Si material parameters:

Band gap energy at 300 K: $E_g = 1.124 \text{ eV}$

Relative permittivity: $\varepsilon = 11.7$

Effective mass of electron:

 $m_n^* = 1.08m_o$ for density of states, $m_n^* = 0.26m_o$ for conductivity Effective mass of hole:

 $m_p^* = 0.81 m_o$ for density of states, $m_p^* = 0.39 m_o$ for conductivity

Mobility:

$\mu_n = 1400 \text{ cm}^2/\text{V}\cdot\text{s},$	$\mu_{\rm p} = 470 \ {\rm cm}^2/{\rm V} \cdot {\rm s}$
, ,	• P

Diffusion coefficient:

$$D_n = 36 \text{ cm}^2/\text{s},$$
 $D_p = 12 \text{ cm}^2/\text{s}$

Effective density of states at 300 K:

$N_C = 2.82 \text{ x } 10^{19} \text{ cm}^{-3}$	$N_V = 1.83 \text{ x } 10^{19} \text{ cm}^{-3}$
Intrinsic carrier concentration at 300 K:	$n_i = 8.2 \text{ x } 10^9 \text{ cm}^{-3}$

GaAs material parameters:

Band gap energy at 300 K: $E_g = 1.42 \text{ eV}$

Relative permittivity: $\varepsilon = 13.1$

Effective mass:

$$m_n^* = 0.068m_a$$
 $m_n^* = 0.5m_a$

Mobility:

$$\mu_{\rm n} = 8800 \text{ cm}^2/\text{V}\cdot\text{s}, \qquad \qquad \mu_{\rm p} = 400 \text{ cm}^2/\text{V}\cdot\text{s}$$

Diffusion coefficient:

$$D_n = 228 \text{ cm}^2/\text{s},$$
 $D_p = 10 \text{ cm}^2/\text{s}$

Effective density of states at 300 K:

$$N_C = 4.45 \text{ x } 10^{17} \text{ cm}^{-3}$$
 $N_V = 8.87 \text{ x } 10^{18} \text{ cm}^{-3}$

Intrinsic carrier concentration at 300 K: $n_i = 2.35 \times 10^6 \text{ cm}^{-3}$

Physical Constants:

Vacuum permittivity:	$\epsilon_{o} = 8.85 \text{ x } 10^{-14} \text{ F/cm}$
Planck's constant:	$h = 6.63 \text{ x } 10^{-34} \text{ J} \cdot \text{s}$
Speed of light:	$c = 3.0 \text{ x } 10^{10} \text{ cm/s}$
Electronic charge:	$q = 1.60 \text{ x } 10^{-19} \text{ C}$
Electron rest mass:	$m_o = 9.11 \text{ x } 10^{-31} \text{ kg}$
Boltzmann constant:	$k_B = 1.38 \text{ x } 10^{-23} \text{ J/K}$
Thermal energy at 300	0 K: $k_{\rm B}T = 0.0259 \text{ eV}$
Energy unit conversio	n: $1 \text{ eV} = 1.60 \text{ x } 10^{-19} \text{ J}$