Partnering for Hazardous Waste Minimization at CU-Boulder

Jacquie Richardson, Ph.D. Director, Organic Chemistry Teaching Labs

> Lily A. Robertson Green Labs Chemistry Team Lead

Mark Lapham, CHMM Asst. Director, HazMat Prgm. Mgr. EH&S

Sustainability Summit, April 2015

Municipal Waste Diversion

Waste to landfill / campus headcount (lbs.) 250 50.0% 45.0% 200 40.0% Pounds to Landfill/Campus Occupant landfill 35.0% from 150 30.0% diversion 25.0% Pounds/headcount aste 100 20.0% - Diversion Rate 15.0% Rate of 10.0% 50 5.0% 0.0% 0 FY03 FY04 FY05 FY06 FY07 FY08 FY09 FY10 FY11 FY12 FY13 FY14 FY15 **Fiscal Year**

Barriers to Haz. Waste Minimization Special hazards and great diversity Different wastes between disciplines Wastes within a single lab will change depending on projects Purity/contamination concerns for reuse Funding – we haul it away for free (usually)

Treatment Storage and Disposal Facility (TSDF)

Our TSDF is 1 of only 2 at a University in EPA Region 8

Consolidation

The T in TSDF

Chemical Treatment Facility

Treated Wastes

Photographic wastes
 > Ion Exchange to recover Silver

Trace Organic wastes
 Oxidation using ozone

Corrosive wastes: Acids and Bases
 Elementary Neutralization

Treatment Totals Since 2001

Type of Waste	Volume (gallons)
Photo	44,984
Neutralization	14,036
Oxidation	4,836
Total	63,856

Or as 55 gallon drums = 1,161

Neutralization Equipment

Trace Metals Removal

100% Discharge Rate for Neutralized Wastes!

Ethanol Reuse

Cold trap ethanol

Hazardous waste

Clean trap ethanol to be diluted to 70%

Ethanol spray & wipe of Biosafety Cabinets

Ethanol Reuse

Reducing haz waste
 Saving \$ for Cell Culture
 120 gal/yr x \$13/gal= \$1560/yr
 Required a teamwork approach

Scientist reaching out

- EH&S & CU Green Labs think of solution
- CU Green Labs engages Cell Culture, creates signage, & works with EH&S to set up system
- EH&S ongoing transport of materials

Green Chemistry in Research Labs

Green Chemistry in Research Labs

Materials goods that make the chemistry Research funding Water & energy > Brown glass bottles & metal cans for transport and dispersion of solvents & reagents > Clean dishes (waste generation, i.e., acetone) > Purification (more waste generation) > Specialized reagents (i.e., metal catalysts) Disposal of generated waste ... To name a few...

Acetone Recycling

- Idea: Distill glassware "rinse" acetone for reuse
- Team Approach Required:
 - Grant written by Chemistry Green Labs Team Lead
 - Matching funds Chemistry, FacMan, EH&S, & Zero Waste SAT
 - Labs collect "rinse" acetone
 - Chemistry committed to process acetone & maintain/repair
 - EH&S installed unit, set-up collection site & procedures, gave training, and transports acetone where necessary

Acetone Recycling: How It Works

Rinse acetone from undergrad and grad labs

Separate rinse acetone waste collection

Disposed of as hazardous waste

salts, etc.

Clean, fractionally distilled acetone Leftover H₂O,

Added to recycler

Acetone Recycling: Savings

Overall efficiency = 73.1%; overall savings = \$4,084*

Other Recycling

Current recycling

 Carboy (Cristol Chemistry)
 Plastic film, pipette tip box, Styrofoam (JSCBB)

 In progress

 Metal, select brown glass bottles

Carboys

Metal Reagent Cans & Solvent Drums

Brown Glass

Solvent Substitutions

A number of solvent selection guides are available from industry

Glaxo-Smith Kline (GSK)

	Few issues (bp°C)	Some issues (bp°C)	Majorissues
Chlorinated		ated solvents, have you considered acetate, 2-Methyl THF or Dimethyl Carbonate?	Dichloromethane ** Carbon tetrachloride ** Chloroform ** 1.2-Dichloroethane **
Greenest Option	Water (100°C)		
Alcohols	1-Butanol (118°C) 2-Butanol (100°C)	Ethanol//IMS (78°c) 1-Propanol (87°c) t-Butanol (82°c) 2-Propanol (82°c) Methanol (65°c) 1000000000000000000000000000000000000	2-Methoxyethanol **
Esters	t-Butyl acetate (%°C) Isopropyl acetate (%°C) Propyl acetate (102°C) Dimethyl Carbonate (%°C)	Ethyl acetate (77°6) Methyl acetate (67°6)	
Ketones		Methyl isobutyl ketone (117°C) Acetone (56°C)	Methyl ethyl ketone
Aromatics		p-Xylene (138°C) Toluene ** (111°C)	Benzene **
Hydrocarbons		Isooctane (७୭°с) Cyclohexane (७१°с) Heptane (७७°с)	Petroleum spirit ** 2-Methylpentane Hexane
Ethers		t-Butyl methyl ether (১৯৭০) 2-Methyl THF (१७९०) Cyclopentyl methyl ether (१७७९)	1,4-Dioxane ** 1,2-Dimethoxyethane ** Tetrahydrofuran Diethyl ether Diisopropyl ether **
Dipolar aprotics		Dimethyl sulfoxide (189°C)	Dimethyl formamide ** N-Methyl pyrrolidone ** N-Methyl formamide ** Dimethyl acetamide ** Acetonitrile

Preferred	Usable	Undesirable
Water	Cyclohexane	Pentane
Acetone	Heptane	Hexane(s)
Ethanol	Toluene	Di-isopropyl ether
2-Propanol	Methylcyclohexane	Diethyl ether
1-Propanol	TBME	Dichloromethane
Ethyl Acetate	Isooctane	Dichloroethane
Isopropyl acetate	Acetonitrile	Chloroform
Methanol	2-MeTHF	NMP
MEK	THE	DMF
1-Butanol	Xylenes	Pyridine
t-Butanol	DMSO	DMAc
	Acetic Acid	Dioxane
	Ethylene Glycol	Dimethoxyethane
		Benzene
		Carbon tetrachlori

Pfizer

Green Chem. 2011, 13, 854–862.

Green Chem. 2008, 10, 31–36.

22

Water-free Condensers

- Reactions are often done in boiling solvents
- Condensers keep solvent volumes constant
- Metal-jacketed "Findensers" save water, eliminate flooding

Water-free "Findenser" (Radleys)

Mobile Flammable Materials Freezer

Chemicals and residential units don't mix!

abs

Т

clean

s acquire des withen

A robile freeze Dan A rational de la celling tiles
 & Green Labs function de la celling tiles
 or nave a replacer
 En courages fre Paration doorframe Brit door

University of V liquids stored in explosion. The across the roon

> https: 2014/ storag

gerator-

sately

reeze

<u>er</u>

ust. CU

efrost

breaks

FY '14- '15 Green Chemistry Fund

- \$5,000 fund to cover cost of materials for lab members to try their ideas
- Committee of grad students, EH&S & CU Green Labs to review requests
- Successes will be publically shared with campus
- Grow the green chemistry culture on campus and get labs involved in coming up with ideas

Ideas that committee could also promote:

- Replace EtBr with less toxic products for DNA viewing
- Safer & greener alternatives to Piranha acid baths
- Mercury free efforts

Green Chemistry Initiatives

Green Organic Chemistry Strategies, Tools, and Laboratory Experiments

Kenneth M. Doxsee / James E. Hutchison

S CU-Boulder Organic Chem teachings labs replaced with Green Chem alternatives per this book

Impacts more than 800 students/year

At Univ. of Oregon, only one third of Organic Chemistry teaching lab experiments require fume hoods

Goals of Green Chemistry

- Scaling down of reactions
- Replacement of hazardous procedures
- Substitution for less hazardous reagents
- Undergraduate education about hazards, acetone recycling, etc.
- A handful of reactions have been replaced and/or implemented
- Impacting up to 1000 students/year

Measuring solvent effects: kinetics of hydrolysis of tert-butyl chloride

Previously:

 Replaces an old kinetics lab, which generated less volume of waste, but students used more hazardous reagents (KOH pellets, volatile alkylhalides)

- Milder reagents:
 - > Uses recycled acetone and tap water as solvents
 - > Prepared 0.04 M NaOH aqueous solution

A Greener Bromination of Stilbene

trans-Cinnamic acid

Previously:

- Bromine solution, dichloromethane as solvent
- Large volumes of aq. sodium thiosulfate neutralized Br₂

Now:

 Br₂ generated in situ with H₂O₂ and HBr, ethanol used as solvent, and no aq. sodium thiosulfate needed

CO₂ Liquid Extraction of Limonene

- Energy intensive steam distillation extraction procedure
- Required about 1 orange/student—high volume of discarded oranges

Now:

 Liquid CO₂ is more efficient, new digital polarimeter allows lower detection of limonene → ~1 orange/5 students! McKenzie, L. C. et al., *Green Chem.* 2004, *6*, 355–358. 30

Green Diels-Alder

9-Anthracenemethanol N-Methylmaleimide

.OH

Diels-Alder adduct

Previously:

- Precursor (cyclopentadiene) requires energyintensive distillation before use and is volatile and noxious-smelling
- Large amounts of energy and solvents needed to purify product (and time – this lab always ran overtime)

- Solvent is water no organic solvents used
- Product crystallizes automatically no further purification needed

Green Oxidative Cleavage

Previously:

Traditional reaction could not be performed in teaching labs because it required either generation of ozone, or extremely toxic chromium- or manganese-based reagents

- Hydrogen peroxide used as oxidizer •••
- **Tungsten used as catalyst** •••
- Water used as solvent students learn about phase ** transfer catalysts which allow reagent/catalyst to mix with water 32

Microwave-Assisted Chemistry

⊖S-C≡N K⊕ EtOH/H₂O Potassium thiocyanate mw, 125 °C

Previously:

 Reaction needed week-long heating, large amounts of solvent, and large amounts of water run through condenser

- Microwave reactor allows reaction to proceed in 30 minutes with less energy input
- Green solvent water and/or ethanol are good microwave absorbers
- Smaller reaction scale and less waste

Green Suzuki Coupling

aq. NaO

PdCl₂

X = H (phenylboronic acid) $X = OCH_3 (4-methoxy- x)$ phenylboronic acid)

Y = H (bromobenzene)

Y = COCH₃ (4'-bromoacetophenone)

 $Y = CH_3$ (4-bromotoluene)

 $Y = OCH_3$ (4-bromoanisole)

Y = F (1-bromo-4-fluorobenzene)

Previously:

 Traditional Suzuki catalyst is air-sensitive – requires use of nitrogen or argon atmosphere

- Palladium catalyst is still air-sensitive, but oxidizes slowly enough to perform reaction
- Aqueous solvent
- PdCl₂ commercially available as dilute solution allows reaction to be easily performed on microscale, using less reagents

Solvent-Free Wittig Coupling

Previously:

Mix two noxious-smelling, air-sensitive, toxic compounds with a flammable strong base

- Weigh out three inert solids and grind with mortar and pestle for 20 minutes, then mix with water and filter
- Product is better suited to teach students analysis of double bond isomers

Most Important: Changing Students' Perceptions of Chemistry

Previously:

 Student view of chemistry: no regard for environmental damage

Now:

- Green chemistry a specific goal of about one third of experiments currently in use
- Minimizing waste and maximizing efficiency are important goals, both in industry and in the lab

Future Goals:

- Phase out traditional organic solvents: hexane, dichloromethane
- Replace more old experiments with greener versions
- Put together videos explaining waste minimization cleaning glassware with minimum of solvent, how to avoid mixing waste streams, etc.

GREEN CHEMISTRY