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Abstract

This paper studies regression discontinuity designs (RDD) when linear-in-means
spill-overs occur between units that are close in their running variable. We show
that the RDD estimand depends on the ratio of two terms: (1) the radius over
which spillovers occur and (2) the choice of bandwidth used for the local linear
regression. RDD estimates direct treatment effect when radius is of larger order
than the bandwidth and total treatment effect when radius is of smaller order
than the bandwidth. When the two are of similar order, the RDD estimand
need not have a causal interpretation. To recover direct and spillover effects in
the intermediate regime, we propose to incorporate estimated spillover terms
into local linear regression. Our estimator is consistent and asymptotically
normal and we provide bias-aware confidence intervals for direct treatment ef-
fects and spillovers. In the setting of Gonzalez (2021), we detect endogenous
spillovers in voter fraud during the 2009 Afghan Presidential election. We also
clarify when the donut-hole design addresses spillovers in RDD.
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1 Introduction

Regression discontinuity design (RDD) is a popular method for causal inference and

policy evaluation, particularly in settings where experimental manipulation is not

possible. However, in the continuity-based framework of Hahn et al. (2001), identi-

fication of treatment effect at the cutoff relies on the Stable Unit Treatment Value

Assumption (SUTVA). This requires each unit’s potential outcomes to be unaffected

by the treatment status of other units and may be unrealistic: in many economic

environments, the variables of interest are equilibrium objects shaped by strategic

interactions, making SUTVA violations natural. Although RDD is known to identify

treatment effects local to the cutoff under SUTVA, this need not hold once SUTVA

is violated.

Following Manski (1993), the literature on social interactions typically emphasizes

two types of SUTVA violations: exogenous spillovers (also known as contextual ef-

fects) and endogenous spillovers. Exogenous spillovers occur when the outcome of an

agent depends directly on the treatment status of their neighbors. On the other hand,

endogenous spillovers arise when the outcome of an agent depends on the outcome

of their neighbors. For a concrete example, consider Gonzalez (2021), which studies

the effect of cell phone coverage on voter fraud during the 2009 Afghan presidential

election. Their spatial RDD compares polling stations on either side of the boundary

of cell phone coverage areas and finds that cell phone coverage reduced fraud. How-

ever, the author is also explicitly concerned about potential spillovers. For example,

suppose coverage at a polling station reduces fraud by allowing voters to report sus-

picious behavior to the electoral commission. Voters at non-covered stations could

potentially walk to covered stations to report fraud, giving rise to exogenous spillovers.

Alternatively, corrupt politicians might strategically allocate fraud to areas with less

monitoring. In this way, higher fraud in one polling station will reduce the need to

commit fraud in neighboring polling stations. This is a form of endogenous spillovers.

Because spillovers appear plausible in many settings, it is important to understand
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their effects on the estimand of RDD.

This paper studies RDD in the presence of spillovers. To do so, we extend the

framework of Hahn et al. (2001) to incorporate exogenous and endogenous spillovers

that occur along the running variable. We make two important modeling assump-

tions. Firstly, we assume that the outcome of a given unit depends linearly on the

mean treatment status and mean outcome of their neighbors. The linear-in-means

specification characterizes a large literature on peer effects (see e.g. Manski 1993;

Bramoullé et al. 2009; De Giorgi et al. 2010; Goldsmith-Pinkham and Imbens 2013;

De Paula et al. 2024) and spatial autoregression models (e.g. Cliff and Ord 1973;

Kelejian and Prucha 1998; 2010; Lee 2004; 2007). Secondly, we assume that the run-

ning variable which defines the RDD also determines the social interactions in the

linear-in-means model. Specifically, units with similar values of the running variables

are also assumed to be neighbors. When the running variable is geographical coordi-

nates, this model captures interaction between units that are close in space. In the

classic Thistlethwaite and Campbell (1960), which studies the effect of scholarships

on academic achievements, the running variable is test scores. Our model then cap-

tures the idea that students with similar test scores exert peer effects on one another,

for example by forming study groups.

We make two main contributions. Firstly, we show that the estimand of RDD de-

pends on the ratio of two terms: (1) the radius over which spillovers occur and (2) the

bandwidth used for local linear regression. Specifically, RDD estimates direct treat-

ment effect at the boundary when the radius is of larger order than the bandwidth.

This is the effect on a unit at the boundary when we switch their treatment status

from control to treatment, keeping treatment assignment fixed for all other units.

When radius is of smaller order than the bandwidth, RDD instead estimates total

treatment effect, which is the effect on the unit at the boundary when we switch the

treatment status of the entire population from control into treatment. In the regime

where radius is of similar order as the bandwidth, the RDD estimand is a mixture of
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the above effects and lacks a clear interpretation. We argue, however, that this is the

more realistic regime wherein the asymptotic approximation captures more features

of the finite sample distribution.

As such, our second contribution is a proposal for recovering direct and spillover

effects in the intermediate regime. We do so by incorporating estimated spillover

terms into local linear regression, in a procedure we call the local spillover regression

(LSR). We show that LSR, which is essentially the local analog of peer effects regres-

sions, leads to consistent estimators which are asymptotically normally distributed.

We also adapt the method of Armstrong and Kolesár (2020) to construct bias-aware

confidence intervals for direct and spillover effects.

Simulation results show that LSR performs well relative to local linear regression

with naively chosen bandwidths. The adaptive bandwidth rules of Calonico et al.

(2014) and Armstrong and Kolesár (2020) lead to estimators that are more robust to

spillovers, but our method can achieve lower MSE and better coverage particularly

in settings with intermediate amounts of spillovers. We apply LSR to the setting

of Gonzalez (2021) and find evidence of positive endogenous spillovers in electoral

fraud. The implied social multiplier may be relevant for cost-benefit analysis for

fraud deterrence policies and may provide motivation for network-based interventions.

Along the way, we also discuss the estimands of the popular RD donut and highlight

settings under which it recovers either direct or total treatment effects.

This paper contributes to the vast literature on RDD (see Cattaneo and Titiu-

nik 2022 for a recent review). Empirical researchers have long been concerned with

spillovers in RDD, with papers such as Jardim et al. (2022) arguing against the use of

spatial discontinuity design for policy evaluation. However, to our knowledge, prior

theoretical work on this issue is limited to Aronow et al. (2017), which conducts

their analysis under the local randomization framework of Cattaneo et al. (2015),

finding that RDD always recovers a weighted average of direct treatment effect. We

consider RDD under the continuity-based approach of Hahn et al. (2001) and find
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that the estimand can exhibit more complex behavior, particularly when neighbor-

hoods are determined by the running variable. Since the first version of this paper

was posted, Dal Torrione et al. (2024) and Borusyak and Kolerman-Shemer (2024)

have also studied RDD in the presence of spillovers. Dal Torrione et al. (2024) takes

the continuity-based approach, assuming that the running variable and the variable

determining neighborhood structure have a continuous joint density. They find that

RDD recovers a weighted average of direct treatment effect, drawing a connection to

multi-score RDD. Our paper focuses on the case where neighborhoods are completely

determined by the running variable and is unique in having spillovers that appear in

the asymptotic approximation, provided that radius and bandwidth are scaled ap-

propriately. This paper also differs from Aronow et al. (2017) and Dal Torrione et al.

(2024) in considering endogenous spillovers, which arises in many settings of interest

to economists. Finally, we note that the aforementioned papers, as well as ours, focus

on spillovers between units within an RD. Borusyak and Kolerman-Shemer (2024)

studies the aggregation of multiple RDDs and considers effects of spillovers across

designs.

This paper joins a burgeoning body of work that considers violations of SUTVA

under various research designs, such as experiments (e.g. Hudgens and Halloran 2008;

Aronow and Samii 2017; Sävje et al. 2021; Hu et al. 2022; Leung 2022a; Li and Wager

2022; Gao and Ding 2023; Vazquez-Bare 2023b; Auerbach et al. 2025a), differences-

in-differences (e.g. Clarke 2017; Butts 2021; Xu 2023), synthetic control (Cao and

Dowd 2019), instrumental variables (Sobel 2006; Vazquez-Bare 2023a) and other ob-

servational settings (Forastiere et al. 2020). RDD poses unique challenges relative to

these other settings because it concerns parameters that are local to the cutoff and

estimation is nonparametric. Additionally, we consider endogenous spillovers, which

has received relatively less attention in this literature, though exceptions include, in

the experiment context, Leung (2022a); Munro et al. (2021); Li et al. (2023); Munro

(2023) and Faridani and Niehaus (2024). In the presence of endogenous spillovers, a
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unit’s outcome may depend on the treatment status of the entire population, even if

spillovers are assumed to have a small radius. The interaction of this dependence with

the discontinuity of the observed outcome function poses novel technical challenges

that we address.

The rest of the paper is organized as follows. Section 2 describes our econometric

framework. Section 3 characterizes the estimand of local linear regression under

spillovers. Section 3.4 in particular considers the use of donut-hole RDs. Section 4

presents the local spillovers regression, our proposal for recovering direct treatment

and spillover effects. Section 5 applies our method to the setting of Gonzalez (2021).

Section 6 concludes. Proofs are contained in the Appendix. Simulation results and

the auxiliary lemmas used in the proofs are available in the Supplemental Appendix.

The remainder of this paper uses the following notation. We write An ≫ Bn if

An/Bn → ∞, An ∝ Bn if An/Bn → c where 0 < c < ∞, and An ≪ Bn if An/Bn → 0.

Let ι and 0 be constant functions that take values 1 and 0 on [−1, 1] respectively.

2 Econometric Framework

In this section, we introduce the econometric framework for studying RDD with

spillovers. Section 2.1 presents our model for potential outcomes. Section 2.2 defines

the parameters of interest. Section 2.3 discusses our assumed neighborhood structure.

Section 2.4 presents the sampling process.

2.1 Potential Outcomes

Consider a continuum of agents that are indexed by their coordinates z ∈ Z = [−1, 1].

For convenience, we will assume that agents are uniformly distributed according to

F = Uniform(Z), so that their density with respect to the Lebesgue measure is

f(z) = 1
2
. Our results extend easily to any density bounded away from 0 at the

cutoff, although our expressions for the bias of RDD need not apply in the more
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general setting.

We work in the usual potential outcomes framework with binary treatment, where

the observed outcome at z satisfies

Yd(z) = d(z)Y +
d (z) + (1− d(z))Y −

d (z) .

Here, d : Z → {0, 1} is the treatment assignment function. Y +
d (z) and Y −

d (z) are

the potential outcomes under treatment and control respectively. Because of the

treatment assignment rule in RDD, defined below, we will denote quantities related

to treatment with “+” and those related to control with “−”.

Potential outcomes are indexed by d because as a result of spillovers, they may

depend on the entire treatment assignment function. Let every agent z have the set

of relevant neighbors R(z) ⊂ Z with measure |R(z)|. These are agents whose realized

outcomes affect z. Let potential outcomes be defined as follows:

Assumption 1 (Potential Outcomes). For a given treatment assignment function

d : Z → [0, 1] and neighborhood structure R : Z → P(Z), the potential outcome of

agent z under treatment d is:

Y +
d (z) = m+(z) + δ(z)µd(z) + γ(z)νd(z)

Y −
d (z) = m−(z) + δ(z)µd(z) + γ(z)νd(z)

where

µd(z) =
1

|R(z)|

∫
R(z)

Yd(u)f(u) du

νd(z) =
1

|R(z)|

∫
R(z)

d(u)f(u) du .

Furthermore, let m+(z) and m−(z) be Lipschitz continuous on Z = [−1, 1] with Lips-

chitz constant C. Let δ(z) be continuously differentiable with |dδ
dz
| < Cδ, supz∈Z |δ(z)| ≤
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δ̄, supz1,z2∈Z |δ(z1)− δ(z2)| ≤ δ̄, δ̄ < 1. Finally, let γ(z) be continuously differentiable

with |dγ
dz
| < Cγ.

The above model extends the continuity-based framework of Hahn et al. (2001) to

include two sources of spillovers, both of which are linear-in-means. The exogenous

spillover term is γ(z)νd(z), where νd(z) is the mean treatment status of z’s neighbors,

and γ(z) is the effect of this term on z’s outcome. The endogenous spillover term is

δ(z)µd(z), where µd(z) is the mean outcome of z’s neighbors, and δ(z) is the effect of

this term. Spillovers are assumed to enter the treated and control potential outcomes

in the same way. As will become clear in Section 2.2, this leads to a particularly

simple formula for the parameters of interest.

The linear-in-means assumption is potentially restrictive. However, it is the

workhorse model in the peer effects (e.g. Manski 1993; Bramoullé et al. 2009; De Giorgi

et al. 2010; Goldsmith-Pinkham and Imbens 2013; De Paula et al. 2024) and spatial

autoregression (e.g. Cliff and Ord 1973; Kelejian and Prucha 1998; 2010; Lee 2004;

2007) literatures. We consider it to be a reasonable first step for analyzing endoge-

nous spillovers, a task which is challenging in many settings. The linear-in-means

assumption is in fact stronger than necessary for our characterization of the esti-

mands. In particular, the qualitative results in Section 3 does not require linearity

in the effects of spillovers, and allows neighbors to have different weights in treated

and control outcomes. The main requirement being that neighborhoods have approx-

imately bounded support. However, as will become clear in Section 4, the specific

form of spillovers needs to be assumed in order to recover target parameters in our

preferred asymptotic regime. We therefore focus on the above model. Nonetheless, it

is more general than the standard peer effects model in that the effects of spillovers,

δ and γ, is allowed to vary with z.

The remaining conditions in Assumption 1 concerns continuity of the functions

m+,m−, δ and γ as well as the boundedness of δ. Continuity ofm+ andm− around the

cutoff is the main identifying assumption in RDD. Standard RDD requires only that
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m+(z) and m−(z) are continuous at z = 0. However, due to spillovers, continuity of

potential outcomes also requires continuity of the two functions around the boundaries

of Rn(0) as well as the continuity of γ and δ. Since Rn(0) is fixed under some of the

regimes we consider, we assume continuity over Z for simplicity. We also slightly

strengthen the condition to Lipschitz continuity. To ensure that Y +
d and Y −

d are

well-defined, we require supz∈Z |δ(z)| < 1, as well as for supz1,z2∈Z |δ(z1)− δ(z2)| ≤ 1.

2.2 Parameters of Interest

In a setting with spillovers, any two treatment assignment functions d and d′ can give

rise to a treatment effect

Yd(z)− Yd′(z)

that is potentially of interest. Following the literature on causal inference with

spillovers (see e.g. Hudgens and Halloran 2008), we focus on the following two pa-

rameters:

Definition 1 (Treatment Effects).

• The direct treatment effect at z = 0 is

τDIR := Y +
d (0)− Y −

d (0) = m+(0)−m−(0) .

• The total treatment effect at z = 0 is

τTOT := Y +
ι (0)− Y −

0 (0) = m+(0)−m−(0) + δ(0) (µι(0)− µ0(0)) + γ(0) .

The direct treatment effect on a given agent is the effect of treatment on their

outcomes, keeping the treatment assignment of all other agents unchanged at some

d. This parameter is useful for thinking about selective rollout of some policy, under

which it is plausible to consider only the direct treatment effect, treating the spillovers
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as fixed. Here, we abuse notation in using d to refer to two different treatment assign

functions, although they are identical on Z \ 0. In principle, direct treatment effect

depends on d. In RDD, it is natural to focus on:

Definition 2 (RDD Treatment Assignment). d(z) = 1 {z ≥ 0} .

The above treatment assignment function is the natural reference point for eval-

uating direct treatment effects in RDD. However, under Assumption 1, the agent at

z = 0 experiences the same spillover whether or not they are treated for two reasons.

Firstly, δ(z) and γ(z) are assumed to be the same regardless of treatment status. Sec-

ondly, the agent z = 0 is infinitesimal, so that changing their treatment status does

not affect µd(z) or νd(z) for any z ∈ Z. Implicitly, this is a model involving dense

network asymptotics. The result of these two factors is that τDIR = m+(0) −m−(0)

regardless of d. Additionally, τDIR is equal to local average treatment effect in the

standard setting with no spillovers.

With infinitesimal agents, direct treatment effects are easy to define since we can

change the treatment status of one individual but still keep spillovers fixed. Nonethe-

less, there is a coherent notion of spillovers in this model: if two treatment functions

d and d′ differ on a set of positive measure, then µd(z) and νd(z) need not be equal to

µd′(z) and νd′(z). This point is also evident in the definition of our next parameter.

The total treatment effect on a given agent is the effect on their outcome when

we switch the treatment status of the entire population from control to treatment.

This corresponds to the effect on z = 0 from a large-scale rollout of treatment. In

our notation, the subscripts ι and 0 denote treatment assignments in which everyone

and no one is treated respectively. As before, we will focus on the agent at the cutoff,

z = 0. With total treatment effect, we are evaluating potential outcomes under

different treatment assignment functions. Consequently, spillovers no longer cancel

out. We remark that νι(z) = 1 and ν0(z) = 0 so that exogenous spillovers at z = 0 is

γ(0).
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2.3 Neighborhood Structure

In the presence of spillovers, the neighborhood structure is critical in determining the

estimands of RDD. We focus on the case where spillovers occur along the running

variable:

Assumption 2 (Neighborhood).

Rn(z) = {u : ∥z − u∥ ≤ rn} .

Here, ∥·∥ is taken to be the Euclidean distance. As such, z is affected only by

units whose running variable takes value within rn of z. All other units exert no

effect. Together with an i.i.d sampling assumption introduced in the next section,

the above assumption implies that the exposure map between sampled units is a

random geometric graph (see e.g. Penrose 2003). This is a well-studied model that

is commonly used for spillovers and interference (see e.g. Leung 2020).

When neighborhoods are defined by the running variable, nearby units that are

comparable in their conditional means (m+,m−) can experience spillovers that are not

comparable. Consequently, RDD may not recover any meaningful treatment effect

parameters, as our analysis in Section 3 shows. This fundamental tension is absent

when neighborhoods are defined by another variable, say w, that is suitably continu-

ous with respect to z. We will refer to such a w as a background variable. Suppose

for now that units are defined by their values of (z, w) and that neighborhoods are

defined as

Rn(z, w) = {(z̃, w̃) : |w̃ − w| ≤ rn} .

Additionally, suppose z and w have a joint density in a neighborhood containing

the line z = 0. Then, local to the cutoff, we have that z is uncorrelated w, so

that neighborhoods, and in turn spillovers, are uncorrelated to the RDD treatment

assignment. The result is that RDD always recovers the direct treatment effect,
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provided that the correlation between z and w remain fixed in the asymptotics.1

In light of the above discussion, spillovers in RDD may appear pathological. How-

ever, there are many settings in which neighborhoods appear strongly correlated with

the running variable. In spatial RDDs, it is often plausible that nearby units inter-

act. For example, Jardim et al. (2022) studies the effect of minimum wage policies

on labor market outcomes at the census tract level. However, it is clear that census

tracts compete in the same labor market as all other census tracts within a reasonable

commute. Gonzalez (2021) provides another example based on cell phone coverage

and electoral fraud which we take up in greater detail in Section 5. Leung (2022b)

provides many more examples. The same is true with test score RDDs, such as the

classic Thistlethwaite and Campbell (1960) which studies the effect of merit scholar-

ships on academic achievements. Here, scholarships are assigned based on test score

cutoffs and it is plausible that students who are close in test scores interact. This

could happen because of homophily, because students take classes and therefore so-

cialize with those of similar abilities, or because they compete for the same set of

career opportunities. In instances like the above, our model is a useful starting point

for understanding the effect of spillovers.

2.4 Sampling

Having defined a sequence of models for generating potential outcomes, we close this

section by considering sampling. We will assume that our data takes the following

form:

Assumption 3. Suppose we observe the i.i.d. sample {(Yi, Zi)}ni=1, where Zi ∼ F ,

Yi = Yd(Zi) + εi , E[εi|Zi] = 0

1The first version of this paper presented the above intuition for spillovers on background variables
(Auerbach et al. 2024, Section 3.3.3). Dal Torrione et al. (2024) proves this result in a related setting,
drawing a connection to multi-score RDD. Also see the discussion after Theorem 1.
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and d(z) = 1{z ≥ 0} is the RDD treatment assignment function. Moreover, suppose

that E[ε2i |Zi = z] ≤ σ̄2 for all z ∈ Z and that E[ε2 | Z = z] is continuous in a

neighborhood of 0.

In words, the data-generating process operates as follows. A continuum of agents

interact and their outcomes are determined by the values of their running variables

as well as spillovers. The econometrician then samples agents randomly and observes

their outcomes, possibly with an error that has 0 conditional mean. We also assume

that the error has conditional variance that is continuous in z – a standard assump-

tion. Our framework resembles De Paula et al. (2018) in defining interactions to occur

in the population.

3 Local Linear Regression in the Presence of Spillovers

In this section, we show that the local linear regression estimator may not recover

meaningful treatment effect parameters in the presence of spillovers, necessitating

proposals such as that in Section 4. Section 3.1 defines the local linear regression

estimator and Section 3.2 describes its estimands in the presence of spillovers. Our

results suggest that the ratio of rn/hn is a key modeling assumption and we argue

for using rn ∝ hn in Section 3.3. Finally, Section 3.4 considers the use of donut-hole

designs as a solution to spillovers.

3.1 The Local Linear Regression Estimator

The local linear regression estimator for the local average treatment (equivalently,

τDIR) is defined as follows:

Definition 3 (Local Linear Regression Estimator). LetK be a bounded second-order

kernel so that
∫ 1

−1
K(u)du = 1 and

∫ 1

−1
uK(u)du = 0. Furthermore, assume that for

all u, 0 ≤ K(u) ≤ K̄, and that K(u) = 0 if u < −1 or u > 1. Let hn be a sequence
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of bandwidths such that hn → 0 and nhn → ∞. Then, define

(
β̂+
0 , β̂

+
1

)
= argmin

b∈R2

∑
Zi≥0

K

(
Zi

hn

)
(Yi − b0 − b1Zi)

2

(
β̂−
0 , β̂

−
1

)
= argmin

b∈R2

∑
Zi<0

K

(
Zi

hn

)
(Yi − b0 − b1Zi)

2

The local linear estimator for the local average treatment effect is τ̂RDD := β̂+
0 − β̂−

0 .

Second order kernels are commonly used in local linear regression. For a discussion

on the properties of higher order kernels, see e.g. Wand and Jones (1995). We

additionally assume that K has finite support and is bounded and non-negative.

In the absence of spillovers, it is standard practice to estimate the local average

treatment effect using τ̂RDD (see e.g. Hahn et al. 2001; Cattaneo and Titiunik 2022).

In this setting, τ̂RDD is consistent for τDIR, though inference is complicated by the

presence of an asymptotic bias of order h2
n. Various solutions are available for the

problem of inference (see e.g. Calonico et al. 2014; Armstrong and Kolesár 2018).

In sum, the properties of RDD are relatively well-understood in settings without

spillovers.

3.2 Estimands of RDD

Our first result characterizes the estimands of RDD when spillovers occur along the

running variable.

Theorem 1. Suppose Assumptions 1, 2 and 3 hold.

(a) If rn ≫ hn, then τ̂RDD
p→ τDIR

(b) If rn ≪ hn, then τ̂RDD
p→ τTOT

(c) If rn/hn → c where 0 < c < ∞, then τ̂RDD
p→ τ∗
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When spillovers occur along the running variable, the estimand of RDD exhibits

phase transition, with the phases depending on the ratio of rn to hn. When rn ≫

hn, RDD estimates direct treatment effect. On the other hand, when rn ≪ hn,

RDD estimates total treatment effect. In the intermediate regime where rn ∝ hn, it

estimates a parameter τ∗, which is displayed in full in Equation (16). τ∗ depends on

the c, the limiting ratio of rn and hn, even though this is suppressed in the notation.

Generally speaking, τ∗ does not have a clear interpretation. In particular, it is not

equal to either τDIR or τTOT unless either δ(0) = γ(0) = 0 (i.e. no spillovers) or

τDIR = γ(0) = 0 (i.e. treatment has 0 effect), in which case τDIR = τTOT = τ∗. It may

be close to 0 even when τDIR and τTOT are large in magnitude – a common concern

expressed by empirical papers regarding spillovers.

The above result is intuitive. The local linear regression estimator essentially

treats units within the bandwidth as being comparable. If rn is large relative to hn,

units in the bandwidth have neighborhoods that overlap almost completely so that

they experience similar spillovers. As such, units on different sides of the cutoff differ

only in their treatment status and τ̂RDD estimates direct treatment effect. Conversely,

when rn is small relative to hn, units to the left of the cutoff essentially only has

control neighbors, while units to the right of the boundary only has treated neighbors.

Comparing these units therefore reveals total treatment effect. When rn ∝ hn, RDD

compares a mix of units, some of which have similar neighborhoods, some of which

do not. The resulting estimand is therefore a complicated interpolation of direct and

spillover effects.

Remark 1. Although the exact form of τ∗ depends on the structure of the spillovers,

changing assumptions about the functional form or the relative weights of neighbors

will not qualitatively affect the results in Theorem 1. In particular (a) and (b) will

continue to hold as long as spillovers occur over approximately bounded neighborhood.

Similarly, when rn ∝ hn, the limit of the τ̂RDD will be combination of terms with no

clear interpretation.
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Relation to Existing Work

Theorem 1, in particular cases (b) and (c), stands in stark contrast to existing work

on spillovers within an RDD. Aronow et al. (2017) studies spillovers under the local

randomization framework of Cattaneo et al. (2015) and find that RDD always recovers

a weighted average of direct treatment effect. Under local randomization, RDD is ex-

actly an experiment under some neighborhood of the cutoff. Consequently, treatment

assignment is orthogonal to spillovers, reproducing the results seen in the literature

on experiments with spillovers (see e.g. Hudgens and Halloran 2008; Aronow and

Samii 2017; Leung 2022a). Dal Torrione et al. (2024) provides a similar analysis

under the continuity-based approach of Hahn et al. (2001). They assume that the

running variable and the variable determining neighborhood structure have a contin-

uous joint density, ruling out the case we consider. Given continuous joint density,

they find that treatment assignment is approximately orthogonal to spillovers. As a

consequence, RDD recovers a weighted average of direct treatment effect even under

the continuity framework.

Our paper studies RDD under a continuity-based framework and we focus on the

case where neighborhoods are completely determined by the running variable. In

this setting, the extent of orthogonality between treatment assignment and spillovers

depends on the ratio rn/hn. Our approach – particularly the rn ∝ hn case – leads to

an asymptotic model in which spillovers can affect the estimands of RDD. This is not

possible in the framework of Aronow et al. (2017) and Dal Torrione et al. (2024). Our

model therefore provides a basis for using data to speak to the effects of spillovers, a

task which we take up in Section 4. Finally, we note that this paper is also unique

relative to the above two papers in considering endogenous spillovers.

3.3 Choice of Asymptotic Framework

Theorem 1 shows that how we model the relative rates between rn and hn affects the

interpretation of τ̂RDD. We argue that the rn ∝ hn regime is the natural choice when
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researchers are concerned about spillovers.

In any given application, spillovers occur over some radius that is a finite ratio c

of the bandwidth. The regimes rn ≫ hn or rn ≪ hn are therefore unrealistic edge

cases that take c = 0 or c = ∞. Consequently, they assert that τ̂RDD must either

recover direct treatment effect or total treatment effect. There is no room for the

data to speak to the amount of direct effects relative to spillovers.

In contrast, the estimand of RDD depends explicitly on the ratio of c under

the regime rn ∝ hn, which is a better approximation to how spillovers manifest in

practice. It leads to an asymptotic model that preserves more features of the finite

sample distribution and therefore provides greater scope for reasoning about spillovers

in the data. For this reason, rn ∝ hn is our preferred framework for analyzing RDD

with spillovers. We do not claim rn to be a quantity that changes with sample size,

only that taking it to 0 leads to a useful approximation. Such an approach is also

taken in traditional analysis of boundary bias for kernel methods (see e.g. Section

5.5 in Wand and Jones 1995). Here, the target point is modeled as drifting towards

the boundary at rate hn to capture the notion that these two points are close.

In our preferred regime, RDD is potentially inconsistent for either treatment effects

parameter. Section 4 proposes a method for recovering both direct treatment effects

and spillovers.

3.4 Donut-Hole Designs

In the remainder of this section, we informally discuss donut-hole designs as viewed

through the lens of our model. Often suggested as a solution for estimating τDIR

in the presence of spillovers, donut-hole designs involve excluding observations close

to the cutoff from estimation. The idea is that these units are contaminated by

spillovers, so that removing them should lead to the recovery of τDIR = m+(0)−m−(0).

This approach does not work under our model, but we state an alternative model of

spillovers under which donut-hole RD can be justified, provided that there are no
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endogenous spillovers.

To define the donut-hole RD, let ho
n > 0 be such that ho

n < hn. Then donut-hole

RD estimates β̂+ by local linear regression on observations for which Zi ∈ [ho
n, hn].

Similarly for β̂− and observations for which Zi ∈ [−hn,−ho
n]. Let the estimand of the

donut-hole RD be denoted τo.

Under our linear-in-means model, suppose ho
n = rn. That is, we exclude all

observations that have neighbors on the other side of the cutoff. Suppose there are

no endogenous spillovers (δ(0) = 0). Then τo = τTOT and not τDIR. In our model,

agents closest to the cutoff experience the most similar spillovers, so that comparing

them leads to the best estimate of τDIR. However, after excluding units in the donut

hole [−ho
n, h

o
n], the remaining units only have neighbors who have the same treatment

status as them so that RDD estimates τTOT. In this sense, a donut-hole RD is exactly

the wrong thing to do if researchers are interested in τDIR.

However, suppose γ(z) = γ̌(z)1{z ≤ 0}. In other words, only control units

experience spillovers based on how many of their neighbors are treated. This is

reasonable, for example, in the case of information treatment, where information can

diffuse from the treated to control units but not vice versa. In this case, if ho
n = rn and

δ(0) = 0, the intuition in the above paragraph still applies so that τo estimates total

treatment effect. However, in this model, total treatment effect is also equal to direct

treatment effect under the reference treatment assignment function d = 0. Note that

direct treatment effect is now dependent on d, since spillovers enter the treated and

control potential outcomes asymmetrically. Donut-hole RDs can therefore be used to

recover τDIR under this model.

Finally, we note that once δ(0) ̸= 0, donut-hole RDs do not recover τDIR or τTOT

in either model. This is because under endogenous spillovers, the outcome of a given

unit is affected by all other units in the domain: a given unit z has an outcome that

depends on the outcomes of [z − rn, z + rn]. In turn, the outcome for z + rn depends

on the outcomes on [z, z + 2rn], and so on. As such, it is not possible to isolate units
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that are “contaminated” by spillovers using a donut design.

4 Local Spillover Regression

As we argued in Section 3.3, our preferred asymptotic regime features rn ∝ hn, in

which the RDD estimand need not have a causal interpretation. In order to dis-

entangle direct treatment effect from spillovers, Section 4.1 proposes a local analog

of the peer effects regression that we term the local spillover regression (LSR). We

discuss estimation consistency and inference in Section 4.2. LSR requires researchers

to specify a radius rn. We consider choosing rn as well as hn in Section 4.3.

4.1 Proposed Method

Since spillovers are the cause of inconsistency, our proposal is to estimate µd(z) and

νd(z), and then to incorporate them into the local linear regression.

Suppose for now that rn is known. For a given Zi, define its observed neighbors

to be:

R̃(Zi) = {j ̸= i : ∥Zj − Zi∥ ≤ rn} .

To be consistent with our econometric model, ∥·∥ is taken to be the Euclidean dis-

tance. We then estimate the mean outcome of Zi’s neighbors using a leave-i-out

estimator:

µ̃d(Zi) =
1

|R̃(Zi)|

∑
j∈R̃(Zi)

Yj .

Additionally, we define

µ̃d(0) =
1

|R̃(0)|

∑
j∈R̂(0)

Yj , R̃(0) = {j ̸= i : ∥Zj∥ ≤ rn} .

where the only difference is that z = 0 is not observed. We focus on the case when

the distribution of Z is uniform, so that νd(Zi) known. When f is not uniform, it is
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straightforward to form the analogous leave-i-out estimator for νd(Zi).

We propose to estimate τDIR, γ(0) and δ(0) using the following:

Definition 4 (Local Spillover Regression Estimator). For a given kernel K and band-

widths hn, let

β̃ = argmin
b

n∑
i=1

K

(
Zi

hn

)(
Yi − X̃ ′

ib
)2

where Di = 1{Zi ≥ 0},

Xi =



1

Zi

Di

ZiDi

µd(Zi)− µd(0)

Zi(µd(Zi)− µd(0))

νd(Zi)− νd(0)

Zi(νd(Zi)− νd(0))



and X̃i =



1

Zi

Di

ZiDi

µ̃d(Zi)− µ̃d(0)

Zi(µ̃d(Zi)− µ̃d(0))

νd(Zi)− νd(0)

Zi(νd(Zi)− νd(0))



.

X̃i is our estimate of the unobserved Xi. The estimator β̃ targets the following:

β =



m−(0) + δ(0)µd(0) + γ(0)νd(0)

(m−)′(0) + δ′(0)µd(0) + γ′(0)νd(0)

m+(0)−m−(0)

(m+)′(0)− (m−)′(0)

δ(0)

δ′(0)

γ(0)

γ′(0)



.

The first four components of X̃i are terms coming from the standard LLR. They

are obtained by rewriting the two separate local regressions in Definition 3 as a

20



single regression. As such, the coefficient of Di targets τDIR = m+(0)−m−(0). The

remaining components address spillovers. µ̃d(Zi) − µ̃d(0) and νd(Zi) − νd(0) are our

estimated mean outcome and mean treatment status in the neighborhood of Zi. As

such, their coefficients target δ(0) and γ(0) respectively. Zi(µ̃d(Zi) − µ̃d(0)) and

Zi(νd(Zi)−νd(0)) are not needed for consistency but they reduce the asymptotic bias

when δ(z) and γ(z) are not constant, analogous to how introducing Z reduces the

bias of LLR relative to the Nadaraya-Watson estimator.

In view of the above discussion, we will also use the notation τ̃DIR := β̃3, δ̃(0) := β̃5,

γ̃(0) := β̃7. When rn → 0, τTOT → τDIR+γ(0)
1−δ(0)

. As such, we also define τ̃TOT := τ̃DIR+γ̃(0)

1−δ̃(0)
.

4.2 Theoretical Properties of LSR

Section 4.2.1 presents the consistency properties of LSR. Section 4.2.2 provides the

asymptotic distribution for β̃. Section 4.2.3 covers confidence intervals based on the

bias-aware approach of Armstrong and Kolesár (2020).

4.2.1 Consistency

This section presents results on the consistency of LSR. We first discuss consistency

of τDIR, which obtains under fairly unrestrictive conditions. We then turn to γ(0) and

δ(0), which are more challenging to estimate and will require more assumptions.

For direct treatment effect,

Theorem 2. Suppose Assumptions 1, 2 and 3 hold. Additionally, suppose n → ∞,

hn → 0, nhn → ∞ and rn ∝ hn. Then τ̃DIR
p→ τDIR.

The main condition for consistency of τ̃DIR is the Lipschitz continuity ofm+, m−, δ

and γ. This is a slight strengthening of the conditions needed for LLR, which typically

assumes continuity of m+ and m− at the cutoff. Including estimated spillover terms

is therefore a simple and effective method to ensure that the target parameter is τDIR.

Recovering spillover effects requires more assumptions:
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Assumption 4. Suppose the following hold:

(a) Suppose rn/hn → c < 1.

(b) δ(0) ̸= 0 and τDIR ̸= 0 or γ(0) ̸= 0.

Then, we have the following:

Theorem 3. Suppose Assumptions 1, 2, 3 and 4 hold. Additionally, suppose n → ∞,

hn → 0, nhn → ∞ and rn ∝ hn. Then β̃
p→ β. In particular,

δ̃(0)
p→ δ(0) , γ̃(0)

p→ γ(0) , τ̃TOT
p→ τ̃TOT .

The additional assumptions here address various sources of non-identification in

the model. Condition (a) is specific to z ∈ R. In this case, when c > 1, νd(z) = z under

the assumption of uniform f . Having c < 1 is therefore necessary for the identification

of γ(0). This collinearity does not arise when units are in e.g. R2. Condition (b) is

needed to ensure that µd(z) is not collinear with νd(z). Our approximation result in

Lemma 9 shows that locally,

µd(z)− µd(0) ≈ (νd(z)− νd(0)) ·
(
τDIR · (first order term smoothing due to δ(0))

γ(0) · (second order term smoothing due to δ(0))
)

If δ(0) = 0, the first and second order terms are constant, so that µd(z) − µd(0) =

(νd(z)−νd(0)). Meanwhile, if both τDIR and γ(0), then µd(z)−µd(0) ≈ 0. Intuitively,

to learn about δ(0), we need treatment to create some effect (τDIR or γ(0) ̸= 0) that

decays in z.

Condition (b) is relatively strong but it is reminiscent of the assumption that

τγ+ δ ̸= 0 common in the peer effects literature (see e.g. Proposition 1 in Bramoullé

et al. 2009). Finally, since the collinearities pertain to some combination of z, µd(z)

and νd(z), τ̃DIR is consistent for τDIR even when these conditions are not satisfied.
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4.2.2 Asymptotic Distribution

We next state a central limit theorem for β̃. For ease of exposition, we will maintain

the full set of assumptions in Theorem 3. We focus on the case when the band-

width is assumed to have the MSE-optimal rate of n−1/5 and introduce the following

assumption:

Assumption 5. Suppose that

(a) hn, rn ∝ n−1/5.

(b) For some s > 0,

sup
z∈(−s,s)

E[|ε|3 | Z = z] < ∞ .

Then,

Theorem 4. Suppose Assumptions 1, 2, 3 4 and 5 hold. Then, as n → ∞, we have

that

V−1/2
√
n
(
β̃ − β −Bn

)
d→ N (0, I8) , (1)

where Bn = Q̃−1T̃ρ is a bias term, T̃ρ is defined in (A.2) in the appendix, V−1/2 =(
V1/2

)−1
, V1/2 = Q̃−1Ω1/2, and

Q̃ =
1

n

n∑
i=1

K

(
Zi

h

)
X̃iX̃

′
i,

Ω =Var

[
K

(
Zi

h

)
Xiεi + ηX (ξi)

]
.

(2)

In the above expression,

ηX (ξ1) =E

[
K

(
Z0

h

)
(δ(0) + δ′(0)Z0)X (Z0) (Y1 − µd(0))

R
(
Z1

r

)
πr(0)

∣∣∣∣∣ξ1
]

− E

[
K

(
Z0

h

)
(δ(0) + δ′(0)Z0)X (Z0) (Y1 − µd (Z0))

R
(
Z1−Z0

r

)
πr (Z0)

∣∣∣∣∣ξ1
]
.

(3)
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where ξi ∼ P independently. Furthermore, R(z) = 1[−1,1](z) and πr(z) = E
[
R
(
Z1−z

r

)]
.

When hn ∝ n−1/5, there is an asymptotic bias term Bn that we address below.

Q̃ is the regression design matrix. The matrix Ω in the definition of V has two

components. The term K(Zi/h)Xiεi captures the usual source of estimation error in

weighted regression if the “ideal” regressors Xi were known. In this case, the only

source of estimation error would be due to the unobserved error term εi. The feasible

regressors X̃i, used in place of Xi, contain an additional source of error: estimation of

the unknown neighborhood average outcomes µd(Zi). The term ηX (ξi) captures this

additional source of estimation error, i.e. the difference X̃i−Xi. It is straightforward

to see that the sample analogue of Ω combined with Q̃ is a consistently estimates V.

Let the plug-in estimator be denoted Ṽn.

4.2.3 Bias-Aware Confidence Intervals

The bias term in Theorem 4, Bn, is asymptotically non-negligible when hn ∝ n−1/5.

To form valid confidence intervals, we follow the bias-aware approach of Armstrong

and Kolesár (2020). This entails restricting the classes of functions to whichm+,m−, δ

and γ can potentially belong, so that an upper bound for Bn can be obtained. Con-

fidence intervals can then be appropriately widened to ensure coverage under this

worst-case bias.

To that end, define the Taylor class of order 2:

FT,2(M) =

{
f : |f(z)− f(0)− f ′(0) · z| ≤ M · z

2

2
, z ∈ Z

}

This is the class of functions whose first order Taylor approximation has error less

than Mz2/2. We can loosely think of the tuning parameter M as the upper bound

for the second derivative of f at 0. We will now assume that:
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Assumption 6. Suppose

m+,m− ∈ FT,2(Mm) , δ ∈ FT,2(Mδ) , γ ∈ FT,2(Mγ) .

It is then straightforward to see that |Bn,j| ≤ Bn,j, where

Bn,j =
n∑

i=1

|w(Zi)| ·
Z2

i

2
(Mm +Mδ|µd(Zi)− µd(0)|+Mγ|νd(Zi)− νd(0)|) (4)

and wj(Zi) = e′jQ̂
−1
n

1
hn
K
(

Zi

hn

)
X̃i. Since µd(Zi) and µd(0) are unobserved, we replace

them with µ̃d(Zi) and µ̃d(0). Denote the resulting estimator B̃n,j. We can then form

asymptotically valid confidence intervals as follows:

Theorem 5. Suppose Assumptions 1, 2, 3, 4, 5 and 6 hold. Let tj =
√
nB̃n,j√
e′jṼnej

where

ej be an 8× 1 vector with 1 in the j-th component and 0 everywhere else. Denote by

c1−α the 1− α quantile of the folded normal distribution |N(tj, 1)| and let

Cj =

β̃j − c1−α

√
e′jṼnej

n
, β̃j + c1−α

√
e′jṼnej

n

 .

Then,

lim inf
n→∞

P(βj ∈ Cj) ≥ 1− α .

The above result is an immediate consequence of Theorem 4 and the fact that

|Bn,j| ≤ Bn,j under Assumption 6. It yields asymptotically valid 1 − α confidence

intervals for τDIR, δ(0) and γ(0). It is then straightforward to obtain valid confidence

interval for τTOT by combining these confidence intervals together with a Bonferroni

correction.
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4.3 Choice of rn and hn

Results in the previous section are predicated on researcher’s choices of rn and hn.

This section presents heuristics for choosing these parameters.

4.3.1 Choice of rn

In principle, researchers should choose rn based on their beliefs about likely sources

of spillovers. In practice, however, such a choice may not be obvious. Researchers

may instead consider choosing rn via cross-validation as follows.

Let the fold number L be specified by the user and suppose we are given some

initial bandwidth h0
n. Partition the data set D into L equal-sized subsets D1, ..., DL

and let β̃(l)(r) be the LSR estimator computed on D \Dl under radius r. Define the

out-of-sample MSE as:

MSE(l)(r) =
∑
i∈Dl

K

(
Zi

h0
n

)(
Yi − X̃ ′

iβ̃
(l)(r)

)2/∑
i∈Dl

K

(
Zi

h0
n

)

We can then choose

r̃n = argmin
r

∑
l∈L

MSE(l)(r) .

Intuitively, if spillovers exist, getting the true radius correct should lead to good out-

of-sample fit. It would be difficult to do better than the true radius in MSE since

this would require the misspecified model to overfit on out-of-sample εi’s, which is

independent of the training sample.

Finally, to choose the initial bandwidth h0, we might consider a rule of thumb

such as

h0
n = n−1/5 ·max

i
∥Zi∥ (5)

Here, the max ∥Zi∥ scaling ensures that h0
n is invariant to the units of measurement

of the running variable.

The simulations in Section B explores the finite sample performance of the above
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method. We find that cross-validation can increase the MSE of various parameters by

around 4 times relative to the oracle procedure in which rn is known. This appears

to be a reasonable trade-off when researchers have only weak priors about spillovers

in a given setting.

4.3.2 Choice of hn

The rule of thumb in Equation (5) leads to a reasonable sequence of bandwidths, but

it does not take MSE into consideration. Here, we present an intuitive adaptation of

the procedure in Armstrong and Kolesár (2018), which aims to reduce finite sample

version of the worst-case MSE.

Given an initial bandwidth h0
n and a radius that is either pre-specified or selected

via cross validation, we can perform LSR and obtain an initial estimate of the asymp-

totic variance based on the sample analog of Vn in Theorem 4. Call this estimate Ṽ0
n.

For any given bandwidth h, we can also obtain an estimate for the maximum bias for

β̃j using the sample analog of Bj,n in (4). Call this term B̃j,0(h). We can then choose

bandwidth by solving:

h∗
n = argmin

h
B̃2

j,0 +
h0
n

[
Ṽ0

n

]
jj

h · n

While any β̃j can potentially work with this procedure, we recommend the use of

β̃3 = τ̃DIR. This is because τ̃DIR targets a parameter of immediate interest and it is

consistent under weaker conditions than δ̃(0) and γ̃(0).

5 Empirical Demonstration

In this section, we revisit Gonzalez (2021), which studies the effect of cell phone

coverage on fraud in the 2009 Afghan presidential election. The analysis is conducted

at the polling station level and the outcomes of interest are (1) indicator for whether

fraud has likely occurred and (2) likely share of fraudulent votes. Using a spatial
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regression discontinuity design, the author finds that cell phone coverage reduces

the probability that fraud occurs by 8 percentage points and decreases the share of

fraudulent votes by 4 percentage points. Gonzalez (2021) is concerned with spillovers,

highlighting for example that voters may walk from a non-covered to a covered area

to report fraud. To test for spillovers, the author invokes donut-hole type reasoning

and compares the fraud level at non-covered polling stations between 0–2 km of the

boundary to those that are 2–4 km, 4–6 km or 6–8 km away. The idea is that spillovers

should lead to spikes in fraud levels at polling stations closer to the boundary. They

find that the differences in outcomes are not statistically significant and conclude that

there is likely no spillovers.

In the spirit of the above exercise, we apply our method in the setting of Gonzalez

(2021) as a robustness check. We first replicate the paper’s result using either the

method of Armstrong and Kolesár (2020) (AK) or Calonico et al. (2014) (CCT). All

tuning parameters are selected using the default procedures in the authors’ respective

R packages. Relative to the original specification, we do not include spatial fixed effects

since they fall outside the scope of conventional theory. We then proceed with local

spillover regression (LSR) taking the bandwidth choices of AK and CCT as given.

Following Gonzalez (2021), we consider circular neighborhoods that are between 2 to

8 km in radius. In principle, we can compute νi given the exact boundaries of cell

phone coverage. Since that is not available, we estimate νi using the number of treated

polling station in a given station’s neighborhood, although we treat it as known when

conducting inference. With the running variable measured in kilometers, we chose

Mm to be 0.01, which implies that the local linear approximation to the conditional

probability of fraud has an error up to 1 (i.e. the entire support of the variable) at

the 10 km radius. Similarly, we chose Mδ and Mγ to be 0.01. Finally, we consider the

case in which we select the spillover radius by cross-validation and choose bandwidth

using our rule-of-thumb (LSR-CV).

Table 1 presents the results when using the indicator for fraud as outcome and
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the sample is the full set of polling stations. This is comparable to Panel A Col-

umn (1) in Table 2 of Gonzalez (2021). Across the various bandwidth and radius

choices, we find δ(0) to be positive and significant at the 5% level. The estimates are

also relatively stable across parameter values hovering between 0.6 to 0.75. Positive

exogenous spillovers would arise, for example, if fraud is driven by local norms of

corruption (Fisman and Miguel 2007; Barr and Serra 2010 and references therein).

On the other hand, we do not find conclusive evidence of exogenous spillovers. These

results continue to hold with data-driven choices of radius and bandwidth. Our cross-

validation procedure suggests that spillovers occur across a radius of 6.1 km, which

is within the plausible range of radii considered by Gonzalez (2021). Results when

using fraud share as outcome are similar.

The above exercise suggests that spillovers can be a threat to the identification of

treatment effect parameters in RDD. In this case, our method can be useful as a ro-

bustness check. Additionally, the parameters for endogenous and exogenous spillovers

may also be of interest since they can shed light on how social interactions mediate a

variable of interest.

6 Conclusion

Regression Discontinuity Design allows researchers to obtain causal estimates of treat-

ment effects at the cutoff. It relies on the assumption of no spillovers, which may not

hold in practice. When neighborhoods are determined by the running variable, we

find that the estimand of RDD is sensitive to the ratio of two terms: (1) radius over

which spillovers occur and (2) the bandwidth used for local linear regression. In our

preferred approximation, those two terms are of similar order so that an alternative

to local linear regression is needed to recover direct treatment effects and spillovers.

We propose the local spillover regression – the local analog of peer effects regression

– and show that it can be a useful tool for addressing spillovers in RDD.
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Bandwidth Eff. Obs Method Radius τDIR δ(0) γ(0)

10.8 1249

AK -
-0.028

[-0.093, 0.038]

LSR 2
-0.077 0.585 0.103

[-0.372, 0.219] [0.226, 0.944] [-0.182, 0.388]

LSR 4
-0.018 0.640 -0.011

[-0.326, 0.291] [0.240, 1.039] [-0.309, 0.286]

LSR 6
-0.021 0.719 0.000

[-0.333, 0.290] [0.309, 1.129] [-0.276, 0.277]

LSR 8
-0.029 0.742 -0.032

[-0.344, 0.286] [0.307, 1.178] [-0.330, 0.267]

6.7 1026

CCT -
0.014

[-0.060, 0.088]

LSR 2
-0.061 0.586 0.119

[-0.244, 0.123] [0.347, 0.825] [-0.043, 0.281]

LSR 4
-0.008 0.642 0.002

[-0.191, 0.174] [0.378, 0.906] [-0.158, 0.162]

LSR 6
-0.009 0.722 0.009

[-0.180, 0.162] [0.471, 0.973] [-0.141, 0.159]

LSR 8
-0.024 0.752 -0.025

[-0.191, 0.143] [0.500, 1.004] [-0.186, 0.136]

3.2 591 LSR-CV 6.10
-0.004 0.744 0.023

[-0.103, 0.095] [0.611, 0.876] [-0.067, 0.112]

Table 1: Comparison of AK, CCT and LSR in the setting of Gonzalez (2021). Out-
come is indicator for whether any fraud has occurred. This analysis uses the full
sample of polling stations. Square brackets contain 95% confidence intervals. Eff.
Obs. is number of polling stations within the bandwidth.
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A Appendix

This Appendix provides proofs for the theorems in the main text. They draw on

auxillary lemmas that are stated in Section C of the Supplemental Appendix.

A.1 Proof of Theorem 1

We consider the regimes case-by-case. The proofs are similar across the cases except

we use a different approximation for µd(xhn)− µd(0) depending on the regimes.
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Case 1: rn ≫ hn.

We first derive the bias for β̂+. A similar argument follows for β̂−. The two together

yield the bias for τ̂d. By Assumption 1 and the standard expansion:

Yi = m+(Zi) + δ(Zi)µd(Zi) + γ(Zi)νd(Zi) + εi

= m+(0) + δ(0)µd(0) + γ(0)νd(0) +m+
z (0) · Zi +

1

2
m+

zz(0) · Z2
i

+ δ(0) (µd(Zi)− µd(0)) + δz(0)Ziµd(Zi) +
1

2
δzz(0)Z

2
i µd(Zi)

+ γ(0) (νd(Zi)− νd(0)) + γz(0)Ziνd(Zi) +
1

2
γzz(0)Z

2
i νd(Zi) + εi +O(h3n)

In matrix form,

E
[
β̂+
0 |Z

]
= eT1

(
Z̃TWZ̃

)−1

Z̃WM

where only observations with Zi ≥ 0 enter the following matrices:

Z̃ =


1 Z1

...
...

1 Zn+

 , M =


m+(Z1) + δ(Z1)µd(Z1) + γ(Z1)νd(Z1)

...

m+(Zn+) + δ(Zn+)µd(Zn+) + γ(Zn+)νd(Zn+)


W = diag

(
Kh(Z1) · · ·Kh(Zn+)

)
.

As such, we can write

E
[
β̂+
0 |Z

]
= m+(0) + δ(0)µd(0) + γ(0)νd(0) + An +Bn +R

where R = Op(h
2
n/rn) and

An := δ(0) · eT1
(
Z̃TWZ̃

)−1

Z̃W


µd(Z1)− µd(0)

...

µd(Zn+)− µd(0)

 , Bn := γ(0) · eT1
(
Z̃TWZ̃

)−1

Z̃W


νd(Z1)− νd(0)

...

νd(Zn+)− νd(0)

 .

We first analyze An. Note that the denominator is standard. From Wand and
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Jones (1995),

(
1

n+
Z̃TWZ̃

)−1

=
[
hnγ2,1γ0,1 − hnγ

2
1,1 + op(h

2
n)
]−1

h2nγ2,1 + op(h
2
n) −hnγ1,1 + op(hn)

∗ γ0,1 + op(h
2
n)

 (6)

where have normalized f(0) to 1. For the numerator,

1

n+
Z̃W


µd(Z1)− µd(0)

...

µd(Zn+)− µd(0)

 =

 1
n+

∑n+

i=1Kh(Zi) (µd(Zi)− µd(0))

1
n+

∑n+

i=1Kh(Zi)Zi (µd(Zi)− µd(0))



We evaluate the expectation of each term with respect to Z. First,

E

[
1

n+

n+∑
i=1

Kh(Zi) (µd(Zi)− µd(0))

]
=
h2n
rn

(
Γ(rn)

∫ 1

0
K(x)dF (x) + o(1)

)
=
h2n
rn

(Γ(rn) · γ0,1 + o(1)) ,

(7)

where the first equality follows from the usual change of variables argument and last

equality follows from Lemma 9, which also provides the exact form of Γ(rn). By a

similar set of manipulations,

E

[
1

n+

n+∑
i=1

Kh(Zi)Zi (µd(Zi)− µd(0))

]
=
h2n
rn

(
Γ(rn)

∫ 1

0
xK(x)dF (x) + o(1)

)
=
h2n
rn

(Γ(rn) · γ1,1 + o(1)) .

(8)

Combining equations (6), (7) and (8), we have that An = Op

(
h2
n

rn

)
. Finally, ob-

serve that 1
2
m+

zz(0)Z
2
i contributes to the standard Op(h

2
n) bias term in RDD. It is

also straightforward to show that the residual corresponding to δz(0)Ziµd(Zi) and

δz(0)Z
2
i µd(Zi) are hn times smaller than the above display.

Next, consider Bn. The denominator is the same as for An and it’s limit is given
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by Equation (6). To analyze the numerator, first observe that

νd(Zi)− νd(0) =


−1

2 if Zi ≤ −rn
Zi
2rn

if − rn ≤ Zi ≤ Zi

1
2 if Zi ≥ rn

(9)

As such, if hn ≪ rn, νd(Zi) − νd(0) = Op(hn) conditional on Zi ∈ [−hn, hn]. It

is therefore immediate that analogs of Equations 7 and 8 hold for Bn. Therefore,

we also have that Bn = Op

(
h2
n

rn

)
. It remains to note that the residual error from

approximating γ(Zi) at γ(0) is Op(h
2
n), as in the case with δ(·) above.

Conclude that β̂+
0

p→ m+(0) + δ(0)µd(0) + γ(0)νd(0). The stated properties on

τ̂RDD follow immediately by a similar set of manipulations for β̂−
0

Case 2: rn/hn → 0

Again, start by considering An. For Zi ≥ 0, the change of variables x = z/hn yields:

E

[
1

n+

n+∑
i=1

Kh(Zi) (µd(Zi)− µd(0))

]
= hn

∫ 1

0

K(x) (µd(xhn)− µd(0)) dF (x)

= hn

(
τd + δ(0)γ(0)

2(1− δ(0))
· γ0,1 + o(1)

)
(10)

where the first equality follows from Lemma 9 and the fact that the integrand is

bounded. And similarly,

E

[
1

n+

n+∑
i=1

Kh(Zi)Zi (µd(Zi)− µd(0))

]
= h2

n

(
τd + δ(0)γ(0)

2(1− δ(0))
γ1,1 + o(1)

)
(11)

Combining equations (6), (10) and (11) gives us An = δ(0) · τd+δ(0)γ(0)
2(1−δ(0))

+Op(hn).

Next, consider Bn. From Equation 9, we have that |Zi| ∈ [wn, 1], νd(Zi)− νd(0) =
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sgn(Zi)/2. On [−wn, wn], the term is bounded. As such, we can write:

νd(Zi)− νd(0) =
1

2
sgn(Zi) +O(wn)

uniformly over Zi ∈ Z. By similar manipulations as for An, but using the approxi-

mation above, Bn = γ(0)
2

+Op(hn). As such,

β̂+
0 = m+(0) + δ(0)µd(0) + γ(0)νd(0) + δ(0) · τd + γ(0)

2(1− δ(0))
+

γ(0)

2
+Op(hn)

Similarly for β̂1. Therefore τ̂RDD
p→ τd+γ(0)

1−δ(0)

Case 3: rn = 1
2
chn

As before, using Lemma 9 yields:

E

[
1

n+

n+∑
i=1

Kh(Zi) (µd(Zi)− µd(0))

]
= hn

(
τdΛ

+
0,1,1 + γ(0)Λ̃+

0,1,1 + o(1)
)

(12)

E

[
1

n+

n+∑
i=1

Kh(Zi)Zi (µd(Zi)− µd(0))

]
= h2

n

(
τdΛ

+
1,1,1 + γ(0)Λ̃+

1,1,1 + o(1)
)

(13)

Combining equations (6), (12) and (13) gives us

An =
τd

γ2,1γ0,1 − γ21,1
·
(
γ2,1Λ

+
0,1,1 − γ1,1Λ

+
1,1,1

)
+

γ(0)

γ2,1γ0,1 − γ21,1
·
(
γ2,1Λ̃

+
0,1,1 − γ1,1Λ̃

+
1,1,1

)
+Op(hn) .

Next, for Bn:

E

[
1

n+

n+∑
i=1

Kh(Zi) (νd(Zi)− νd(0))

]
= hn

(
Γ+
0,1,1 + o(1)

)
(14)

E

[
1

n+

n+∑
i=1

Kh(Zi)Zi (νd(Zi)− νd(0))

]
= h2

n

(
Γ+
1,1,1 + o(1)

)
. (15)
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By Equations (6), (14) and (15), we have that Bn =
γ2,1Γ

+
0,1,1−γ1,1Γ

+
1,1,1

γ2,1γ0,1−γ2
1,1

+Op(hn). Noting

that the usual bias term coming from mzz is smaller than the above, we therefore have

that:

β̂+0 = m+(0) + δ(0)µd(0) + γ(0)νd(0)

+
δ(0)τd

γ2,1γ0,1 − γ21,1
·
(
γ2,1Λ

+
0,1,1 − γ1,1Λ

+
1,1,1

)
+

δ(0)γ(0)

γ2,1γ0,1 − γ21,1
·
(
γ2,1Λ̃

+
0,1,1 − γ1,1Λ̃

+
1,1,1

)
+ γ(0) ·

γ2,1Γ
+
0,1,1 − γ1,1Γ

+
1,1,1

γ2,1γ0,1 − γ21,1
+Op(hn) .

Similarly for β̂−. As such, τ̂RDD = τ∗ +Op(hn), where

τ∗ − τd =
δ(0)τd

γ2,1γ0,1 − γ21,1
·
(
γ2,1

(
Λ+
0,1,1 − Λ−

0,1,1

)
− γ1,1

(
Λ+
1,1,1 − Λ−

1,1,1

))
+

δ(0)γ(0)

γ2,1γ0,1 − γ21,1
·
(
γ2,1

(
Λ̃+
0,1,1 − Λ̃−

0,1,1

)
− γ1,1

(
Λ̃+
1,1,1 − Λ̃−

1,1,1

))
+

γ(0)

γ2,1γ0,1 − γ21,1

(
γ2,1

(
Γ+
0,1,1 − Γ+

0,1,1

)
− γ1,1

(
Γ−
1,1,1 − Γ−

1,1,1

))
.

(16)

and Λ, Λ̃,Γ are as in Definition 12.

A.2 Proof of Theorems 2 and 3

We prove Theorem 3. Theorem 2 follows from the usual Frisch-Waugh-Lovell ar-

gument after observing that the projection residuals of Yi and Di on µ̃(Zi) − µ̃(0),

ν̃(Zi) − ν̃(0) and Zi are well-defined even if they are collinear. The proof for Theo-

rem 3 largely follows standard arguments as in Chapter 5 of Wand and Jones (1995).

There are two complications: (1) X̃i is measured with error. We use a concentration

inequality in Lemma 21 to show that this error is neglible. (2) We require a uniform

approximation for µ(Zi)− µ(0). This is provided in Lemma 9.
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Under our assumptions,

β̃ − β =

(
1

n

n∑
i=1

Kh (Zi) X̃iX̃
′
i

)−1
1

n

n∑
i=1

Kh (Zi) X̃i

{(
Xi − X̃i

)′
β + ρi + εi

}
,

which can be rewritten as β̃ − β = Q̃−1
{
Bn + T̃X + T̃ε

}
, where

Q̃ = 1
n

∑n
i=1K (Zi/hn) X̃iX̃

′
i Bn = 1

n

∑n
i=1K (Zi/hn) X̃iρi

T̃X = 1
n

∑n
i=1K (Zi/hn) X̃i

(
Xi − X̃i

)′
β T̃ε =

1
n

∑n
i=1K (Zi/hn) X̃iεi.

We start with the terms in Q̃. First note that for 1 ≤ i, j ≤ 4, Q̃ij are terms associated

with the usual local linear regression. Standard arguments and noting that f ′(0) = 0 give

us:

1

hn
Q̃1:4,1:4 = f(0)·


1 + op(1) op(h2

n)
∫ 1
0 K(x)dx+ op(1) hn

(∫ 1
0 xK(x)dx+ op(1)

)
∗ h2

n

(∫ 1
−1 x

2K(x)dx+ op(1)
)

hn

(∫ 1
0 xK(x)dx+ op(1)

)
h2
n

(∫ 1
0 x2K(x)dx+ op(1)

)
∗ ∗

∫ 1
0 K(x)dx+ op(1) hn

(∫ 1
0 xK(x)dx+ op(1)

)
∗ ∗ ∗ h2

n

(∫ 1
0 x2K(x)dx+ op(1)

)



Next, consider

1

hn
Q̃1,5 =

1

nhn

n∑
i=1

K (Zi/h) (µ(Zi)− µ(0)) +
1

nhn

n∑
i=1

K (Zi/hn) (µ̃(Zi)− µ(Zi)) +
1

nhn

n∑
i=1

K (Zi/h) (µ̃(0)− µ(0)) .

By the Lemma 21,

1

nhn

n∑
i=1

K (Zi/hn) (µ̃(Zi)− µ(Zi)) = o(1) · (f(0) + op(1)) w.p.a. 1

Next, denote the uniform approximation in the rn ∝ hn regime in Lemma 9 by u(x). Using

u(x) and applying the standard arguments yields:

1

nhn

n∑
i=1

K (Zi/hn) (µ(Zi)− µ(0)) =

∫ 1

−1
u(x)K(x)dx · f(0) + op(1)

As such, we conclude that 1
hn

Q̃1,5 =
∫ 1
−1 u(x)K(x)dx ·f(0)+op(1). Similar arguments apply

with the remaining components of X̃i. Note that ν(xhn)− ν(0) = max
{
−1,min

{
1, xc

}}
=:
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v(x) is exact. This yields:

1

hn
Q̃1:8,5:8 = f(0)·

∫ 1
−1 u(x)K(x)dx+ op(1) hn

(∫ 1
−1 xu(x)K(x)dx+ op(1)

) ∫ 1
−1 v(x)K(x)dx+ op(1) hn

(∫ 1
−1 xv(x)K(x)dx+ op(1)

)
hn

(∫ 1
−1 xu(x)K(x)dx+ op(1)

)
h2
n

(∫ 1
−1 x

2u(x)K(x)dx+ op(1)
)

hn

(∫ 1
−1 xv(x)K(x)dx+ op(1)

)
h2
n

(∫ 1
−1 x

2v(x)K(x)dx+ op(1)
)

∫ 1
0 u(x)K(x)dx+ op(1) hn

(∫ 1
0 xu(x)K(x)dx+ op(1)

) ∫ 1
0 v(x)K(x)dx+ op(1) hn

(∫ 1
0 xv(x)K(x)dx+ op(1)

)
hn

(∫ 1
0 xu(x)K(x)dx+ op(1)

)
h2
n

(∫ 1
0 x2u(x)K(x)dx+ op(1)

)
hn

(∫ 1
0 xv(x)K(x)dx+ op(1)

)
h2
n

(∫ 1
0 x2v(x)K(x)dx+ op(1)

)
∫ 1
−1 u

2(x)K(x)dx+ op(1) hn

(∫ 1
−1 xu

2(x)K(x)dx+ op(1)
) ∫ 1

−1 u(x)v(x)K(x)dx+ op(1) hn

(∫ 1
−1 xu(x)v(x)K(x)dx+ op(1)

)
∗ h2

n

(∫ 1
−1 x

2u2(x)K(x)dx+ op(1)
)

hn

(∫ 1
−1 xu(x)v(x)K(x)dx+ op(1)

)
h2
n

(∫ 1
−1 x

2u(x)v(x)K(x)dx+ op(1)
)

∗ ∗
∫ 1
−1 v

2(x)K(x)dx+ op(1) hn

(∫ 1
−1 xv

2(x)K(x)dx+ op(1)
)

∗ ∗ ∗ h2
n

(∫ 1
−1 x

2v2(x)K(x)dx+ op(1)
)



Invertibility of Q̃ follows from observing that v(x) is piecewise linear (but not linear) while

u(x) is an infinite sum of piecewise polynomials given our assumed identification conditions.

Next, consider Bn. Since m+,m−, δ and γ are all twice continuously differentiable,

ρi = O(h2n). Write:

1

hn
Bn =

1

nhn

n∑
i=1

K (Zi/hn) X̃iρi =
1

nhn

n∑
i=1

K (Zi/hn)Xiρi +
1

nhn

n∑
i=1

K (Zi/hn)
(
X̃i −Xi

)
ρi

Now,

1

nhn

n∑
i=1

K (Zi/hn)
(
X̃i −Xi

)
ρi = O(h2n) ·

1

nhn

n∑
i=1

K (Zi/hn)
(
X̃i −Xi

)
= O(h2n) · op(1) ·

1

nhn

n∑
i=1

K (Zi/hn) ι = op(h
2
n)
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Meanwhile, by the preceding analysis for Q̃,

1

nhn

n∑
i=1

K (Zi/hn)Xiρi = O(h2n) ·



1 + op(1)

op(h
2
n)∫ 1

0
K(x)dx+ op(1)

hn

(∫ 1

0
xK(x)dx+ op(1)

)
∫ 1

−1
u(x)K(x)dx+ op(1)

hn

(∫ 1

−1
xu(x)K(x)dx+ op(1)

)
∫ 1

−1
v(x)K(x)dx+ op(1)

hn

(∫ 1

−1
xv(x)K(x)dx+ op(1)

)



⇒ 1

hn
Bn =



op(hn)

op(h
2
n)

op(hn)

op(h
2
n)

op(hn)

op(h
2
n)

op(hn)

op(h
2
n)



.

Next, consider T̃X . By Lemma 21, we again have that:

1

hn
T̃X =

1

n

n∑
i=1

K (Zi/hn)Xi

(
Xi − X̃i

)′
β +

1

n

n∑
i=1

K (Zi/hn)
(
Xi − X̃i

)(
Xi − X̃i

)′
β

=
(
op(hn) op(h

2
n) op(hn) op(h

2
n) op(hn) op(h

2
n) op(hn) op(h

2
n)
)′

.

Finally, consider T̃ε:

1

hn
T̃ε =

1

nhn

n∑
i=1

K (Zi/hn)Xiεi +
1

nhn

n∑
i=1

K (Zi/hn)
(
Xi − X̃i

)
εi

Standard arguments based on the continuous differentiability of σ2(z) yields:

1

nhn

n∑
i=1

K (Zi/hn)Xiεi = Op

(
1√
nhn

)
·
(
Op(1) Op(hn) Op(1) Op(hn) Op(1) Op(hn) Op(1) Op(hn)

)′
=
(
op(hn) op(h

2
n) op(hn) op(h

2
n) op(hn) op(h

2
n) op(hn) op(h

2
n)
)′

since hn ≫ n−1/3 .

By another application of Lemma 21,

1

nhn

n∑
i=1

K (Zi/hn)
(
Xi − X̃i

)
εi = o(hn) ·

(
0 0 0 0 Op

(
1√
nhn

)
Op

(
hn√
nhn

)
0 0

)′
w.p.a. 1

⇒ 1

hn
T̃ε =

(
op(hn) op(h

2
n) op(hn) op(h

2
n) op(hn) op(h

2
n) op(hn) op(h

2
n)
)′

.

Given the above analysis, letWn = diag(1, hn, 1, hn, 1, hn, 1, hn) and writeQ =WnQ̃Wn.
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The entries of Q converge to non-zero values in probability as n→ ∞ and it is asymptoti-

cally full-rank. Then, β̃ − β =W−1
n Q

−1
W−1

n

(
T̃ρ + T̃X + T̃ε

)
and

W−1
n

1

hn
Bn = op(hn)·ι ⇒ Q

−1
W−1

n

1

hn
Bn = op(hn)·ι ⇒ W−1

n Q
−1
W−1

n

1

hn
Bn = op(1)·ι .

By a similar argument for T̃X and T̃ε, we are done.

A.3 Proof of Theorem 4

Henceforth, we denote h := hn and r := rn and drop the subscript n unless there is risk of

ambiguity. Use (A.2) and write

T̃ = Q̃
(
β̃ − β −Bn

)
and T̃∗ =

1

n

n∑
i=1

[
K

(
Zi

h

)
Xiεi + η̇X (ξi)

]
, (17)

where

η̇X (ξi) = ηX (ξi)−E [ηX (ξ1)] ,

and ηX(·) is given in (3). Note that E
[√

nT̃∗

]
= 0 and Var

[√
nT̃∗

]
= Ω. The claim (1) is

equivalent to Ω−1/2√nT̃ d→ N (0, I8) and by Slutsky’s theorem, is implied by

Ω−1/2√nT̃∗
d→ N (0, I8) and Ω−1/2√n

(
T̃− T̃∗

)
= op(1). (18)

The asymptotic normality result is due to Lemma 10. The asymptotic negligibility result

is due to Lemma 11.
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Supplemental Appendix

B Simulations

This section compares the performance of LSR to prevailing methods popular for RDD in

the context of a simple DGP. We first show that LLR with a naively chosen bandwidth

exhibits behavior best described by the rn ∝ hn case in Theorem 1. We then compare the

performance of LSR with the methods of Armstrong and Kolesár (2020) (AK hereinafter)

and Calonico et al. (2014) (CCT hereinafter) which involve more sophisticated rules for

bandwidth choice.

Consider the data-generating process described in Section 2 with the following values:

m+(z) = 2 , m−(z) = 1 , τDTE = 1

δ(z) = δ , γ(z) = γ

The researcher observes

Yi = DiY
+
d (Zi) + (1−Di)Y

−
d (Zi) + εi , εi ∼ N(0, σ2)

where σ = 0.2. The values of n, rn, δ and γ will vary depending on the set up. We estimate

LLR using a triangular kernel. LLR has no bias in this setting. We set Mm =Mδ =Mγ =

0.5 for conservative inference. The following results are based on 1,000 draws for each set

of parameter values.

B.1 Accuracy of the Preferred Regime

We first present simulations pertaining to Theorem 1. Figure 1 plots the mean of τ̂RDD

under various values of δ and γ when n = 2000 and bandwidth is chosen based on the rule-

of-thumb in (5) (≈ 0.22). We see that as c = rn/hn decreases to 0, the LLR estimate goes

from τDIR = 1 to τTOT = τDIR+γ
1−δ . This is predicted by the rn ∝ hn case in our Theorem 1.

Approximations under the regime rn ≫ hn or rn ≪ hn would predict either end point but

would miss the transition. As such, our preferred regime rn ∝ hn leads to a more accurate
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approximation.

In practice, LLR is implemented based on either AK or CCT, each of which entail its

own rules for bandwidth choice. Figures 2 and 3 plots the same diagrams when bandwidths

are chosen based on the recommendations of AK and CCT respectively. We see that both

methods are more robust to spillovers than naive LLR in that the estimates are very close

to τDIR. Spillovers only distort these estimators when rn/hn ≤ 0.2. These plots do not give

the full picture in that they omit MSE and coverage. We will return to these points below.

Interestingly, distortion under AK seems to be increasing in the amount of spillovers. On

the other hand, CCT seems to do worse under intermediate values of spillovers, with little

distortion when spillovers are large.

The above simulations suggest that an alternative is needed to simple LLR under

spillovers. AK and CCT appear more robust, but to our knowledge, this performance

is not currently supported by theory, motivating consideration of LSR.

Figure 1: Estimates of LLR when bandwidth is chosen based on the rule-of-thumb
(5). The behavior of τ̂RDD is best described by the rn ∝ hn case in Theorem 1.
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Figure 2: Estimates of LLR when bandwidth is chosen based on Armstrong and
Kolesár (2018), as implemented in the R package RDHonest.

Figure 3: Estimates of LLR when bandwidth is chosen based on Calonico et al. (2014),
as implemented in the R package rdrobust.

48



B.2 Local Spillover Regression

This section investigates the performance of LSR for recovering the various parameters of

interest. We first compare its MSE and coverage for τDIR to various implementations of

LLR. We then consider estimation of δ and γ. The remainder of this section maintains

rn = 0.05 fixed, with n ∈ {500, 2000, 10000}. This sequence of models is better described

by the asymptotic regime rn ≫ hn, which favors LLR over LSR.

Table 2 and 3 present results on τDIR. In the first panel in Table2, δ = γ = 0. LLR

(with naive bandwidth given in (5)), AK and CCT all perform well. In this setting, δ̃(0)

and γ̃(0) are inconsistent. However, τ̃DIR is consistent, although it has MSE that can be

close to 5 times higher than methods designed for settings with no spillovers. Our method

leads to conservative coverage even relative to AK. We conjecture that the conservatism can

be reduced with data-driven choices of Mm,Mδ and Mγ , similar to the approach in AK.

Panel 2 in Table 2 considers the case where δ = 0.25 and γ = 0.50. As we explained at

the start of this section, this sequence of models is not strictly comparable since rn is fixed

as n → ∞ and hn → 0. The asymptotics here favors LLR over LSR since c = rn/hn →

∞ implies that τ̂RDD
p→ τDIR. As such, we see the largest gains of LSR over various

implementations of LLR for smaller values of n. When n = 500, LSR has MSE that is 1/2

of AK and 1/3 of CCT. The two methods also have coverage of 60% and 40% respectively,

whereas LSR has coverage that is consistently above 90%. LSR-CV has relatively higher

MSE and lower coverage but performance appears reasonable. We also see that it appears

to deliver consistent estimates for rn.

The picture remains similar when we consider Table 3. The top panel features interme-

diate levels of spillovers with δ = 0.5, γ = 1 while the bottom panel features relatively high

levels of spillovers with δ = 0.75, γ = 1.5. Comparing across panels, we see that the MSE

of AK increases as spillovers increase. However, CCT does the worst under small values

of spillovers. Performance of LSR with known radius seems to suffer under high levels of

spillovers, but LSR-CV surprisingly does better.

We next turn to results on γ̃(0) and δ̃(0), presented in Table 4. The top panel considers

the case when δ = γ = 0. Here, our estimators are not consistent for γ(0) and δ(0) and MSE

indeed appears to diverge. However, it is encouraging that coverage is 1, even if our theory
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cannot speak to inference in this case. The remaining panels in Table 4 covers cases when

δ and γ are not 0. We see that estimation of these parameters is more challenging that for

τDIR, although we achieve reasonable performance with sufficiently large sample size. The

confidence intervals exhibit considerable over-coverage, possibly because of upward bias in

our various plug-in estimators in addition to the built-in conservativeness of the bias-aware

confidence intervals. Finally, we see that estimation of δ and γ is much more sensitive to

selection of the radius compared to τDIR, although it can still be a compelling alternative

when rn is unknown.

In sum, our simulations show that naive LLR – and to a lesser extent AK and CCT –

exhibits the phase transition described in Theorem 1. LSR deliver more precise estimates

of τDIR, particularly for smaller sample sizes. It also yields estimates of δ(0) and γ(0),

which the other approaches cannot provide. These parameters are interesting in and of

themselves, although their estimation requires more assumptions and larger sample sizes.

Finally, cross-validation seems to be a reasonable approach to selecting radius, even though

it is not without loss. Taken together, LSR and LSR-CV provides a useful set of tools for

researchers who are concerned about spillovers in the RDDs .

C Auxillary Lemmas

This section states lemmas which are used in Appendix A. Proofs of these lemmas can be

found in Auerbach et al. (2025b). We sometimes suppress the dependence of variables (e.g.

rn, hn) on n to reduce notational clutter.

C.1 Preliminaries

The following definitions and results will be useful. In particular, Lemma 9 is the technical

core of the results in Sections 3 and 4.

Definition 5. Let the spillover operator Gn be defined as

(Gn ◦ f)(z) = δ(z)

|Rn(z)|

∫
1 {|u− z| < rn} f(z)

1

2
dz
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n Method Radius Bandwidth Eff. Obs. MSE Coverage

δ = 0,
γ = 0

500

LLR - 0.289 72.1 0.005 -
AK - 0.175 43.8 0.011 0.959
CCT - 0.303 75.7 0.009 0.932
LSR 0.050 0.622 155.4 0.032 0.991

LSR-CV 0.105 0.645 161.2 0.032 0.996

2000

LLR - 0.219 218.7 0.002 -
AK - 0.176 176.5 0.002 0.973
CCT - 0.308 308.2 0.002 0.951
LSR 0.050 0.489 489.2 0.008 0.997

LSR-CV 0.089 0.537 537.3 0.009 0.999

10000

LLR - 0.158 792.4 0.000 -
AK - 0.176 878.3 0.000 0.971
CCT - 0.309 1543.3 0.000 0.947
LSR 0.050 0.330 1649.1 0.002 0.999

LSR-CV 0.092 0.386 1931.3 0.002 0.999

δ = 0.25,
γ = 0.50

500

LLR - 0.289 72.1 0.305 -
AK - 0.122 30.4 0.062 0.628
CCT - 0.164 41.0 0.098 0.383
LSR 0.050 0.559 139.8 0.032 0.992

LSR-CV 0.079 0.579 144.7 0.061 0.975

2000

LLR - 0.219 218.7 0.186 -
AK - 0.094 93.7 0.014 0.750
CCT - 0.102 102.3 0.017 0.632
LSR 0.050 0.396 396.5 0.006 0.985

LSR-CV 0.058 0.420 420.1 0.014 0.958

10000

LLR - 0.158 792.4 0.087 -
AK - 0.070 348.7 0.002 0.922
CCT - 0.060 301.9 0.002 0.937
LSR 0.050 0.291 1457.4 0.001 0.982

LSR-CV 0.050 0.299 1494.5 0.002 0.947

Table 2: MSE and coverage for τDIR under zero to low spillovers. LLR uses the
naive bandwidth (5) and we do not consider inference. AK is the implementation of
Armstrong and Kolesár (2020). CCT is the implementation of Calonico et al. (2014).
LSR is local spillover regression when the true radius is known. LSR-CV selects the
radius by cross-validation, as described in Section 4.3.1. Both variants of LSR choose
bandwidth using the procedure described in Section 4.3.2.
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n Method Radius Bandwidth Eff. Obs. MSE Coverage

δ = 0.50,
γ = 1.00

500

LLR - 0.289 72.1 2.281 -
AK - 0.094 23.6 0.107 0.659
CCT - 0.083 20.6 0.064 0.840
LSR 0.050 0.501 125.2 0.034 0.994

LSR-CV 0.057 0.499 124.7 0.061 0.966

2000

LLR - 0.219 218.7 1.328 -
AK - 0.074 74.0 0.018 0.844
CCT - 0.049 49.5 0.009 0.933
LSR 0.050 0.418 417.6 0.008 0.999

LSR-CV 0.050 0.421 421.2 0.013 0.942

10000

LLR - 0.158 792.4 0.583 -
AK - 0.053 266.9 0.002 0.958
CCT - 0.031 155.8 0.003 0.925
LSR 0.050 0.384 1918.0 0.002 0.999

LSR-CV 0.049 0.386 1929.1 0.002 0.996

δ = 0.75,
γ = 1.50

500

LLR - 0.289 72.1 13.106 -
AK - 0.088 22.0 0.270 0.746
CCT - 0.051 12.7 0.068 0.992
LSR 0.050 0.653 163.4 0.273 1.000

LSR-CV 0.056 0.608 152.0 0.166 0.990

2000

LLR - 0.219 218.7 7.059 -
AK - 0.066 65.7 0.035 0.946
CCT - 0.029 29.2 0.017 0.931
LSR 0.050 0.567 566.9 0.039 1.000

LSR-CV 0.049 0.563 563.4 0.036 1.000

10000

LLR - 0.158 792.4 2.787 -
AK - 0.042 211.8 0.004 0.975
CCT - 0.020 99.9 0.004 0.932
LSR 0.050 0.422 2107.9 0.007 1.000

LSR-CV 0.049 0.424 2118.6 0.007 1.000

Table 3: MSE and coverage for τDIR under moderate to high spillovers. LLR uses the
naive bandwidth (5) and we do not consider inference. AK is the implementation of
Armstrong and Kolesár (2020). CCT is the implementation of Calonico et al. (2014).
LSR is local spillover regression when the true radius is known. LSR-CV selects the
radius by cross-validation, as described in Section 4.3.1. Both variants of LSR choose
bandwidth using the procedure described in Section 4.3.2.
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n Method Radius Bdwth Eff. Obs.
δ(0) γ(0)

MSE Cov. MSE Cov.

δ = 0,
γ = 0

500
LSR 0.050 0.622 155.4 0.837 1.000 0.945 1.000

LSR-CV 0.105 0.645 161.2 5.583 1.000 5.738 1.000

2000
LSR 0.050 0.489 489.2 1.485 1.000 1.536 1.000

LSR-CV 0.089 0.537 537.3 6.587 1.000 6.650 1.000

10000
LSR 0.050 0.330 1649.1 2.865 1.000 2.887 1.000

LSR-CV 0.092 0.386 1931.3 9.726 1.000 9.768 1.000

δ = 0.25,
γ = 0.50

500
LSR 0.050 0.559 139.8 0.455 1.000 1.732 1.000

LSR-CV 0.079 0.579 144.7 1.567 1.000 5.623 1.000

2000
LSR 0.050 0.396 396.5 0.200 1.000 0.720 1.000

LSR-CV 0.058 0.420 420.1 0.644 1.000 2.258 1.000

10000
LSR 0.050 0.291 1457.4 0.040 1.000 0.134 1.000

LSR-CV 0.050 0.299 1494.5 0.120 1.000 0.419 1.000

δ = 0.50,
γ = 1.00

500
LSR 0.050 0.501 125.2 0.095 0.982 1.309 0.973

LSR-CV 0.057 0.499 124.7 0.257 0.972 3.333 0.959

2000
LSR 0.050 0.418 417.6 0.020 0.998 0.255 0.996

LSR-CV 0.050 0.421 421.2 0.051 0.992 0.642 0.985

10000
LSR 0.050 0.384 1918.0 0.003 0.997 0.037 0.997

LSR-CV 0.049 0.386 1929.1 0.010 0.997 0.131 0.997

δ = 0.75,
γ = 1.50

500
LSR 0.050 0.653 163.4 0.015 1.000 1.179 1.000

LSR-CV 0.056 0.608 152.0 0.051 0.987 3.488 0.985

2000
LSR 0.050 0.567 566.9 0.003 1.000 0.194 1.000

LSR-CV 0.049 0.563 563.4 0.009 1.000 0.746 1.000

10000
LSR 0.050 0.422 2107.9 0.001 1.000 0.046 1.000

LSR-CV 0.049 0.424 2118.6 0.002 1.000 0.195 1.000

Table 4: MSE and coverage for δ(0) and γ(0). LSR is local spillover regression when
the true radius is known. LSR-CV selects the radius by cross-validation, as described
in Section 4.3.1. Both variants of LSR choose bandwidth using the procedure de-
scribed in Section 4.3.2.
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where |Rn(z)| =
∫
1 {|u− z| < rn} 1

2dz.

Definition 6. For a function g : [−1, 1] → R, let its sup-norm be denoted ∥g∥ :=

supz∈[−1,1] |g(z)|.

Let the “structural” and “reduced form” functions be, respectively,

Definition 7.

m(z) :=


m+(z) if z ≥ 0

m−(z) if z < 0

,

gn(z) :=
(
(I −Gn)

−1 ◦m
)
(z) .

It will also be useful to split m(·) into the part that is Lipschitz continuous and the part

that is not:

Definition 8. Let m(x) = mc(x) + 1{z ≥ 0}τd where

mc(z) =


m+(z)− τd if z ≥ 0

m−(z) otherwise

is Lipschitz continuous with Lipschitz constant C.

Definition 9. Let the difference in the spillover neighborhoods at xhn and 0 be:

R+(xhn) := R(xhn) \R(0)

R−(xhn) := R(0) \R(xhn)

Definition 10. Let d̃ be

d̃(a) =


0 if a ≤ −1

a+1
2 if − 1 ≤ a ≥ 1

1 if a ≥ −1
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Observe that if δ(z) = 1, d̃(a/rn) = (Gn ◦ 1{z ≥ 0}) (a).

Definition 11. Let G∞ be the pointwise limit of Gn when rn → 0. That is,

(G∞ ◦ g) (z) = lim
n→∞

δ(z)

Rn(z)

∫
R(z)

g(y)dy = δ(z)g(z) ,

where the last equality follows from the Lebesgue Differentiation Theorem. Furthermore,

let g∞(z) =
(
(I −G∞)−1 ◦ g

)
(z) = g(z)

1−δ(z) .

Lemma 1. Suppose ∥f − g∥ ≤ ε. Then ∥(Gn ◦ f)− (Gn ◦ g)∥ ≤ δ̄ε . In particular, if

∥g(z)∥ < ε, then
∥∥Gk

n ◦ g
∥∥ < δ̄kε.

Lemma 2. Under Assumptions 1 and 2, suppose rn → 0. Then, there exists a function λ

such that for a ̸= 0,

|((I −Gn)
−1 ◦ 1{z ≥ 0})(arn)− λ(a)| ≤ 2Cδrn

a
(
1− δ̄

)2 +
δ̄1/rn−|a|

1− δ̄
,

where λ(a) > 0 if δ(z) > 0 for all z ∈ Z. Furthermore, if δ(0) ̸= 0, then

∣∣∣∣((I −Gn)
−1 ◦ γ(z)d̃(z/rn)

)
(arn)−

γ(0)

δ(0)
(λ(a)− 1{a ≥ 0})

∣∣∣∣ ≤
2Cδrn

a
(
1− δ̄

)2 +
δ̄1/rn−|a|

1− δ̄
+

Cγ δ̄

1− δ̄
· arn .

If δ(0) = 0, then

(
(I −Gn)

−1 ◦ γ(z)d̃(z/rn)
)
(arn) = γ(arn)d̃(a) = γ(0)d̃(a) +O(rn) .

In fact, we know more about the structure of λ(a). Let G∗ be operator that smooths

over f ∈ R → R:

(G∗ ◦ f)(z) =
1

2

∫
1 {|u− z| < 1} f(z)1

2
dz

Then λ(a) is approximately ((I − δ(0)G∗)
−1 ◦ 1{z ≥ 0})(a). Note that λ depends on δ,

though this is suppressed in the notation. Given Lemma 2, define:
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Definition 12. Let R̃+(x) =
[
max

{
1, 2xc − 1

}
, 1+2x

c

]
and R̃−(x) =

[
−1 , min

{
1, 2xc − 1

} ]
.

Define:

λ+(x) :=
1

|R̃+(x)|

∫
R̃+(x)

λ(a) dF (a) , λ−(x) :=
1

|R̃−(x)|

∫
R̃−(x)

λ(a) dF (a)

λ̃+(x) :=
1

|R̃+(x)|

∫
R̃+(x)

λ(a)− 1{a ≥ 0} dF (a) , λ̃−(x) :=
1

|R̃−(x)|

∫
R̃−(x)

λ(a)− 1{a ≥ 0} dF (a) .

And:

Λ+
p,q,s :=

∫ 1

0
xp
(
λ+(x)− λ−(x)

)q
Ks(x)ds , Λ−

p,q,s :=

∫ 0

−1
xp
(
λ+(−x)− λ−(−x)

)q
Ks(x)ds

Λ̃+
p,q,s :=

∫ 1

0
xp
(
λ̃+(x)− λ−(x)

)q
Ks(x)ds , Λ̃−

p,q,s :=

∫ 0

−1
xp
(
λ̃+(−x)− λ−(−x)

)q
Ks(x)ds

Γ+
p,q,s :=

∫ 1

0
xp
(
d̃
(x
c

))q
Ks(x)ds , Γ−

p,q,s :=

∫ 0

−1
xp
(
d̃
(x
c

))q
Ks(x)ds .

Lemma 3. Suppose g is Lipschitz on [−1, 1] with Lipschitz constant C and ∥g∥ ≤M . Then

(Gn ◦ g) is Lipschitz on [−1, 1] with Lipschitz constant Cδ ·M+δ̄C. Moreover, (I −Gn)
−1◦g

is Lipschitz on [−1, 1] with Lipschitz constant

Cδ ·M(
1− δ̄

)2 +
C

1− δ̄
.

Lemma 4. Suppose g is an odd function. If δ(z) is an even function, then (Gn ◦ g) is an

odd function.

Lemma 5. gn(z) = gcn(z) + τd1{z ≥ 0} where gcn(z) is Lipschitz with Lipschitz constant

Cδ · (1 + δ̄)M(
1− δ̄

)2 +
C

1− δ̄
+

Cδ̄

2rn
(
1− δ̄

)
Lemma 6. Let g be a Lipschitz continuous function with Lipschitz constant C and suppose

rn → 0. Then:

sup
z∈[−1/2,1/2]

∣∣∣((I −Gn)
−1 ◦ g

)
(z)−

(
(I −G∞)−1 ◦ g

)
(z)
∣∣∣ ≤ Crn

2

δ̄(
1− δ̄

)2 .
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Lemma 7. Let hn be such that hn > Krn. Let G̃n be Gn except with δ(z) set to δ(0). Then

for all x ∈ [−hn, hn], we have that

(
Gk

n ◦ 1 {z ≥ 0}
)
(x) =

(
G̃k

n ◦ 1 {z ≥ 0}
)
(x) +

k∑
j=1

(
Gk−j

n ◦Rj

)
(x)

where

sup
x∈[−hn, hn]

∣∣∣(Gk−j
n ◦Rj

)
(x)
∣∣∣ ≤ 2δ̄kCδhn .

Lemma 8. Under Assumptions 1 and 2, suppose rn → 0. The following holds for all

η ∈ (0, 1):

µd(0) =
m+(0) +m−(0) + γ(0)

2(1− δ(0))
+O

(
Cδr

η
n(

1− δ̄
)2 +

δ̄1/r
η
n

1− δ̄

)
.

Lemma 9. Under Assumptions 1 and 2, the following approximations are uniform in x ∈

[0, 1] as n→ ∞:

µd(xhn)− µd(0) =


xhn
rn

(g1(r)− g1(−r) + l1(r)− l1(−r) + o(1)) if rn = r

xhn
rn

· (τd · (λ(1)− λ(−1)) + γ(0) · ((λ(1)− 1)− λ(−1)) + o(1)) if hn
rn

→ 0

min
{
1, |x|c

}
·
(
τd · (λ+(x)− λ−(x)) + γ(0) ·

(
λ̃+(x)− λ̃−(x)

)
+ o(1)

)
if rn = 1

2chn

.

If rn/hn → 0, let wn be such that wn/rn → ∞ and wn/hn → 0. Then for x ∈ [wn, 1],

µd(xhn)− µd(0) =
τd + γ(0)

2 (1− δ(0))
+O

(
hn + δ̄wn/rn

)
.

The same statements hold for x ∈ [−1, 0] mutatis mutandis.

Finally, we define the (mixed) incomplete moments:

Definition 13 (Incomplete Moments). The incomplete moment of order p at 0 is

γp,s :=

∫ 1

0
xpKs(x)dx
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and the incomplete mixed moment of order p at 0 is

ϕ(p, q, r, s) :=

∫ 1

0
xp
(
min

{x
c
, 1
}(
τd ·

(
λ+(x)− λ−(x)

)
+ γ(0) ·

((
λ+(x)− 1

)
− λ−(x)

)))q
·
(
min

{
x

c
,
1

2

})r

Ks(x) dx

Incomplete moments are standard objects in the analysis of local polynomial regressions

at the boundary (see e.g. Wand and Jones (1995)).The incomplete mixed moment is so

named since also includes terms that arise from the approximations of µd(Zi) and νd(Zi)

around the cutoff. We suppress the dependence of ϕ on c for convenience.

Lemma 10. Under the conditions of Theorem 4, Ω−1/2√nT̃∗
d→ N (0, I8), where T̃∗ is as

defined in (17).

Lemma 11. Let the premises of Theorem 4 hold and T̃ and T̃∗ be as defined in (17). Then

Ω−1/2√n
(
T̃− T̃∗

)
= op(1).

Lemma 12. Tg in (43) has the following representation:

Tg =T∗,g + Ug +Rg,

where T∗,g =
1

n

n∑
i=1

η̇g,1 (ξi) ,

Ug =
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

η̇g,2 (ξi, ξj)− T∗,g,

Rg =
1

n

n∑
i=1

K (Zi/h) g (ξi)
(
R̂emi,r (Zi)− R̂emi,r(0)

)
.

(19)
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Lemma 13. Let T∗,g, Ug, Rg be as in (19). Then E [T∗,g] = 0, E [Ug] = 0. Furthermore,

E
[
T 2
∗,g
]
=

E
[
η̇g1 (ξ1)

2
]

n

E
[
η̇g1 (ξ1)

2
]
=h

h

4r
(1 + o(1))

(∫
f(vr)σ2(vr)φα,1(v;h, r)

2dv +

∫
φα,2(v;h, r)

2f(vr) dv

)
E
[
|η̇g1 (ξ1)|3

]
≤ 16h

h2

8r2

{∫
f(vr)ρ3(vr) |φα,1(v;h, r)|3 dv +

∫
|φα,2(v;h, r)|3 f(vr) dv

}
+ o

(
h
h2

r2

)
+O

(
h3
)
,

(20)

for ρ3(z) ≡ E [ε1|Z1 = z] and measurable bounded functions φα,j.

Lemma 14. Let T∗,g, Ug, Rg be as in (19). For a bounded measurable function Cv(·) and

mg2(z) ≡ E
[
g (ξ1)

2
∣∣∣Z1 = z

]
.

E
[
U2
g

]
=

2

n(n− 1)
E [Var [η̇g,2 (ξ1, ξ2)|ξ1]]−Var [E [η̇g,2 (ξ1, ξ2)|ξ1]]

≤ 8

n(n− 1)
· h
r

∫
K(u)2f(uh)mg2(uh)Cv(u;h, r) du,

so that Ug = op (T∗,g) if nh→ ∞.

(21)

Furthermore, if nh→ ∞ and (logn)/(nr) → 0, then

Rg = Op

(√
E
[
U2
g

])
. (22)
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D Proofs of Auxiliary Lemmas

D.1 Proof of Lemma 1

For any z ∈ [−1, 1],

|(Gn ◦ f) (z)− (Gn ◦ g) (z)| ≤ |δ(z)|
|R(z)|

∫
R(z)

|f(x)− g(x)| dz ≤ δ̄ε .

Letting g = 0 and the bound for Gk
n follows by induction.

D.2 Proof of Lemma 2

We will prove that the sequence
(
(I −Gn)

−1 ◦ 1 {arn}
)∞
n=1

is Cauchy. Let m,n be given,

wherem > n. We consider the Neumann series: Writing (I −Gn)
−1 in terms of its Neumann

series:

(I −Gn)
−1 = I +Gn +G2

n + · · ·

First observe that for all a such that |a| < 1/rn, we have that

1 {z ≥ 0} (arn) = 1 {z ≥ 0} (arm) .

Next, suppose δ = 1 is a constant function. Then,

(Gn ◦ 1 {z ≥ 0}) (arn) = (Gm ◦ 1 {z ≥ 0}) (arm)

for all a such that |a| < 1/rn. This is because the average of Gn ◦ 1 {z ≥ 0} in the rn

neighborhood is around arn is exactly the average of Gm◦1 {z ≥ 0} in the rm neighborhood

is around arm. This is true also for all a such that |a| < 1/rn − 1. This is because our last

result established equality on [1, 1], and this guarantees equality of the local averages on

[−1 + rn, 1− rn].
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Now suppose δ(x) is changing. We can write

(Gn ◦ 1 {z ≥ 0}) (arn) = (Gm ◦ 1 {z ≥ 0}) (arm) +R1

where ∥R1∥ ≤ |δ(arn)− δ(arm)| ≤ Cδ|a|(rn + rm) by Lemma 1.

Suppose for induction that for |a| < 1/rn − k,

(
Gk

n ◦ 1{z ≥ 0}
)
(arn) =

(
Gk

m ◦ 1{z ≥ 0}
)
(arm) +

k−1∑
j=1

Gj
nRk−j

where ∥Rk∥ ≤ Cδ|a|(rn + rm) for all k. Now,

(
Gk+1

n ◦ 1{z ≥ 0}
)
(arn) = Gn ◦

(
Gk

m ◦ 1{z ≥ 0}
)
(arm) +Gn ◦

k−1∑
j=1

Gj
nRk−j

for |a| < 1/rn − (k + 1). Now for a fixed a∗, choose K such that (K + |a|)rn ≤ 1. Then we

have that:

∣∣(I −Gn)
−11{z ≥ 0})(a∗rn)− (I −Gm)−11{z ≥ 0})(a∗rm)

∣∣
=

∣∣∣∣∣∣
∞∑
j=0

(
Gk

n ◦ 1{z ≥ 0}
)
(a∗rn)−

(
Gk

m ◦ 1{z ≥ 0}
)
(a∗rm)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
K∑
j=0

(
Gk

n ◦ 1{z ≥ 0}
)
(a∗rn)−

(
Gk

m ◦ 1{z ≥ 0}
)
(a∗rm)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∞∑

j=K+1

(
Gk

n ◦ 1{z ≥ 0}
)
(a∗rn)−

(
Gk

m ◦ 1{z ≥ 0}
)
(a∗rm)

∣∣∣∣∣∣
≤

K−1∑
j=1

∥∥kGj
nRk−j

∥∥+ δ̄K+1

1− δ̄

≤ Cδ(rn + rm)

a∗
(
1− δ̄

)2 +
δ̄1/rn−|a∗|

1− δ̄
.

where the second to last inequality follows from our inductive arguments earlier as well as

repeated application of Lemma 1. Applying Lemma 1 again, and rewriting K = ⌊1− /rn −

|a|⌋ yields the final inequality. As such, the sequence is Cauchy for fixed a∗. The limit

61



therefore exists with the final term above being the rate of convergence.

For the next part, first suppose δ(0) ̸= 0. Then, we can write:

(
(I −Gn)

−1 ◦ γ(z)d̃(z/rn)
)
(arn)

=
γ(0)

δ(0)

(
(I −Gn)

−1 ◦ (Gn ◦ 1{z ≥ 0})
)
(arn)

+
γ(0)

δ(0)

(
(I −Gn)

−1 ◦ (γ(z)− γ(0)) (Gn ◦ 1{z ≥ 0})
)
(arn) +R

and

|R| ≤ Cδ(rn + rm)

a∗
(
1− δ̄

)2 +
δ̄1/rn−|a∗|

1− δ̄
.

This is because as before, the error arises solely from approximating δ(z) with δ(0) on the

relevant part of the domain.

By the first part of this lemma,

∣∣∣∣γ(0)δ(0)

(
(I −Gn)

−1 ◦ (Gn ◦ 1{z ≥ 0})
)
(arn)−

γ(0)

δ(0)
(λ(a)− 1{a ≥ 0})

∣∣∣∣ ≤ 2Cδrn

a
(
1− δ̄

)2 +
δ̄1/rn−|a|

1− δ̄
.

Next observe that

(γ(z)− γ(0)) (Gn ◦ 1{z ≥ 0}))(arn) = (γ(arn)− γ(0)) δ(arn)d̃(a)

where d̃ is given in Definition 10.

As such,

|(γ(z)− γ(0)) (Gn ◦ 1{z ≥ 0}))(arn)| ≤ Cγ δ̄ · arn .

By the Neumann expansion and repeatedly applying Lemma 1 as above,

∣∣(I −Gn)
−1 ◦ (γ(z)− γ(0)) (Gn ◦ 1{z ≥ 0}))(arn)

∣∣ ≤ Cγ δ̄

1− δ̄
· arn

Finally, when δ(0) = 0, Gn = 0 and the result follows immediately.
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D.3 Proof of Lemma 3

Let x, y ∈ [−1, 1] be given.

|(Gn ◦ g) (x)− (Gn ◦ g) (y)| =

∣∣∣∣∣ δ(x)|R(x)|

∫
R(x)

g(z)dz − δ(y)

|R(y)|

∫
R(y)

g(z) dz

∣∣∣∣∣
=

∣∣∣∣∣ δ(x)|R(x)|

∫
R(x)

g(z) dz − δ(y)

|R(x)|

∫
R(x)

g(z + x− y) dz

∣∣∣∣∣
≤

∣∣∣∣∣δ(x)− δ(y)

|R(x)|

∫
R(x)

g(z) dz

∣∣∣∣∣+
∣∣∣∣∣ δ(y)|R(x)|

∫
R(x)

g(z)− g(z + x− y) dz

∣∣∣∣∣
≤M · Cδ|x− y|+ δ̄C|x− y|

Now suppose for induction
(
Gk

n ◦ g
)
has Lipschitz constant kδ̄k−1Cδ · M + δ̄kC. We

know from the above that
(
Gk+1

n ◦ g
)
has Lipschitz constant

δ̄kCδ ·M + δ̄
(
kδ̄k−1Cδ ·M + δ̄kC

)
= (k + 1)δ̄kCδ ·M + δ̄k+1C .

Writing (I −Gn)
−1 in terms of its Neumann series:

(I −Gn)
−1 = I +Gn +G2

n + · · ·

gives us that

∣∣∣((I −Gn)
−1 ◦ g

)
(x)−

(
(I −Gn)

−1 ◦ g
)
(y)
∣∣∣

≤
∞∑
k=0

∣∣∣(Gk
n ◦ g

)
(x)−

(
Gk

n ◦ g
)
(y)
∣∣∣

≤ |x− y|
∞∑
k=0

kδ̄k−1Cδ ·M + δ̄kC

≤ |x− y| ·

(
Cδ ·M(
1− δ̄

)2 +
C

1− δ̄

)
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D.4 Proof of Lemma 4

Suppose R(z) = [z − a, z + b]. Then R(−z) = [−z − b,−z + a]. Since, we have that

(Gn ◦ g) (z) = δ(z)

|R(z)|

∫ z+b

z−a
g(x) dF (x)

= − δ(−z)
|R(−z)|

∫ −z−b

−z+a
g(−y) dF (y) by change of variable: y = −x

= − δ(−z)
|R(−z)|

∫ −z+a

−z−b
g(y) dF (y) since g(z) = −g(−z)

= (Gn ◦ g) (−z)

D.5 Proof of Lemma 5

Using Definition 8, write

gn(z) =
(
(I −Gn)

−1 ◦mc
)
(z) +

(
(I −Gn)

−1 ◦ 1{z ≥ 0}τd
)
(z)

From Lemma 3,
(
(I −Gn)

−1 ◦mc
)
(z) is Lipschitz with Lipschitz constant

Cδ ·M(
1− δ̄

)2 +
C

1− δ̄
.

Next, by the Neumann expansion,

(
(I −Gn)

−1 ◦ 1{z ≥ 0}τd
)
(z) = 1{z ≥ 0}τd + (Gn ◦ 1{z ≥ 0}τd) (z) +

(
G2

n ◦ 1{z ≥ 0}τd
)
(z) + · · ·

= 1{z ≥ 0}τd +
(
(I −Gn)

−1 ◦ (Gn ◦ 1{z ≥ 0}τd)
)
(z)

It is easy to see that (Gn ◦ 1{z ≥ 0}) is Lipschitz continuous with Lipschitz constant δ̄/2rn.

We are done after applying Lemma 3 again.
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D.6 Proof of Lemma 6

In this proof only, let mc be any Lipschitz continuous function with Lipschitz constant C.

By Lipschitz continuity, no point in the rn neighborhood of z can be larger thanmc(z)+Crn.

Choose z ∈ [−1
2 ,

1
2 ]. Then,

(Gn ◦mc) (z) ≤ δ(z)

(
mc(z) +

Crn
2

)
.

Similarly,

(
G2

n ◦mc
)
(z) ≤ δ(z)

(
(Gn ◦mc) (z) + δ̄ · Crn

2

)
≤ (δ(z))2mc(z) +

Crn
2

· 2
(
δ̄
)2

where the first inequality follows from the Lemma 3 and the second inequality follows from

substituting in our bound for (Gn ◦mc) (z). By induction,

(
Gk

n ◦mc
)
(z) ≤ (δ(z))kmc(z) +

Crn
2

· k
(
δ̄
)k

This is true as long as for all k ≤ K := ⌊1/2rn⌋. Summing the terms in the Neumann

expansion, we can write

(
(I −Gn)

−1 ◦mc
)
(z)− mc(z)

1− δ(z)
≤ Crn

2
·

∞∑
K=1

kδ̄k + 2 · δ̄
K+1 ·M
1− δ̄

=
Crn
2

· δ̄(
1− δ̄

)2 + 2 · δ̄
1/2rn ·M
1− δ̄

where the second term above comes from bounding terms corresponding to k ≥ K + 1. An

analogous lower bound gives us that

∣∣∣∣((I −Gn)
−1 ◦mc

)
(z)− mc(z)

1− δ(z)

∣∣∣∣ ≤ Crn
2

· δ̄(
1− δ̄

)2 + 2 · δ̄
1/2rn ·M
1− δ̄

.
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Note here that for z ≥ 0,

mc(z)

1− δ(z)
=
(
(I −G∞)−1 ◦mc

)
(z) .

Putting the above together with a similar argument for z < 0 gives us that for z ∈ [−1
2 ,

1
2 ],

∣∣∣((I −Gn)
−1 ◦mc

)
(z)−

(
(I −G∞)−1 ◦mc

)
(z)
∣∣∣ ≤ Crn

2
· δ̄(

1− δ̄
)2 .

In other words,
(
(I −Gn)

−1 ◦mc
)
converges uniformly to

(
(I −G∞)−1 ◦mc

)
on [−1

2 ,
1
2 ].

D.7 Proof of Lemma 7

The argument here is essentially the same as the inductive argument in Lemma 2. First

note that for a given hn, we have by Lipschitz continuity of δ(z) that for all x ∈ [−2hn, 2hn],

|δ(x)− δ(0)| ≤ 2Cδhn.

Next, observe that on x ∈ [−2hn + rn, 2hn − rn]

(Gn ◦ 1 {z ≥ 0}) (x) =
(
G̃n ◦ 1 {z ≥ 0}

)
(x) +R1(x)

where the requisite bound on R1 holds by Lipschitz continuity of δ(z). We propagate this

bound forward. On x ∈ [−2hn + 2rn, 2hn − 2rn],

(
G2

n ◦ 1 {z ≥ 0}
)
(x) =

(
Gn ◦

(
G̃n ◦ 1 {z ≥ 0}

))
(x) + (Gn ◦R1) (x)

=
(
G̃2

n ◦ 1 {z ≥ 0}
)
(x) +R2(x) + (Gn ◦R1) (x) .

The bounds on Gk−j
n Rj follows from Lemma 1. Note that the domain over which the

property holds shrinks by rn in each step of the induction. Since hn > Krn, however, we

can perform the above inductive step K times and still have the property hold for [−hn, hn].

Lemma 7 therefore follows.
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D.8 Proof of Lemma 8

We decompose µd(0) into the parts corresponding to the structural function m and the

exogenous spillover:

µd(0) = An +Bn ,

where

An =
1

|Rn(0)|

∫ rn

−rn

gn(x) dF (x) , Bn =
1

|Rn(0)|

∫ rn

−rn

ln(x) dF (x) .

We start by evaluating the limit of An. Using Definition 8 write:

An =
1

|Rn(0)|

∫ rn

−rn

(
(1−Gn)

−1 ◦m
)
(x) dF (x)

=
1

|Rn(0)|

∫ rn

−rn

(
(1−Gn)

−1 ◦mc
)
(x) dF (x) +

τd
|Rn(0)|

∫ rn

−rn

(
(1−Gn)

−1 ◦ 1 {z ≥ 0}
)
(x) dF (x)

By Lemma 6,

1

2rn

∫ rn

−rn

(
(1−Gn)

−1 ◦mc
)
(x) dF (x) =

m−(0)

1− δ(0)
+O(rn)

For the second term in An, we use the Neumann series to write:

1

2rn

∫ rn

−rn

(
(1−Gn)

−1 ◦ 1 {z ≥ 0}
)
(x) dF (x)

=
1

2rn

∫ rn

−rn

K∑
k=0

(
Gk

n ◦ 1 {z ≥ 0}
)
(x) dF (x) +

1

2rn

∫ rn

−rn

∞∑
k=K+1

(
Gk

n ◦ 1 {z ≥ 0}
)
(x) dF (x)

≤ 1

2rn

∫ rn

−rn

K∑
k=0

(
G̃k

n ◦ 1 {z ≥ 0}
)
(x) dF (x) +

Cδr
1−η
n

(1− δ̄2)
+

1

2rn

∫ rn

−rn

∞∑
k=K+1

(
Gk

n ◦ 1 {z ≥ 0}
)
(x) dF (x)

≤ 1

2rn

∫ rn

−rn

K∑
k=0

(
G̃k

n ◦ 1 {z ≥ 0}
)
(x) dF (x) +

Cδr
1−η
n

(1− δ̄2)
+
δ̄1/r

η
n

1− δ̄
(23)

where the first inequality above follows from Lemma 7 with hn in the lemma set to r1−η
n /2

and K set to ⌊1/rηn⌋. The second inequality follows from Lemma 1 and the definition of K.

A similar argument leads to an analogous lower bound.
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Now observe that observe that 1 {z ≥ 0}− 1
2 is an odd function. By repeated application

of Lemma 4, we have that G̃k
n ◦
(
1 {z ≥ 0} − 1

2

)
is an odd function. Since odd functions

integrate to 0 on intervals symmetric around 0,

1

2rn

∫ rn

−rn

K∑
k=0

(
G̃k

n ◦ (1 {z ≥ 0})− 1

2

)
(x) dF (x) = 0 .

In other words,

1

2rn

∫ rn

−rn

K∑
k=0

(
G̃k

n ◦ 1 {z ≥ 0}
)
(x) dF (x) =

1

2rn

∫ rn

−rn

K∑
k=0

(
G̃k

n ◦ 1

2
I

)
(x) dF (x)

=
1

2

K∑
k=0

(δ(0))k (24)

where I is the identity function. The final equality above follows from the fact thatGn◦I = I.

Conclude that

An =
m−(0)

1− δ(0)
+

τd
2(1− δ(0))

+O

(
Cδr

1−η
n

(1− δ̄2)
+
δ̄1/r

η
n

1− δ̄

)

=
m+(0) +m−(0)

2(1− δ(0))
+O

(
Cδr

1−η
n

(1− δ̄2)
+
δ̄1/r

η
n

1− δ̄

)
.

Next, consider Bn:

Bn =
1

|Rn(0)|

∫ rn

−rn

(
(I −Gn)

−1 ◦
(
γ(z) · d̃(z/rn)

))
(x) dF (x)

=
1

|Rn(0)|

∫ rn

−rn

(
(I −Gn)

−1 ◦ ((γ(z)− γ(0)) · 1{z ≥ 0})
)
(x) dF (x)

− 1

|Rn(0)|

∫ rn

−rn

(
(I −Gn)

−1 ◦
(
(γ(z)− γ(0)) ·

(
1{z ≥ 0} − d̃(z/rn)

)))
(x) dF (x)

+
1

|Rn(0)|

∫ rn

−rn

(
(I −Gn)

−1 ◦
(
γ(0) · d̃(z/rn)

))
(x) dF (x)

Observe that (γ(z)− γ(0))1{z ≥ 0} is Lipschitz continuous with Lipschitz constant Cγ . As
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such, by Lemma 6,

1

|Rn(0)|

∫ rn

−rn

(
(I −Gn)

−1 ◦ ((γ(z)− γ(0)) · 1{z ≥ 0})
)
(x) dF (x) = O(rn) .

Furthermore, since |γ(z)− γ(0)| ≤ Cγrn, we also have by Lemma 1 that

1

|Rn(0)|

∫ rn

−rn

(
(I −Gn)

−1 ◦
(
(γ(z)− γ(0)) ·

(
1{z ≥ 0} − d̃(z)

)))
(x) dF (x) = O(rn)

Next, observe that when δ(0) ̸= 0,

1

|Rn(0)|

∫ rn

−rn

(
(I −Gn)

−1 ◦ d̃(z/rn)
)
(x) dF (x)

=
1

δ(0)

1

|Rn(0)|

∫ rn

−rn

(
(I −Gn)

−1 ◦ (Gn ◦ 1{z ≥ 0})
)
(x) dF (x) +O

(
Cδr

1−η
n

(1− δ̄2)
+
δ̄1/r

η
n

1− δ̄

)

=
1

δ(0)

(
1

|Rn(0)|

∫ rn

−rn

(
(I −Gn)

−1 ◦ 1{z ≥ 0}
)
(x) dF (x)− 1

|Rn(0)|

∫ rn

−rn

1{x ≥ 0} dF (x)
)

+O

(
Cδr

1−η
n

(1− δ̄2)
+
δ̄1/r

η
n

1− δ̄

)

=
1

δ(0)

(
1

2(1− δ(0))
− 1

2

)
+O

(
Cδr

1−η
n

(1− δ̄2)
+
δ̄1/r

η
n

1− δ̄

)

=
1

2(1− δ(0))
+O

(
Cδr

1−η
n

(1− δ̄2)
+
δ̄1/r

η
n

1− δ̄

)

where the first equality comes from approximating δ(z) with δ(0). The second to last

equality above follows from the same arguments as in equations (23) and (24). When

δ(0) = 0,

1

|Rn(0)|

∫ rn

−rn

(
(I −Gn)

−1 ◦ d̃(z/rn)
)
(x) dF (x)

=
1

|Rn(0)|

∫ rn

−rn

((
I − G̃n

)−1
◦ d̃(z/rn)

)
(x) dF (x) +O

(
Cδr

1−η
n

(1− δ̄2)
+
δ̄1/r

η
n

1− δ̄

)

=
1

|Rn(0)|

∫ rn

−rn

d̃(x/rn) dF (x) +O

(
Cδr

1−η
n

(1− δ̄2)
+
δ̄1/r

η
n

1− δ̄

)

=
1

2
+O

(
Cδr

1−η
n

(1− δ̄2)
+
δ̄1/r

η
n

1− δ̄

)
.
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As such,

Bn =
γ(0)

2(1− δ(0))
+O

(
Cδr

1−η
n

(1− δ̄2)
+
δ̄1/r

η
n

1− δ̄

)
.

D.9 Proof of Lemma 9

Write:

µd(xhn)− µd(0) = An +Bn

where

An =
1

|Rn(xhn)|

∫
Rn(xhn)

gn(z) dF (z)−
1

|Rn(0)|

∫
Rn(0)

gn(z) dF (z)

=
|R+

n (xhn)|
|Rn(xhn)|

· 1

|R+
n (xhn)|

∫
R+

n (xhn)
gn(z) dF (z)

− |R−
n (xhn)|

|Rn(xhn)|
· 1

|R−
n (xhn)|

∫
R−

n (xhn)
gn(z) dF (z)

and

Bn =
1

|Rn(xhn)|

∫
Rn(xhn)

ln(z) dF (z)−
1

|Rn(0)|

∫
Rn(0)

ln(z) dF (z)

=
|R+

n (xhn)|
|Rn(xhn)|

· 1

|R+
n (xhn)|

∫
R+

n (xhn)
ln(z) dF (z)

− |R−
n (xhn)|

|Rn(xhn)|
· 1

|R−
n (xhn)|

∫
R−

n (xhn)
ln(z) dF (z) .

Here,

ln(z) =
[
(I −Gn)

−1 ◦ (γ · (Gn ◦ 1{u ≥ 0}))
]
(z) .

An and Bn are the parts of µd coming from (1) the structural function m and (2) the

exogenous spillover νd = Gn ◦ 1{z ≥ 0} respectively. We analyze these term by considering

cases separately.
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Case 1: rn = r constant

In this case, Gn, gn and Rn do not change with n. Suppose first that z ≥ 0. Then,

R+
n (xhn) = [r, r + xhn] , R−

n (xhn) = [−r − xhn,−r]

which shrink to r and −r respectively.

We start with An. By Lemma 5,

1

|R+
n (xhn)|

∫
R+

n (xhn)
gn(z) dF (z) =

1

|R+
n (xhn)|

∫
R+

n (xhn)
gcn(z) dF (z) +

τd

|R+
n (xhn)|

∫
R+

n (xhn)
1{z ≥ 0} dF (z)

≤ gcn(r) + C̃xhn +
τd

|R+
n (xhn)|

∫
R+

n (xhn)
1{z ≥ 0} dF (z)

= gcn(r) + C̃xhn + τd

= gn(r) + C̃xhn

where the inequality above follows from the fact that gcn is Lipschitz, with C̃ being the

relevant constant in Lemma 5. Together with a similar argument for the lower bound, we

have that ∣∣∣∣∣ 1

|R+
n (xhn)|

∫
R+

n (xhn)
gn(z) dF (z)− gn(r)

∣∣∣∣∣ ≤ C̃xhn

Furthermore, since hn/rn → 0, we have that for n large enough,

|R+
n (xhn)|

|Rn(xhn)|
=

|R−
n (xhn)|

|Rn(xhn)|
=
xhn
rn

. (25)

Hence,

An =
xhn
rn

(gn(r)− gn(−r) +O(hn)) .

where the constants in O(hn) do not depend on x. Now, if z < 0, a similar argument to the
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one above gives us

An =
xhn
rn

(gn(−r)− gn(r) +O(hn)) .

Next consider Bn. By Lemma 3, ln(z) is Lipschitz continuous with Lipschitz constant

C̃1 =
Cδ(

1− δ̄
)2 +

Cγ

1− δ̄

As such,

1

|R+
n (xhn)|

∫
R+

n (xhn)
ln(z) dF (z) ≤ ln(r) + C̃1xhn ,

with an analogous lower bound. We conclude that

Bn =
xhn
rn

(ln(r)− ln(−r) +O(hn)) .

when z ≥ 0 and

Bn =
xhn
rn

(ln(−r)− ln(r) +O(hn)) .

when z < 0.

Case 2: rn → 0, hn/rn → 0

Start with An. Suppose again that z ≥ 0. Since hn/rn → 0, equation (25) continues to

hold. Write:

1

|R+
n (xhn)|

∫
R+

n (xhn)
gn(z) dF (z) =

1

|R+
n (xhn)|

∫
R+

n (xhn)

(
(I −Gn)

−1 ◦mc
)
(z) dF (z)

+
τd

|R+
n (xhn)|

∫
R+

n (xhn)

(
(I −Gn)

−1 ◦ 1 {z ≥ 0}
)
(z) dF (z)

(26)

72



We start with first term above:

1

|R+
n (xhn)|

∫
R+

n (xhn)

(
(I −Gn)

−1 ◦mc
)
(z) dF (z)

=
1

|R+
n (xhn)|

∫
R+

n (xhn)

(
(I −G∞)−1 ◦mc

)
(z) dF (z) +O(rn) by Lemma 6

=
mc(rn)

1− δ(rn)
+O(hn) +O(rn) by Definition 11 and the fact that mc is Lipschitz

=
mc(0)

1− δ(0)
+O(hn) +O(rn) (27)

where the last equality follows again from Lipschitz continuity of mc(z) and δ(z).

Next, consider

τd

|R+
n (xhn)|

∫
R+

n (xhn)

(
(I −Gn)

−1 ◦ 1{x ≥ 0}
)
(z) dF (z)

=
τd

|R+
n (xhn)|

∫
R+

n (xhn)
λ(z/rn) dF (z) +O

(
2δ̄⌊1/rn⌋−|a|

1− δ̄

)

which follows by an application of Lemma 2 with |a| = 2 since hn ≪ rn. Next consider the

change of variable a = z/rn. This gives us

τd

|R+
n (xhn)|

∫
R+

n (xhn)

(
(I −Gn)

−1 ◦ 1{x ≥ 0}
)
(z) dF (z)

=
τd

rn(xhn/rn)

∫
[1,1+2xhn/rn]

λ(a) · rn dF (a) +O

(
2δ̄⌊1/rn⌋−|a|

1− δ̄

)

=
τd

xhn/rn

∫
[1,1+2xhn/rn]

λ(a) dF (a) +O

(
2δ̄⌊1/rn⌋−|a|

1− δ̄

)
= τd · λ(1) + o(1) (28)

where the last equality follows from the Lebesgue Differentiation Theorem. The domain of

integration is a convex interval and trivially of bounded eccentricity.

Putting equations (27) and (28) together with equation (25) yields:

An =
xhn
rn

· τd · (λ(1)− λ(−1) + o(1)) .
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Finally, suppose z < 0. Note that analysis of the continuous part is identical. For the

discontinuous part, the first term is now zero. The second term is expanded around −rn,

giving us

An =
xhn
rn

· τd · (λ(−1)− λ(1) + o(1)) .

Next, consider Bn. Using the second part of Lemma 2, and identical argument to the

one in equation (28) gives us that

1

|R+
n (xhn)|

∫
R+

n (xhn)
ln(z) dF (z) = γ(0) · (λ(1)− 1{1 ≥ 0}) + o(1) (29)

Consequently, if z ≥ 0,

Bn =
xhn
rn

· γ(0) · ((λ(1)− 1)− λ(−1) + o(1)) .

On the other hand, if z ≤ 0,

Bn =
xhn
rn

· γ(0) · (λ(−1)− (λ(1)− 1) + o(1)) .

Case 3: rn = 1
2
chn

Under this asymptotic regime,

|R+
n (xhn)|

|Rn(xhn)|
=

|R−
n (xhn)|

|Rn(xhn)|
= min

{
1,

|x|
c

}
. (30)

To see this, note that when |x|hn > 2rn = chn, there is no overlap between Rn(xhn) and

Rn(0). When |x| < c, the area of

R+
n (xhn) = R−

n (xhn) = (c− |x|)hn

while Rn(xhn) = 2rn = chn, yielding the expression above.

Suppose again that z ≥ 0. We consider the same decomposition as in equation (26).

Equation (27) continues to be valid since we did not make any assumption about hn/rn in

its derivation.
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Now, by a change of variable a = z/rn, we have that

τd

|R+
n (xhn)|

∫
R+

n (xhn)

(
(I −Gn)

−1 ◦ 1{x ≥ 0}
)
(z) dF (z)

=
τd

rn|R̃(x)|

∫
R̃(x)

λ(a) · rn dF (a) +O

(
2δ̄⌊1/rn⌋−|a|

1− δ̄

)

= τd · λ+(x) +O

(
2δ̄⌊1/rn⌋−|a|

1− δ̄

)
(31)

In first equality above, we applied Lemma 2 and the fact that

R+
n (xhn) = [max {rn, xhn − rn} , rn + xhn] = rn

[
max

{
1,

2x

c
− 1

}
, 1 +

2x

c

]
= rnR̃

+(x) .

Since |x| ≤ 1, the above bound is uniform in x once we let |a| = 1 + 2
c .

By the same reasoning,

R−
n = rn

[
−1,min

{
2x

c
− 1, 1

}]
︸ ︷︷ ︸

=:R̃−(x)

and

τd

|R−
n (xhn)|

∫
R−

n (xhn)

(
(I −Gn)

−1 ◦ 1{x ≥ 0}
)
(z) dF (z)

= τd · λ−(x) +O

(
2δ̄⌊1/rn⌋−|a|

1− δ̄

)
(32)

Putting equations (27), (31) and (32) together with equation (30) yields:

An = min

{
1,

|x|
c

}
· τd ·

(
λ+(x)− λ−(x) + o(1)

)
.

A corresponding derivation for x ≤ 0 yields

An = min

{
1,

|x|
c

}
· τd ·

(
λ+(−x)− λ−(−x) + o(1)

)
.
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Next consider Bn. By derivations that is similar to (31), we have that

1

|R+
n (xhn)|

∫
R+

n (xhn)

(
(I −Gn)

−1 ◦ ln(z)
)
dF (z) =γ(0) ·

(
λ+(x)− 1{x ≥ 0}

)
+O

(
2δ̄⌊1/rn⌋−|a|

1− δ̄

)

which implies that

Bn = min

{
1,

|x|
c

}
· γ(0) ·

(
λ̃+(x)− λ̃−(x) + o(1)

)
.

when z ≥ 0. When z < 0,

Bn = min

{
1,

|x|
c

}
· γ(0) ·

(
λ̃+(−x)− λ̃−(−x) + o(1)

)
.

Case 4: rn/hn → 0

Write

µd(xhn) =
1

|Rn(xhn)|

∫
Rn(xhn)

gcn(z) dF (z)

+
τd

|Rn(xhn)|

∫
Rn(xhn)

(
(I −Gn)

−1 ◦ 1{y ≥ 0}
)
(z) dF (z)

+
1

|Rn(xhn)|

∫
Rn(xhn)

ln(z) dF (z)

As before, the limit of the first term above is given by Equation (27).

Next, for the second term, we apply Lemma 7, with hn in the lemma set to bandwidth.

Next, let K = ⌊wn/rn⌋+ 1. Then, uniformly for x ∈ [−1, 1],

τd
|Rn(xhn)|

∫
Rn(xhn)

(
(I −Gn)

−1 ◦ 1{y ≥ 0}
)
(z) dF (z)

=
τd

|Rn(xhn)|

∫
Rn(xhn)

(
K∑
k=0

G̃k
n ◦ 1{y ≥ 0}

)
(z) dF (z) +O

(
Cδhn

(1− δ̄)2
+

δ̄K

1− δ̄

)

Furthermore, for |z| > Krn, we have that

(
G̃k

n ◦ 1{y ≥ 0}
)
(z) = δ(0)k1{z ≥ 0} .
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As such, for x ∈ [wn, 1], we have that:

τd
|Rn(xhn)|

∫
Rn(xhn)

(
K∑
k=0

G̃k
n ◦ 1{y ≥ 0}

)
(z) dF (z)

= τd ·
K∑
k=0

δ(0)k =
τd

1− δ(0)
+O

(
δ̄k

1− δ̄

)
. (33)

As such, the second term of µd(xhn) is

τd
|Rn(xhn)|

∫
Rn(xhn)

(
(I −Gn)

−1 ◦ 1{y ≥ 0}
)
(z) dF (z)

=
τd

1− δ(0)
+O

(
δ̄K
)
+O (hn)

Finally, for the third term in µd(xhn). Applying Lemma 7 again, we have that when

δ(0) ̸= 0, that for x ∈ [−1, 1],

1

|Rn(xhn)|

∫
Rn(xhn)

ln(z) dF (z)

=
1

δ(0)

1

|Rn(xhn)|

∫
Rn(xhn)

((
I − G̃n

)−1
◦ (γ(y) · (Gn ◦ 1{y ≥ 0}))

)
(z) dF (z)

=
1

δ(0)

1

|Rn(xhn)|

∫
Rn(xhn)

(
K∑
k=0

G̃k
n ◦
(
γ(y) ·

(
G̃n ◦ 1{y ≥ 0}

)))
(z) dF (z) +O

(
hn + δ̄K

)
=

1

δ(0)

1

|Rn(xhn)|

∫
Rn(xhn)

(
K∑
k=0

G̃k
n ◦
(
γ(0) ·

(
G̃n ◦ 1{y ≥ 0}

)))
(z) dF (z) +O

(
hn + δ̄K

)
where the last equality follows because for k ≤ hn/rn, G̃

k
n evaluated on [−hn, hn] does not

depend on values of γ(y) outside of [−2hn, 2hn]. The error from replacing γ(y) with γ(0)

on this latter interval is O(hn) uniformly in x ∈ [−1, 1]. By the same reasoning, so is the
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error from replacing δ(y) with δ(0). Now, suppose δ(0) ̸= 0. Then write

1

|Rn(xhn)|

∫
Rn(xhn)

(
K∑
k=0

G̃k
n ◦
(
γ(0) ·

(
G̃n ◦ 1{y ≥ 0}

)))
(z) dF (z)

=
γ(0)

|Rn(xhn)|

∫
Rn(xhn)

(
K+1∑
k=1

G̃k
n1{y ≥ 0}

)
(z) dF (z)

= γ(0)

(
1

1− δ(0)
− 1

|Rn(xhn)|

∫
Rn(xhn)

1{z ≥ 0} dF (z)︸ ︷︷ ︸
=1

)
+O

(
δ̄K+1

)

=
δ(0)γ(0)

1− δ(0)
+O

(
δ̄K+1

)
where the second to last equality above follows from Equation (33). That is, when δ(0) ̸= 0,

1

|Rn(xhn)|

∫
Rn(xhn)

ln(z) dF (z) =
γ(0)

1− δ(0)
+O

(
δ̄K+1

)
uniformly for x ∈ [wn, 1]. When δ(0) = 0,

1

|Rn(xhn)|

∫
Rn(xhn)

ln(z) dF (z) =
1

|Rn(xhn)|

∫
Rn(xhn)

γ(z)d̃(z/rn) dF (z) +O
(
hn + δ̄K

)
= γ(0) +O

(
hn + δ̄K

)
.

again uniformly for x ∈ [wn, 1].

Putting our bounds together, we therefore have that

µd(xhn) =
m+(0) + γ(0)

1− δ(0)
+O

(
hn + δ̄wn/rn

)
.

With Lemma 8, we then have that for x ∈ [wn, 1],

µd(xhn)− µd(0) =
τd + γ(0)

2 (1− δ(0))
+O

(
hn + δ̄wn/rn

)
By a similar argument, when x ∈ [−1,−wn]

µd(xhn)− µd(0) = − τd + γ(0)

2 (1− δ(0))
+O

(
hn + δ̄wn/rn

)
.
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D.10 Proof of Lemma 10

Define

ηX,1 (ξ1) = ε1E

[
K

(
Z0

h

)(
δ(0) + δ′(0)Z0

)
X (Z0)

{
R
(
Z1
r

)
πr(0)

−
R
(
Z1−Z0

r

)
πr (Z0)

}∣∣∣∣∣ξ1
]

= ε1φη,1 (Z1) ,

φη,1 (Z1) =E

[
K

(
Z0

h

)(
δ(0) + δ′(0)Z0

)
X (Z0)

{
R
(
Z1
r

)
πr(0)

−
R
(
Z1−Z0

r

)
πr (Z0)

}∣∣∣∣∣Z1

]
,

ηX,2 (ξ1) =E

[
K

(
Z0

h

)(
δ(0) + δ′(0)Z0

)
X (Z0) (Y (Z1)− µd(0))

R
(
Z1
r

)
πr(0)

∣∣∣∣∣ξ1
]

−E

[
K

(
Z0

h

)(
δ(0) + δ′(0)Z0

)
X (Z0) (Y (Z1)− µd (Z0))

R
(
Z1−Z0

r

)
πr (Z0)

∣∣∣∣∣ξ1
]
,

η̇X,2 (ξ1) = ηX,2 (ξ1)−E [ηX,2 (ξ1)] .

(34)

By (3),

ηX = ηX,1 + ηX,2, and η̇X = ηX,1 + η̇X,2.

By mean independence (E [ε1|Z1] = 0),

Cov

(
K

(
Zi

h

)
Xiεi, ηX,2 (ξi)

)
= 0, and Cov (ηX,1 (ξi) , ηX,2 (ξi)) = 0.

Thus,

Ω =Var

[
K

(
Zi

h

)
Xiεi + ηX (ξi)

]
= Var

[
K

(
Zi

h

)
Xiεi + ηX,1 (ξi)

]
+Var [ηX,2 (ξi)]

⪰Var

[
K

(
Zi

h

)
Xiεi + ηX,1 (ξi)

]
=: Ω1,

(35)

where ⪰ denotes the Loewner order (A ⪰ B iff A−B is positive semi-definite). This implies
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that
∥∥Ω−1/2t

∥∥ ≤
∥∥∥Ω−1/2

1 t
∥∥∥ for any vector t. In what follows, define

t∗,i = K

(
Zi

h

)
Xiεi + η̇X (ξi) and α∗,i =

(
Ω

n

)−1/2

ti. (36)

Clearly E [αi] = 08 and
∑n

i=1Var [α∗,i] = I8. Furthermore, Ω−1/2√nT̃∗ =
∑n

i=1 α∗,i. It

suffices to show that Liapunov’s condition holds:

lim
n→∞

n∑
i=1

E
[
∥α∗,i∥3

]
= 0 (37)

Following calculations similar to those for Q̃ in the proofs of Theorems 2 and 3 in section

A.2,

Ω1 = h · f(0)σ2ε(0) ·H (Ω∗
1 + o(1))H, (38)

where Ω∗
1 is a limiting positive definite matrix, and

H = I4 ⊗ diag(1, h) =



1 0 · · · 0 0

0 h · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 h


.

By (36), (35), and (38) it follows that

n∑
i=1

E
[
∥α∗,i∥3

]
=nE

[
∥α∗,1∥3

]
=

1√
n
E

[∥∥∥Ω−1/2t∗,1

∥∥∥3]
=

1√
n
E

[∥∥∥Ω−1/2
1 t∗,1

∥∥∥3]
=
f(0)σ2ε(0)√

nh
E

[∥∥∥(H (Ω∗
1 + o(1))H)−1/2 t∗,1

∥∥∥3]
≤ f(0)σ2ε(0)(√

eigmin (Ω∗
1) + o(1)

)
·
√
nh

E
[∥∥H−1t∗,1

∥∥3] .
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Denoting ω∗
1 =

√
eigmin (Ω∗

1), we get

n∑
i=1

E
[
∥α∗,i∥3

]
=

(
f(0)σ2ε(0)

ω∗
1

+ o(1)

)
1√
nh

E
[∥∥H−1t∗,1

∥∥3] = O(1) · 1√
nh
,

since E
[∥∥H−1t∗,1

∥∥3] = O(1) when E
[
ε3
∣∣Z = z

]
is uniformly bounded in a neighborhood

of zero. Thus Liapunov’s condition (37) holds, and so Ω−1/2√nT̃∗ ⇝ N (08, I8).

D.11 Proof of Lemma 11

Write

T̃∗,ε =
1

n

n∑
i=1

K

(
Zi

h

)
Xiεi, and T̃∗,X =

1

n

n∑
i=1

{ηX (ξi)−E [ηX (ξ2)]} . (39)

Then,

T̃ε = T̃∗,ε + S̃ε,

where S̃ε =
1

n

n∑
i=1

K (Zi/h)
(
X̃i −Xi

)
εi.

(40)

Similarly,

T̃X = T̃∗,X + T̃
(1)
∗,X − T̃∗,X + S̃

(1)
X ,

where T̃
(1)
∗,X =

1

n

n∑
i=1

K (Zi/h)Xi

(
Xi − X̃i

)′
β

S̃
(1)
X = − 1

n

n∑
i=1

K (Zi/h)
(
X̃i −Xi

)(
X̃i −Xi

)′
β.

(41)

We wish to then show that

S̃ε = op

(
T̃∗,ε

)
and T̃

(1)
∗,X − T̃∗,X + S̃

(1)
X︸ ︷︷ ︸

S̃X

= op

(
T̃∗,X

)
. (42)
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Define the following statistic

Tg =
1

n

n∑
i=1

K

(
Zi

h

)
g (ξi) (µ̂i (Zi)− µ (Zi)− µ̂i(0) + µ(0)) . (43)

Then, T̃∗,X + S̃X = TgX , where

gX(ξ) = −
(
δ(0) + δ′(0)Z

)
·X (Z, µr(Z), µr(0), νr(Z), νr(0)) . (44)

Similarly, S̃ε in (40) can be written as S̃ε = Tgε , where

gε(ξ) = (0, 0, 0, 0, Y − Y (Z), Z · (Y − Y (Z)), 0, 0) . (45)

We can show that Tg is the sum of mean-zero i.i.d. random variables with an additional

remainder term (see Lemma 12). To that end, define

η̇g,2,h,r (ξ1, ξ2) =K (Z1/h) g (ξ1) (φ̇r (ξ2, Z1)− φ̇r (ξ2, 0))

+K (Z2/h) g (ξ2) (φ̇r (ξ1, Z2)− φ̇r (ξ1, 0)) ,

and η̇g,1,h,r (ξ1) =E [η̇g,2,h,r (ξ1, ξ2)|ξ1]

=E [K (Z2/h) g (ξ2) (φ̇r (ξ1, Z2)− φ̇r (ξ1, 0))|ξ1] ,

and for brevity, η̇g,j ≡ η̇g,j,h,r for j ∈ {1, 2}.

(46)

η̇g,1 is the first-order Hajek projection of η̇g,2, and φ̇r (defined in (84)) is an influence function

for the difference µ̂i(z)− µ(z) based on a first order Taylor approximation of reciprocals.

The negligibility claim in (42) follows from Lemmas 12, 13 and 14 applied componentwise

to each component of gε and gX .

D.12 Proof of Lemma 12

For this proof, write φ ≡ φr, φ̇ ≡ φ̇r, µ ≡ µr, ν ≡ νr and π ≡ πr.

82



D.12.1 Proof of Lemma 12: break down of Tg

Break Tg in (43) into parts and use the representation in (93),

Tg =
1

n

n∑
i=1

K (Zi/h) g (ξi) (µ̂i (Zi)− µ (Zi))−
1

n

n∑
i=1

K (Zi/h) g (ξi) (µ̂i(0)− µ(0))

=
1

n

n∑
i=1

K (Zi/h) g (ξi)
(
P̂−i [φ̇ (·, Zi)] + R̂emi,r (Zi)

)
− 1

n

n∑
i=1

K (Zi/h) g (ξi)
(
P̂−i [φ̇(·, 0)] + R̂emi,r(0)

)
.

Thus,

Tg =T (1)
g +Rg,

where T (1)
g =

1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

K (Zi/h) g (ξi) (φ̇ (ξj , Zi)− φ̇ (ξj , 0)) ,

Rg =
1

n

n∑
i=1

K (Zi/h) g (ξi)
(
R̂emi,r (Zi)− R̂emi,r(0)

) (47)

Turn the expression for T
(1)
g into that of a second order U-statistic with a symmetric kernel:

combine (47) with the identity
∑

i,j:i̸=j Aij =
∑

i,j:i<j (Aij +Aji) = 2
∑

i,j:i<j
1
2 (Aij +Aji)

and η̇g,2 in (46) to get

Tg =T (1)
g +Rg,

where T (1)
g =

1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

η̇g,2 (ξi, ξj) ,

Rg =
1

n

n∑
i=1

K (Zi/h) g (ξi)
(
R̂emi,r (Zi)− R̂emi,r(0)

)
.

(48)

Now (19) follows from (48) and noting that Ug = T
(1)
g − T∗,g (by definition in (19)) so that

T
(1)
g = T∗,g + Ug.
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D.13 Proof of Lemma 13

Recall from (19) and (46) that

T∗,g =
1

n

n∑
i=1

η̇g,1 (ξi) , where η̇g,1 (ξ1) = E [K (Z2/h) g (ξ2) (φ̇ (ξ1, Z2)− φ̇ (ξ1, 0))|ξ1]

Since E [η̇g,1 (ξ1)] = 0 and ξi are independent, we get

E
[
T 2
∗,g
]
=

E
[
η̇g1 (ξ1)

2
]

n
.

Define the “un-centered” version of η̇g,1 by

ηg,1 (ξ1) = E [K (Z2/h) g (ξ2) (φ (ξ1, Z2)− φ (ξ1, 0))|ξ1] (49)

Recall from (90) that

φ (ξ1, z) = (Y1 − µ(z))
R
(
Z1−z

r

)
π(z)

.

Hence combining (90) with (49) yields

ηg,1 (ξ1) = E

[
K

(
Z2

h

)
g (ξ2)

(
(Y1 − µ (Z2))

R
(
Z1−Z2

r

)
π (Z2)

− (Y1 − µ(0))
R
(
Z1
r

)
π(0)

)∣∣∣∣∣ξ1
]
. (50)

Break this down as follows

ηg,1,h,r (ξ1) =α1,h,r (ξ1) + α2,h,r (ξ1)− α3,h,r (ξ1) ,

α1,h,r (ξ1) = ε1E

[
K

(
Z2

h

)
g (ξ2)

(
R
(
Z1−Z2

r

)
π (Z2)

−
R
(
Z1
r

)
π(0)

)∣∣∣∣∣Z1

]
,

α2,h,r (ξ1) =E

[
K

(
Z2

h

)
g (ξ2) (Y (Z1)− µ (Z2))

(
R
(
Z1−Z2

r

)
π (Z2)

−
R
(
Z1
r

)
π(0)

)∣∣∣∣∣Z1

]
,

α3,h,r (ξ1) =E

[
K

(
Z2

h

)
g (ξ2) (µ (Z2)− µ(0))

]
R
(
Z1
r

)
π(0)

.

(51)

As before, we suppress reference to h, r and furthermore write αj = αj,h,r (ξ1). We now de-

rive moments of the αj ’s and their approximate representations. ByE [ε1|Z1] = 0, E [α1] = 0

and E [α1 · αj ] = 0 for each j ∈ {2, 3}.
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Throughout, the following approximation result will be useful:

f bounded and uniformly continuous =⇒ lim
r→0

sup
z

∣∣∣∣π(z)2r
− f(z)

∣∣∣∣ = 0. (52)

Our use of (52) will be that normalization by division by a factor 2r results in an “asymptotic

stabilization” of π.

D.13.1 Moments for α1

Use (51) to write

α1 (ξ1) = ε (ξ1) · φ̇α,1 (Z1) ,

where φ̇α,1 (Z1) =E

[
K

(
Z2

h

)
g (ξ2)

(
R
(
Z1−Z2

r

)
π (Z2)

−
R
(
Z1
r

)
π(0)

)∣∣∣∣∣Z1

]
.

(53)

In what follows, define

mg(z) = E[g(ξ)|Z = z]. (54)

For fixed z1, by a standard change of variables,

φ̇α,1 (z1) =
h

2r

∫
f(uh)K(u)mg(uh)

(
R
(
z1
r − uh

r

)
π(uh)/2r

−
R
(
z1
r

)
π(0)/2r

)
du. (55)

Then

φ̇α,1(vr) =
h

2r

∫
f(uh)K(u)mg(uh)

(
R
(
v − uh

r

)
π(uh)/2r

− R(v)

π(0)/2r

)
du.

Define

φα,1(v;h, r) =

∫
f(uh)K(u)mg(uh)

(
R
(
v − uh

r

)
π(uh)/2r

− R(v)

π(0)/2r

)
du,

so that φ̇α,1(vr) =
h

2r
φα,1(v;h, r).

(56)

Along sequences (h, r) = (hn, rn) such that lim inf(h/r) ∈ (0,∞), the quantity φα,1 is

asymptotically stable.
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Denote σ2 (Z1) = E
[
ε21
∣∣Z1

]
. Then

Var [α1] =E
[
α2
1

]
= E

[
ε21 · φ̇α,1 (Z1)

2
]
= E

[
E
[
ε21
∣∣Z1

]
· φ̇α,1 (Z1)

2
]

=E
[
σ2 (Z1) φ̇α,1 (Z1)

2
]
=

∫
f (z1)σ

2 (z1) φ̇α,1 (z1)
2 dz1

= r

∫
f(vr)σ2(vr)φ̇α,1(vr)

2 dv.

Combine this with (56) to get

Var [α1] = h
h

4r

∫
f(vr)σ2(vr)φα,1(v;h, r)

2dv. (57)

Next denote ρ3 (Z1) = E
[
|ε1|3

∣∣∣Z1

]
. Then

E
[
|α1|3

]
=E

[
|ε1|3 |φ̇α,1 (Z1)|3

]
= E

[
ρ3 (Z1) |φ̇α,1 (Z1)|3

]
=

∫
f (z1) ρ3 (z1) |φ̇α,1 (z1)|3 dz1 = r

∫
f(vr)ρ3(vr) |φ̇α,1(vr)|3 dv

= r

∫
f(vr)ρ3(vr) |φ̇α,1(vr)|3 dv.

Combine this with (56) to get

E
[
|α1|3

]
= h

h2

8r2

∫
f(vr)ρ3(vr) |φα,1(v;h, r)|3 dv. (58)

Thus combining E [α1] = 0 with (57) and (58), we get

E [α1] = 0, E
[
α2
1

]
= h

h

4r

∫
f(vr)σ2(vr)φα,1(v;h, r)

2dv,

E
[
|α1|3

]
= h

h2

8r2

∫
f(vr)ρ3(vr) |φα,1(v;h, r)|3 dv.

(59)

D.13.2 Moments for α2

Use (51) and (54) to write

α2 = α2 (Z1) := E

[
K

(
Z2

h

)
mg (Z2) (Y (Z1)− µ (Z2))

(
R
(
Z1−Z2

r

)
π (Z2)

−
R
(
Z1
r

)
π(0)

)∣∣∣∣∣Z1

]
(60)
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Then

α2 (z1) =

∫
K
(z2
h

)
mg (z2) (Y (z1)− µ (z2))

(
R
(
z1−z2

r

)
π (z2)

−
R
(
z1
r

)
π(0)

)
f (z2) dz2

By the change of variables z2 = uh,

α2 (z1) =
h

2r

∫
K(u)f(uh)mg(uh) (Y (z1)− µ(uh))

(
R
(
z1
r − uh

r

)
π(uh)/2r

−
R
(
z1
r

)
π(0)/2r

)
du.

Therefore,

α2(vr) =
h

2r

∫
K(u)f(uh)mg(uh) (Y (vr)− µ(uh))

(
R
(
v − uh

r

)
π(uh)/2r

− R(v)

π(0)/2r

)
du.

Let

φα,2(v;h, r) =

∫
K(u)f(uh)mg(uh) (Y (vr)− µ(uh))

(
R
(
v − uh

r

)
π(uh)/2r

− R(v)

π(0)/2r

)
du.

Then

α2(vr) =
h

2r
φα,2(v;h, r). (61)

Along sequences (h, r) = (hn, rn) such that lim inf(h/r) ∈ (0,∞), the quantity φα,2 is

asymptotically stable.

By the change of variables z2 = vr,

E [α2] =

∫
α2 (z1) f (z1) dz1 = r

∫
α2(vr)f(vr) dv.

Therefore using (61),

E [α2] =
h

2

∫
φα,2(v;h, r)f(vr) dv.

For the second moment

E
[
α2
2

]
=

∫
α2 (z1)

2 f (z1) dz1 = r

∫
α2(vr)

2f(vr) dv,
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and so, (61) yields

E
[
α2
2

]
= h

h

4r

∫
φα,2(v;h, r)

2f(vr) dv.

A similar calculation for the third absolute moment using (61) yields

E
[
|α2|3

]
= h

h2

8r2

∫
|φα,2(v;h, r)|3 f(vr) dv.

Combine all of the above to get

E [α2] =
h

2

∫
φα,2(v;h, r)f(vr) dv, E

[
α2
2

]
= h

h

4r

∫
φα,2(v;h, r)

2f(vr) dv

E
[
|α2|3

]
= h

h2

8r2

∫
|φα,2(v;h, r)|3 f(vr) dv.

(62)

D.13.3 Moments for α3

From (51),

α3 = φ̇α,3(h, r) ·
R(Z/r)

π(0)
, where φ̇α,3 = E

[
K

(
Z

h

)
mg(Z) (µ(Z)− µ(0))

]
.

Therefore, since E
[
R(Z/r)
π(0)

]
= 1,

E [α3] = φ̇α,3, E
[
α2
3

]
= φ̇2

α,3

E
[
R(Z/r)2

]
π(0)2

, and E
[
|α3|3

]
= |φ̇α,3|3

E
[
R(Z/r)3

]
π(0)3

.

Furthermore

φ̇α,3 = E

[
K

(
Z

h

)
mg(Z) (µ(Z)− µ(0))

]
=

∫
K
( z
h

)
mg(z) (µ(z)− µ(0)) f(z)dz,

and so by change of variables z = uh,

φ̇α,3 = h

∫
K(u)mg(uh) (µ(uh)− µ(0)) f(uh)du.
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Therefore

φ̇α,3 =h · π(0)
2r

· φα,3(h, r), where

φα,3(h, r) =
2r

π(0)

∫
K(u)mg(uh) (µ(uh)− µ(0)) f(uh)du.

(63)

For the second moment, from (D.13.3),

E
[
α2
3

]
=

h2

4r2
φ2
α,3(h, r)

∫
R
(z
r

)2
f(z) dz,

and so

E
[
α2
3

]
= h

h

4r
φ2
α,3(h, r)

∫
R(v)2f(vr) dv. (64)

For the third moment, essentially the same calculation as that for the second moment yields

E
[
|α3|3

]
= h

h2

8r2
|φα,3(h, r)|3

∫
R(v)3f(vr) dv. (65)

Combine (63), (64) and (65):

E [α3] = h
π(0)

2r
φα,3(h, r), E

[
α2
2

]
= h

h

4r
φα,3(h, r)

2

∫
R(v)2f(vr) dv,

E
[
|α3|3

]
= h

h2

8r2
|φα,3(h, r)|3

∫
R(v)3f(vr) dv.

(66)

D.14 Proof of Lemma 14

Proof of Lemma 14: Variance of Ug

For (21), first note that η̇g,1 is the first order projection of η̇g,2, since

E [η̇g,2 (ξ1, ξ2)|ξ1] =E [K (Z1/h) g (ξ1) (φ̇ (ξ2, Z1)− φ̇ (ξ2, 0))|ξ1]

+E [K (Z2/h) g (ξ2) (φ̇ (ξ1, Z2)− φ̇ (ξ1, 0))|ξ1]

=K (Z1/h) g (ξ1) (E [φ̇ (ξ2, Z1)|Z1]−E [φ̇ (ξ2, 0)|ξ1])

+E [K (Z2/h) g (ξ2) (φ̇ (ξ1, Z2)− φ̇ (ξ1, 0))|ξ1] .
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Since E [φ̇ (ξ2, z)] = 0 for every z,

E [η̇g,2 (ξ1, ξ2)|ξ1] = E [K (Z2/h) g (ξ2) (φ̇ (ξ1, Z2)− φ̇ (ξ1, 0))|ξ1] = η̇g,1 (ξ1) .

Thus η̇g,1 is the first order projection of η̇g,2. Hence (21) follows from (67) in Lemma 15.

Lemma 15. Let P be a probability measure and for m ∈ N \ {1}, let η ∈ L2 (P
m) be a mth

order kernel that is permutation symmetric. In the case of m = 2, we have the equality

E

[∥∥∥Un(η)− Ûn(η)
∥∥∥2] = 2

n(n− 1)
tr (E [Var [η (ξ1, ξ2)|ξ1]]−Var [E [η (ξ1, ξ2)|ξ1]]) . (67)

More generally, for any m ≥ 2, we have the bound

E

[∥∥∥Un(η)− Ûn(η)
∥∥∥2] ≤ m2(m− 1)2

(
1 + m−1

n−m+1

)
n2

ζ1(η)

+

m∑
c=2

1∣∣Injn,c∣∣ · (m!)2

((m− c)!)2c!
(1 + δn,m,c) ζc(η),

(68)

where for each c ∈ {2, . . . ,m}, the quantities δn,m,c do not depend on η, P or the dimension

of ξi (except possibly through n and m) and satisfy limn→∞ δn,m,c = 0.

The result (67) and the definitions of the covariances ζc can be found in the chapter on

U-statistics in van der Vaart (1998). The result (68) is not difficult to derive.

Proof of Lemma 14: rate of convergence of Ug

Now for the rate of convergence, first write

η̇g,2 (ξ1, ξ2) = η̇∗ (ξ1, ξ2) + η̇∗ (ξ2, ξ1) ,

η̇∗ (ξ1, ξ2) = η̇∗,h,r (ξ1, ξ2) =K (Z1/h) g (ξ1) (φ̇ (ξ2, Z1)− φ̇ (ξ2, 0)) .

Since E [φ̇ (ξ2, z1)] = 0 for every z1 (so that E [φ̇ (ξ2, Z1)|Z1] = 0),

Var [η̇g,2] = E
[
η̇2g,2
]

and Var [η̇∗] = E
[
η̇2∗
]
.
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By the Cr inequality,

Var [η̇g,2 (ξ1, ξ2)] = E
[
η̇g,2 (ξ1, ξ2)

2
]
≤ 2

(
E
[
η̇∗ (ξ1, ξ2)

2
]
+E

[
η̇∗ (ξ2, ξ1)

2
])
.

and so

Var [η̇g,2 (ξ1, ξ2)] ≤ 4E
[
η̇∗ (ξ1, ξ2)

2
]
. (69)

Denote

mg2 (Z1) = E
[
g (ξ1)

2
∣∣∣Z1

]
.

Expanding the moment in the upper bound in (69),

E
[
η̇∗ (ξ1, ξ2)

2
]
=E

[
K

(
Z1

h

)2

g (ξ1)
2 {φ̇ (ξ2, Z1)− φ̇ (ξ2, 0)}2

]

=E

[
K

(
Z1

h

)2

mg2 (Z1) {φ̇ (ξ2, Z1)− φ̇ (ξ2, 0)}2
]

=E

[
K

(
Z1

h

)2

mg2 (Z1)Var [φ (ξ2, Z1)− φ (ξ2, 0)|Z1]

]
.

Denote

v2 (Z1) = Var [φ (ξ2, Z1)− φ (ξ2, 0)|Z1] . (70)

Then,

E
[
η̇∗ (ξ1, ξ2)

2
]
= E

[
K

(
Z1

h

)2

mg2 (Z1) v
2 (Z1)

]
=

∫
f (z1)K

(z1
h

)
mg2 (z1) v

2 (z1) dz1,

and so by the change of variables z1 = uh,

E
[
η̇∗ (ξ1, ξ2)

2
]
= h

∫
K(u)2f(uh)mg2(uh)v

2(uh) du. (71)

Recall from (90) that

φ (ξ2, z1) = (Y2 − µ (z1))
R
(
Z2−z1

r

)
π (z1)

.
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With some algebra, we can show

φ (ξ2, z1)− φ (ξ2, 0) = ε2

{
R
(
Z2−z1

r

)
π (z1)

−
R
(
Z2
r

)
π(0)

}

+ {Y (Z2)− µ (z1)}

{
R
(
Z2−z1

r

)
π (z1)

−
R
(
Z2
r

)
π(0)

}

+ {µ(0)− µ (z1)}
R
(
Z2
r

)
π(0)

(72)

Revisiting (70),

v2 (z1) = Var [φ (ξ2, Z1)− φ (ξ2, 0)|Z1 = z1] = Var [φ (ξ2, z1)− φ (ξ2, 0)] ,

and so,

v2 (z1) = E
[
{φ (ξ2, z1)− φ (ξ2, 0)}2

]
− (E [φ (ξ2, z1)− φ (ξ2, 0)])

2 . (73)

Therefore using (72), the two moments in (73) can be written as

E [φ (ξ2, z1)− φ (ξ2, 0)] =E

[
(Y (Z2)− µ (z1))

(
R
(
Z2−z1

r

)
π (z1)

−
R
(
Z2
r

)
π(0)

)]

+ (µ(0)− µ (z1))E

[
R
(
Z2
r

)
π(0)

]

E
[
{φ (ξ2, z1)− φ (ξ2, 0)}2

]
=E

σ2 (Z2)

(
R
(
Z2−z1

r

)
π (z1)

−
R
(
Z2
r

)
π(0)

)2


+E




(Y (Z2)− µ (z1))

(
R
(

Z2−z1
r

)
π(z1)

−
R
(

Z2
r

)
π(0)

)
+(µ(0)− µ (z1))

R
(

Z2
r

)
π(0)


2
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We can then bound the second moment so that

E [φ (ξ2, z1)− φ (ξ2, 0)] =E

[
(Y (Z2)− µ (z1))

(
R
(
Z2−z1

r

)
π (z1)

−
R
(
Z2
r

)
π(0)

)]

+E

[
(µ(0)− µ (z1))

R
(
Z2
r

)
π(0)

]

E
[
{φ (ξ2, z1)− φ (ξ2, 0)}2

]
≤E

σ2 (Z2)

(
R
(
Z2−z1

r

)
π (z1)

−
R
(
Z2
r

)
π(0)

)2


+ 2E

(Y (Z2)− µ (z1))
2

(
R
(
Z2−z1

r

)
π (z1)

−
R
(
Z2
r

)
π(0)

)2


+ 2 (µ(0)− µ (z1))
2
E
[
R
(
Z2
r

)2]
π(0)2

.

(74)

For the first moment,

E [φ (ξ2, z1)− φ (ξ2, 0)] =

∫
f (z2) (Y (z2)− µ (z1))

(
R
(
z2−z1

r

)
π (z1)

−
R
(
z2
r

)
π(0)

)
dz2

+ (µ(0)− µ (z1))

= r

∫
f(v) (Y (vr)− µ (z1))

(
R
(
v − z1

r

)
π (z1)

− R(v)

π(0)

)
dv

+ (µ(0)− µ (z1)) ,

where the last line follows by the change of variables z2 = vr. Normalizing π to π/2r for

stability, we get

E [φ (ξ2, z1)− φ (ξ2, 0)] =
1

2

∫
f(v) (Y (vr)− µ (z1))

(
R
(
v − z1

r

)
π (z1) /2r

− R(v)

π(0)/2r

)
dv

+ (µ(0)− µ (z1))

(75)
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For the variance, from (74)

E
[
{φ (ξ2, z1)− φ (ξ2, 0)}2

]
≤
∫
f (z2)σ

2 (z2)

(
R
(
z2−z1

r

)
π (z1)

−
R
(
z2
r

)
π(0)

)2

dz2

+ 2

∫
f (z2) (Y (z2)− µ (z1))

2

(
R
(
z2−z1

r

)
π (z1)

−
R
(
z2
r

)
π(0)

)2

dz2

+ 2 (µ(0)− µ (z1))
2

∫
f (z2)R

(
z2
r

)2
dz2

π(0)

= r

∫
f(vr)σ2(vr)

(
R
(
v − z1

r

)
π (z1)

− R(v)

π(0)

)2

dv

+ 2r

∫
f(vr) (Y (vr)− µ (z1))

2

(
R
(
v − z1

r

)
π (z1)

− R(vr)

π(0)

)2

dv

+ 2 (µ(0)− µ (z1))
2 r
∫
f(vr)R(v)2 dv

π(0)2

Thus, normalizing π to π/2r,

E
[
{φ (ξ2, z1)− φ (ξ2, 0)}2

]
=

1

4r

∫
f(vr)σ2(vr)

(
R
(
v − z1

r

)
π (z1) /2r

− R(v)

π(0)/2r

)2

dv

+
1

2r

∫
f(vr) (Y (vr)− µ (z1))

2

(
R
(
v − z1

r

)
π (z1) /2r

− R(vr)

π(0)/2r

)2

dv

+
1

2r
(µ(0)− µ (z1))

2

∫
f(vr)R(v)2 dv

(π(0)/2r)2

(76)
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Thus, plugging (75) and (76), into (73)

v2 (z1) ≤
1

4r

∫
f(vr)σ2(vr)

(
R
(
v − z1

r

)
π (z1) /2r

− R(v)

π(0)/2r

)2

dv

+
1

2r

∫
f(vr) (Y (vr)− µ (z1))

2

(
R
(
v − z1

r

)
π (z1) /2r

− R(vr)

π(0)/2r

)2

dv

+
1

2r
(µ(0)− µ (z1))

2

∫
f(vr)R(v)2 dv

(π(0)/2r)2

−

 1
2

∫
f(v) (Y (vr)− µ (z1))

(
R(v− z1

r )
π(z1)/2r

− R(v)
π(0)/2r

)
dv

+(µ(0)− µ (z1))


2

.

(77)

Thus evaluate the upper bound in (77) along sequences z1 = uh to conclude that

v2 (uh) ≤ 1

r
Cv(u;h, r)

Cv(u;h, r) =
1

4

∫
f(vr)σ2(vr)

(
R
(
v − uh

r

)
π(uh)/2r

− R(v)

π(0)/2r

)2

dv

+
1

2

∫
f(vr) (Y (vr)− µ(uh))2

(
R
(
v − uh

r

)
π(uh)/2r

− R(vr)

π(0)/2r

)2

dv

+
1

2
(µ(0)− µ(uh))2

∫
f(vr)R(v)2 dv

(π(0)/2r)2

− r

 1
2

∫
f(v) (Y (vr)− µ(uh))

(
R(v−uh

r )
π(uh)/2r − R(v)

π(0)/2r

)
dv

+(µ(0)− µ (uh))


2

.

(78)

Combine (78) with (71) to get

E
[
η̇∗ (ξ1, ξ2)

2
]
≤ h

r

∫
K(u)2f(uh)mg2(uh)Cv(u;hr) du. (79)

Furthermore, by (69)

Var [η̇g,2 (ξ1, ξ2)] ≤ 4
h

r

∫
K(u)2f(uh)mg2(uh)Cv(u;hr) du.
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The inequality in (21) now follows from the above and the fact that

E [Var [η̇g,2 (ξ1, ξ2)|ξ1]]−Var [E [η̇g,2 (ξ1, ξ2)|ξ1]]

≤E [Var [η̇g,2 (ξ1, ξ2)|ξ1]] + Var [E [η̇g,2 (ξ1, ξ2)|ξ1]]

=Var [η̇g,2 (ξ1, ξ2)] .

Proof of Lemma 14: rate of convergence of Ug relative to Tg,∗

Take the ratio of second moments: By the expression for E
[
U2
g

]
in (21) and for E

[
T 2
g,∗
]
in

(20),

E
[
U2
g

]
E
[
T 2
∗,g
] ≤ 8

(n− 1)h
·

∫
K(u)2f(uh)mg2(uh)Cv(u;hr) du

(1 + o(1))
(∫
f(vr)σ2(vr)φα,1(v;h, r)2dv +

∫
φα,2(v;h, r)2f(vr) dv

) .
Therefore, Ug = op (T∗,g) if nh→ ∞ since the variance ratio tends to zero.

Proof of Lemma 14: rate of convergence of Rg relative to Ug,∗

Write

E =

{
max

i=1,...,n
sup

z∈[−1,1]
|π̂i(z)− π(z)| ≤ r

2
inf f

}
.

We want to apply (100) in Lemma 19 with y = r
16 inf f (so that 8y = r

2 inf f). First, the

side condition y ≥
√

Cr
n is satisfied for n large enough since r

16 inf f ≥
√

Cr
n if and only if

1√
nr

≤ inf f

16
√
C

and the latter occurs since 1/(nr) → 0. Then by (100) with y = r
16 inf f ,

Pr {Ec} ≤A exp

{
−(n− 1)(inf f)2r

265C∗
+ 2 log(116/(r inf f)) + log n

}
+A exp {−C(n− 1)r + 2 log(1/(Cr)) + logn}

→ 0.

since (log n)/(nr) → 0.

Now split

|Rg| = |Rg|1E + |Rg| (1− 1E) = (1 + op(1)) |Rg|1E , (80)

where the latter equality follows since 1 − 1E
p→ 0 and 1 − 1E is a 0-1 sequence, the
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second term in the first equality above is negligible at any rate (i.e. for arbitrary norming

sequences).

Recall from (19) that

Rg =
1

n

n∑
i=1

K (Zi/h) g (ξi)
(
R̂emi,r (Zi)− R̂emi,r(0)

)
,

and from (86):

If |π̂i,r(z)− πr(z)| =
∣∣∣(P̂−i − P

)
[ψ2,r,z]

∣∣∣ ≤ r

2
inf f,

then
∣∣∣R̂emi,r,z

∣∣∣ ≤ 2
∣∣ψ1,r(z)

∣∣ ·
[(
P̂−i − P

)
[ψ2,r,z]

]2
r3(inf f)3

+

[(
P̂−i − P

)
[ψ1,r,z]

]2
+
[(
P̂−i − P

)
[ψ2,r,z]

]2
r2(inf f)2

.

Combine (80) with the above to get

|Rg| = (1 + op(1))1E |Rg| ≤
(1 + op(1))1E

n

n∑
i=1

K

(
Zi

h

)
|g (ξi)|

(∣∣∣R̂emi,r (Zi)
∣∣∣+ ∣∣∣R̂emi,r(0)

∣∣∣)

≤ (2 + op(1))1E
n

n∑
i=1

K

(
Zi

h

)
|g (ξi)|

∣∣ψ1,r (Zi)
∣∣ ·
[(
P̂−i − P

)
[ψ2,r (·;Zi)]

]2
r3(inf f)3

+
(2 + op(1))1E

n

n∑
i=1

K

(
Zi

h

)
|g (ξi)|

∣∣ψ1,r (0)
∣∣ ·
[(
P̂−i − P

)
[ψ2,r (·; 0)]

]2
r3(inf f)3

+
(1 + op(1))1E

n

n∑
i=1

K

(
Zi

h

)
|g (ξi)|

[(
P̂−i − P

)
[ψ1,r (·;Zi)]

]2
r2(inf f)2

+
(1 + op(1))1E

n

n∑
i=1

K

(
Zi

h

)
|g (ξi)|

[(
P̂−i − P

)
[ψ2,r (·;Zi)]

]2
r2(inf f)2

+
(1 + op(1))1E

n

n∑
i=1

K

(
Zi

h

)
|g (ξi)|

[(
P̂−i − P

)
[ψ1,r (·; 0)]

]2
r2(inf f)2

+
(1 + op(1))1E

n

n∑
i=1

K

(
Zi

h

)
|g (ξi)|

[(
P̂−i − P

)
[ψ2,r (·; 0)]

]2
r2(inf f)2

97



Each term is a V statistic which can be separated into a U statistic and a term V − U

both of which have variances that evolve at maximal rate of n−2O(h/r). This proves (22).

D.15 Proofs of auxiliary lemmas used for the proof of Theo-

rem 4

D.15.1 A useful leave-one-out result

Let P̂−i denote the empirical leave-i-out distribution, i.e.

P̂−i[g(ξ)] =

∫
g(x)P̂−i(dx) =

1

n− 1

n∑
j=1,j ̸=i

g (ξj) .

Following usual empirical process notation, we denote Pg = P [g(ξ)] =
∫
g(x)P (dx).

To estimate µ, we can use its empirical analogue. To that end, define

ψ1,r,z (ξ1) :=ψ1,r (ξ1, z) = Y1R

(
Z1 − z

r

)
,

ψ2,r,z (ξ1) :=ψ2,r (ξ1, z) = R

(
Z1 − z

r

)
.

(81)

Furthermore,

define ψ1,r(z) = P [ψ1,r,z] =

∫
ψ1,r (x1, z)P (dx1)

and note that πr(z) = P [ψ2,r,z] =

∫
ψ2,r (x1, z)P (dx1)

and µr(z) =
ψ1,r(z)

πr(z)
by EP [Y − Y (Z;D)|Z] = 0.

(82)

An analogue estimator for µ(z) is then

µ̂i(z) =
P̂−i [ψ1,r,z]

P̂−i [ψ2,r,z]
. (83)

The following lemma helps us to characterize the behavior of the difference µ̂i(z)− µ(z).
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Lemma 16. Let

φr,z (ξ1) := φr (ξ1, z) :=
1

πr(z)
· ψ1,r,z (ξ1)−

ψ1,r(z)

πr(z)2
· ψ2,r,z (ξ1) , (84)

and let R̂emi,r,z be defined by

R̂emi,r,z := R̂emi,r(z) := µ̂i(z)− µ(z)−
(
P̂−i − P

)
[φr(·, z)] . (85)

If inf f := infz∈[−1,1] f(z) > 0, then R̂emi,r,z satisfies the following:

If
∣∣∣(P̂−i − P

)
[ψ2,r,z]

∣∣∣ ≤ r

2
inf f,

then
∣∣∣R̂emi,r,z

∣∣∣ ≤ 2 |Pψ1,r,z| ·

∣∣∣(P̂−i − P
)
[ψ2,r,z]

∣∣∣2
r3(inf f)3

+ 2

∣∣∣(P̂−i − P
)
[ψ1,r,z]

∣∣∣ · ∣∣∣(P̂−i − P
)
[ψ2,r,z]

∣∣∣
r2(inf f)2

.

(86)

Lemma 17. If inf f := infz∈[−1,1] f(x) > 0, then for every r ∈ (0, 1],

inf
z∈[−1,1]

P [ψ2,r,z] ≥ r inf f.

Lemma 18 below is an error bound on the Taylor approximation for reciprocals of

positive numbers. We omit its straightforward proof.

Lemma 18. Let k ∈ N and a0 ≥ amin > 0. Then for any a > 0,

1

a
− 1

a0
− 1

a0

k∑
j=1

(
a0 − a

a0

)j

=

(
a0 − a

a0

)k (1

a
− 1

a0

)
. (87)

Thus for a > 0 such that |a− a0| < amin,∣∣∣∣∣∣1a − 1

a0
− 1

a0

k∑
j=1

(
a0 − a

a0

)j
∣∣∣∣∣∣ ≤ 1

1− (|a− a0| /amin)
· |a− a0|k+1

ak+2
min

. (88)
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Furthermore, if |a− a0| ≤ 1
2amin,∣∣∣∣∣∣1a − 1

a0
− 1

a0

k∑
j=1

(
a0 − a

a0

)j
∣∣∣∣∣∣ ≤ 2 |a− a0|k+1

ak+2
min

. (89)

φr in (84) has the following alternative representation:

φr (ξ1, z) =

(
Y1 −

ψ1,r(z)

πr(z)

)
ψ2,r (ξ1, z)

πr(z)
= (Y1 − µr(z))

R
(
Z1−z

r

)
πr(z)

. (90)

Define the centered version of φr by

φ̇r,z(ξ) := φ̇r(ξ, z) := φr(ξ, z)− P [φr(·, z)] . (91)

Then

P [φ̇r,z] = Eξ∼P [φ̇r,z(ξ)] = 0 for all z and r, (92)

and R̂emi,r(z) in (85) also satisfies

µ̂i(z)− µ(z) = P̂−i [φ̇r(·, z)] + R̂emi,r(z). (93)

D.15.2 Proof of Lemma 16

For the purpose of this proof, let r, z be fixed and denote ψj = ψj,r,z for j ∈ {1, 2}. From

(84) and (85),

R̂emi,r,z =
P̂−i [ψ1]

P̂−i [ψ2]
− P [ψ1]

P [ψ2]
−

(
P̂−i − P

)
[ψ1]

P [ψ2]
+

P [ψ1]

(P [ψ2])
2 ·
(
P̂−i − P

)
[ψ2]

This is a first order Taylor approximation remainder. For the bound in (86), combine

Lemmas 17 and 18 below.
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D.15.3 Proof of Lemma 17

Assume 0 < r ≤ 1. For every z ∈ [−1, 1],

P [ψ2,r,z] =

∫
R

(
u− z

r

)
f(u) du

≥ (inf f)

∫ 1

−1
R

(
u− z

r

)
du

= r inf f

∫ (1−z)/r

(−1−z)/r
R(v) dv.

Switching variables back to u, we have

P [ψ2,r(ξ, z)] ≥ r inf f

∫ (1−z)/r

(−1−z)/r
R(u) du.

By R(u) = 1[−1,1](u),

P [ψ2,r,z] ≥ r inf f

∫ min{1,(1−z)/r}

max{−1,(−1−z)/r}
du

= r inf f · (min{1, (1− z)/r} −max{−1, (−1− z)/r}) ,

Start with z ≥ 0. Then max{−1, (−1− z)/r} = −1. Hence

P [ψ2,r,z] ≥ r inf f · (1 + min{1, (1− z)/r})

≥ r inf f,

since min{1, (1− z)/r} ≥ 0 for every z ∈ [0, 1].

Next consider −1 ≤ z < 0. Then min{1, (1− z)/r} = 1. Hence

P [ψ2,r,z] ≥ r inf f · (1−max{−1, (−1− z)/r})

= r inf f · (1 + min{1, (1 + z)/r})

≥ r inf f

since min{1, (1 + z)/r} ≥ 0 for every z ∈ [−1, 0).
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E Concentration Inequalities

Theorem 6. Let F̂n denote empirical measure under an iid sample of size n from a prob-

ability measure F . Let G be a Vapnik-C̆ervonenkis (VC) class of measurable functions with

VC-dimension V(G) such that supg∈G ∥g∥∞ ≤ 1. Then there exists a universal positive

constant K ∈ (0,∞) not depending on G, P and n such that

Pr

{∥∥∥F̂n − F
∥∥∥
G
> 8y

}
≤ 16K · V(G)(16e)V(G)

[
exp

{
− ny2

128t2
+ V(G) log(1/y)

}
+ exp

{
−nt2 + 2V(G) log(1/t)

}]
,

(94)

for every y, t > 0 such that

y ≥ 1√
8n

sup
g∈G

√
F [g2]− (Fg)2 and t ≥ sup

g∈G

√
F [g2]. (95)

Remark 2. Recall that ∥F̂n−F∥G = supg∈G |F̂n[g]−F [g]|. In cases where measurability of

this quantity is of concern, (94) still holds with outer probability Pr∗ {·} in place of Pr {·}.

Proof of Lemma 6. Combine the covering number results for VC classes in Theorem 2.6.7

in van der Vaart and Wellner (2023, p. 206) with the proof of Theorem II.37 in Pollard

(1984, pp. 34 and 35).

For our use, the following parameterized classes will be of interest:

Gr = {gz,r : z ∈ [−1, 1]} where gz,r (z1) = R

(
z1 − z

r

)
. (96)

Recall that R(u) = 1{|u| ≤ 1}, but all subsequent arguments apply to functions of the

form R(u) = ψ(|u|) for ψ(·) non-increasing on [0,∞). We parameterize the classes by r so

that subsequent concentration inequalities depend on r. For any fixed r > 0, Gr satisfies

V (Gr) ≤ 2 — see Pollard (1984, Chapter II Problem 28). Now, denote

π̂i,r(z) =
1

n− 1

n∑
j=1,j ̸=i

1 {|Zj − z| ≤ r} and πr(z) =

∫
R

(
z1 − z

r

)
f (z1) dz1. (97)
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Remark 3. In (97),

1. π̂i,r(z) is the empirical probability of being i’s neighbor if i had z;

2. πr(z) is the population probability of being neighbors with someone with running

variable z.

Remark 4. Denote the probability measure with Lebesgue density f by F . Denote the

leave-i-out empirical measure integrating Zj ’s with j ∈ {1, . . . , n} \ {i} by F̂−i, i.e.

F̂−i[g] :=
1

n− 1

n∑
j=1,i̸=j

g (Zi) .

Then π̂i,r(z) and πr(z) in (97) can be rewritten in empirical process notation via (96) as

πi,r(z) = F̂−i [gz,r] and πr(z) = F [gz,r] . (98)

Lemma 19. Assume ∥f∥∞ <∞. Take C ≥ ∥f∥∞
∫
R(u)2 du, C∗ = 128C and y > 0 such

that y ≥
√

Cr
8n . Then there is a universal constant A not depending on r or n such that

max
i=1,...,n

Pr

{
sup

z∈[−1,1]
|π̂i,r(z)− πr(z)| > 8y

}

≤A

[
exp

{
−(n− 1)y2

C∗r
+ 2 log(1/y)

}
+ exp {−C(n− 1)r + 2 log(1/(Cr))}

]
.

(99)

and therefore,

Pr

{
max

i=1,...,n
sup

z∈[−1,1]
|π̂i,r(z)− πr(z)| > 8y

}

≤A exp

{
−(n− 1)y2

C∗r
+ 2 log(1/y) + logn

}
+A exp {−C(n− 1)r + 2 log(1/(Cr)) + logn} .

(100)

For sequences r = rn such that r ↓ 0 and log n/(nr) ↓ 0, the first exponential term (depen-

dent on y) dominates in both (99) and (100).
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Proof of Lemma 19. It is straightforward to show that

sup
g∈G

(
F
[
g2
]
− (Fg)2

)
≤ sup

g∈G
F
[
g2
]
≤ Cr. (101)

Following the notation conventions in (98), and using (94),

Pr

{∥∥∥F̂−i − F
∥∥∥
Gr

> 8y

}
≤ 32K(16e)2

[
exp

{
−(n− 1)y2

128t2
+ 2 log(1/y)

}
+ exp

{
−(n− 1)t2 + 4 log(1/t)

}]
,

for every y, t > 0 such that

y ≥
√
Cr

8n
and t ≥

√
Cr,

by (95) and (101). Since this holds for every i ∈ {1, . . . , n}, set A = 32K(16e)2, t =
√
Cr,

C∗ = 128C to get

max
i=1,...,n

Pr

{∥∥∥F̂−i − F
∥∥∥
Gr

> 8y

}
≤A

[
exp

{
−(n− 1)y2

C∗r
+ 2 log(1/y)

}
+ exp {−C(n− 1)r + 2 log(1/(Cr))}

]
,

which is exactly (99).

Then, (100) follows from Pr {maxj=1,...,N Vj > ε} ≤ N maxj=1,...,N Pr {Vj > ε} for arbi-

trary random variables V1, . . . , VN . The claim about the dominant first term stems from

the fact that for rn ↓ 0,

log n

nrn
→ 0 if and only if

log (1/rn)

nrn
→ 0.

Therefore for the second term independent of y for example in (100)

exp {−C(n− 1)r + 2 log(1/(Cr)) + logn}

= exp

{
−C(n− 1)r

(
1 +

2 log(1/(Cr))

n
+

log n

nr

)}
= exp {−C(n− 1)r (1 + o(1))} ,

and logn/(nr) ↓ 0 implies nr ↑ ∞. This term tends to zero regardless of the chosen y > 0
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with y ≥
√
(Cr)/(8n).

Lemma 20. Assume ∥f∥∞ <∞. Let rn be a sequence such that rn ↓ 0 and log n/ (nrn) ↓ 0.

Then for any ε > 0,

Pr

{
max

i=1,...,n
sup

z∈[−1,1]
|π̂i,rn(z)− πrn(z)| > rε

}
→ 0, as n→ ∞.

Therefore, maxi=1,...,n supz∈[−1,1] |π̂i,rn(z)− πrn(z)| = op (rn).

Proof of Lemma 20. Write r = rn and let A, C and C∗ be as defined in Lemma 19. Set

y = (εr)/8. Then y ≥
√

Cr
8n for n sufficiently large. To see this note that y ≥

√
Cr
8n iff

ε√
8C

≥
√

1
nr . By logn/(nr) → 0, 1/(nr) → 0 and so, y ≥

√
Cr
8n for n sufficiently large. By

Lemma 19,

Pr

{
max

i=1,...,n
sup

z∈[−1,1]
|π̂i,rn(z)− πrn(z)| > rε

}

=Pr

{
max

i=1,...,n
sup

z∈[−1,1]
|π̂i,rn(z)− πrn(z)| > 8y

}

≤A exp

{
−(n− 1)y2

C∗r
+ 2 log(1/y) + logn

}
+A exp {−C(n− 1)r + 2 log(1/(Cr)) + logn}

=A exp

{
−(n− 1)εr

64C∗
+ 2 log(8/(εr)) + logn

}
+A exp {−C(n− 1)r + 2 log(1/(Cr)) + logn} .

Both terms in the final two lines above tend to zero by logn/ (nrn) → 0 (which is equivalent

to log (1/rn) / (nrn) → 0 when rn → 0).

Lemma 21. Suppose hn ≫ n−1/3. Then

max
i:Zi∈[−hn,hn]

|µ̃(Zi)− µ(Zi)| = o(hn) w.p.a. 1 .

Proof. Let ε = f(0)hn

2rn
. Let Γ be the event that all Zi have between f(0) · nhn/2 and

f(0) · 3nhn/2 neighbors. Then by Lemma 20, P(Γ) → 1. Let K be the upper bound of
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Yd(z). That is, Yd(z) ≤ K for all z ∈ [−1, 1]. Applying Hoeffding’s Inequality to the

conditional distribution of Yj | Zj ∈ R(Zi) and on the event Γ, we have:

P

∣∣∣∣∣∣ 1

(n− 1)π̂i,r

n∑
j=1,j ̸=i

Yj1{|Zj − z| ≤ rn} − µ(Zi)

∣∣∣∣∣∣ ≥ (nhn)
−1/2+η


≤ exp

(
− (nhn)

1+2η

(n− 1)π̂i,rK2

)
≤ exp

(
− 2(nhn)

1+2η

(n− 1)hnK2

)
on Γ .

Now, w.p.a. 1, there are no more than 3nhn/2 observations on [−hn, hn]. On this event

and Γ, the union bound gives us that:

P
(

max
i:Zi∈[−hn,hn]

|µ̃(Zi)− µ(Zi)| ≥ (nhn)
−1/2+η

)
≤ 3f(0)

2
· nhn exp

(
− 2

K2
(nhn)

2η

)
→ 0

Since hn ≫ n−1/3, choose η such that (nhn)
−1/2+η ≪ hn and we are done.
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