses relative to the
optimal coordinated policy by a centralized authority.

The scope of our quantitative results is inherently constrained by the specific
parameterization of our model. To cope with this challenge, we perform a com-
prehensive sensitivity analysis over one million combinations of structural parame-
ters governing epidemiological and economic characteristics. Across the parameter
space, we confirm travel to be an effective infection avoidance asset for low infec-
tion rates (that is, at the beginning and ending of the pandemic) and the Prisoner’s
Dilemma outcome to be a Nash equilibrium in 99% of economies. We find endoge-
nous travel reduces peak infection rates, uncovering a more relevant role of endoge-
nous travel for mitigating the heat of the pandemic than that indicated by our bench-
mark (COVID-19) calibration. Unlike our benchmark, we also find socially optimal
policy to involve positive restrictions on travel for 32% of economies. These last
findings caution against drawing general conclusions from a single parametrization.

Finally, we then use Deep Neural Networks to estimate surrogate models of the
unknown mapping from epidemiological-economic parameters to model outcomes.
We identify the basic reproductive number, R0, as the primary driver of: (i) disease
dynamics, which, in turn, govern the effectiveness of travel as an avoidance mech-
anism; (ii) welfare losses associated with the Prisoner’s Dilemma outcome. Travel
is preferred more often to isolation for highly contagious diseases (R0 greater than
6). For several prominent diseases with lower reproductive numbers, such as Ebola,
H1N1, the seasonal flu, SARS, and COVID-19, we find the effectiveness of travel
choices to be highly sensitive to the value of R0, making early accurate estimates of
transmissibility a primary priority for determining travel policies.

The rest of the paper is organized as follows: Section 2 summarizes the con-
tribution of this work to the related literature, Section 3 describes the model and
theoretical results, Section 4 lays out the calibration, Section 5 presents the quanti-
tative results, Section 6 discusses the parameters space exploration, and Section 7
concludes. Additional results are presented in the Online Appendix.
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2 Contribution

The incorporation of behavioral considerations into epidemiological models (e.g.
the classic SIR model of Kermack and McKendrick (1927)) has been an important
advance in the literature in recent years. Building on influential groundwork by Kre-
mer (1996) and Fenichel et al. (2011), the COVID-19 pandemic produced a flurry
of coupled epidemiological-economic models (e.g. Eichenbaum, Rebelo, and Tra-
bandt, 2021, Farboodi, Jarosch, and Shimer, 2021, Ash et al., 2022, Boppart et al.,
2024). Although these models differ in their quantitative and qualitative features, a
key component is that disease dynamics both influence and respond to the behav-
ioral choices made by individuals. We contribute to this literature by endogenizing
travel decisions between regions in a quantitative epi-econ metapopulation model.1

Our work is most closely related to Antràs, Redding, and Rossi-Hansberg (2023),
which studies how globalization and trade affect the evolution of pandemics. While
both works feature endogenous travel decisions in a metapopulation model, they
differ in several important dimensions. First, we focus on different questions; we
study pandemic federalism, whereas they examine the international general equi-
librium implications. Second, we propose different mechanisms for how travel
affects inter-population disease diffusion. In their open-economy model, locations
are connected by movements of both goods and people, while our closed-economy
emphasizes the movement of people. Accordingly, their framework allows them to
quantify the amplification effect of endogenous travel decisions on trade outcomes,
whereas our framework allow us to theoretically isolate and quantify the insurance
role of travel, where individuals may choose to travel to less infectious regions
solely to reduce infection risk. This result is consistent with evidence from devel-
oping countries documented in Burlig, Sudarshan, and Schlauch (2021). Third, in
their model, agents do not know their disease state (susceptible, infectious, recov-
ered etc.), while we allow susceptibles to internalize the effect that their choices
have on their probability of becoming infected. Finally, our theoretical framework
yields closed-form solutions that address the computational challenges highlighted

1Metapopulation models with endogenous choices by economic agents have also been considered
in natural resource contexts (e.g. Sanchirico and Wilen, 2001; Kaffine and Costello, 2011; Fabbri,
Faggian, and Freni, 2024).
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in their paper, enabling us to study the robustness of our results for over a million
of combinations of parameter vectors and to conduct normative analysis.2

We contribute methodologically to the quantitative epi-econ literature by propos-
ing surrogate models to explore the robustness of our results across the parameter
space. Surrogate models combine sampling, fitting, and validation techniques to
create a simplified representation of complex systems, like the epi-econ model at
the heart of our analysis.3 More precisely our work extends the regression approach
in Iverson, Karp, and Peri (2022), by applying recent techniques developed in Chen,
Didisheim, and Scheidegger (2023) to study how the relevance of travel for disease
transmission and welfare costs varies with different policy- (and time-) invariant
aspects of disease transmission and individual behavioral responses.

Our framework provides theoretical support for empirical findings that people
both avoid traveling to areas with high disease burdens (Fenichel, Kuminoff, and
Chowell, 2013; Brinkman and Mangum, 2022; Ojo et al., 2023) and travel away
from areas with high disease burdens (Gibbs et al., 2020; Coven, Gupta, and Yao,
2023). Travel is also linked to increases in cases in the receiving destination (Krae-
mer et al., 2020; Julliard, Shi, and Yuan, 2023; Boto-García, 2023). Given these
travel responses and the potential for jurisdictional spillovers, our paper also con-
tributes to the literature on policy responses to pandemics (Gersovitz and Hammer,
2004; Rowthorn, Laxminarayan, and Gilligan, 2009; Kraemer et al., 2020; Boppart
et al., 2024), geographic implications (Bisin and Moro, 2022), and pandemic fed-
eralism (Graff Zivin and Sanders, 2020; Renne, Roussellet, and Schwenkler, 2020;
Iverson and Barbier, 2021). Our findings on decentralized policymaking related to
pandemic travel are consistent with the general literature on environmental federal-
ism, whereby externalities between regions generally leads decentralized planning

2As they note, the feedback between disease dynamics and agent choices increases the numerical
complexity of the problem and makes it difficult to solve the model for many parameter variations.
This will be true of this class of epi-econ models in general, such as Boppart et al. (2024), whose
multi-generation, single-region epi-econ model conducts sensitivity analysis on a few selected pa-
rameter calibrations.

3From the seminal work by Box and Wilson (1951) surrogate models (also known as response
surface models or metamodels) have been routinely used in chemistry (McBride and Sundmacher,
2019), physics (Tripathy and Bilionis, 2018), engineering (Alizadeh, Allen, and Mistree, 2020),
econometrics (Bai and Perron, 2003), climate (Friedl et al., 2023) and finance (Scheidegger and
Treccani, 2021, Chen, Didisheim, and Scheidegger, 2023).
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to be suboptimal (Eichner and Runkel, 2012; Fell and Kaffine, 2014), except in
certain circumstances (Landry, 2021).

3 Model

Our epi-econ model is organized in three modules. The epidemiological module
in Section 3.1 dictates the evolution of the aggregate disease states; this frame-
work expands the canonical compartmental modeling structure to multiple regions
(a metapopulation model). The economic module in Section 3.2 describes individ-
uals’ behavioral responses to the state of the pandemic; the economy consists of
I distinct regions populated by atomistic agents who optimize over consumption,
labor, travel, and isolation choices, and interact with one another both within and
across regional boundaries. The infection probability module in Section 3.3 estab-
lishes the connection between the epidemiological and economic modules. Sub-
section 3.4 describes the equilibrium. Subsection 3.5 concludes by analytically
characterizing the equilibrium.

3.1 Epidemiological Module

We use an SIRD metapopulation model to describe the evolution across regions and
over time of the aggregate measure of individuals over the disease states: suscepti-
ble, infectious, recovered, and deceased, Tt = {Si,t , Ii,t ,Ri,t ,Di,t}I

i=1 (also referred to
as compartments). Interaction and transitions across compartments in our metapop-
ulation model are governed by the following system of equations:

Si,t+1 =
(

1−PSI
i (At ,Tt)−PD∗

)
Si,t + γ

(
Si,t + Ii,t +Ri,t

)
, (1)

Ii,t+1 =
(

1−PD∗
−PR −PD

)
Ii,t +PSI

i (At ,Tt)Si,t , (2)

Ri,t+1 =
(

1−PD∗
)

Ri,t +PRIi,t , (3)

Di,t+1 = Di,t +PDIi,t +PD∗ (
Si,t + Ii,t +Ri,t

)
, (4)
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where Si, Ii, Ri, Di are the population in each disease state for region i, γ is the
population growth rate, PR is the probability of transition from infectious to recov-
ered, PD is the probability of transition from infectious to deceased, and PD∗

is the
probability of death from all other outside causes.

The force of infection PSI
i (At ,Tt) denotes the endogenous share of suscepti-

bles that become infectious. This function depends on the share of the population
in each of the disease states, Tt , and economic activities, At (regional aggregate
consumption, labor, and travel flows in and out of regions).4 The force of infection
plays the key role of connecting the epidemiological module with the economic
module discussed in the following section. Section 3.3 formalizes this link.

3.2 Economic Module

The economy consists of a continuum of agents of measure one who live in one of
I = 2 home and foreign regions with competitive firms that hire labor to produce
a homogeneous consumption good. The population share of region i is given by
λi for i ∈ {1,2}. Although individuals may temporarily travel from one region to
another, citizens of region i remain so forever.

3.2.1 Individuals

Agents make choices over consumption, labor, travel, and isolation to maximize
their lifetime utility. As in Antràs, Redding, and Rossi-Hansberg (2023) and Bop-
part et al. (2024), we abstract from saving and borrowing decisions, due to the short
time horizon. The flow utility, ui(c,m), is an increasing and concave function of a
numeraire consumption good, c, and the share of time spent traveling, m. The utility
satisfies the Inada conditions limc→0 ∂ui(c,m)/∂c = ∞, limc→∞ ∂ui(c,m)/∂c = 0,
limm→0 ∂ui(c,m)/∂m = ∞, limm→∞ ∂ui(c,m)/∂m = 0. Additionally, we allow the
utility to depend on region i to reflect different preferences for travel.5

4In the classic SIR framework, new infections at time t are equal to β ItSt where β is the aver-
age number of contacts multiplied by the probability of infection per contact. In our framework,
PSI

i (At ,Tt) corresponds to β It while allowing the number of contacts and probability of infection
to vary over the course of the pandemic due to choices.

5To establish uniqueness of optimal travel choices, we further require q-complementarity between
consumption and travel choices, ∂ 2ui(c,m)/∂c∂m ≥ 0. This assumption is satisfied by the utility
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Before the start of (and after the end of) the pandemic, an agent in region i

solves:

U pre
i,t = max

{cpre
t ,lpre

t ,mpre
t }

ui(c
pre
t ,mpre

t )+δ

[
(1−PD∗

)U pre
i,t+1 +PD∗

UD
i,t+1

]
(5)

s.t. cpre
t = wt l̄l

pre
t ,

mpre
t + lpre

t = 1,

where wt is the wage rate, lpre
t is the labor share choice, l̄ is the time endowment,

UD
i,t+1 is the value function of being deceased in the next period, where the indi-

vidual exogenous probability of dying for natural causes PD∗ coincides with the
share of individuals that die for natural causes in (1)-(4). We model the start of the
pandemic (t = 0) as an unanticipated MIT shock. We assume the pandemic ends
deterministically at t = T . Thus, U pre

i,t = Ū pre
i for all t < 0 and t > T .

During the pandemic, agents observe their individual disease states, z∈{S, I,R,D},
the aggregate distribution of individuals over regions and disease states Tt , and ag-
gregate economic activities, including inflows and outflows for traveling reasons,
At . Susceptible agents z = S solve

US
i,t ≡US

i (At ,Tt) = max
{cS

t ,lS
t ,mS

t ,hS
t }

ui(cS
t ,m

S
t )+δ

[
PI

i (m
S
t , l

S
t ,h

S
t ;At ,Tt)U I

i,t+1

+(1−PI
i (m

S
t , l

S
t ,h

S
t ;At ,Tt)−PD∗

)US
i,t+1 +PD∗

UD
i,t+1

]
(6)

s.t. cS
t = wt l̄lS

t ,

mS
t + lS

t +hS
t = (1−θi),

mS
t ∈ [0,min{1− m̄in

j ,1− m̄out
i }],

hS
t ∈ [0, h̄],

where θi imposes a limit on time spent on economic activities (e.g. local social
distancing restrictions) and m̄out

i , m̄in
j are restrictions on outbound travel from region

i and inbound travel to region j respectively.
Crucially, in our model agents know their disease state and respond accordingly

function utilized in our quantitative analysis.
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when making choices. Specifically, a key feature of our framework is that suscepti-
bles internalize how their labor, lS

t , travel, mS
t , and home isolation choices, hS

t , affect
their probability of infection PI

i (m
S
t , l

S
t ,h

S
t ;At ,Tt).6 Note that during a pandemic,

agents can also choose to isolate at home, in which case they can reduce the likeli-
hood of getting infected, but do not receive any direct utility benefits. Section 3.3
describes the probability of infection PI

i (m
S
t , l

S
t ,h

S
t ;At ,Tt) and its dependence on

the alternative infection channels.7

Unlike susceptible agents, the decision of infectious and recovered individuals
do not depend on the aggregate states, Tt and At . Infectious individuals z = I solve:

U I
i,t = max

{cI
t ,lI

t ,mI
t ,hI

t }
uI

i (c
I
t ,m

I
t )+δ

[
(1−PR −PD −PD∗

)U I
i,t+1 +PRUR

i,t+1

+(PD +PD∗
)UD

i,t+1

]
(7)

s.t. cI
t = φwt l̄lI

t ,

mI
t + lI

t +hI
t = 1−θi,

mI
t ∈ [0,min{1− m̄in

j ,1− m̄out
i }],

hI
t ∈ [0, h̄],

where φ is a productivity penalty associated with being sick. In addition, we allow
for a different utility function for infectious uI

i (·) to accommodate a reduced pref-
erence for travel while sick. Infectious individuals eventually transition to either
recovered or deceased.
6This is in contrast to the assumption in Farboodi, Jarosch, and Shimer (2021) and Antràs, Redding,
and Rossi-Hansberg (2023), where agents are uncertain and probabilistically infer their type and
make decisions based on S, I, R type shares in the population.

7Alternatively, one could complicate the model and assume that after exposure to the virus, suscep-
tible agents transition to an “exposed” type. If these exposed agents are pre-symptomatic and do
not realize they have become exposed, they would make the same choices as susceptible agents.
Following an incubation period, exposed individuals will then develop symptoms and become in-
fectious. As shown in Online Appendix E.1, the presence of exposed agents introduces delays in
peak infectious due to disease-specific incubation periods that yield more realistic disease dynam-
ics, but does not alter the fundamental insights of the analysis.
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The recovered problem z = R is

UR
i,t = max

{cR
t ,lR

t ,mR
t ,hR

t }
ui(cR

t ,m
R
t )+δ

[
(1−PD∗

)UR
i,t+1 +PD∗

UD
i,t+1

]
(8)

s.t. cR
t = wt l̄lR

t ,

mR
t + lR

t +hR
t = 1−θi,

mR
t ∈ [0,min{1− m̄in

j ,1− m̄out
i }],

hR
t ∈ [0, h̄].

Infectious and recovered individuals take the transition probabilities as given. Fur-
thermore, they do not internalize the externality associated with their choices and
the effect on the infection probability PI

i (·) in the susceptible problem in (6). Ac-
cordingly, the decisions that solve their dynamic problem are static.8 Absent direct
utility benefits from isolation, infectious and recovered individuals choose zero iso-
lation, hI

t = hR
t = 0.

Those that die, either from the virus or other causes, receive a one time payoff
of Ωi, so that the value for the deceased is

UD
i,t = Ωi. (9)

3.2.2 Production

Individuals supply labor to perfectly competitive firms which use labor to produce
an homogeneous consumption good (the numeraire) with a linear production tech-
nology Yt = ALt . We do not distinguish between the production technologies of dif-
ferent regions. Instead, we assume that the markets are sufficiently integrated such
that all firms operate with identical technology and marginal products are equalized
across regions.

8The model does not feature general equilibrium price effects from the pandemic, implying that
infectious and recovered choose a constant travel share.
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3.3 Infection Probability Module

The epidemiological module describes the evolution of the aggregate disease states
given the behavior of individuals, while the economic module captures the behav-
ioral response of individuals to the aggregate disease state of the economy. Con-
necting these two modules is the force of infection PSI

i (At ,Tt) and the infection
probability PI

i (m
S
t , l

S
t ,h

S
t ;At ,Tt).9 In equilibrium, the coupled modules’ consis-

tency requires that

PSI
i (At ,Tt) = PI

i (m
S
t (At ,Tt), lS

t (At ,Tt),hS
t (At ,Tt) ; At ,Tt). (10)

The previous equation formalizes the handshake between the epidemiological and
economic module, and determines the channel through which agents’ behavioral
responses affect the course of the pandemic and vice-versa. To connect economic
activities with contacts and ultimately infection probabilities, we extend Ash et al.
(2022) and Boppart et al. (2024)’s linear random meeting technology to multiple
regions to account for travel activities and their corresponding contacts.

The general formulation for the probability of infection given C contacts and
the epidemiological probability τ that a contact with an infectious person leads to
infection is

P(infection) = 1−
(

1− τ · I
N

)C

.10

We extend this logic to a model with multiple regions and endogenous choices
over activities. The probability that a susceptible is infected depends on the share
of time the susceptible spend in each activity, the likelihood that a contact during

9Because all region i susceptible individuals are ex ante identical, all make the same choices, and
the infection probability PI

i (m
S
t , l

S
t ,h

S
t ;At ,Tt) is the same for all susceptible individuals in i.

10Given n independent draws (contacts), the probability of getting infected is the probability of at
least one success, P(at least one success) = 1−P(failure)n. The probability that a contact does
not lead to infection is P(failure) = 1−P(infection from a contact) = 1−P(Infectious Contact) ·
P(contact with Infectious leads to infection). Thus, the probability that a contact is infectious,
P(Infectious Contact), corresponds to the share of the relevant population that belongs to I, while
the probability that a contact with an infectious person leads to infection is τ .
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that activity leads to infection, and the number of contacts during the activity,

PI
i (m

S
t , l

S
t ,h

S
t ;At ,Tt)≡ 1−

( lS
t

1−θi

)
︸ ︷︷ ︸

Work share

1− τ ·
(Ii,t −MI

i,t +MI
j,t)

Ni,t︸ ︷︷ ︸
Home Exposure


C l

i,t

(11)

+

(
mS

t

1−θi

)
︸ ︷︷ ︸
Travel share

1− τ ·
(I j,t −MI

j,t +MI
i,t)

N j,t︸ ︷︷ ︸
Foreign Exposure


C m

i,t

+

(
hS

t

1−θi

)
︸ ︷︷ ︸
Isolation share

1− τ ·
(Ii,t −MI

i,t +MI
j,t)

Ni,t︸ ︷︷ ︸
Home Exposure


C h

i,t.

The three infection channels isolate the probability of getting infected per con-
tact while working, isolating, or traveling. Agents allocate their time endowment
accounting for the fact that each activity (lS

t ,m
S
t ,h

S
t ) leads to a differential activity-

and-region specific likelihood of not getting infected, denoted by the terms (·)C z
,

z ∈ {l,m,h}. Crucially agent takes the latter as given, introducing a key behavioral
externality into the disease dynamics.

In a metapopulation model, the infectious population share in i depends on the
infectious residents of i who leave and travel to the other regions, MI

i,t = Ii,tmI
i,t , as

well as the infectious residents of other regions who travel to region i, MI
j,t = I j,tmI

j,t

(recall in equilibrium infectious do not isolate). The total population engaged in
economic activities in region i at time t, Ni,t , includes the residents of i, less those
traveling to the other region, plus residents of j traveling into i:

Ni,t = ∑
Z∈{S,I,R}

Zi,t −MZ
i,t +MZ

j,t , (12)

where MZ
i,t are type Z travelers.11

The number of contacts an agent has depends on the activities they participate

11In Online Appendix E.2, we consider an alternative specification for the infection probability
where isolating agents are removed from the relevant local population. We show quantitatively
that this leads to higher peak infectious, but otherwise similar dynamics.

13



in. The contacts of an agent who chooses to work (and consume) are given by

C l
i,t = ρ

Cwt l̄(1−θi)C∗
i,t︸ ︷︷ ︸

Consumption contacts

+ρ
L l̄(1−θi)L∗

i,t︸ ︷︷ ︸
Work contacts

+ C u︸︷︷︸
Unavoidable contacts

. (13)

The unavoidable contacts can be thought of primarily as contacts occurring at home,
but could also include things such as religious activities. Consumption contacts are
determined by the dollar amount spent by the individual for consumption activities,
wt l̄(1−θi), the average dollar value of consumption activities by others in region i,
C∗

i,t , and the parameter ρC which converts individual and average consumption into
contacts. Likewise, work contacts depend on the number of hours the individual
works, l̄(1−θi), the average number of hours others in region i work, L∗

i,t , and ρL

which converts individual and average labor into contacts.12

The average dollar value of consumption and average number of work hours in
i are given by

C∗
i,t = ∑

Z∈{S,I,R}

 cZ
i,t

Zi,t −MZ
i,t

Ni,t︸ ︷︷ ︸
Consumption by i agents

+ κ
MZ

j,t

Ni,t︸ ︷︷ ︸
Consumption by j agents

 , (14)

L∗
i,t = ∑

Z∈{S,I,R}
l̄ · lZ

i,t
Zi,t

Si,t + Ii,t +Ri,t
. (15)

C∗
i,t is a weighted average of the consumption by those individuals the susceptible

agent may encounter in region i (i.e. those in each disease state in i less those that
are traveling or isolating) and consumption dollars spent by those traveling from j

into i, where κ converts travel shares into dollars.13 L∗
i,t is the weighted average

labor hours by agents in region i. We do not adjust L∗
i,t for those traveling because

this is already captured by the time share spent on work lZ
i,t .

When traveling the agent has contacts from consumption activities in the foreign

12From the budget and time constraints in (6), if the agent chooses zero travel and isolation mS
i,t =

hS
i,t = 0, then labor hours are l̄(1−θi) and consumption is wt l̄(1−θi) as in (13).

13The parameter κ allows for the possibility that people spend more on consumption activities when
traveling than at home.
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region as well as unavoidable contacts,

C m
i,t = ρ

M l̄(1−θi)C∗
j,t︸ ︷︷ ︸

Travel contacts

+ C u︸︷︷︸
Unavoidable contacts

, (16)

where C∗
j,t is defined as in (14), and ρM converts the dollars-hours product into

contacts. Finally, if the susceptible individual chooses to isolate, they have only the
unavoidable contacts,

C h
i,t = C u. (17)

Notice that the choices of individual agents affect the probability of infection
both directly through the work, travel, and isolation activity shares in (11), and in-
directly through the contacts associated with those activities (12) - (17). Because
agents are atomistic, they take contacts C l

i,t ,C
m
i,t and population shares Ni,t as given

when making their choices. Our solution algorithm in Online Appendix B recovers
the individual choices consistent with these aggregates.

3.4 Equilibrium

An equilibrium is defined as a set of individual agents’ choices (cz
i,t , l

z
i,t ,m

z
i,t ,h

z
i,t)

and associated value functions U z
i,t for all regions i, time t, and agents disease state

z ∈ {S, I,R,D}, an aggregate wage rate wt , the time-varying regional disease states
of the economy Ti,t = (Si,t , Ii,t ,Ri,t ,Di,t), such that, in every period, t and region, i:

1. Individual Choices: Given the wage, aggregate disease states of the econ-
omy Ti,t , agents’ choices solve (6), (7), and (8);

2. Firms’ Zero-profit Condition: Labor is paid its marginal product: wt = A;

3. Market Clearing: Given the individual choices, aggregate disease states of
the economy Ti,t , aggregate labor supply equals labor demand:

∑
i

[
lS
i,tSi,t +φ lI

i,tIi,t + lR
i,tRi,t

]
= Lt
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4. Epidemiological Module: The disease states Tt = {Si,t , Ii,t ,Ri,t ,Di,t}I
i=1 fol-

low the law of motion described by the system of equations in (1)-(4)

5. Infection Probabilities’ Module: Given the wage, the individual choices,
and the law of motion for the disease states, coupled models’ consistency
requires that equation (10) is satisfied in every period.

Online Appendix B describes the solution algorithm.

3.5 Equilibrium Characterization: Infection Avoidance and Ar-
bitrage

What are the determinants of travel and isolation decisions during a pandemic?
This section analytically characterizes the infection avoidance role of travel and the
infection arbitrage opportunity provided by home isolation. To do so, we initially
shut down the home isolation channel in Proposition 1, and then later reintroduce it
in Proposition 2 and 3. Online Appendix A contains all proofs.

In the pre-pandemic period, agents choose travel by comparing their marginal
utility benefits and opportunity costs,

∂ui

∂m
=

∂ui

∂c
wt l̄.

The pandemic introduces new considerations in the susceptible agents’ travel
decisions,

∂ui

∂m
Direct Benefit

−δ (US
i,t+1 −U I

i,t+1)
∂PI

i
∂m

Pandemic Considerations

=
∂ui

∂c
wt l̄

Opportunity Cost of Travel

.

which account for the extent by which traveling to a region with different infec-
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tiousness levels affects their likelihood of becoming infected,

∂PI
i

∂m
≡ 1

1−θi



1− τ ·
(Ii,t −MI

i,t +MI
j,t)

Ni,t︸ ︷︷ ︸
Home Exposure


C l

i,t

−

1− τ ·
(I j,t −MI

j,t +MI
i,t)

N j,t︸ ︷︷ ︸
Foreign Exposure


C m

i,t

 (18)

and the associated discounted payoff of moving from a susceptible to an infectious
state in the next period, δ (US

i,t+1 −U I
i,t+1). Crucially, pandemic considerations are

absent among infectious and recovered agents, whose traveling decisions have no
bearing on their continuation value.

We focus our analysis on the policy-relevant case where the pandemic is deadly
or costly enough that agents do not want to strategically contract the virus, US

i,t −
U I

i,t > 0. Lemma 1 in Online Appendix A.1 shows that the following condition
eliminates these selfish incentives for herd immunity, and implies UR

i,t >U I
i,t , UR

i,t ≥
US

i,t .
14

Assumption 1. No selfish incentives for herd immunity. For all m, t,(
ui(cR(m),m)−uI

i (c
I(m),m)

)
−δ (1−PD)(UR

i,t −Ωi)≥ 0,

where cR(m)≡ wt l̄(1−θi −m) and cI(m)≡ φwt l̄(1−θi −m).

In the presence of endogenous travel choices, traveling acts not only as a path-
way for the virus to spread, but also an insurance mechanism by which susceptible
people may avoid infection. When the case rate is high (low) in their home region
susceptibles have an additional incentive (disincentive) to travel. This mechanism
is absent in models with exogenous travel choices. Proposition 1 formalizes the
conditions under which travel provide an infection avoidance asset or liability.

Proposition 1. The Infection Avoidance Role of Travel. Under Assumption 1 and

absent home isolation, h = 0, endogenous travel choices provide susceptibles with:

14This condition is intuitively satisfied when the infectious state productivity loss is large enough (φ
small) or the probability of death due to the virus, PD is large enough.
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(a) an infection avoidance asset if the likelihood of contracting the virus in the

foreign region while traveling is lower than the likelihood of contracting the

virus in the home region while working, ∂PI
i

∂m < 0. In this case, susceptible

agents travel strictly more than if they were recovered. In the absence of

direct benefits from travel, susceptible travel weakly more than if they were

recovered.15

(b) an infection avoidance liability if the likelihood of contracting the virus in

the foreign region while traveling is higher than the likelihood of contracting

the virus in the home region while working, ∂PI
i

∂m > 0. In this case, susceptible

agents travel less than if they were recovered. Absent direct benefits from

travel, susceptible choose not to travel.

Next, consider the case where susceptibles have access to an additional infection
avoidance asset: isolation at home, hS > 0. Home isolation yields lower contact
rates than travel (C h ≤ C m) but does not offer direct utility benefits. Crucially, the
presence of both traveling and home isolation provide susceptibles with an infection
avoidance arbitrage opportunity, which we formalize in Proposition 2.

Proposition 2. Avoidance Channels and Infection Arbitrage. (a) Under Assump-

tion 1, in the absence of utility benefits from travel, u(c,m) = u(c), susceptibles

will choose the infection avoidance asset (travel or home isolation) that yields the

greater reduction in the likelihood of infection. Susceptibles weakly prefer travel if

home isolation is less effective in reducing the exposure risk,

1− τ ·
(Ii,t −MI

i,t +MI
j,t)

Ni,t︸ ︷︷ ︸
Home Exposure


C h

i,t

−

1− τ ·
(I j,t −MI

j,t +MI
i,t)

N j,t︸ ︷︷ ︸
Foreign Exposure


C m

i,t

Effectiveness of home isolation in reducing infection exposure (+/−)

≤ 0. (19)

15Distinct from Antràs, Redding, and Rossi-Hansberg (2023), in our metapopulation model, the
avoidance role of travel emerges even in the absence of direct benefits from travel, which in their
model arise due to gains from trade.
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This is true when

∂PI
i

∂m
≤ ∂PI

i
∂h

=
1

1−θi



1− τ ·
(Ii,t −MI

i,t +MI
j,t)

Ni,t︸ ︷︷ ︸
Home Exposure


C l

i,t

−

1− τ ·
(Ii,t −MI

i,t +MI
j,t)

Ni,t︸ ︷︷ ︸
Home Exposure


C h

i,t

Effectiveness of home isolation in reducing home-infection exposure (−)


≤ 0,

which depends on the number of contacts associated with each activity given by

equations (16) and (17), as well as the share of infectious in the home and foreign

populations. Conversely, susceptibles weakly prefer home isolation if the previous

inequality is flipped (≥). (b) Under Assumption 1, independent of whether agents

receive direct utility from travel, susceptibles will not isolate (h = 0) if infection

rates in the home region are sufficiently low that isolation’s opportunity cost (in

terms of consumption) is too high. Susceptibles will also not isolate and instead

travel for avoidance purposes if these conditions hold: (i) travel is more effective

than home isolation in reducing the likelihood of infection or home and foreign in-

fection rates are sufficiently small; (ii) the marginal utility benefits of travel are suf-

ficiently large, ∂u/∂m; and (iii) travel is either an interior solution or the shadow

value on its upper-bound constraint is not too large that isolating may become at-

tractive.

Next, we use assumptions on the functional form of the utility function adopted
in our quantitative analysis to provide closed-form solutions of traveling choices.

Proposition 3. Susceptible Travel Choices. Let ui(c,m) = (1−βi) ln(c)+βi ln(m),

then pre-pandemic agents, infectious and recovered types choose a region-specific

constant share of time traveling

mpre
i,t = βi, mI

i,t = β
I
i (1−θi), mR

i,t = βi(1−θi). (20)

Under Assumption 1, if susceptibles do not choose to isolate (h = 0)—or absent

isolation options—they travel more than recovered individuals when traveling re-
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duces the likelihood of becoming infectious (∂PI
i,t/∂mS

i,t < 0) and less otherwise,16

mS
i,t

mR
i,t

= 1+



1−2βi

2βi
+

1
2βiB̃

(
1+
√

1+ B̃(B̃+2(1−2βi)

)
︸ ︷︷ ︸

≥0

,
∂PI

i,t

∂mS
i,t
< 0, Inf. Avoid. Asset

1−2βi

2βi
+

1
2βiB̃

(
1−
√

1+ B̃(B̃+2(1−2βi)

)
︸ ︷︷ ︸

≤0

,
∂PI

i,t

∂mS
i,t
> 0, Inf. Avoid. Liability

(21)

where B̃ ≡ (1− θi)δ (US
i,t+1 −U I

i,t+1)∂PI
i,t/∂m. If susceptibles isolate, h > 0, this

expression becomes

mS
i,t

mR
i,t

=
1

δ (US
i,t+1 −U I

i,t+1)

(1− τ · (Ii,t−MI
i,t+MI

j,t)

Ni,t

)C h
i,t

−
(

1− τ · (I j,t−MI
j,t+MI

i,t)

N j,t

)C m
i,t

Effectiveness of home isolation in reducing infection exposure(+,h>0)


(22)

and susceptibles travel even less, relative to recovered individuals, when home

isolation is increasingly effective at reducing the likelihood of becoming infected.

This section isolates the key considerations driving traveling choices during a
pandemic, specifically, regional differences in relative contact rates and infectious
population shares. Section 5 explores the quantitative relevance of these key trade-
offs over the evolution of a pandemic.

4 Model Calibration

We calibrate the model to match features of the U.S. economy prior to the COVID-
19 pandemic. We examine a two region version of the model, i ∈ {home, f oreign}.
A period in the model corresponds to one day and the pandemic lasts two years,
T = 730, at which point a vaccine arrives and the pandemic ends with certainty.17

16Susceptibles do not isolate, h = 0, if m̂S
i,t > m̃S

i,t where m̂S
i,t satisfies (21) and m̃S

i,t satisfies (22).
17In our exploration of the parameter space in Section 6, across over one million parameter combi-

nations, the pandemic ends (infectious population less than one per million) after an average of
395 days.
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Table 1 summarizes the parameter values used in our benchmark analysis.18

4.1 Preferences

We discipline the preferences of agents to capture pre-pandemic (long-run) travel-
ing and consumption decisions. We follow Prescott (1986) and assume that agents
have preferences

ui(c,m) =

(
c1−βi ·mβi

)1−σ

−1

1−σ
i ∈ {home, f oreign}

over a composite good c1−βi ·mβi , where βi > 0 is the travel share parameter, and
1/σ > 0 is the elasticity of intertemporal substitution. As income and substitution
effects tend to compensate each other in the long-run (e.g. Prescott, 1986, Kimball
and Shapiro, 2008), we focus our quantitative analysis on the case where σ → 1,

ui(c,m) = (1−βi) ln(c)+βi ln(m) i ∈ {home, f oreign}

The log-utility proves useful for two reasons. First, it provides unique closed-
form solutions to the susceptible agent’s problem, dispensing with the need for
root-finding procedures and enhancing the interpretability of our quantitative re-
sults.19 Second, it allows us to cleanly identify the travel preference parameters
{βhome,β f oreign} to match the pre-pandemic share of time residents travel. In par-
ticular, under this utility specification, agents display a constant share of time trav-
eling, mpre

i,t = βi, with i ∈ {home, f oreign}. We calculate these time shares with
information from the Bureau of Transportation Statistics American Travel Survey
(ATS). Using ATS, we calculate the share of time spent traveling from the aver-
18The values for pre-pandemic contacts during consumption C c∗ and travel C m∗

, and the consump-
tion and travel contacts conversion factors ρC,ρM , depend on the relative population of the home
region (see Section 4.2). For these, Table 1 reports values for both symmetric (λhome = 0.5) and
asymmetric (λhome = 0.00001) regions.

19This assumption eliminates the dependence of travel choices on exogenously fixed aspects of our
economic environment, such as the opportunity costs of travel (φ , l̄) and the wage, which is set to
A in equilibrium. Since our analysis abstracts from targeted labor market interventions (such as
the Paycheck Protection Program in the U.S.) or the long-run effect of a pandemic on productivity,
this assumption is not overly restrictive for our purposes.
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age (across households) number of days spent on travel of at least 100 miles per
year. Crucially, the prediction of a constant share of time traveling is consistent
with recent evidence suggesting the absence of trends in traveling choices.20

Finally, to account for potential health effects of the disease on preferences for
traveling activities, we allow infectious agents to receive different (lower) utility
from travels, β I

i < βi. In particular, we choose β I
i so that the time share spent trav-

eling by infectious relative to that of recovered is adjusted by the share of infectious
with severe symptoms, mI

i = (1−φ severe)mR
i , where φ severe is the share of infectious

with severe symptoms.21

4.2 Contacts

We follow Ash et al. (2022) to calculate the parameters ρC,ρL,ρm which convert
economic activities into contacts. Ash et al. (2022) use contact data from Prem,
Cook, and Jit (2017) to calculate average daily contacts by activity. They sepa-
rate contacts into those occurring during labor activities C l∗ , contacts from home
activities, which we assign to unavoidable contacts C u, and contacts from other
activities, which we assign to consumption C c∗ and travel C m∗

. We choose the
contact parameters ρC,ρL,ρm so that average pre-pandemic contacts match these
values,

∑
i

λiρ
L l̄lpre

i Lpre∗
i = C l∗,

∑
i

λi

(
ρ

Ccpre
i Cpre∗

i +ρ
M l̄mpre

i Cpre∗
j

)
= C c∗ +C m∗

,

20An annual survey from Expedia shows that travel behavior has remained relatively constant over
time at ∼ 11 (business) days per year. Source: Expedia - 2007, Expedia - 2024.

21Ash et al. (2022) calculate the share of infectious with severe symptoms φ severe as a duration-
weighted average of time spent in different states of infection severity, with major sufferers be-
ing those who become hospitalized weighted by their time spent symptomatic, giving a value of
φ severe = 0.1445.
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Table 1: Parameter Values

Parameter Value Description Source
Epidemiological Parameters

R0 2.6 Initial reproduction number Ash et al. (2022)
d 5.1 Duration of infectiousness Ash et al. (2022)
µ 0.015 Case fatality rate Ash et al. (2022)
C c∗ [3.984, 4.546] Pre-pandemic contacts Described in Section 4.2

during consumption
C m∗

[1.183, 0.621] Pre-pandemic contacts Described in Section 4.2
during travel

C l∗ 7.513 Pre-pandemic contacts Prem, Cook, and Jit (2017)
during labor

C u 3.549 Unavoidable contacts Prem, Cook, and Jit (2017)
τ 0.033 Infections per contact Described in Section 4.3
PR 0.193 Daily probability of recovery = (1/d)(1−µ)
PD 0.003 Daily probability of death = (1/d)µ
PD∗

3.6e-5 Daily probability of death = 1/(76∗365)
(outside cause)

γ 3.6e-5 Population growth rate Set γ = PD∗

Economic Parameters
δ 0.961/365 Daily discount factor Implied risk-free interest

rate of ∼0.04
φ 0.8555 Share minor sufferers Ash et al. (2022)
βi 0.063 Travel share Described in Section 4.1
β I

i 0.054 Infectious travel share Described in Section 4.1
h̄ 0.7 Share essential workers Iverson, Karp, and Peri (2022)
κ 345.58 Daily travel cost Described in Section 4.2
Ωi -33,420 Value for deceased Described in Section 4.4
A 19.86 Technology Implies pre-pandemic GDP

per capita of $58,000
l̄ 8.54 Time endowment Implies pre-pandemic individual

labor supply = 8 hours
λhome [1e-5, 0.5] Home population share Set externally
ρC [1.6e-4, 1.7e-4] Consumption contacts Described in Section 4.2

conversion factor
ρM [0.006, 0.007] Travel contacts Described in Section 4.2

conversion factor
ρL 0.117 Labor contacts Described in Section 4.2

conversion factor

Note: For parameters in brackets, the first value corresponds to the case with asymmetric
regions, and the second to symmetric regions.
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where λi are regional population shares and

Cpre∗
i = cpre

i
λi(1−mpre

i )

λi(1−mpre
i )+λ jm

pre
j

+κ
λ jm

pre
j

λi(1−mpre
i )+λ jm

pre
j

,

Lpre∗
i = l̄lpre

i ,

are the pre-pandemic average consumption and labor activities in region i.22 We
calculate the parameter κ , which converts time spent on travel into dollars using
data from Business Travel News (BTN) and the Federal Highway Administration
Next-Generation National Household Travel Survey (NHTS). We weight the total
daily cost for travel to a given city in the BTN data by the annual total trips to the
city in the NHTS data to arrive at an average daily cost of travel.

4.3 Transmissibility of the Virus

We calculate the transmissibility of the virus τ by backing it out from the formula
for the reproductive number R0. R0 denotes the expected number of new cases
caused by a single case in a population of entirely susceptibles. R0 is given by

R0 = τC ∗d,

where τ ∈ [0,1] is infections per contact, C ∗ is the number of contacts between the
infectious person and susceptibles per day, and d is the number of days a person
is infectious. For our two region model, we calculate contacts C ∗ as a weighted
average of contacts across regions,

C ∗ = ∑
i∈{home, f oreign}

λi

(
ρ

CcI
iC

pre∗
i +ρ

LlI
i l̄Lpre∗

i +ρ
MmI

i l̄C
pre∗
j +C u

)
, (23)

22We compute the model-implied values for C c∗ and C m∗
individually as C c∗ = ∑i λiρ

Ccpre
i Cpre∗

i

and C m∗
= ∑i λiρ

M l̄mpre
i Cpre∗

j . These values are reported in Table 1.
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with j ̸= i.23 Given epidemiological estimates of R0 and d we can compute the
transmissibility τ implied by R0 = τC ∗d.

4.4 Value of Being Deceased

We calibrate the value of deceased Ωi to be consistent with a value of a statistical
life (VSL) of $10 million.24 The VSL provides a measure of how much individuals
are willing to give up in order to reduce the likelihood of death. That is, for an
increase in the probability of dying of ∆PD∗

, agents require V SL ·∆PD∗
additional

wealth. Alternatively, for an increase in wealth of ∆a, individuals will accept an
increase in the probability of death of ∆a/V SL. Thus, we can find the implied Ωi

from the following equality:
U pre

i,t =UV SL
i,t ,

where U pre
i,t is pre-pandemic value given in (5), and UV SL

i,t is given by the solution to

UV SL
i,t = max

{cV SL
t ,lV SL

t ,mV SL
t }

{u(cV SL
t ,mV SL

t )+δ ((1−PD∗
− ∆a

V SL
)U pre

i,t+1 +(PD∗
+

∆a
V SL

)UD
i,t+1)},

s.t. cV SL
t = wt l̄lV SL

t +∆a, mV SL
t + lV SL

t = 1.

We set ∆a to a 10% increase in daily wage, ∆a = 0.1l̄w.

4.5 Initial Conditions of the Pandemic

The model requires an initial infectious seed to start the pandemic. Unless other-
wise specified, we set the population of infectious at time zero to I0,i = 0.0001% in
both regions i = {H,F}.

23When travel between regions is not permitted, mI
i = 0, cI

i = φwl̄, Cpre∗
i = wl̄, and Lpre∗

i = l̄, which

implies C ∗ = ∑i λi

(
ρCφ(wl̄)2 +ρL l̄2 +C u

)
, analogous to the single region contact model in Ash

et al. (2022).
24Setting the value associated with death Ωi = 0, as is sometimes done in the literature, can lead to

unintended individual behavior. As an illustrative example, take the case of CRRA preferences
u(c) = c1−σ/(1−σ). For σ > 1, discounted lifetime utility is < 0 implying death would raise
lifetime utility, contrary to how we typically think people view dying.
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5 Quantitative Analysis

This section examines the quantitative relevance of travel choices and disease con-
tainment strategies in the context of pandemic federalism. Section 5.1 studies the
determinants of endogenous travel and isolation choices, while Section 5.2 analyzes
the effect of behavioral responses on disease dynamics, both in a laissez-faire envi-
ronment. Section 5.3 examines pandemic federalism, the role of travel restrictions,
and endogenous policy under a non-cooperative (Nash) game between two local
policymakers. Additional results are provided in Online Appendix C.

5.1 Endogenous Travel and Isolation Choices

When is travel an asset or a liability for infection avoidance purposes? When do
agents prefer travel to isolation? How do these incentives change over the evolu-
tion of a pandemic? We build on the theoretical results in Section 3.5 to explore
these quantitative questions. We examine two economies, one where regions are
identical in every aspect (symmetric economy), and another where the home-region
is relatively small (asymmetric economy). The symmetric case is more relevant
when considering federal policies and travel across roughly similar-sized countries
(e.g. Germany and France), while the second case is more relevant for local policies
when there is travel between very heterogeneous countries (e.g. U.S. and Cayman
Islands) with different potentials to shape the course of the pandemic, to which we
will return in Section 5.3.

We begin by analyzing the endogenous travel decisions of susceptibles within
a symmetric economy. This is illustrated in Figure 1. In this environment, home-
and foreign- infection exposures are identical (Panel C) along the equilibrium path.
Accordingly, the relative contact rates across activities are the key determinants of
travel and isolation choices. Panel B shows that contact rates of traveling are lower
than working, ∂PI

i,t/∂mS
i,t < 0; therefore, travel is an infection avoidance asset over

the course of the entire pandemic (Proposition 1). However, the relative effective-
ness of travel and home isolation as infectious avoidance channels varies over the
evolution of the pandemic.

Proposition 2 states that when the likelihood of infection in the home region
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Figure 1: Determinants of travel choice with symmetric regions.

is low, isolation is not an effective avoidance tool. Consistent with this insight,
Panel D shows that at the beginning and end of the pandemic, agents do not isolate,
and prefer to travel for infectious avoidance purposes.25 Finally, Panel A shows
that susceptible agents travel more than recovered agents when traveling is a more
effective infectious avoidance mechanism than isolation (Proposition 3), which is
particularly true when infection rates are low (Proposition 2), at the beginning and
ending of the pandemic.26

Next, in Figure 2 we study the travel and isolation choices of susceptibles when
the home and foreign regions are asymmetric in population shares (home is small,

25The travel-isolate condition corresponds to the reciprocal of (22). When this quantity is smaller
than one and ∂PI

i,t/∂mS
i,t < 0, travel is an effective asset and susceptible agents increase travel

relative to recovered.
26The sharp spike in travel as the initial infectious share rises is consistent with observed outflows

of people from early hot spots such as Wuhan (Kraemer et al., 2020) and New York City (Coven,
Gupta, and Yao, 2023) during the COVID-19 pandemic.
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Figure 2: Determinants of travel choice with asymmetric regions.

foreign is large).27 The role of travel as an asset or liability depends on whether
the agent resides in the small or the large region. In particular, and in contrast to
the symmetric case, travel becomes a liability (∂PI

i,t/∂mS
i,t > 0) for the agents in

the large region when infection rates are high, shown in Panel B . Hence Panel A
shows agents reduce their travel relative to the recovered (Proposition 1) beginning
in the peak infection period and continuing throughout the pandemic. On the other
hand, travel is an asset for agents in the small region even during the peak. Fur-
thermore, travel remains an effective asset (Proposition 3), as shown in Panel D,
such that susceptibles in the small region favor travel over isolation for avoidance
over the entirety of the pandemic, unlike the symmetric case where agents switch to
isolation during the peak. However, despite travel being a relatively more attractive

27We set the home population share to 0.001% to illustrate a small nation facing travelers from the
rest of the world.
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avoidance mechanism than isolation, susceptibles in the small region are unable to
meaningfully reduce their infection probability, as the evolution of the pandemic in
both regions is driven by the behavior of agents in the large region. This illustrates
one of our main quantitative results: As the relative size between the two economies
increases, the effectiveness of travel as an avoidance mechanism (for susceptibles
in both regions) drops.28

To sum up, in the symmetric environment, susceptibles prefer travel to isola-
tion as an infectious avoidance tool for a significant (77%) portion of a two-year
pandemic, especially at the beginning and the end, when isolation is very costly
relative to the benefits due to low infection rates. By contrast, in the asymmetric
environment, agents in the small region use travel and those in the large region use
isolation for avoidance throughout the pandemic. Notably, the role of travel as an
infection avoidance asset or liability evolves over time and is driven by both relative
contact rates and the differential of exposure at home and abroad. Finally, travel for
avoidance becomes less relevant as the size disparity between regions grows.

5.2 Disease Dynamics and Behavioral Responses

How do behavioral responses affect the disease dynamics in a metapopulation frame-
work? In our metapopulation model, travel works as a pathway for the virus to
spread. Here, we show how exogenous and endogenous travel choices affect these
disease dynamics, accounting for the fact susceptibles can also isolate. Numerical
results for all model comparisons are reported in Table 2.

To assess the role of home isolation, we first contrast an economy where agents
cannot travel and isolate (first row),29 with one where agents cannot travel but are
able to isolate (second row).30 Home isolation is an effective avoidance strategy,

28For completeness, Online Appendix C.1 replicates this analysis under the assumption that sus-
ceptibles do not receive utility benefits from travel. Here, susceptibles travel only if the foreign-
exposure is lower than the home-exposure (Proposition 1). Accordingly, in absence of any asym-
metry between regions, agents do not travel.

29The model with no isolation and traveling coincides with an SIRD model where the share of
susceptibles becoming infected, PSI

i (At ,Tt) is consistent with the probability of getting infected
implied by agents spending their entire time working in order to consume (equation (10)).

30The no behavioral response and home isolation autarky outcomes are reported for the case of
symmetric regions. When regions are asymmetric, these outcomes change due to the updated
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reducing peak infectious from more than 25% down to 3.51%, close to that under
our baseline symmetric economy (3.58%).

Table 2: Peak Infectious and Days Between Peaks Across Different Model Specifications

Peak Infectious - Home (%) Days Between Peaks
I0,H = I0,F I0,H < I0,F I0,H = I0,F I0,H < I0,F

Autarky
No Behavioral Response 26.52 26.52 0 24
Home Isolation 3.51 3.51 0 24

Symmetric Size
Exogenous Travel 3.68 3.71 0 2
Endogenous Travel 3.58 3.56 0 5

Asymmetric Size
Exogenous Travel 4.17 4.18 2 2
Endogenous Travel 9.44 9.48 9 9

Note: No Behavioral Response model has no travel or endogenous avoidance. Home Iso-
lation has no travel, but allows positive home isolation. Exogenous Travel enforces travel
at the pre-pandemic rate, with endogenous home isolation response. Endogenous Travel al-
lows both travel and home isolation choices to respond endogenously. The table reports the
peak home infectious as percent of the home population and the number of days between
the home and foreign peaks. Outcomes are shown for the case with home and foreign in-
fectious seeds set to 0.0001% (I0,H = I0,F ) and for the home seed set to 0.0001% and the
foreign seed set to 0.1% (I0,H < I0,F ).

Next, to understand the connectivity role of travel, we contrast the home isola-
tion autarky model with four alternative specifications: models with either symmet-
ric or asymmetric region sizes under exogenous or endogenous travel choices (the
models with endogenous choices coincide with those presented in Section 5.1).31

Under exogenous travel, the share of time spent traveling during the pandemic is
set to its pre-pandemic period level, mpre = mR = mI = mS. This specification iso-
lates the role of travel as a vector of pandemic transmission, by abstracting from

transmissibility parameter τ (Section 4.3), though the differences are not economically significant.
We report additional results in Online Appendix C.2.1.

31We assume under travel autarky that agents do not receive utility benefits from travel, βi = 0.
For comparison purposes, we also assume that agents do not receive utility from travel under
exogenous travel.
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endogenous pandemic considerations of susceptibles.
Travel synchronizes disease dynamics across regions relative to home isolation

autarky, reducing the time between peak infections by three weeks under exogenous
travel, and slightly less (two weeks) under endogenous travel, independently of rel-
ative region size. Accordingly, modeling travel as exogenous performs reasonably
well in capturing its impact on the synchronization of disease dynamics under our
benchmark calibration, a point we will revisit in our robustness analysis.

Although relative regional sizes do not affect the synchronicity of disease dy-
namics, they do affect the severity of the pandemic. When regions are symmetric
in size, travel has little to no impact on the height of peak infectious relative to
the home isolation autarky. In contrast, when regions are asymmetric, travel ex-
acerbates the severity of the pandemic in the small region, particularly under en-
dogenous travel, where peak infectious experience a threefold increase relative to
home isolation autarky. This is due to the fact that, in the asymmetric case, the
disease dynamics in the small region are dominated by those in the large region.
While the time to peak infectious in the large region shifts minimally (by only 2
days) compared to autarky, inflows of infectious from the large region induce an
earlier peak in the small region, occurring 24 (33) days earlier under exogenous
(endogenous) travel. Notably, these dynamics reverse the effect of a reduction in
the infectious seed of the small region that occurs under home isolation autarky,
accelerating rather than delaying the peak of the pandemic in the small region (Ap-
pendix Figure 7). Taken together, these results indicate potential benefits for small
regions to restrict incoming travel (smaller and delayed onset of peak infectious),
to which we turn in the next subsection.

To sum up: travel matters. When regions are similar in size, travel synchro-
nizes peaks across regions. When regions differ in size, endogenous travel leads
to severe outcomes for the small region, for which disease dynamics are dictated
by their larger neighbors. Clearly, these analyses hinge on initial assumptions over
many important drivers of disease dynamics in a metapopulation model (e.g the re-
productive number). Our parameter space exploration in Section 6, will check the
robustness of these results across the parameter space.
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5.3 Public Policy under Pandemic Federalism

What are the welfare consequences of travel bans and social distancing? In a pan-
demic federalism setting, local policies not only affect the strategic decisions of
policymakers in other regions, but they are also influenced by them. We analyze
the Nash equilibrium in a game between policymakers in the home and foreign
regions who choose a fixed public intervention to begin at time t ≥ 1. Given the rel-
evance to our research question and space constraints, we focus our discussion on
travel restrictions, a widely adopted yet less understood public intervention policy.
Additional results on the Nash equilibria for social distancing policies, as well as
outcomes under exogenous policy, are provided in Online Appendix C.3.

Consider a local policymaker who chooses fixed incoming and outgoing travel
restrictions xi ≡ {m̄in

i , m̄
out
i } to maximize the welfare in its own region i

max
xi∈[0,1)×[0,1)

∑
Zi,1∈{Si,1,Ii,1,Ri,1,Di,1}

Zi,1

λi
UZ

i,1(xi,x j)

taking as given the other planner’s policies, x j ≡ {m̄in
j , m̄

out
j }, and subject to the

agents’ optimization problems (6)-(9) and the transition equations (1)-(4).
Note that the region i policymaker can choose both a policy that restricts their

own population m̄out
i , as well as one which restricts the j population m̄in

i . We restrict
the feasible set of policies to 25%, 50%, 75%, or 99% reductions relative to pre-
pandemic travel, or the planner can impose no restriction.32 Online Appendix C.3.4
provides additional details about the local policymaker’s problem.

We study the Nash equilibria of the travel restriction game under two environ-
ments, one in which regions are symmetric and another in which the home region
is small and the foreign region is large.33 Table 3 summarizes the Nash equilibrium

32We prefer a 99% over a 100% reduction due to the log-utility specification, which implies welfare
is not defined in an economy with no travel. This assumption is also reasonable, as some leak-
age between regions is likely to occur when travel is fully banned. Also note that we implicitly
assume full commitment on travel restrictions across time from policymakers, which is restric-
tive but reasonable given the relatively short-horizon of pandemics and the COVID-19 pandemic
experience.

33Initial conditions for the two regions are identical for all results presented in this section. In
Online Appendix C.3.4, we show results are similar when the foreign region begins with a higher
infectious share than the home region.
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Table 3: Nash Outcomes under Alternative Travel Policies

Peak Infectious (%) Welfare
Fixed Infections-Guided Fixed Infections-Guided

Symmetric 3.58 [3.43, 3.58] -23.30 [-23.30, -3.34]

Asymmetric Small 4.21 [4.08, 4.21] -4.84 [-4.84, 4.85]

Asymmetric Large 3.52 [3.45, 3.52] -21.30 [-21.30, -5.35]

Note: Peak Infectious is a percent of the region population. Welfare is the percent
change from the economy with no travel restrictions. Under a Fixed policy rule, the Nash
equilibrium outcome is unique for both symmetric and asymmetric regions. Under an
Infections-Guided rule, there are multiple Nash equilibrium outcomes that fall within the
range reported in brackets.

outcomes in each environment, considering both a benchmark where the travel bans
are fixed in place for the entire pandemic and the case for which bans only become
active when the infectious population share passes a threshold.

For both symmetric and asymmetric regions, there is a unique Nash equilibrium
outcome under the fixed benchmark timing, where policymakers impose a 99%
reduction in travel for both regions. It is always the best response of local policy-
makers to shut down incoming travel, leading to dynamics similar to those under
the home isolation autarky specification presented in Section 5.2.

In the symmetric case, welfare losses relative to the benchmark with no travel
restrictions are large, with a -23.30% change in welfare. These losses accrue due
to both the direct loss in utility (agents like to travel) as well as the inability to
utilize travel for avoidance (Proposition 1). Further, the symmetric environment
implies both regions see identical welfare losses, and both could improve welfare
by coordinating to achieve the no-restriction benchmark, similar to the textbook
Prisoner’s Dilemma.

Turning to the case where regions are asymmetric in size, the Nash equilibrium
outcome once again leads to a Prisoner’s Dilemma. However, unlike the symmetric
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case, welfare losses are not shared equally between the two regions. While the
large region sees welfare losses similar to that under symmetric economies, the
small region experiences much smaller losses. In the small region, Nash travel
restrictions still reduce the utility benefits of traveling, but this loss is partially offset
by beneficial reductions in peak infectious, down to 4.21% from 9.44% under the
model with no travel restrictions (Table 2).34

We next study how the timing of policy interventions affect welfare outcomes
in the Nash game. To do so, we allow for a policy decision rule under which travel
bans are in place when the global infectious population share is above a thresh-
old value (“Infections-Guided”). Each policymaker commits to both travel restric-
tions (inbound and outbound) and the threshold at which restrictions become active,
choosing a triple xi = {m̄in

i , m̄
out
i , Ithresh.

i }.35 This enables policymakers to choose
strategies for which travel restrictions do not bind during the beginning and end of
the pandemic, when travel is most effective (Section 5.1).

When policymakers use infections to guide the imposition of travel bans, wel-
fare losses are significantly reduced compared to those under a fixed policy rule.
For symmetric economies, the equilibrium which maximizes welfare sees policy-
makers wait to enforce bans until the pandemic is well underway–each chooses a
threshold value of 1%–leading to a 20 percentage point improvement in welfare
from the fixed policy Nash equilibrium. Likewise for asymmetric regions, delayed
policy can improve welfare in both regions. In fact, the small region can see wel-
fare gains (relative to the case without policy restrictions) up to 4.85%. This is
despite the equilibrium thresholds for asymmetric regions being quite low: in the
welfare-maximizing equilibrium, travel bans are in place in the small region when
the infectious population share is above 0.25% and in the large region at 0.5%.

We note that allowing policymakers to choose when to impose travel bans may
still result in undesirable Nash equilibria. For symmetric and asymmetric regions,
the lowest-welfare equilibrium features full travel restrictions in place for the entire
pandemic, equivalent to the fixed-policy economies.36 Thus, coordination mecha-

34In Online Appendix C.3.3, we exogenously vary policies to identify those that maximize
aggregate welfare.

35Policymakers choose a threshold from the set Ithresh. ∈ X thresh. ≡ {0%,0.25%,0.5%, ...,3%}.
36Note, the global-welfare maximizing solution within the feasible policy set does not include any

34



nisms would be needed to allow policymakers to achieve the welfare-maximizing
Nash equilibrium. We leave the study of such mechanisms for future work.

In summary, local policy under pandemic federalism can lead to a suboptimal
prisoners’ dilemma for which all travel is banned. When regions are symmetric, this
outcome leads to large welfare losses relative to no restrictions. When regions are
asymmetric in size, with disease dynamics dominated by the large region, welfare
losses are much less for the small region when travel is restricted. In both cases,
welfare can be improved by enforcing travel bans only when infection rates are
high. In Section 6, we use the surrogate model to study an intermediate case, where
regions are asymmetric, but the small region is not so small that it is unable to
influence aggregate dynamics.

6 Robustness

Is the quantitative relevance of travel choices a feature of our specific calibration
to the COVID-19 pandemic or does it extend to alternative diseases? What are
the key parameters driving the direction and magnitude of our positive and nor-
mative findings? To answer these questions, we conduct a comprehensive explo-
ration of the parameter space, by solving our epi-econ model for one million unique
epidemiological-economic parameter combinations.37 We then use these model
solutions to train surrogates of key features of our model in order to isolate the
direction and magnitude of each parameter’s influence on our results.38

We begin our parameter space exploration by documenting how often travel is
effective across the one million economies. On average, susceptibles prefer travel
to isolation for 37% of a pandemic period.39 Consistent with Proposition 2, this

travel restrictions under an Infections-Guided decision rule. However, modest travel restrictions
are optimal when following an Infections-Guided rule with asymmetric regions.

37Online Appendix D.1 details how we use estimates of disease characteristics from the epidemio-
logical literature to discipline the boundaries of our parameter space.

38A surrogate model is an estimate f̂ of an unknown mapping f : X→ Rm from an input space X
to outcomes y = f (x), x ∈ X. In our case, X is the space of model parameters, while y represents
a model outcome of interest (e.g. model-generated moments). We use deep neural networks to
estimate the surrogate f̂ . Details concerning the surrogate model are provided in Online Appendix
D. Throughout our surrogate analysis, we report results for the home (small) region.

39Online Appendix D.4 defines the statistic used to evaluate the share of days in which travel is an
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percentage goes up to 50% if we restrict attention to the pandemic periods when
the global infectious population share is low (below 1%).

We next use surrogate models to study what factors drive this result. The re-
productive number R0 emerges as the key parameter, underscoring the predominant
role of disease contagiousness for endogenous avoidance strategies.40 Figure 3 il-
lustrates how the share of time during which travel is effective varies with R0 when
we consider either the entire pandemic (Panel A) or periods when the infectious
population share is below 1% (Panel B).41 These panels offer two key insights.
First, susceptibles are more likely to prefer travel to home isolation for higher val-
ues of the reproductive number, with a predicted average effectiveness of 30% when
R0 ≤ 6 and 38% otherwise (average effectiveness increases to 34% for R0 ≤ 6 and
56% for R0 > 6 when we restrict attention to only the periods where the infectious
population is below 1%). Second, the effectiveness of travel is highly sensitive
to R0 for prominent diseases with reproductive numbers below 6, such as Ebola,
H1N1, the seasonal flu, SARS, and COVID-19. This finding highlights the value of
early accurate estimates of this key epidemiological parameter.42

Next, we study how characteristics of the virus and economy dictate disease
dynamics, and the extent to which these are driven by endogenous vs. exogenous
travel response. Section 5.2 shows both exogenous and endogenous travel signifi-
cantly reduce the time to peak infectious in the home region compared to a home
isolation autarky, by synchronizing infection rates across regions. This quantita-
tive finding remains robust across our parameter space exploration for exogenous
travel, though the reduction in time between peaks is far more modest (0.37 days

effective asset over the days in which global infections are larger than a small threshold (1e-6).
This statistic ensures comparability among diseases with different contagiousness of transmission.

40We use the permutation feature importance methodology to determine which features (parameters)
drive the results. Details and results for all features are provided in Online Appendix D.5.

41Figure 3 is called a Partial Dependence (PD) plot. This graph reports the dependence of a model
outcome on a parameter (horizontal axis), computed as the average of the predicted surrogate
model outcomes across all occurrences of the other parameters in the training data. Online Ap-
pendix D.6 provides further details.

42Table 6 in the Online Appendix provides estimates from the literature of the R0 for these and
other diseases. We verified that this non-monotonicity is not the numerical feature of an overly
sparse grid by confirming its persistence after we replicate the analysis for R0 ∈ [1.01,6] (Online
Appendix E.4).
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Figure 3: Partial dependence plot of model outcomes (vertical axis) on R0 (horizontal
axis). A) Average percent of days travel is an effective avoidance asset. B) Average per-
cent of days travel is an effective avoidance asset when the infectious population share is
above 1%. C) Change in the time between home and foreign peaks from a home isolation
autarky model to models with exogenous (solid line) or endogenous (dashed line) travel. D)
Percentage point change in peak infectious (percent of population) from a home isolation
autarky model to models with exogenous (solid line) or endogenous (dashed line) travel. E)
Peak infectious under the aggregate-welfare-minimizing Prisoner’s Dilemma. F) Change
in welfare (consumption equivalent units) from the aggregate-welfare-maximizing coordi-
nated solution to the aggregate-welfare-minimizing Prisoner’s Dilemma.
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on average). Conversely, we find endogenous travel reduces synchronization, by
increasing the time between peaks by an average of 10.8 days. This result re-
veals a qualitatively and quantitatively distinct impact of endogenous compared to
exogenous travel than indicated by our benchmark calibration.

Over our parameter space exploration, peak infectious is on average 9.13% un-
der home isolation autarky. In contrast to our COVID-19 calibration in Section 5.2,
endogenous travel reduces (instead of increases) peak infectious, but the effect is
modest (-6%). In line with our original calibration, exogenous travel increases the
peak relative to the home isolation autarky, but by a smaller amount (9%).

Figure 3 shows how R0 drives the impact of travel on disease dynamics through
peak synchronization (Panel C) and peak infectious (Panel D). Panel C reports the
absolute value of the time difference between peaks under endogenous and exoge-
nous travel, minus the same statistic computed under home isolation autarky. A
value above zero denotes a reduction in synchronicity. Under endogenous travel,
marginal increases in R0 significantly reduce synchronicity for low values of the
reproductive number (up to 3.1), and increase synchronicity after that, though to
a lesser degree for R0 > 6. In the case of exogenous travel, low values of R0 are
associated with a reduction in synchronicity, but for R0 > 3.6 exogenous travel
is associated with stronger synchronicity between peaks, albeit modest, as noted
above. Panel D shows infectious peaks vary with the reproductive number (relative
to home isolation autarky). Endogenous travel is associated with a modest decrease
(instead of a significant increase) in peak infectious for most values of R0. This
result suggests a qualitatively distinct role of travel for mitigating the heat of the
pandemic, as opposed to that indicated by the COVID-19 calibration. These results
underscore the implications of the avoidance role of endogenous travel choices vis-
á-vis exogenous travel choices on disease dynamics.

We close our analysis by exploring the determinants of welfare effects under
time-invariant travel restrictions.43 In particular, we use the Nash equilibrium of the
game between local policymakers (Section 5.3) to study how equilibrium welfare
varies throughout the parameter space. Across the one million parameter combina-

43Solving for the Infections-Guided Nash equilibrium is computationally intensive for a single econ-
omy and infeasible for parameter space exploration.
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tions, we find 99% lead to a Nash equilibrium that is not Pareto optimal, consistent
with the results in Section 5.3. However unlike under the COVID-19 calibration
with fixed policy rules, we find the socially optimal policy involves positive re-
strictions on travel for 32% of economies. This suggests the implementation of
globally-optimal travel bans necessitates consideration of the particular epidemio-
logical and economic characteristics.44

We once again use the surrogate model to examine the impact of R0–the pri-
mary driver of the results–on outcomes in the local policymakers’ game.45 Figure
3 Panel E shows home peak infectious population share under the (global) welfare-
minimizing Nash equilibrium. Panel F displays the loss in aggregate welfare rel-
ative to the globally-optimal coordinated solution. As was the case in the absence
of public policy, most variation in welfare losses associated with the Prisoner’s
Dilemma outcome arises for R0 < 6, where we see non-monotonic effects on wel-
fare. Interestingly, for R0 higher than this, average welfare losses relative to the
coordinated solution decrease with R0, indicating a smaller role for coordinated
policy with very infectious diseases.46

To sum up, this section explores the robustness of our COVID-19 calibrated-
predictions of behavioral responses to disease dynamics, the response of disease dy-
namics to travel choices, and welfare outcomes under pandemic federalism across
the parameter space. Our analysis reveals that several of the quantitative results of
Section 5 depend on the particular disease under consideration. Critically, we find
endogenous travel alleviates the severity of the pandemic, in contrast to what is sug-
gested by the benchmark calibration to COVID-19. This highlights the importance
of parameter space exploration of complex systems and sounds a note of caution
against drawing general conclusions from a single parametrization.

44As in Section 5.3, when considering Pareto optimality, we restrict the feasible set of travel restric-
tions to those which limit travel to no more than 1%, 25%, 50%, or 75% of average pre-pandemic
travel, or no restrictions on travel.

45We drop the 1% of economies which do not have a Prisoner’s Dilemma Nash equilibrium for our
surrogate analysis of the local policymakers’ game.

46While higher R0 leads to a decline in relative welfare losses, the absolute change in welfare can
be large, as suggested by the increasing peak infectious share in Figure 3 Panel E.
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7 Conclusions

We develop a coupled epidemiological-economic metapopulation model to exam-
ine the role of travel choices in a pandemic. Our analysis focuses on a two region
model. This assumption yields analytical tractability, clean interpretability of our
quantitative results, and allows us to study the Nash game between local social
planners. In our future research, we plan to relax this assumption in order to quan-
titatively investigate the effect of endogenous travel choices on disease dynamics in
a multi-region model.

We highlight the role of travel as an infection avoidance strategy as well as a
vector of pandemic transmission. Quantitatively, we find susceptible individuals
are more likely to use travel as an avoidance strategy during the early run-up and
late-stages of a pandemic, but rely more on home isolation strategies during peak
infection periods. We also find modeling endogenous travel decisions is particu-
larly quantitatively important when considering regions of asymmetric size. Our
normative analysis shows locally-chosen travel policies under pandemic federalism
lead to a suboptimal Prisoner’s Dilemma outcome whereby both regions implement
strict travel bans on incoming travelers, to the detriment of overall welfare.

Finally, we study the robustness of our quantitative results by solving the model
for one million combinations of structural parameters. This analysis confirms the
role of travel as an effective avoidance mechanism when infection rates are low, as
well as the robustness of the Prisoner’s Dilemma Nash equilibrium outcome across
parametrizations. Crucially, we find endogenous travel mitigates the severity of the
pandemic, contrary to the implications of our benchmark calibration. We use neural
networks to estimate surrogates of the key model outcomes. This analysis shows
the basic reproductive number R0 is the most important parameter in driving disease
dynamics and ultimately welfare consequences of pandemics.
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Online Appendix

A Equilibrium Characterization

This section collects the proofs of the propositions in the paper. We start by deriv-
ing/describing objects and listing assumptions that will be useful in the next sub-
sections.
Pre-pandemic value function. The first order condition for the pre-pandemic
agent’s problem (5) is

βi

mpre
t

=
(1−βi)

1−mpre
t

,

which implies mpre
t = βi. Since the pre-pandemic problem is stationary with U pre

i,t =

U pre
i,t+1 =U pre

i , we can rewrite the pre-pandemic value function in (5) as

U pre
i =

1
1−δ (1−PD∗

)

[
(1−βi) ln(wl̄(1−βi))+βi ln(βi)+δPD∗

Ωi

]
.

Recovered value function. The first order condition for the recovered agent’s prob-
lem (8) is

βi

mR
t
=

(1−βi)

(1−θi)−mR
t
,

which implies mR
t = (1 − θi)βi. In the final period of the pandemic t = T , the

recovered value function in (8) is

UR
i,T = (1−βi) ln(wl̄(1−θi)(1−βi))+βi ln((1−θi)βi)+δ

(
(1−PD∗

)UR
i,T+1 +PD∗

Ωi

)
= (1−βi) ln(wl̄(1−θi)(1−βi))+βi ln((1−θi)βi)+δ

(
(1−PD∗

)U pre
i +PD∗

Ωi

)
,

since UR
i,t = U pre

i for t > T after the arrival of a vaccine. Likewise in period t =
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T −1, the recovered value function is,

UR
i,T−1 = (1−βi) ln(wl̄(1−θi)(1−βi))+βi ln((1−θi)βi)+δ

(
(1−PD∗

)UR
i,T +PD∗

Ωi

)
= (1−βi) ln(wl̄(1−θi)(1−βi))+βi ln((1−θi)βi)

+δ

[
(1−PD∗

)
(
(1−βi) ln(wl̄(1−θi)(1−βi))+βi ln((1−θi)βi)

+δ

(
(1−PD∗

)U pre
i +PD∗

Ωi

))
+PD∗

Ωi

]
.

For general UR
i,T− j with j ∈ {0, ...,T −1}, we have

UR
i,T− j =

j

∑
t=0

(
δ (1−PD∗

)
)t [

(1−βi) ln(wl̄(1−θi)(1−βi))+βi ln((1−θi)βi)
]

+
j

∑
t=0

(
δPD∗

)t+1
Ωi +

(
δ (1−PD∗

)
) j+1

U pre
i . (24)

Infectious value function. The first order condition for the infectious agent’s prob-
lem (7) is

β I
i

mI
t
=

(1−β I
i )

(1−θi)−mI
t
,

which implies mI
t = (1 − θi)β

I
i . In the final period of the pandemic t = T , the

infectious value function in (7) is

U I
i,T = (1−β

I
i ) ln(φwl̄(1−θi)(1−β

I
i ))+β

I
i ln((1−θi)β

I
i )

+δ [(1−PR −PD −PD∗
)U I

i,T+1 +PRUR
i,T+1 +(PD +PD∗

)Ωi]

= (1−β
I
i ) ln(φwl̄(1−θi)(1−β

I
i ))+β

I
i ln((1−θi)β

I
i )+δ [(1−PD −PD∗

)U pre
i

+(PD +PD∗
)Ωi],

since UR
i,t =U I

i,t =U pre
i for t > T after the arrival of a vaccine. Likewise in period
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t = T −1, the infectious value function is,

U I
i,T−1 = (1−β

I
i ) ln(φwl̄(1−θi)(1−β

I
i ))+β

I
i ln((1−θi)β

I
i )+δ [(1−PR −PD −PD∗

)U I
i,T

+PRUR
i,T +(PD +PD∗

)Ωi]

= (1−β
I
i ) ln(φwl̄(1−θi)(1−β

I
i ))+β

I
i ln((1−θi)β

I
i )+δ

[
(1−PR −PD −PD∗

)(
(1−β

I
i ) ln(φwl̄(1−θi)(1−β

I
i ))+β

I
i ln((1−θi)β

I
i )+δ [(1−PD −PD∗

)U pre
i

+(PD +PD∗
)Ωi]

)
+PRUR

i,T +(PD +PD∗
)Ωi

]
.

For general U I
i,T− j with j ∈ {0, ...,T −1}, we have

U I
i,T− j =

j

∑
t=0

(
δ (1−PR −PD −PD∗

)
)t [

(1−β
I
i ) ln(φwl̄(1−θi)(1−β

I
i ))+β

I
i ln((1−θi)β

I
i )
]

+
j

∑
t=0

(
δPR

)t+1
UR

T+1− j+t +
j

∑
t=0

(
δ (PD +PD∗

)
)t+1

Ωi +
(

δ (1−PR −PD −PD∗
)
) j+1

U pre
i ,

with UR
T+1 =U pre

i and UR
t given by (24) for t ∈ {1, ...T}.

Assumption 2. Restrictions on θi. We focus on the interesting case where social

distancing is low enough, θi ∈ [0, θ̄), such that UR
i,t ,U

S
i,t ,U

I
i,t ≥ Ωi. We define 0 <

θ̄ ≤ 1 as the upper bound to the social distancing restriction such that U I
i,1 = Ωi.

Under the conditions of Lemma 1, θi ∈ [0, θ̄) is a sufficient condition for U I
i,t > Ωi

∀t.

This is a quantitative assumption that rules out drastic social policy interven-
tions where agents prefer to be dead than alive. The parameter θ̄ can be derived
analytically and it is available upon request.

A.1 No selfish incentives for herd immunity

The following lemma establishes a sufficient condition that eliminates the selfish

incentives for herd immunity.

Lemma 1. The value function of being recovered is always larger than the value

function of being infectious or susceptible, UR
i,t > U I

i,t , UR
i,t ≥ US

i,t . The value of

47



being susceptible is larger than the one of being infectious, UR
i,t ≥US

i,t >U I
i,t , when

catching the disease is costly enough, that is(
ui(cR(m),m)−uI

i (c
I(m),m)

)
−δ (1−PD)(UR

i,t −Ωi)≥ 0, ∀m, t

where cR(m) ≡ wl̄(1− θi −m) and cI(m) ≡ φwl̄(1− θi −m). That is, when the

infectious state productivity loss is large enough (φ small) or the probability of

death due to the virus, PD is large enough.

We prove the value functions ordering presented in Lemma 1

UR
i,t ≥US

i,t >U I
i,t > Ωi ∀t ∈ {1,2, . . . ,T}

by backward induction. First, use the budget constraint for each disease type S, I,R

to define functions:

cS(m)≡ wl̄(1−θi −m),

cI(m)≡ φwl̄(1−θi −m),

cR(m)≡ wl̄(1−θi −m),

The proof proceeds in three steps.
Step 1. We show that UR

i,t > U I
i,t ∀t ∈ {1,2, . . . ,T}. In the last period of the pan-

demic, T ,

UR
i,T = max

mT
{ui(cR(mT ),mT )+δ

(
(1−PD∗

)UR
i,T+1 +PD∗

Ωi

)
}

= max
mT

{ui(cR(mT ),mT )+δ

(
(1−PD∗

)U pre
i,T+1 +PD∗

Ωi

)
}

> max
mT

{ui(cR(mT ),mT )+δ

(
(1−PD −PD∗

)U pre
i,T+1 +(PD +PD∗

)Ωi

)
}

= max
mT

{ui(cR(mT ),mT )+δ

(
(1−PR −PD −PD∗

)U pre
i,T+1 +PRU pre

i,T+1 +(PD +PD∗
)Ωi

)
}

> max
mT

{ui(cI(mT ),mT )+δ

(
(1−PR −PD −PD∗

)U pre
i,T+1 +PRU pre

i,T+1 +(PD +PD∗
)Ωi

)
}

= max
mT

{ui(cI(mT ),mT )+δ

(
(1−PR −PD −PD∗

)U I
i,T+1 +PRU I

i,T+1 +(PD +PD∗
)Ωi

)
}

=U I
i,T ,
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where the first inequality follows because U pre
i,t > Ωi as explained in Section 4, and

the second inequality uses the fact that cR(m) = wl̄((1−θi)−m)> φwl̄((1−θi)−
m) = cI(m) for all m ∈ [0,1−θ ], φ < 1. Now, let t = T −1

UR
i,t = max

mt
{ui(cR(mt),mt)+δ

(
(1−PD∗

)UR
i,t+1 +PD∗

Ωi

)
}

> max
mt

{ui(cR(mt),mt)+δ

(
(1−PD −PD∗

)UR
i,t+1 +(PD +PD∗

)Ωi

)
}

= max
mt

{ui(cR(mt),mt)+δ

(
(1−PR −PD −PD∗

)UR
i,t+1 +PRUR

i,t+1 +(PD +PD∗
)Ωi

)
}

> max
mt

{ui(cR(mt),mt)+δ

(
(1−PR −PD −PD∗

)U I
i,t+1 +PRUR

i,t+1 +(PD +PD∗
)Ωi

)
}

> max
mt

{ui(cI(mt),mt)+δ

(
(1−PR −PD −PD∗

)U I
i,t+1 +PRUR

i,t+1 +(PD +PD∗
)Ωi

)
}

=U I
i,t ,

where the first inequality uses UR
i,t > Ωi, the second uses UR

i,t+1 > U I
i,t+1, and the

third uses cR(m) > cI(m). This establishes UR
i,T−1 >U I

i,T−1. Proceeding backward
and recursively in a similar fashion for t ∈ {T − 2,T − 3, . . .1} proves the result.
Step 2. We show that UR

i,t ≥ US
i,t for t ∈ {1,2, . . . ,T}. Proceeding by backward

induction, in the final period, T ,

US
i,T = max

mT
{ui(cS(mT ),mT )+δ [(1−PI

i (mT ,1−θi −mT ,0;TT )−PD∗
)US

i,T+1

+PI
i (mT ,1−θi −mT ,0;TT )U I

i,T+1 +PD∗
Ωi]}

= max
mT

{ui(cS(mT ),mT )+δ [(1−PI
i (mT ,1−θi −mT ,0;TT )−PD∗

)U pre
i,T+1

+PI
i (mT ,1−θi −mT ,0;TT )U

pre
i,T+1 +PD∗

Ωi]}

= max
mT

{ui(cR(mT ),mT )+δ [(1−PD∗
)U pre

i,T+1 +PD∗
Ωi]}

=UR
i,T ,

since cS(m)= cR(m) for all m∈ [0, m̄]. Accordingly, we have that US
i,T =UR

i,T >U I
i,T .
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Proceeding backward and recursively, note that in T −1,

UR
i,T−1 = max

mT−1
{ui(cR(mT−1),mT−1)+δ

(
(1−PD∗

)UR
i,T +PD∗

Ωi

)
}

= max
mT−1

{ui(cS(mT−1),mT−1)+δ

(
(1−PD∗

)US
i,T +PD∗

Ωi

)
}

= max
mT−1

{ui(cS(mT−1),mT−1)+δ [(1−PI
i (mT−1,1−θi −mT−1,0;TT−1)

−PD∗
)US

i,T +PI
i (mT−1,1−θi −mT−1,0;TT−1)US

i,T +PD∗
Ωi]}

> max
mT−1

{ui(cS(mT−1),mT−1)+δ [(1−PI
i (mT−1,1−θi −mT−1,0;TT−1)

−PD∗
)US

i,T +PI
i (mT−1,1−θi −mT−1,0;TT−1)U I

i,T +PD∗
Ωi]}

=US
i,T−1,

where the inequality follows from US
i,T = UR

i,T > U I
i,T . Next, consider t = T − 2.

Then,

UR
i,t = max

mt
{ui(cR(mt),mt)+δ

(
(1−PD∗

)UR
i,t+1 +PD∗

Ωi

)
}

= max
mt

{ui(cS(mt),mt)+δ [(1−PI
i (mt ,1−θi −mt ,0;Tt)−PD∗

)UR
i,t+1

+PI
i (mt ,1−θi −mt ,0;Tt)UR

i,t+1 +PD∗
Ωi]}

> max
mt

{ui(cS(mt),mt)+δ [(1−PI
i (mt ,1−θi −mt ,0;Tt)−PD∗

)US
i,t+1

+PI
i (mt ,1−θi −mt ,0;Tt)U I

i,t+1 +PD∗
Ωi]}

=US
i,t ,

where the inequality follows since US
i,t+1 < UR

i,t+1 and U I
i,t+1 < UR

i,t+1. This estab-
lishes UR

i,T−2 > US
i,T−2. Proceeding backward and recursively in a similar fashion

for t ∈ {T −3, . . .1} proves the result.
Step 3. We show that US

i,t > U I
i,t for t ∈ {1,2, . . . ,T}. Under the conditions of

Lemma 1, we have the following inequality:(
ui(cS(m),m)−uI

i (c
I(m),m)

)
−δ (1−PD)(UR

i,t −Ωi)≥ 0, ∀m, t,

since cS(m) = cR(m) ∀m. With a slight abuse of notation, let US
i,t(m), U I

i,t(m) denote
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the objective function of the susceptible and infectious, respectively, evaluated at a
given m (not necessarily the optimum). In the last period of the pandemic, we
have US

i,T = UR
i,T > U I

i,T . Proceeding backward and recursively, let t = T − 1. The
difference US

i,t(m)−U I
i,t(m) is given by

US
i,t(m)−U I

i,t(m) = ui(cS(mt),mt)−uI
i (c

I(mt),mt)+δ [(1−PI
i (mt ,1−θi −mt ,0;Tt)−PD∗

)US
i,t+1

+PI
i (mt ,1−θi −mt ,0;Tt)U I

i,t+1 − (1−PR −PD −PD∗
)U I

i,t+1 −PRUR
i,t+1 −PD

Ωi]

> ui(cS(mt),mt)−uI
i (c

I(mt),mt)+δ [(1−PI
i (mt ,1−θi −mt ,0;Tt)−PD∗

)US
i,t+1

+PI
i (mt ,1−θi −mt ,0;Tt)U I

i,t+1 − (1−PR −PD −PD∗
)UR

i,t+1 −PRUR
i,t+1 −PD

Ωi]

= ui(cS(mt),mt)−uI
i (c

I(mt),mt)+δ [(1−PI
i (mt ,1−θi −mt ,0;Tt)−PD∗

)US
i,t+1

+PI
i (mt ,1−θi −mt ,0;Tt)U I

i,t+1 − (1−PD −PD∗
)UR

i,t+1 −PD
Ωi]

> ui(cS(mt),mt)−uI
i (c

I(mt),mt)+δ [(1−PI
i (mt ,1−θi −mt ,0;Tt)−PD∗

)U I
i,t+1

+PI
i (mt ,1−θi −mt ,0;Tt)U I

i,t+1 − (1−PD −PD∗
)UR

i,t+1 −PD
Ωi]

= ui(cS(mt),mt)−uI
i (c

I(mt),mt)+δ [(1−PD∗
)U I

i,t+1 − (1−PD −PD∗
)UR

i,t+1 −PD
Ωi]

> ui(cS(mt),mt)−uI
i (c

I(mt),mt)+δ [(1−PD∗
)Ωi − (1−PD −PD∗

)UR
i,t+1 −PD

Ωi]

= ui(cS(mt),mt)−uI
i (c

I(mt),mt)−δ [(1−PD −PD∗
)(UR

i,t+1 −Ωi)]

> ui(cS(mt),mt)−uI
i (c

I(mt),mt)−δ [(1−PD)(UR
i,t+1 −Ωi)]

≥ 0,

where the first inequality follows from UR
i,t+1 > U I

i,t+1, the second from US
i,t+1 >

U I
i,t+1, the third from U I

i,t+1 > Ωi, the fourth from UR
i,t+1 > Ωi, and the fifth by

assumption. Since this holds for all m and the feasible set [0, m̄] is the same for both
disease types, mS

i,t ,m
I
i,t ∈ [0, m̄], the inequality must also hold in the max, US

i,t =

maxmUS
i,t(m)> maxmU I

i,t(m) =U I
i,t . This establishes US

i,T−1 >U I
i,T−1. Proceeding

backward and recursively in a similar fashion for t ∈ {T −2, . . .1} proves the result.

A.2 Proof of Proposition 1

A.2.1 Case 1: Utility benefits from travel

Consider first the case where agents receive direct utility benefits from travel, ∂ui
∂m >

0. By Inada conditions, travel choices are strictly positive, m > 0. In an interior
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solution, the first order condition (FOC) for the susceptible agent is

∂ui

∂m
=−∂ui

∂c
· ∂c

∂m
+δ (US

i,t+1 −U I
i,t+1)

∂PI
i,t

∂m
. (25)

Uniqueness. Define the continuous function

E(m)≡ ∂ui(c(m),m)

∂m
+

∂ui(c(m),m)

∂c(m)
· ∂c(m)

∂m
−δ (US

i,t+1 −U I
i,t+1)

∂PI
i,t(m)

∂m
,

where c(m)≡ wt l̄(1−θi−m) is defined from the Susceptible’s budget constraint in
(6) and

PI
i,t(m)≡ 1−

(1−θi −m
1−θi

)(
1− τ ·

(Ii,t −MI
i,t +MI

j,t)

Ni,t

)C l
i,t

+

(
m

1−θi

)(
1− τ ·

(I j,t −MI
j,t +MI

i,t)

N j,t

)C m
i,t
,

provides the probability of infection in the absence of home isolation. We then
have E(m) = 0 at an optimum. Notice

dE(m)

dm
=

∂ 2ui(c(m),m)

∂m∂c(m)
· ∂c(m)

∂m
+

∂ 2ui(c(m),m)

∂m2 +

[
∂ 2ui(c(m),m)

∂c(m)2 · ∂c(m)

∂m
+

∂ 2ui(c(m),m)

∂c(m)∂m

]
∂c(m)

∂m
+

∂ui(c(m),m)

∂c(m)
· ∂ 2c(m)

∂m2︸ ︷︷ ︸
=0

−δ (US
i,t+1 −U I

i,t+1)
∂ 2PI

i,t

∂m2︸ ︷︷ ︸
=0

=
∂c(m)

∂m︸ ︷︷ ︸
<0

2 · ∂ 2ui(c(m),m)

∂m∂c(m)︸ ︷︷ ︸
≥0

+
∂ 2ui(c(m),m)

∂c(m)2 · ∂c(m)

∂m︸ ︷︷ ︸
≥0

+ ∂ 2ui(c(m),m)

∂m2︸ ︷︷ ︸
≤0

< 0

where the inequalities follow from the susceptible’s budget constraint and by as-
sumptions on the functional form of utility. It follows that E(m) is strictly decreas-
ing in m.

Now note that by Inada conditions on ui

lim
m→0

E(m) = ∞, lim
m→(1−θi)

E(m) =−∞,
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E(m) is therefore a continuous strictly decreasing monotonic function of m between
(0,1−θ) that goes from +∞ to −∞. Then by application of the Intermediate Value
Theorem to Monotonic Functions in an open set, the solution E(m) = 0 is unique.

The susceptible’s optimal travel choice m is decreasing in B. Let B ≡ δ (US
i,t+1 −

U I
i,t+1)

∂PI
i,t

∂m , which does not depend on m. By the implicit function theorem, from
(25) we have,

∂ 2ui(c(m),m)

∂m∂c(m)
· ∂c(m)

∂m
· ∂m

∂B
+

∂ 2ui(c(m),m)

∂m2 · ∂m
∂B

=

−

[
∂ 2ui(c(m),m)

∂c(m)2 · ∂c(m)

∂m
· ∂m

∂B
+

∂ 2ui(c(m),m)

∂c(m)∂m
∂m
∂B

]
∂c(m)

∂m
− ∂ui(c(m),m)

∂c(m)
· ∂ 2c(m)

∂m2︸ ︷︷ ︸
=0

·∂m
∂B

+1

Simple algebra shows that

∂m
∂B

=
1

∂c(m)

∂m︸ ︷︷ ︸
<0

2 · ∂ 2ui(c(m),m)

∂m∂c(m)︸ ︷︷ ︸
≥0

+
∂ 2ui(c(m),m)

∂c(m)2 · ∂c(m)

∂m︸ ︷︷ ︸
≥0

+ ∂ 2ui(c(m),m)

∂m2︸ ︷︷ ︸
≤0

< 0.

The susceptibles’ optimal travel choice m converges to the recovered when B → 0.

As B → 0 the FOC of the susceptible (25) reduces to FOC of the recovered,

∂ui

∂m
=

∂ui

∂c
wl̄.

Thus for B < 0, mS
i,t > mR

i,t since mS
i,t decreases in B. Likewise, for B > 0, we have

mS
i,t < mR

i,t .
Relative travel by susceptible depends on travel as infection avoidance asset or

liability. Under the conditions of Lemma 1, B < 0 if and only if ∂PI
i /∂m < 0

(infection avoidance asset). In this case, mS
i,t > mR

i,t . Conversely if ∂PI
i /∂m > 0,

then B > 0. Consequently mS
i,t < mR

i,t .
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A.2.2 Case 2: No utility benefits from travel

Consider now the case where agents do not receive any direct utility benefits from
travel, ui(c,m) = ui(c). In this environment recovered agents do not travel (unless
travel is costless). The susceptible’s first order and Kuhn-Tucker conditions imply

∂ui

∂c
· ∂c

∂m
−δ (US

i,t+1 −U I
i,t+1)

∂PI
i,t

∂m
≤ 0, (26)

with equality if mS
i,t > 0.

Uniqueness. Define the continuous function

F(m)≡−δ (US
i,t+1 −U I

i,t+1)
∂PI

i,t(m)

∂m
+

∂ui(c(m))

∂c(m)
· ∂c(m)

∂m

such that F(m) = 0 at an interior solution. Differentiating with respect to m gives,

dF(m)

dm
=−δ (US

i,t+1 −U I
i,t+1)

∂ 2PI
i,t

∂m2︸ ︷︷ ︸
=0

+
∂ 2ui(c(m))

∂c(m)2 ·
(

∂c(m)

∂m

)2

+
∂ui(c(m))

∂c(m)
· ∂ 2c(m)

∂m2︸ ︷︷ ︸
=0

=
∂ 2ui(c(m))

∂c(m)2︸ ︷︷ ︸
≤0

·
(

∂c(m)

∂m

)2

≤ 0

where the inequality follow from the assumptions on the functional form of utility.
By Inada conditions on ui, we have that

lim
m→(1−θi)

F(m) =−∞.

Notice F(0)< ∞. If F(0)> 0, there is a unique mS
i,t > 0. Otherwise mS

i,t = 0.
The susceptible travels more than recovered only if B<0. From (26),

−∂ui

∂c
(wl̄)−δ (US

i,t+1 −U I
i,t+1)

∂PI
i,t

∂m︸ ︷︷ ︸
=B

≤ 0.
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Since ∂ui/∂c > 0, a necessary condition for mS
i,t > 0 (and (26) to hold with equal-

ity) is B < 0. Equivalently, mS
i,t > 0 implies ∂PI

i,t/∂m < 0. Thus when travel is an
infection avoidance asset (∂PI

i,t/∂m < 0), mS
i,t ≥ 0. Otherwise travel is an infec-

tion avoidance liability and the susceptible’s traveling choice mimics the one of the
recovered mS

i,t = mR
i,t = 0.

A.3 Proof of Proposition 2

We first prove Proposition 2.(a). First note that by definition,

∂PI
i

∂h
≡ 1

1−θi



1− τ ·
(Ii,t −MI

i,t +MI
j,t)

Ni,t︸ ︷︷ ︸
Home Exposure


C l

i,t

−

1− τ ·
(Ii,t −MI

i,t +MI
j,t)

Ni,t︸ ︷︷ ︸
Home Exposure


C h

i,t

Effectiveness of home isolation in reducing home-infection exposure (−)


≤ 0

where the inequality arises by inspection of the contact rates (exponents). When
∂PI

i
∂h = 0 home isolation is ineffective in reducing the likelihood of getting infected,

and we are back in the environment of Proposition 1. For the rest of this analysis,
let us focus on the interesting case where ∂PI

i
∂h < 0.

In the absence of direct utility benefits from travels, the first order and Kuhn-
Tucker conditions for the susceptibles are

−dui

dc
wl̄ +δ (U I′

i −US′
i )

∂PI
i

∂m
+µ

lo
m −µ

hi
m = 0, (27)

−dui

dc
wl̄ +δ (U I′

i −US′
i )

∂PI
i

∂h
+µ

lo
h −µ

hi
h = 0, (28)

mµ
lo
m = 0, (29)

(m̄−m)µhi
m = 0, (30)

hµ
lo
h = 0, (31)

(h̄−h)µhi
h = 0, (32)

m,h,µ lo
m ,µhi

m ,µ lo
h ,µhi

h ≥ 0. (33)
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Assume an interior solution exists for both h ∈ (0, h̄) and m ∈ (0, m̄). By comple-
mentarity slackness conditions, µhi

h = µ lo
h = µhi

m = µ lo
h = 0. Then by combining

(27) and (28) we get ∂PI
i /∂m = ∂PI

i /∂h < 0. In this edge case, there is a contin-
uum of solutions, so assume without loss of generality that the agent chooses m > 0
and h = 0.

Let us now consider the case where ∂PI
i /∂m < ∂PI

i /∂h < 0. Simple manipula-
tions yield

∂PI
i

∂m
− ∂PI

i

∂h
=

1
1−θi

(1− τ ·
(Ii,t −MI

i,t +MI
j,t)

Ni,t

)C h
i,t

−

(
1− τ ·

(I j,t −MI
j,t +MI

i,t)

N j,t

)C m
i,t

< 0,

By combining (27) and (28) we have:

δ (U I′
i −US′

i )
≤0

(
∂PI

i
∂m

− ∂PI
i

∂h

)
= µ

hi
m +µ

lo
h −µ

hi
h −µ

lo
m .

Since U I′
i <US′

i (Lemma 1) and ∂PI
i /∂m < ∂PI

i /∂h < 0, the left hand side is posi-
tive. Then we have the following cases:

• h ∈ (0, h̄] and m = m̄ > 0: i.e. µ lo
h = 0, µhi

h ≥ 0, µ lo
m = 0, µhi

m > 0; µhi
m > µhi

h ;

• h = 0 and m ∈ (0, m̄]: i.e. µ lo
h > 0, µhi

h = 0, µ lo
m = 0, µhi

m ≥ 0;

• h = 0 and m = 0: i.e. µ lo
h > 0, µ lo

m ≥ 0, µ lo
h > µ lo

m ;

which identify situations in which susceptibles weakly prefer travel to isolation as
an infection avoidance mechanism. A similar reasoning can be applied to show that
the reverse is true when ∂PI

i /∂m < ∂PI
i /∂h < 0.

Next we prove Proposition 2.(b). The proposition explores conditions under
which the lagrange multiplier associated with the lower bound of home isolation
is strictly positive (µ lo

h > 0), and, accordingly, agents do not isolate for infection
avoidance purposes. First, independently of the presence of direct utility benefits
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from travels, inspection of equation (28),

µ
lo
h =

dui

dc
wl̄+

δ (US′
i −U I′

i )

1−θi


(

1− τ ·
(Ii,t −MI

i,t +MI
j,t)

Ni,t

)C l
i,t

−

(
1− τ ·

(Ii,t −MI
i,t +MI

j,t)

Ni,t

)C h
i,t

︸ ︷︷ ︸
→ 0 as home infection rates go to zero


shows that as infection rate in the home region goes to zero, the term in brackets on
the right-hand-size goes to zero, and the multiplier converges to the marginal utility
benefits of working, which is strictly positive.

Second, we explore how the relative benefits of travel choices affect the attrac-
tiveness of home isolation. To do so, in presence of direct utility benefits of travel
we replace (27) with

dui

dm
− dui

dc
wl̄ +δ (U I′

i −US′
i )

∂PI
i

∂m
+µ

lo
m −µ

hi
m = 0

Subtracting this expression from (28), and manipulating yields

µ
lo
h =

dui

dm
−µ

hi
m +

δ (US′
i −U I′

i )

1−θ

(1− τ ·
(I j,t −MI

j,t +MI
i,t)

N j,t

)C m
i,t

−

(
1− τ ·

(Ii,t −MI
i,t +MI

j,t)

Ni,t

)C h
i,t


Effectiveness of Travel relative to Isolation in reducing infection exposure

Suppose: (i) home and foreign infection rates are sufficiently small (term in squared
brackets goes to zero) or travel is more effective than home isolation in reducing
the likelihood of infection (term in squared brackets is positive); (ii) marginal util-
ity benefits of travel are sufficiently large, ∂u/∂m; and (iii) the shadow value of
relaxing the upper bound constraint on travel, µhi

m , is not too large. Under (i)-(iii)
the lagrange multiplier µ lo

h is positive, agents do not isolate and prefer travel for
infection avoidance purposes.
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A.4 Proof of Proposition 3

Pre-pandemic problem. The solution to the pre-pandemic agents’ problem (5)
satisfies the following FOC:

βi

mpre
i,t

=
(1−βi)

1−mpre
i,t

,

which implies mpre
i,t = βi.

Infectious and recovered problems. Likewise, the infectious and recovered FOCs
are, respectively,

β I
i

mI
i,t

=
(1−β I

i )

(1−θi)−mI
i,t
,

βi

mR
i,t

=
(1−βi)

(1−θi)−mR
i,t
,

which imply mI
i,t = β I

i (1−θi) and mR
i,t = βi(1−θi).

Susceptible Problem. The FOC for the susceptible is:

βi

mS
i,t
+δ (U I

i,t+1 −US
i,t+1)

∂PI
i,t

∂mS
i,t

=
(1−βi)

(1−θi)−mS
i,t
,

where
∂PI

i,t
∂m is given by (18).

Let B ≡ δ (US
i,t+1−U I

i,t+1)
∂PI

i,t
∂m , and rearrange the susceptibles’ first order condi-

tion.
βi

mS
i,t

=
(1−βi)+B(1−θi)−BmS

i,t

(1−θi)−mS
i,t

,

The marginal benefits of travel in the left-hand-side is an hyperbolic function with a
vertical asymptote at 0, strictly decreasing in the feasible set mS

i,t ∈ [0, m̄]. The right-
hand-side is an hyperbolic function with vertical asymptote at (1−θi) and strictly
increasing in the feasible set mS

i,t ∈ [0,min{m̄,1− θi}]. Accordingly, given B ≡

δ (US
i,t+1 −U I

i,t+1)
∂PI

i,t
∂m , there exists a unique real interior solution to the susceptible

problem for m ∈ [0,1−θ ]. (Note, the upper-bound m̄ may still be binding.)
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Characterization of the solution. The solution to the susceptible problem consists
of one of the roots (m̂S

+, m̂
S
−) that solve the quadratic equation

(mS
it)

2 −
(

1
B
+(1−θi)

)
mS

it +
βi(1−θi)

B
= 0, (34)

where

m̂S
+ ≡ 1

2

(
(1/B+(1−θi))+

√
(1/B+(1−θi))2 −4βi(1−θi)/B

)
,

m̂S
− ≡ 1

2

(
(1/B+(1−θi))−

√
(1/B+(1−θi))2 −4βi(1−θi)/B

)
,

From Proposition 1 we know that the sign of
∂PI

i,t
∂m distinguishes the two cases of

travel as infection avoidance asset (< 0) or liability (> 0), and in turn determins
whether agents travel more or less than recovered, mR

i,t = (1−θi)βi.

When
∂PI

i,t
∂m < 0, we have that −4βi(1−θi)/B > 0. Accordingly,

√
(1/B+(1−θi))2 −4βi(1−θi)/B >

√
(1/B+(1−θi))2 = | 1

B
+(1−θi)| ≥

1
B
+(1−θi)

Accordingly, m̂S
− is negative and not feasible. The unique solution in the case of

travel as infectious avoidance asset is therefore m̂S
+ > 0

Let us now consider the case of travel as infectious avoidance liability,
∂PI

i,t
∂m > 0.

From 1 we know that for any B the solution is lower than mR
i,t = (1− θi)βi. By

contradiction, let us suppose that the solution is the m̂S
+ root. Then(

(1/B+(1−θi))+
√

(1/B+(1−θi))2 −4βi(1−θi)/B
)
≤ 2(1−θi)βi

We also know that traveling decreases in B. Accordingly, let us focus on the case
where B → ∞, which gives the minimum of the left-hand-side for B ∈R+ (travel as
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infectious avoidance liability),

(1−θi)+
√

((1−θi))2 ≤ 2(1−θi)βi

2(1−θi)≤ 2(1−θi)βi

which reaches a contradiction, since βi < 1 (⊥).

Since a unique solution exists, it follows that when
∂PI

i,t
∂m > 0, the susceptible

optimal travel choice is the left-root,

m̂S
− ≡ 1

2

(
(1/B+(1−θi))−

√
(1/B+(1−θi))2 −4βi(1−θi)/B

)
≤ mR

i,t .

Accordingly, under Assumption 1, absent isolation choices, susceptible choose

to travel more when traveling reduces the likelihood of becoming infectious
(

∂PI
i,t

∂mS
i,t
< 0
)

and less otherwise,

mS
i,t =


(1+B(1−θi))+

√
(1+B(1−θi))2−4Bβi(1−θi)

2B ,
∂PI

i,t

∂mS
i,t
< 0 Inf. Avoidance Asset

(1+B(1−θi))−
√

(1+B(1−θi))2−4Bβi(1−θi)
2B ,

∂PI
i,t

∂mS
i,t
> 0 Inf. Avoidance Liability

Finally, we show the equality in (21). Define B̃ ≡ B(1−θi). From (34) we have

B(mS
it)

2 −
(
1+(1−θi)B

)
mS

it +βi(1−θi) = 0.
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This implies,

mS
i,t =

(
1+(1−θi)B

)
±
√(

1+(1−θi)B
)2 −4Bβi(1−θi)

2B

=
1

2B
+

(1−θi)

2
±

√(
1+(1−θi)B

)2 −4Bβi(1−θi)

2B

=
(1−θi)

2

(
1+

1
B̃

)
± (1−θi)

2B̃

√(
1+ B̃

)2 −4βiB̃

=
mR

i,t

2βi

(
1+

1
B̃

)
±

mR
i,t

2B̃βi

√
1+ B̃(B̃+2(1−2βi))

= mR
i,t

[
1

2βi
+

1
2βiB̃

(
1±
√

1+ B̃(B̃+2(1−2βi))

)]
.

Thus,

mS
i,t

mR
i,t

=
1

2βi
+

1
2βiB̃

(
1±
√

1+ B̃(B̃+2(1−2βi))

)
=

1
2βi

+
2βi −1

2βi
+

[
1−2βi

2βi
+

1
2βiB̃

(
1±
√

1+ B̃(B̃+2(1−2βi))

)]

= 1+

[
1−2βi

2βi
+

1
2βiB̃

(
1±
√

1+ B̃(B̃+2(1−2βi))

)]
.

Now, to prove (22), note that for an interior solution with hS
i,t > 0, the susceptible

agent’s FOCs imply

βi

mS
i,t
+δ (U I

i,t+1 −US
i,t+1)

∂PI
i,t

∂mS
i,t

= δ (U I
i,t+1 −US

i,t+1)
∂PI

i,t

∂hS
i,t
.
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Thus,

mS
i,t =

βi

δ (U I
i,t+1 −US

i,t+1)(
∂PI

i,t

∂hS
i,t
− ∂PI

i,t

∂mS
i,t
)

=
(1−θi)βi

δ (U I
i,t+1 −US

i,t+1)

(1− τ · (I j,t−MI
j,t+MI

i,t)

N j,t

)C m
i,t

−
(

1− τ · (Ii,t−MI
i,t+MI

j,t)

Ni,t

)C h
i,t


=

mR
i,t

δ (US
i,t+1 −U I

i,t+1)

(1− τ · (Ii,t−MI
i,t+MI

j,t)

Ni,t

)C h
i,t

−
(

1− τ · (I j,t−MI
j,t+MI

i,t)

N j,t

)C m
i,t

 .

62



B Solution Algorithm

We introduce a solution algorithm to recover the sequence of probabilities that sat-
isfy (10). The algorithm iterates between the epidemiological and economic model
until the two are consistent.47 The algorithm follows these steps:

1. Initialize the Aggregate Disease State: Start with an initial aggregate dis-
ease state of the economy, Ti,0, where a small portion of the population is
infectious to initiate the pandemic.

2. Guess Infection Probabilities and Travel Choices: Guess the region-specific
time series of infection probabilities, {PSI

i,t }T
t=1, and aggregate susceptibles’

travels and consumption, {M̂S
i,t ,Ĉ

S
i,t}T

t=1

3. Simulate the Pandemic Evolution Forward: Given {PSI
i,t }T

t=1, simulate the
evolution of the pandemic according to equations (1) through (4). Collect the
aggregate disease state for each period, Ti,t = (Si,t , Ii,t ,Ri,t ,Di,t).

4. Compute Regional Populations: Determine the population in each region
and period using the sequence of aggregate disease states and equation (12).

5. Solve the Agents Problem Backward: Given {Ti,t}, solve the susceptible
agent’s problem described in (6). Solve backward from the last period, t = T ,
to the beginning of the pandemic, t = 0.48 Collect choices of infectious and
recovered individuals, which are independent of the aggregate disease state,
Ti,t .

6. Re-Simulate the Pandemic Forward: Simulate the pandemic forward from
t = 0 to T using the endogenous choices together with (11) to compute the
share of susceptible which become infectious in each period {P̃I

i,t}T
t=1.

47In Appendix E.3, we verify the accuracy of the algorithm by comparing to another approach which
uses the Fischer-Burmeister function to solve the equilibrium equations directly.

48We assume the pandemic ends with certainty at time T (e.g., due to the introduction of a vaccine).
Thus, at time T + 1, the remaining S, I, and R types become identical, all policy restrictions are
lifted, and the continuation value for each type at time T is derived from the solution to (5).
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7. Compare and Update Guesses: Compare the aggregate disease states gener-
ated from the initial guesses {P̂I

i,t}T
t=1 with those derived from the endogenous

choices {P̃I
i,t}T

t=1. If the sequences are sufficiently far, update the guesses and
repeat steps 2-7 until convergence.
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C More on Quantitative Analysis

C.1 Endogenous Travel and Isolation Choices

Figure 4: Symmetric regions with no utility from travel.
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Figure 5: Asymmetric size regions with no utility from travel.
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C.2 Disease Dynamics and Behavioral Responses

Figure 6: Infectious under no behavioral response, home isolation autarky, exogenous,
and endogenous travel (benchmark) model specifications with identical home (small) and
foreign (large) infectious seeds.
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Figure 7: Infectious under alternate model specifications, contrasting home isolation au-
tarky with exogenous (Panel A) or endogenous (Panel B) travel. In all cases, home (small)
infectious seed is less than foreign (large) infectious seed I0,H < I0,F .

C.2.1 Asymmetric Autarky Economies

Table 4: Peak Infectious and Days Between Peaks under Travel Autarky

Peak Infectious (%) Days Between Peaks
I0,H = I0,F I0,H < I0,F I0,H = I0,F I0,H < I0,F

Symmetric Size
No Behavioral Response 26.52 26.52 0 24
Home Isolation 3.51 3.51 0 24

Asymmetric Size
No Behavioral Response 26.46 26.46 0 24
Home Isolation 3.53 3.53 0 24
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C.3 Public Policy under Pandemic Federalism

C.3.1 Welfare Calculation

We report welfare effects in consumption equivalent units. The value for an econ-
omy with no pandemic is

Uno pandemic =
∞

∑
t=0

δ
t
∑

i
λi

(
u(ci,t ,mi,t)+PD∗

Ωi

)
, (35)

where ci,t ,mi,t solve (5). The value for the economy that experiences the pandemic
is

Upandemic =
T

∑
t=0

δ
t
∑

i

 ∑
z∈{S,I,R}

zi,tuz(cz
i,t ,m

z
i,t)+D∗

i,tΩi

 (36)

+
∞

∑
t=T+1

δ
t
∑

i
λ

post
i

(
u(ci,t ,mi,t)+PD∗

Ωi

)
,

where D∗
i,t are new deaths from either the virus or other causes and λ

post
i is the pop-

ulation share of i post-pandemic (i.e. the population share pre-pandemic less those
that die from the virus). Define U(ξ ) welfare under no pandemic when consump-
tion is adjusted by ξ ,

U(ξ )≡
∞

∑
t=0

δ
t
∑

i
λi

(
u
(
ci,t(1+ξ ),mi,t

)
+PD∗

Ωi

)
(37)

Under each pandemic scenario, we report the value ξ (in percentage points) that
makes welfare in the absence of a pandemic equal to that under the pandemic,
U(ξ ) =Upandemic. A negative ξ indicates a welfare loss relative to the no-pandemic
economy.
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C.3.2 Exogenous Social Distancing Policies

Figure 8: Welfare under different social distancing requirements - Symmetric Economy

C.3.3 Exogenous Travel Bans

Figure 9: Welfare under different travel restrictions - Symmetric Economy

C.3.4 Nash Solution to Optimal Public Policies

Travel restriction game. We study the Nash equilibrium of the travel restriction
game with a fixed policy rule when the foreign region begins with a higher initial
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infectious share, I f oreign,0 = 0.1%, Ihome,0 = 0.0001%. In all cases, the prisoners
dilemma outcome with m̄home = m̄ f oreign = 99% is the unique effective Nash equi-
librium. Table 5 displays equilibrium outcomes.

Table 5: Nash equilibrium outcomes under alternate infection seeding

Peak Infectious Welfare

Symmetric Size 3.59 -23.35

Asymmetric Size - Small 4.22 -5.03
Asymmetric Size - Large 3.53 -21.54

Social distancing game. Consider a game where local policymakers choose social
distancing requirements for their own region θi, taking the policy of the other region
as given. We allow policymakers to choose from the grid θi ∈{0,0.25,0.5,0.75,0.99}.
That is, a reduction of time spent on economic activities of 25%, 50%, 75%, or 99%,
or no restriction. In all cases, the unique Nash equilibrium is that with no social dis-
tancing restrictions, θi = 0, which lead to identical outcomes to those presented in
Section 5.2 under endogenous travel.

71



D Surrogate Models

Consider a vector x ∈ X ⊂ Rn which summarizes the state of the economy; this
vector may include the aggregate disease states (S, I,R,D) as well as model param-
eters (or “pseudo-states”). Now, let y ∈Rm be a vector of outcomes of our epi-econ
model associated with a particular input vector x; for example, these outcomes
could be the cumulative welfare losses reported in the last column of Table 3. The
key intuition behind the surrogate model approach is to find an estimate,

f̂ : X→ Rm

of the unknown mapping f :X→Rm between the input space X and epi-econ model
outcomes y = f (x).

To do so, we proceed as follows. As it is not feasible to evaluate the unknown
function f over the entire domain X, we solve the epi-econ model at finitely many
points, x ∈ X, to construct a rich training sample of ( f (x),x) (Subsection D.1).
We then use this training sample to estimate our surrogate model, f̂ : X → Rm,
that is an estimator of the epi-econ vector-valued outcomes f (X) (Subsection D.2).
For our purposes, we choose different specification of our surrogate models for
each outcome (Subsection D.3). In our quantitative analysis, we then leverage the
estimated (trained) surrogate model, to generate predictions and conduct sensitivity
analysis without the need to solve the epi-econ model additional times.

D.1 Generating the Training Sample

We study the following model parameters: infectious productivity φ , reproductive
number R0, duration of infectiousness d, case fatality rate µ , time 0 infectious seeds
Ihome,0, I f oreign,0, and the home population share λhome.

First we use estimates of disease characteristics from the epidemiological lit-
erature collected in Table 6 to determine the boundaries of our grids. For R0, we
choose a lower bound of 1.01 (R0 > 1 is necessary to start a pandemic), and an
upper bound of 18, corresponding to estimates for the highly infectious measles.
We set the duration of infectiousness, d, within a range of 5 days (COVID-19)
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Table 6: Estimates of epidemiological parameters across diseases

Disease R0 d µ

Ebola 1.51-2.53 (Michigan) 6 (CDC) 0.5 (WHO)
H1N1 1.46-1.48 (Michigan) ∼8 (De Serres et al., 2010) 0.0002 (CDC)

Seasonal flu 0.9-2.1 (Michigan) 8 (CDC) 0.0001 (CDC)
Measles 12-18 (Michigan) 8 (WHO) 0.0003 (CDC)
MERS 1 (Michigan) 10+ (CA Public Health) <0.35 (WHO)
Polio 5-7 (Michigan) 20 (ECDC) 0.05-0.15 (ECDC)
SARS <1-2.75 (Michigan) 10+ (IL Public Health) 0.03 (WHO)

Smallpox 5-7 (Michigan) 21 (CDC) 0.3 (WHO)

Table 7: Parameter ranges for surrogate model training sample

φ R0 d µ Ii,0 λhome
Lower bound 0.29 1.01 5 0.0001 1e-9 1e-5
Upper bound 1 18 21 0.5 1e-5 0.5

to 21 days (smallpox). The case fatality rate µ varies from 0.0001 (seasonal flu)
to 0.5 (Ebola). As noted by Ash et al., 2022, the infectious productivity φ must
lie in the range [da/dh,1], where da is the duration of asymptomatic and dh is the
average duration of infection conditional on being hospitalized.49 We use Ebola,
which has particularly severe symptoms, to construct the lower bound for φ . This
implies φ ∈ [0.29,1].50 Finally, we set the bounds for the initial infectious shares
to Ii,0 ∈ [1e− 9,1e− 5] (i ∈ {home, f oreign}), and the home population share to
λhome ∈ [1e−5,0.5].

Second, we use a Sobol sequence (Sobol’, 1967), a low-discrepancy, quasi-
random sequence, to generate the training sample on the parameter space X defined
by Table 7.51 Our fast solution algorithm enables us to solve the 1,000,000 in a

49Infectious productivity is estimated as a weighted average of the (population) share of time spent in
different degrees of disease severity (asymptomatic, minor sufferers, hospitalized). The restriction
φ ∈ [da/dh,1] ensures the relevant population shares are non-negative. See Supporting Information
2.1.1 of Ash et al., 2022 for a discussion.

50Per the CDC, Ebola symptoms appear 2 - 21 days after exposure. Qureshi et al., 2015 report a
mean hospitalization duration for Ebola patients of 7 days. From these, we assign a lower bound
for φ of 2/7.

51Low-discrepancy sequences fill the sample space more evenly than does drawing points from a
uniform distribution, and have been shown to work well in high-dimensional problems (see, e.g.,
Kucherenko and Sytsko, 2005). In addition, they improve over a grid-based approach by providing
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reasonable timeframe—approximately 24 hours for the laissez-faire economies—
by parallelizing across 64 (x86_64 AMD Milan) CPU cores on the CU Boulder
Alpine Supercomputer.52

For each model economy (parameter vector), we collect results for both the
laissez-faire equilibrium (Section 5.1) and the Nash equilibrium outcome to the
travel restriction game (Section 5.3).

D.2 Training of the Surrogate Models

We train surrogate models to estimate time-invariant equilibrium outcomes, such
as the peak infection in region i. The surrogate models are trained as function of
the seven parameters xparams = [φ ,R0,d,µ, Ihome,0, I f oreign,0,λhome], and are used to
make predictions for the time-invariant outcomes,

̂Time-invariant Outcomei = f̂i(xparams).

D.3 Surrogate Models Specifications

Following the approach in Chen, Didisheim, and Scheidegger (2023), we employ
“deep surrogates” (i.e. surrogates constructed using deep neural networks). In
the construction of any neural network, the user must specify the network “hyper-
parameters” such as the number of hidden layers and nodes per hidden layer. We
use K-fold cross-validation to select the model architecture.53 We compare perfor-
mance across networks with two or three hidden layers, and 10, 50, or 100 nodes per
layer. We also choose the regularization parameter (L2 regularization) from the set

the surrogate information on the behavior of outcomes over the entire parameter space, rather than
only on specific hyperplanes.

52We choose the full set of 1,000,000 parameter combinations before training the surrogate model.
An alternate approach involves estimating the surrogate on an initial training sample, and subse-
quently choosing additional sample points in regions of the parameter space where the surrogate
performs poorly (see e.g. Chen, Didisheim, and Scheidegger, 2023).

53K-fold cross-validation proceeds as follows. For each hyperparmeter combination under consid-
eration, the data is split into K subsets (i.e. folds), with the model trained on K − 1 folds, and
evaluated on the remaining fold. This process is repeated K times for each hyperparameter set.
Those hyperparameters which minimize the (average) loss during cross-validation are chosen.
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{1e−1,1e−2, ...,1e−6}. The ReLU activation function is used to introduce non-
linearity to the network, and we train using mini-batch stochastic gradient descent
(Robbins and Monro, 1951; Bengio, 2012; Azinovic, Gaegauf, and Scheidegger,
2022) and the Adam optimization algorithm (Kingma, 2014).54

D.4 Travel as an Effective Asset

We define travel to be an effective asset when it reduces the infection probability
and is preferred to isolation as an avoidance mechanism. Formally, travel is an
effective asset if:

(a) ∂PI
i,t/∂mS

i,t < 0 and hS
i,t = 0 OR

(b) ∂PI
i,t/∂mS

i,t < 0 and hS
i,t > 0 and the denominator of (22) is less than one,

δ (US
i,t+1 −U I

i,t+1)


(

1− τ ·
(Ii,t −MI

i,t +MI
j,t)

Ni,t

)C h
i,t

−

(
1− τ ·

(I j,t −MI
j,t +MI

i,t)

N j,t

)C m
i,t

< 1.

We report the average share of time for which travel is an effective asset, condi-
tional on global infection rates being at least one in one million (the infection seed
used in Section 5). For J economies, the statistic is given by

Xeff. asset ≡ 1
J

J

∑
j=1

1
T ∗

j

T

∑
t=1

I(mS
home,t, j is effective) · I

(
∑

i
Ii,t ≥ 1e−6

)
,

where T ∗
j ≤ T denotes the number of periods with infection rates above one in one

million for economy j, the first indicator function is equal to one when travel is an
effective asset as defined by conditions (a) and (b) above, and the second indicator
function is equal to one if global infection rates are above the cutoff.

54We use mini-batches of size 512 and a learning rate of 10−3. We use early stopping which with-
holds a subset of the training data (5%) for validation during each epoch, and ends the training
process when the model performance on the validation set stops improving. This helps to prevent
overfitting.
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We also report the average share of time for which travel is effective, conditional
on global infection rates being at least one in one million and no more than 1%. The
statistic is calculated

Xeff. asset low inf. ≡ 1
J

J

∑
j=1

1
T ∗∗

j

T

∑
t=1

I(mS
home,t, j is effective) · I

(
∑

i
Ii,t ≥ 1e−6

)

·I

(
∑

i
Ii,t ≤ 0.01

) ,
where T ∗∗

j ≤ T denotes the number of periods with infection rates above one in one
million and below 1% for economy j.

D.5 Permutation Feature Importance

The permutation feature importance is a methodology used to evaluate the relative
importance of model parameters. This model inspection technique proceeds as fol-
lows. For each of the n parameters (features) x ∈X⊂Rn, the column of the dataset
corresponding to parameter (feature) d is randomly shuffled. Predictions are then
made using the corrupted data. The permutation importance is then

Permutation feature importance(d) = S( f (x), f̂ (x))+

− 1
K

K

∑
k=1

S( f (x), f̂ (xk,d))︸ ︷︷ ︸
Permutations

 ,

where xk,d is the corrupted data and the score S(·) denotes the prediction accuracy
of the surrogate model (higher values of the score are associated with better accu-
racy of f̂ (x)). We select as score function the negative of the mean absolute error,
the same score function used to train our surrogate model. The first term reports the
score before the shuffling. The second term (in squared brackets) reports the aver-
age score across the K permutations of the d parameter (feature). If a parameter d

is irrelevant (for the model outcome), its permutations do not affect its score; in this
case, the Permutation feature invariance gets close to 0. Conversely, permutations of
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a relevant parameter would reduce the accuracy of the surrogate model fit, reducing
(on average) its score, generating a positive second term in brackets. Accordingly,
a more relevant parameter is associated with larger values of its Permutation feature
importance.55

For comparability, Table 8 lists the permutation feature importance for each
outcome in Figure 3, after normalizing each row to sum to one.

Table 8: Permutation Feature Importance

φ R0 d µ Ihome,0 I f oreign,0 λhome

Endo. Travel and Isolation
Travel Effective 0.15 0.36 0.06 0.2 0.04 0.03 0.16
Travel Effective (I > 1%) 0.13 0.37 0.07 0.21 0.04 0.04 0.15

Disease Dynamics and Behavior
Peak Sync. - Exogenous 0.1 0.25 0.13 0.18 0.11 0.11 0.11
Peak Sync. - Endogenous 0.18 0.32 0.07 0.2 0.01 0.02 0.2
Peak Inf. - Exogenous 0.09 0.41 0.06 0.16 0.02 0.03 0.22
Peak Inf. - Endogenous 0.27 0.26 0.05 0.14 0.05 0.04 0.18

Public Policy
Peak Infection - Nash 0.04 0.45 0.02 0.05 0.0 0.0 0.44
Welfare Loss - Nash 0.19 0.38 0.02 0.21 0.02 0.02 0.17

D.6 Partial Dependence Plot

Partial dependence plots are used to illustrate the effect of an input (epi-econ param-
eter) on some output generated by a “black box” algorithm (Hastie et al., 2009). Let
x ∈ X = X1 ×X2 × . . .×Xd × . . .×Xn ⊂ Rn. The Partial dependence plot reports
for an arbitrary level of the parameter xd ∈ Xd ⊂ R (horizontal axis) an estimate of

55Permutation feature importance may take negative values when a model is overfit to noise or the
model permutations accidentally disrupt misleading patterns learned by the model. Large negative
values are therefore symptoms of problems in the surrogate model estimation. For irrelevant
parameters, permutation feature importance may be negative due to numerical rounding factors.
When Permutation feature importance(d)< 0 and |Permutation feature importance(d)|< 1e−6 ·
∑k |Permutation feature importance(k)|, we set the permutation feature importance for parameter
d to zero for computing the normalized values in Table 8.
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the partial dependence of the model outcomes f (xd,xC) on xd ,

Partial dependence(xd)≡ E
[

f (xd,xC)
]
,

where the expectation is taken with respect to the complement parameter inputs,
xC, xC ≡ [x1, ...,xd−1,xd+1, ...,xn]. This expectation is estimated for each value of
xd by

̂Partial dependence(xd)≡
1
J

J

∑
j=1

f̂ (xd,xC
j ),

where J is the number of economies, f̂ (xd,xC
j ) is the value of the estimated sur-

rogate model at (an arbitrary) xd ∈ Xd and xC
j , where j indexes all occurrences of

xC in the training data. The Partial dependence then measures the effect of param-
eter xd on the model outcome, taking into account the average effect of all other
parameters, xC.

E Further Robustness

This section provides further robustness tests.

E.1 Exposed disease state

We consider an extension of the model by adding a fifth disease state, “exposed,”
to the SIRD model. These exposed agents are pre-symptomatic and do not realize
they have become exposed. They therefore make decisions as though they were
susceptible. Following an incubation period, exposed individuals will then develop
symptoms and become infectious. The SEIRD system governing the transitions
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across disease states becomes:

Si,t+1 =
(

1−PSI
i (At ,Tt)−PD∗

)
Si,t + γ

(
Si,t +Ei,t + Ii,t +Ri,t

)
,

Ei,t+1 =
(

1−PD∗
−PI

)
Ei,t +PSI

i (At ,Tt)Si,t ,

Ii,t+1 =
(

1−PD∗
−PR −PD

)
Ii,t +PIEi,t ,

Ri,t+1 =
(

1−PD∗
)

Ri,t +PRIi,t ,

Di,t+1 = Di,t +PDIi,t +PD∗ (
Si,t +Ei,t + Ii,t +Ri,t

)
,

where PI is the share of exposed agents who become infectious each period, given
by PI = 1/da, and da is the average duration an agent spends pre-symptomatic.
Following Ash et al., 2022, we set da = 5.2.

The presence of exposed agents creates a delay in the timing of peak infections
and lowers the peak infection rate, though the qualitative results are otherwise sim-
ilar. To illustrate, we recreate Table 2 for a model including the exposed disease
state. Results are shown in Table 9.

Table 9: Peak Infectious and Days Between Peaks for Models with Exposed Disease State

Peak Infectious - Home (%) Days Between Peaks
I0,H = I0,F I0,H < I0,F I0,H = I0,F I0,H < I0,F

Autarky
No Behavioral Response 12.95 12.95 0 58
Home Isolation 3.14 3.14 0 58

Symmetric Size
Exogenous Travel 3.24 3.28 0 4
Endogenous Travel 3.19 3.18 0 8

Asymmetric Size
Exogenous Travel 3.60 3.61 4 4
Endogenous Travel 8.35 8.39 11 11
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E.2 Alternative home exposure risk

We consider an alternative formulation for the exposure probability under which
susceptible agents do not meet tourists when isolating. Under the alternate specifi-
cation, (11) is replaced by

PE
i (mS

t , l
S
t ,h

S
t ;Tt)≡ 1−

( lS
t

1−θi

)
︸ ︷︷ ︸
Work share

1− τ ·
(Ii,t −MI

i,t +MI
j,t)

Ni,t︸ ︷︷ ︸
Home Exposure


C l

i,t

+

(
mS

t
1−θi

)
︸ ︷︷ ︸
Travel share

1− τ ·
(I j,t −MI

j,t +MI
i,t)

N j,t︸ ︷︷ ︸
Foreign Exposure


C m

i,t

+

(
hS

t
1−θi

)
︸ ︷︷ ︸
Isolation share

1− τ ·
(Ii,t −MI

i,t)

N∗
i,t︸ ︷︷ ︸

Home Exposure


C h

i,t.

The relevant i populations become

Ni,t = ∑
Z∈{S,I,R}

Zi,t −MZ
i,t −HZ

i,t +MZ
j,t , (38)

N∗
i,t = ∑

Z∈{S,I,R}
Zi,t −MZ

i,t , (39)

where HZ
i,t = hZ

i,tZi,t denotes the population isolating. Finally, average consumption
(14) becomes

C∗
i,t ≡ ∑

Z∈{S,I,R}

cZ
i,t

Zi,t −MZ
i,t −HZ

i,t

Ni,t︸ ︷︷ ︸
Consumption by i agents

+ κ
MZ

j,t

Ni,t︸ ︷︷ ︸
Consumption by j agents

 .

Table 10 recreates the results presented in Section 5.2 under the alternative home
exposure risk.
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Table 10: Peak Infection and Days Between Peaks for Models with Alternative Home
Exposure Risk

Peak Infectious - Home (%) Days Between Peaks
I0,H = I0,F I0,H < I0,F I0,H = I0,F I0,H < I0,F

Autarky
No Behavioral Response 26.52 26.52 0 24
Home Isolation 7.47 7.47 0 24

Symmetric Size
Exogenous Travel 9.21 9.36 0 0
Endogenous Travel 8.26 6.94 0 7

Asymmetric Size
Exogenous Travel 6.93 6.97 2 2
Endogenous Travel 8.45 8.49 7 7

E.3 Solving with the Fischer-Burmeister function

The first order and Kuhn-Tucker conditions for the susceptible problem are

−(1−βi)

1−θi −m−h
+

βi

m
+δ (U I′ −US′)

∂PI
i

∂m
−µ

hi
m = 0, (40)

−(1−βi)

1−θi −m−h
+δ (U I′ −US′)

∂PI
i

∂h
+µ

lo
h −µ

hi
h = 0, (41)

µ
hi
m (m̄−m) = 0, (42)

µ
lo
h h = 0, (43)

µ
hi
h (h̄−h) = 0. (44)

Our solution algorithm solves for the endogenous choices directly using the FOCs.
To verify the solution accuracy (especially close to the constraints), we implement
an alternate routine which solves the above system of equations and compare re-
sults. In particular, we replace (42)-(44) with their equivalent representations using
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the Fischer-Burmeister function (see e.g. Maliar, Maliar, and Winant, 2021):(
µ

hi
m +(m̄−m)−

√
(µhi

m )2 +(m̄−m)2
)2

= 0,(
µ

lo
h +h−

√
(µ lo

h )2 +h2
)2

= 0,(
µ

hi
h +(h̄−h)−

√
(µhi

h )2 +(h̄−h)2
)2

= 0.

The latter have an advantage in that they are smooth approximations of the Kuhn-
Tucker conditions, useful when using a nonlinear solver (especially one which does
not allow constraints).

We solve the modified system of equations using the Matlab function fsolve.
The two algorithms obtain a maximum difference in the aggregate disease states
(share of the population) of 0.0000003.

E.4 Restricted Range on R0

We confirm the robustness of our results in Section 6 for a restricted range of the re-
productive number, R0. Specifically, we generate one million new parameter com-
binations (training sample), with R0 ∈ [1.01,6] (the other parameter ranges are left
according to the bounds in Table 7). We then train surrogate models on the new
(restricted) data. Figure 10 uses these trained surrogates to recreate Figure 3 in the
main text under the restricted range on R0.
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Figure 10: Partial dependence plot of model outcomes (vertical axis) on R0 (horizontal
axis) for R0 ∈ [1.01,6]. A) Average percent of days travel is an effective avoidance asset. B)
Average percent of days travel is an effective avoidance asset when the infectious population
share is above 1%. C) Change in the time between home and foreign peaks from a home
isolation autarky model to models with exogenous (solid line) or endogenous (dashed line)
travel. D) Percentage point change in peak infectious (percent of population) from a home
isolation autarky model to models with exogenous (solid line) or endogenous (dashed line)
travel. E) Peak infectious under the aggregate-welfare-minimizing Prisoner’s Dilemma. F)
Change in welfare (consumption equivalent units) from the aggregate-welfare-maximizing
coordinated solution to the aggregate-welfare-minimizing Prisoner’s Dilemma.
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