How Much Does That Lab Equipment Consume Anyways?

Electrical Metering of Large Load Equipment
Without The Need For An Electrician

Ashlyn Norberg
University of Colorado Boulder
CU Green Labs Program

Learning Objectives

- 1. Metering system and set-up
- 2. Awareness of large consumers
 - 3. Energy efficient alternatives

How it all began

- Grant funding
- Labs21 Survey Protocol
- Cords with different NEMA plugs
- Training by campus tech

Demonstration

ELOG software

ELOG 11 - Carlson 110 Seals ULT 050413													
File View Logger Tools Data Window Help													
Carlson 110 Seals ULT 050413													
	Record Date	Record End Time	Chan 1 Min. Volt	Chan 1 Min. Time	Chan 1 Max. Volt	Chan 1 Max. Time	Chan 1 Avg. Volt	Chan 1 Amp Hours	Chan 1 Min. Amp	Chan 1 Min. Time	Chan 1 Max. Amp	Chan 1 Max. Time	Cha Â
1	05/29/13	10:20:00	120.9	10:15:33	123.8	10:12:55	122.7	0.94	0.03	10:13:27	15.98	10:16:56	5.63
2	05/29/13	10:30:00	120.6	10:29:44	122.0	10:22:16	121.4	2.07	12.00	10:25:53	13.44	10:20:00	12.44
3	05/29/13	10:40:00	117.3	10:30:44	123.5	10:37:20	122.0	0.96	0.33	10:39:51	12.27	10:34:03	5.77
4	05/29/13	10:50:00	122.3	10:40:00	123.4	10:49:10	123.1	0.06	0.38	10:41:25	0.39	10:44:50	0.39
5	05/29/13	11:00:00	114.4	10:53:00	123.5	10:50:11	121.7	1.50	0.38	10:52:27	47.29	10:53:00	9.02
6	05/29/13	11:10:00	120.7	11:00:31	121.9	11:03:00	121.3	2.05	12.02	11:09:36	12.65	11:00:02	12.29
7	05/29/13	11:20:00	116.2	11:10:27	121.8	11:19:58	121.3	2.02	11.28	11:19:09	12.29	11:15:49	12.11
8	05/29/13	11:30:00	118.9	11:21:52	121.8	11:20:54	121.1	2.01	11.94	11:26:35	12.29	11:21:37	12.08
9	05/29/13	11:40:00	116.6	11:32:44	123.4	11:38:44	121.6	1.78	0.38	11:39:38	12.28	11:36:42	10.65
10	05/29/13	11:50:00	120.5	11:49:35	123.4	11:41:44	123.0	0.06	0.38	11:49:35	0.39	11:43:38	0.39
11	05/29/13	12:00:00	121.9	11:55:18	123.1	11:58:08	122.4	0.06	0.38	11:55:49	0.39	11:55:49	0.38
12	05/29/13	12:10:00	122.5	12:06:59	123.6	12:04:47	123.1	0.06	0.38	12:06:08	0.39	12:08:55	0.39
13	05/29/13	12:20:00	115.9	12:11:26	123.4	12:10:00	121.5	2.12	0.38	12:10:00	44.83	12:11:26	12.70
14	05/29/13	12:30:00	120.7	12:21:56	122.0	12:26:03	121.4	2.04	12.05	12:27:00	12.41	12:20:05	12.24
15	05/29/13	12:40:00	120.9	12:32:16	121.8	12:30:47	121.5	2.03	11.99	12:38:22	12.33	12:38:31	12.18
16	05/29/13	12:50:00	119.5	12:44:32	122.1	12:41:40	121.3	2.02	11.53	12:44:47	12.34	12:44:32	12.12
17	05/29/13	13:00:00	120.7	12:51:00	123.6	12:58:29	121.9	1.53	0.38	12:59:43	12.34	12:55:01	9.16
18	05/29/13	13:10:00	118.2	13:03:47	123.6	13:00:59	123.2	0.06	0.35	13:01:28	0.39	13:08:55	0.39
19	05/29/13	13:20:00	117.3	13:15:47	123.2	13:10:00	122.6	0.06	0.35	13:15:24	0.39	13:10:07	0.38
20	05/29/13	13:30:00	118.0	13:29:21	123.4	13:20:57	122.8	0.06	0.35	13:29:21	0.39	13:24:40	0.39
21	05/29/13	13:40:00	114.9	13:30:04	122.9	13:30:04	120.8	2.10	0.39	13:30:00	47.05	13:30:04	12.59
22	05/29/13	13:50:00	116.6	13:41:15	121.3	13:45:17	120.8	2.02	11.25	13:41:15	12.29	13:45:33	12.10
23	05/29/13	14:00:00	120.8	13:50:02	121.8	13:54:32	121.2	2.02	11.95	13:55:48	12.25	13:57:22	12.11
			<u> </u>				4						

Keady

ELOG software

```
Carlson 110 Seals ULT 050413-Summary - Notepad
  File Edit Format View Help
  Data Summary
  Data File Name: Carlson 110 Seals ULT 050413
  First Data Record End Time: 05/29/13 10:20:00
  Last Data Record End Time: 06/04/13 14:00:00
 Monitoring Period Duration: 6.16 days
                                            Average Maximum (Date Time) Minimum (Date Time)
Chan 1 Min. Volt 119.4 124.5 (06/02/13 07:00:00) 111.9 (06/03/13 14:30:00) Chan 1 Max. Volt 122.5 125.7 (06/04/13 05:20:00) 119.1 (06/03/13 11:10:00) Chan 1 Avg. Volt 121.8 125.1 (06/04/13 05:20:00) 118.3 (06/03/13 10:40:00) Chan 1 Amp Hours 1.24 2.21 (06/02/13 20:50:00) 0.06 (06/04/13 13:40:00) Chan 1 Min. Amp 5.62 12.56 (06/02/13 22:40:00) 0.03 (05/29/13 10:20:00) Chan 1 Max. Amp 13.31 48.73 (06/02/13 07:10:00) 0.38 (06/03/13 19:50:00) Chan 1 Avg. Amp 7.45 13.26 (06/02/13 20:50:00) 0.37 (06/03/13 13:00:00) Chan 1 KW Hours 0.127 0.232 (06/02/13 20:50:00) 0.004 (06/03/13 11:40:00) Chan 1 Min. KW 0.570 1.270 (05/30/13 09:10:00) 0.000 (05/31/13 15:40:00) Chan 1 Max. KW 1.057 4.727 (06/02/13 16:40:00) 0.028 (06/04/13 13:40:00) Chan 1 Avg. KW 0.763 1.394 (06/02/13 20:50:00) 0.027 (06/04/13 13:40:00) Chan 1 Avg. FF 0.83 0.91 (06/03/13 14:40:00) 0.76 (06/04/13 05:30:00)
                                                                                                                                                                                                   1100.74
                                                                                                                                                                                                   112.877
                                                                                                                                                                                                  18.32 kWh/day
  Setup Summary
  Setup Table Description: 1 Phase - 2 Wire
  Channel 1 - Power: VHi: L1, VLo: N; PT = 1.000; CT = 20.000
 Memory Type: Ring
  Line Frequency: 60 Hz
  Integration Périod: 10 Minutes
  Logger Summary
  Logger Description Line: DENT ELITEpro SP
  Logger Serial Number: SP1111017
  Logger type: ELITEpro SP
  Firmware Version: ES400.161
```

ELOG software

Benefits of metering equipment

- Unit performance- is it struggling?
- What's the consumption?
- How does it compare?
- FacMan incentives to replace?
- Awareness, Action →Industry response

Ultra Low Temp (ULT) Freezer

- Metered at 27 kWh/day
- Compressor failed
- Green Labs suggestions
 - Energy efficient options
 - Raising temp to -70°C
- FacMan offer of \$2140 to replace (9 kWh/day)
- Electricity savings of 66%

Equipment to Keep an Eye Out For

- ULT freezers
- Lab grade freezers (-40°C or -30°C or -20°C)
- Chromatography refrig (glass door refrig)
- Low Temp Incubators
- Drying ovens
- Biosafety Cabinets

ULT Freezer -80°C to -70°C

- Use 8-30 kWh/day
- -70°C metered to save 2-7 kWh/day
- ~60% of 110 units are at -70°C
- Database of practices

Give Your Compressor a Break!

Increase the temperature of your ULT(Ultra Low Temperature)
Freezer to -70° C

2-4 kWh/day saved same as a LCD TV

Save Energy While Extending Freezer Lifetime

- Increasing the temperature means the compressor does not have to work as hard.
- Since the compressor works less, there is reduced risk for compressor failure.
 34 ULT freezers at CU-Boulder and 40 at UC-Davis are already at -70° C or warmer.

Join These CU-Boulder Labs That Are Already at -70° C

-Anseth Copley Schmidt Taatjes Blumenthal Ehringer/Marks Moore -Shen Winey Chen/Junge -Poyton ·Garcea -Smolen Xue Collins/Stitzel -Han ·Seals

For info on samples that labs are storing at -70° C or warmer go to ecenter.colorado.edu/greenlabs

CU Green Labs Contact: Kathy Ramirez greenlabs@colorado.edu 303-492-5562

Database of cold storage practices

Biosamples stored long term at -70°C or warmer

	Temp	Duration sample	Duration freezer			
Sample Type	(degrees C)	stored in freezer	at indicated temp	University	Dept	Lab PI
plant tissue	4	3-6 years	since purchase	CU-Boulder	Ecology and Evolutionary Biology	Pamela Diggle
water samples for nutrient analysis		0.5-1 year	since purchase	CU-Boulder	Ecology and Evolutionary Biology	Pieter Johnson
frozen worms		0.5-1 year	since 1995	CU-Boulder	Molecular, Cellular, Developmental Biology	Tom Blumenthal
competent cells	-70	1-3 years	since 1995	CU-Boulder	Molecular, Cellular, Developmental Biology	Tom Blumenthal
RNA, DNA, cellular extracts, purified proteins	-70	>10 years	since 1995	CU-Boulder	Molecular, Cellular, Developmental Biology	Tom Blumenthal
competent cells, worm strains, antibodies, DNA, RNA	-70	3-6 years	since summer 2010	CU-Boulder	Molecular, Cellular, Developmental Biology	Min Han
competent cells, samples for mass spec, pellicles	-60 and -70	0.5-1 year	since spring 2010	CU-Boulder	Molecular, Cellular, Developmental Biology	Mark Winey
cell lysates, protein samples	-60 and -70	1-3 years	since spring 2010	CU-Boulder	Molecular, Cellular, Developmental Biology	Mark Winey
antibodies	-60 and -70	3-6 years	since spring 2010	CU-Boulder	Molecular, Cellular, Developmental Biology	Mark Winey
yeast and bacterial stock strains	-60 and -70	>10 years	since spring 2010	CU-Boulder	Molecular, Cellular, Developmental Biology	Mark Winey

Lab Grade Freezer (-40, -30, -20°C)

- Typically 5 12 kWh/day
- This unit: 14.9 kWh/day at -40°C
- Raised temp to -25°C,
 6.3 kWh/day
- 8.6 kWh/day saved; 60% reduction

Lab Grade Freezer (-40 to -25°C)

 7.1 kWh/day at -40°C by manufacturer

 Unit at -25°C, using 3.6 kWh/ day

50% savings

Lab Grade -20°C Freezer

- New, yet uses 13.3 kWh/ day!
- More than some ULT freezers at -80°C
- Need to pressure industry to change
- Energy Star -20°C use 2 kWh/day, works for most labs

Chromatography Refrigerators

- Use 5-10 kWh/day
- Many not used for chromatography

 Residential refrig 1.2 kWh/day, works for most labs

Low Temperature Incubators

- Use 5-20 kWh/day,
- Heating only units use as low as 0.1 kWh/day

30°C, 14.6 kWh/day (+ 8.2 kWh/day small unit)

30°C, 0.23 kWh/day Binder BD 400

Drying Ovens

- 0.1 to 28 kWh/day
- Eject heat into the lab space
- Sharing, timers, off when not in use

Biosafety Cabinets (BSCs)

- Metered 11.1 kWh/day (4 ft) & 18.8 kWh/day (6 ft)
- Blowers off overnight, ~40% savings
- UV light not recommended by NIH, CDC, NSF
- Working with EH&S on signage

Suggestions

- Energy efficient ULT freezers
- Temp choice: -70°C and room temp sample storage
- Avoid lab grade freezers & chromatography refrig
 - Energy Star, residential units work for most labs
- Watch for Low Temp incubator use for refrig or warmer than room temp →replace with heating only unit
- BSCs off when not in use → energy savings & longer filter life
- Drying ovens: consolidate, timers, off when not in use

Acknowledgements

- Colorado Dept of Public Health and Environment
- I2SL and Labs21
- University of Colorado Boulder (CU-Boulder)
 Facilities Management
- CU Boulder Environmental Center
- CU Boulder Environmental Health and Safety
- CU Green Labs Program & Kathy Ramirez-Aguilar

Questions

Contact Information:

Ashlyn Norberg

CU Green Lab Program Assistant

University of Colorado-Boulder

ashlyn.norberg@colorado.edu