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Abstract

The object of this paper is to investigate theoretically the reasons for
observed deviations from the Fresnel formula for the reflection of light from
a “clean” surface. In the first part, formulas are derived based on quasi-
microscopic considerations for the reflection of light from an optically
isotropic medium with a transition layer on its surface, whose thickness
is small compared to the wavelength of the light. The formulas are valid
for macroscopic as well as for molecular (in particular, monomolecular)
layers.

In the second part we consider the reflection of light from an optically
isotropic cubic crystalline array made up of isotropic point atoms. The
author supplements the well-known calculation of Ewald by terms of order
a/λ and shows that the reflection of light from the array is the same as
if there were a continuous medium with a continuous transition layer on
its surface. A calculation of the parameters γx, γy and γz of the array is
carried out, and the effect of distortion of the array near the boundary is
considered as well.

Part I

Quasi-Microscopic Theory

1 Introduction

1. The application of the phenomenological theory of the transition layer based
on the macroscopic Maxwell equations becomes questionable when dealing with
reflection of light from clean surfaces. Rayleigh [1] and later Raman and Ramdas
[2] found deviations from the Fresnel formula for the reflection of light from the

∗English translation with corrections by E. F. Kuester, University of Colorado at Boulder,
USA. The notations fg for the scalar or dot product, [fg] for the vector or cross product
between two vectors f and g and rot for the curl (∇×) have been retained from the original.
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extremely smooth surface of a liquid. If we estimate the thickness of a transition
layer using a phenomenological theory based on these deviations, then it turns
out that this thickness is of the same order as the intermolecular distances
[3, 4]. Application of the macroscopic Maxwell equations to this layer violates
the conditions for the validity of these equations.

2. In one of his 1940 lectures, the late academician L. I. Mandel’shtam
indicated three possible reasons for the discrepancy with the Fresnel formula
for reflection from a clean liquid surface. Due to thermal molecular motion,
the surface of the liquid is always wavy; surface scattering of the light results
from this. Could this waviness be the reason for deviations from the Fresnel
formula? In Section 3 we will show that the answer to this question must be in
the negative, at least if we consider the reflection of light from the wavy surface
macroscopically.

In order to understand the other two reasons suggested by L. I. Mandel’shtam,
we turn to the well-known interpretation of the Brewster phenomenon from the
molecular point of view. Let a light wave polarized parallel to the plane of in-
cidence be incident at the boundary of a body at the Brewster angle. Because
of the transverse nature of light waves, we conclude that the electric field in the
second medium is oriented parallel to the reflected ray. The oscillating dipole
moments thereby induced in the molecules of this medium will be aligned in the
same direction. And since an oscillating dipole does not radiate in the direction
of oscillation of its electric moment, none of the molecules of the medium will
radiate in the direction of the reflected ray, and this ray does not arise at all.

There are two inaccuracies in this argument.
First, only for isotropic molecules will the directions of the induced dipole

moments of the molecules be the same as that of the field acting on them. If an
isotropic medium is made up of anisotropic molecules, then these molecules will
radiate in the direction of the reflected ray. However, this is not yet sufficient for
a reflected ray to arise. It is also necessary that the radiation of the molecules be
coherent, or at least partially coherent. For anisotropic molecules in an isotropic
medium this condition is not observed since in order to have an isotropic medium
it is necessary that its anisotropic molecules be randomly oriented. But this
can be observed to a certain extent in molecules near the boundary of a region,
in which case the possibility of their being oriented preponderantly in some
direction cannot be ruled out. If this does happen, then the radiation from
the molecules near the interface will be partially coherent, and as a result their
interference will create a reflected wave. This could be a second reason for the
deviations from the Fresnel formulas.

In the second place, the direction of the dipole moment of a molecule is
determined by the field acting on it, and not by the average Maxwell field. For
a molecule located far from an interface, the direction of both fields is the same.
But the average field according to phenomenological theory is perpendicular to
the refracted ray. The physical interpretation of Brewster’s law is based on the
use of this result. However, the phenomenological theory cannot say anything
about the direction of the field acting on a molecule near the boundary, since
the ordinary phenomenological Maxwell equations are not applicable near the
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boundary, if only because the very concept of an average field or a dielectric
permittivity is devoid of meaning. If it happens that the electric field acting on
a molecule near the boundary is not perpendicular to the refracted ray, then in
spite of Brewster’s law, a reflected ray must appear. In Part II we will show that
for the example of an optically isotropic cubic crystalline array, this is indeed
the case. This constitutes the third reason for the discrepancy with Fresnel’s
formulas.

To these three possible reasons indicated by L. I. Mandel’shtam should be
added a fourth: the change in the nature of molecular structure of a body near
its surface. That is, the average distance between molecules near the surface is
different than it is far away from the surface.

3. All of these reasons lead to the formation of a thin transition layer at the
surface of a reflecting body within which the dipole moments of the molecules
are oriented differently than they are within the medium. Since the thickness of
this layer can be on the order of the intermolecular distances, a complete theory
of it must be constructed on a molecular basis. However the construction of a
molecular theory must proceed from a definite simplified model of the reflecting
medium. Thus, in order to obtain our formulas in a general form, independent
of the peculiarities of one model or another, in Part I we will apply a quasi-
microscopic approach. It will be characterized by taking the dipole moment of a
molecule of the medium excited by a light wave to be averaged over a physically
infinitely small volume, as in the macroscopic theory. The radiating centers
are considered to be not the molecules of the medium, but volume elements of
the medium, for which the dipole moment of a volume element dV is given by
the expression P dV , where P is the polarization vector in the medium. But in
contrast to the phenomenological theory, in the quasi-microscopic approach, just
as in the molecular theory, it is assumed that waves radiating from an arbitrary
volume element dV propagate not in the material medium, but in vacuum with
velocity c.

2 Derivation of the general formulas

1. We consider a transparent isotropic medium bounded above by a plane. Near
the boundary of the medium there can be an isotropic or anisotropic transition
layer. The upper boundary of this layer will be taken to lie in the XY -plane of a
rectangular coordinate system; the Z-axis will be directed downwards, towards
the side the medium is on. If a plane monochromatic light wave of angular
frequency ω is incident from vacuum to the medium, then the polarization
vector P in the medium must have the form

P = P0(z)ei(kr−ωt) (1)

The components of the wave vector k parallel to the interface must be iden-
tically equal to the components of the wave vector f of the incident wave. Oth-
erwise the polarization wave (1) would excite a boundary wave in the medium,
propagating with a velocity c in a different direction than the incident wave.
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Such a boundary wave could not cancel the incident wave, and the stationary
state (1) of polarization in the medium could not exist. On the contrary, the
z-component of the wave vector k might be chosen arbitrarily, since a change in
this component is tantamount to a change in the complex amplitude P0(z). We
demand that k = ωn/c = k0n, where k0 = ω/c is the wavenumber in vacuum,
where n is the refractive index of the medium (not the layer!). Moreover, in
order that the wave (1) be propagating away from the interface, we must re-
quire that the component kz of k is positive. This wave vector k is determined
uniquely. The vector k does not depend on z. But the amplitude P0(z) will not
depend on z if z is large enough. Regardless of how the transition layer orig-
inated, we will define it to be the region in which the amplitude P0(z) varies
with z.

Each volume element dV of the medium and the layer, possessing a time-
varying dipole moment P dV , is regarded as a source of light waves propagating
in vacuum with velocity c. Our problem is to find the total radiation field inside
and outside the medium. This problem is easy to solve for the case when the
layer is entirely absent, i. e., when P0(z) does not depend on z. Here we can,
for example, apply the method of Ewald [5] which, although not characterized
by mathematical rigor, nevertheless leads to correct results. The general case
when P0 depends on z can easily be reduced to this special case. To do this
we divide the entire medium into plane layers of thickness ∆z parallel to the
XY -plane, and in each of these layers we will assume that the amplitude P0(z)
in each layer can be taken to be constant. Thus inside the first layer there will
propagate a wave of constant amplitude: P1 = P01e

i(kr−ωt), inside the second
P2 = P02e

i(kr−ωt) and so on. These waves can be replaced by the following
system of waves of constant amplitude, propagating towards the depths of the
entire medium, but from the boundaries of the various layers:

1st wave: P01e
i(kr−ωt), propagating from plane I;

2nd wave: (P02 −P01)ei(kr−ωt), propagating from plane II;
3rd wave: (P03 −P02)ei(kr−ωt), propagating from plane III, and so

on.

This problem of calculating the radiation field of wave (I) reduces to that
of the radiation field of a constant-amplitude polarization. The radiation field
inside or near the transition layer does not concern us for the time being. To
derive the general formulas it is sufficient to know the radiation field only at
points far from the boundary of the medium. It can be expressed in terms of a
Hertz vector Z. Calculations carried out as indicated above lead to the following
results.

The radiation field in the medium far from its boundary is the sum of a
refracted wave:

Zd =
4π

k2 − k20
P0(∞)ei(kr−ωt) , (2)

and a boundary wave:

Zc =
2π

fz(fz − kz)

{
P0(0) +

∫ ∞
0

ei(kz−fz)ζ dP0(ζ)

}
ei(fr−ωt) . (3)
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Outside the medium, the reflected wave is expressed as:

Zr = − 2π

fz(fz + kz)

{
P0(0) +

∫ ∞
0

ei(kz+fz)ζ dP0(ζ)

}
ei(f

′r−ωt) . (4)

The components of the wave vectors f and f ′ are determined by the following
equations:

fx = f ′x = kx, fy = f ′y = ky, fz = −f ′z = +
√
k20 − k2x − k2y . (5)

We recall that in the radiation field of the medium, the incident field is
necessarily present. Otherwise, the polarization wave (1) would not exist. The
role of the incident wave, according to the Oseen [6]-Ewald [5] extinction theorem
consists in canceling out the boundary wave inside the medium. On this basis,
we can write the Hertz vector of the incident wave as Ze = −Zc.

The integrations from 0 to ∞ can clearly be replaced by integrals from 0 to
l, where l is the thickness of the transition layer, since only inside the layer is
dP0(ζ) 6= 0. If the thickness of the layer is small compared to the wavelength
of the light, then the exponential functions in (3) and (4) can be expanded
in a power series, neglecting all terms starting with the quadratic. In this
approximation,

Ze = −Zc = − 2π

fz(fz − kz)

{
P0(∞)− i(fz − kz)

∫ ∞
0

ζ dP0(ζ)

}
ei(fr−ωt) ,

Zr = − 2π

fz(fz + kz)

{
P0(∞) + i(fz + kz)

∫ ∞
0

ζ dP0(ζ)

}
ei(f

′r−ωt) . (6)

The calculation of the integral appearing here is a purely electrostatic prob-
lem. In fact, if the integral is expanded in a power series in k, then linear terms
will show up in equations (6) only as terms of second order. Therefore in the
expansion of the integral it is sufficient to keep only the zero-order term. This
zeroth term does not depend on the wavelength, and consequently can be found
using methods of electrostatics. Furthermore, the components of the vectors
P0(∞) and

∫∞
0
ζ dP0(ζ) are clearly proportional to the corresponding compo-

nents of the electric field of the incident wave. As a result, if we introduce the
three parameters

γi = [P0i(∞)]
−1
∫ ∞
0

z dP0i(z), i = x, y, z , (7)

and evaluate them in the zeroth approximation, then these parameters will
depend neither on the wavelength of the light1 nor on the strength of the exter-
nally impressed field. These parameters of the first-order theory are dependent

1Strictly speaking, they depend on the light wavelength to the extent that the refractive
index n of the medium depends on λ. Indeed, when solving the electrostatic problem one
should take not the static, but the dynamic permittivity which is a function of the wavelength
λ.
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on the properties of the transition layer. We will be interested only in layers
whose properties are the same in all directions parallel to the XY -plane. For
such layers, γx = γy.

Passing from the Hertz vector to the electric and magnetic field strengths
presents no difficulty. We denote by Es, Ep, Rs and Rp the complex amplitudes of
the electric fields of the principal components of the incident and reflected waves,
polarized parallel to and perpendicular to the plane of incidence respectively.
In the case of the s-components, we take the positive direction of the electric
field to be along the positive Y -axis. For the case of p-components, the positive
directions are shown in Fig. 1. Then

Figure 1:

Rs
Es

= − tan(ϕ− ψ)

sin(ϕ+ ψ)
{1 + 2ik0γy cosϕ} , (8)

Rp
Ep

= − tan(ϕ− ψ)

sin(ϕ+ ψ)

{
1 + 2ik0 cosϕ

γx cos2 ψ − γz sin2 ϕ

cos2 ψ + sin2 ϕ

}
,

where ϕ is the angle of incidence and ψ the angle of refraction.
2. If the transition layer is macroscopic, then formula (8) reduces to the

known formula of Drude. In this case, the optical properties of the transition
layer can be characterized by the principal refractive indices nx, ny and nz as
functions of z. Here, due to symmetry, nx = ny. To determine the parameters
γx, γy and γz, we should imagine that the medium is immersed in an electrostatic
field that is uniform at infinity. The strength of this field can depend only on z.
Since the static field is irrotational, we have ∂Ex/∂z = 0, i. e., Ex is independent
of z. Therefore,∫ ∞

0

z dPx(z) =

∫ l

0

d

dz

(
n2x − 1

4π
Ex

)
dz =

Ex
4π

∫ l

0

z
dn2x
dz

dz .

Integration by parts leads to expressing the integral in terms of the integral

p =

∫ l

0

n2x(z) dz (9)

We obtain at last

γx =
p− ln2

1− n2
. (10)
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Analogously, using the solenoidal character of the induction vector D, we show
that Dz is independent of z. From this we obtain easily that:

γz =
l − qn2

1− n2
, (11)

q =

∫ l

0

dz

n2z(z)
(12)

Upon substituting (10) and (11) into (8), we obtain the formulas of Drude [7, 9].
3. Although formulas (8) agree in form with those of Drude, they are more

general. In point of fact, Drude’s formulas make sense only for sufficiently thin
transition layers whose optical properties can be characterized macroscopically
by a refractive index. On the contrary, in deriving equation (8), we did not
introduce any macroscopic characteristics of the transition layer. It is true that
we averaged the dipole moments of the molecules of the medium and layer over a
physically small volume and introduced the polarization vector P, which charac-
terizes the polarization of the medium and the layer macroscopically. However,
this was done in order to calculate the radiation field not inside the transition
layer, but far away from it. For this purpose, the averaging is permissible. As
far as the transition layer is concerned, we made absolutely no use of the field
strength inside the layer, and furthermore did not assume any dependence of
the polarization vector on this field either. Thus formula (8) is also valid for
monomolecular layers. Finally, the quasi-microscopic theory does not permit
the calculation of the layer parameters γx and γz. It only reduces their cal-
culation to an electrostatic problem. This electrostatic problem can only be
solved with knowledge of the structure of the layer. For monomolecular layers
the calculation of the parameters γx and γz can only be carried out on the basis
of molecular theory.

4. We have carried out our calculations with an accuracy of up to first order
terms, omitting terms containing k0 in powers 2 or higher. This is permissible
when investigating those properties of light reflection which depend linearly
on the field strength. This is the case for the polarization properties of the
reflected light. On the contrary, when calculating the intensity of the reflected
light, which depends quadratically on the field strength, we must carry out our
calculations at least to second-order accuracy. Thus the first-order theory is
useful only for studying the effect of the transition layer on the polarization of
the reflected light. As is known, the polarization properties of the reflected light
are completely determined by the complex ratio Rp/Rs. If the incident light is
linearly polarized at an angle of 45◦ to the plane of incidence, i. e., if Es = Ep,
then this ratio is equal to

Rp
Rs

= ρe−iδ = −cos(ϕ− ψ)

cos(ϕ+ ψ)
− 2ik0 cosϕ sin2 ϕ

γx − γz
cos2(ϕ− ψ)

(13)

In particular, for reflection at the Brewster angle δ = π/2, and at this angle of
incidence we obtain the following expression for the ellipticity coefficient:

ρ =
1

3
k0
√
n2 + 1(γx − γz) (14)
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Therefore the polarization of the light depends only on the difference between
the parameters γx and γz, and not on their separate values. Thus in the first-
order theory we can replace the parameters γx and γz by any other two which
differ from the originals by the same arbitrary constant. In other words, the
parameters γx and γz can be determined to within an accuracy of a common
arbitrary constant.

Integrating by parts we find:

γx =
1

P0x(∞)

∫ l

0

z dP0x(z) = l − 1

P0x(∞)

∫ l

0

P0x(z) dz

Thus, neglecting the constant l common to the expressions for all of the param-
eters γx, γy and γz, we could define these parameters by the relations:

γx = − 1

P0x(∞)

∫ l

0

P0x(z) dz (15)

and so forth. Hence it is clear that the manner in which P0 varies within the
transition layer plays no role. The only essential thing is the value of the integral∫ l
0
P0x(z) dz. The layer could be regarded as infinitely thin, having no thickness

in the limit, as was done for example by Strachan [8].

Evidently, the integral
∫ l
0
P0x(z) dz is none other than the sum

∑
p0 of all

the dipole moments of the molecules in the transition layer per unit area of its
surface. By the same token, this establishes a molecular interpretation of the
parameters γx, γy and γz.

3 The effect of reflecting surface roughness

1. Roughness of the reflecting surface can be considered as a transition layer
whose properties vary with x and y. We will assume that the thickness of the
layer is small compared to the wavelength of the light, and the properties of the
layer vary periodically with the (x, y) variables. The periods of these variations
are denoted a and b. If a monochromatic plane wave is incident on the medium,
then the polarization vector P will have the form:

P = P0(x, y, z)ei(kr−ωt) (16)

where P0(x, y, z) is a periodic function in (x, y) with periods (a, b). We expand
it in a Fourier series:

P0(x, y, z) =
∑
l

∑
m

Alm(z)ei(qlmr−ωt)

The vectors qlm must satisfy the conditions:

(qlm)x =
2πl

a
, (qlm)y =

2πm

b
. (17)
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Therefore
P =

∑
l

∑
m

Alm(z)ei(klmr−ωt) (18)

where klm = k + qlm.
We require that

k2lm = k2 =
n2ω2

c2
. (19)

This determines the z-component of the vector qlm. We require that the inho-
mogeneous waves appearing in (18) decay with distance from the interface. Only
homogeneous waves radiating away from the interface with constant amplitudes
Alm(z) = Alm(∞) should remain.

Each wave appearing in (18) has the form (1). This problem reduces to the
one considered in Section 2. Neglecting terms containing second and higher pow-
ers of k, we find that the radiation field outside the medium at large distances
far from the reflecting surface is

Za = −S
l
S
m

2π

flmz(flmz + klmz)

{
Alm(∞) + i(flmz + klmz)

∫ ∞
0

ζ dAlm(ζ)

}
×

×ei(f
′
lmr−ωt) , (20)

where

flmx = f ′lmx = klmx; flmy = f ′lmy = klmy;

flmz = −f ′lmz = +
√
k20 − k2lmx − k2lmy , (21)

and the sign S denotes summation over the homogeneous waves. The boundary
wave far from the reflecting surface will have the form

Zc = S
l
S
m

2π

flmz(flmz − klmz)

{
Alm(∞)− i(flmz − klmz)

∫ ∞
0

ζ dAlm(ζ)

}
×

×ei(flmr−ωt) . (22)

The component of this wave with l = m = 0 must be canceled by the incident
wave:

Ze = − 2π

fz(fz − kz)

{
A00(∞)− i(fz − kz)

∫ ∞
0

ζ dA00(ζ)

}
ei(fr−ωt) . (23)

Each of the other components of the vector Zc must correspond to a field that
vanishes. This is possible if the (lm) component of the Hertz vector is parallel
to flm, i. e., if

[flmA00(∞)]− i(fz − kz)
∫ ∞
0

ζ [flm dA00(ζ)] = 0 .
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With no loss of generality, we can require that f ′lmA00(∞) = 0. This gives

Alm(∞) =

= i(flmz − klmz)
∫ ∞
0

ζ dAlm(ζ)− iflm
flmz − klmz

(flmf ′lm)

∫ ∞
0

f ′lmζ dAlm(ζ) .

This calculation of Alm(∞) has been reduced to an electrostatic problem.
We obtain the reflected wave by putting l = m = 0 in (20). The remain-

ing components relate to the scattered light (a diffraction array!). So for the
reflected wave we have

Zr = − 2π

fz(fz + kz)

{
A00(∞) + i(fz + kz)

∫ ∞
0

ζ dA00(ζ)

}
ei(f

′r−ωt) . (24)

Expressions (23) and (24) are identical with expressions (6) if we put A00(z) =
P0(z). But A00(z) is the static polarization vector averaged over the x and y
coordinates. Therefore, in spite of the presence of diffracted waves, the results
of the preceding paragraph are valid even for the case of light reflection from
a rough surface if only we understand by P0(z) the static polarization vector,
averaged over the x and y coordinates. Of course, in this case the results of
the quasi-microscopic investigation are identical with those obtained with the
molecular theory below.

2. As an example, we consider a one-dimensional reflecting array with sym-
metrical rulings, i. e., we assume that the surface of a homogeneous medium with
refractive index n is rough and is given by an equation of the form z = f(x),
where f(x) is an even periodic function of period a. The cross section of this
surface in the XZ-plane is shown in Fig. 2. To determine the parameters γx, γy

Figure 2:

and γz we postulate that an electrostatic field, uniform at infinity, is introduced
into the medium. We draw straight lines MN and M ′N ′ parallel to the X-axis,
such that MN intersects the curve z = f(x), while M ′N ′ is taken sufficiently
far from the boundary of the medium that the field E can be reckoned constant
on it. At the points of intersection A and B of MN with the curve z = f(x) we
draw the perpendiculars AC and DB. Since the static field E is conservative,∮

ABDCA

Es ds = 0 .
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Furthermore, by symmetry we have∮
CA

Es ds =

∮
DB

Es ds .

Therefore, ∫
AB

Ex dx =

∫
CD

Ex dx = CDEX(∞) .

Hence it follows that the average value of Ex on AB is equal to Ex(∞). Analo-
gously, because the vector E is divergenceless, it can be shown that the average
value of Ez on AB is equal to Ez(∞). Consequently, the average of E over
AB is E(∞), and therefore by reason of the homogeneity of the medium the
average of the vector P = αE over AB is P(∞) as well. On a segment BE
that passes through the vacuum, P = 0. Thus, after we average the vector P
over the x-coordinate, we get a vector parallel to P(∞). Hence it follows that
the parameters γx, γy and γz are all equal. Inasmuch as they are determined
within an arbitrary constant, we can put γx = γy = γz = 0. Thus, to first order
the reflection of light follows Fresnel’s formulas accurately. We obtained this
result by describing the properties of the layer macroscopically—by its index
of refraction. Thus it could have been obtained from the macroscopic Maxwell
equations, and could, as is well known, be obtained ab initio by such a method.
However, in proceeding this way, we must make the assumption that the rough-
ness of the reflecting surface is gentle, i. e., |dz/dx| = |df(x)/dx| � 1. We see
that this result remains valid also in the case of steep roughness, provided there
is symmetry expressed by the relation f(x) = f(−x). Of course, all of the above
are also valid for two-dimensional arrays.

3. The results obtained can also be extended to the case when the form of the
reflecting surface is completely irregular. Such a form is taken, for example, by
the surface of any liquid thanks to thermal agitation of the molecules. We once
again draw the lines MN and M ′N ′ parallel to the X-axis (Fig. 3). Because E

Figure 3:

is a conservative vector, we can write∮
ABB′A′A

Es ds = 0;

∮
CDD′C′C

Es ds = 0 and so on.
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Putting these equalities together, we obtain:∫
AB

Ex dx+

∫
CD

Ex dx+ . . . =

∫
A′B′

Ex dx+

∫
C′D′

Ex dx+ . . .

. . .+

(∫
AA′
−
∫
BB′

+

∫
CC′
−
∫
DD′

+ . . .

)
.

Thanks to the irregularity of the reflecting surface, the average value of the
sum of the integrals inside the parentheses is equal to zero. As a result, the
average value of Ex on the segments AB, CD, EF , . . . will be equal to Ex(∞).
Analogously, using the divergencelessness of the vector E we show that the
average value of Ez over these segments will be equal to Ez(∞). Hence, as in
Paragraph 2, we conclude that γx = γy = γz, i. e., to first order the roughness
of the reflecting surface does not manifest itself in the reflected light.

Part II

Reflection from a Crystalline
Array

4 Reflection of light from an optically isotropic
cubic crystalline array

1. As a model of an optically isotropic medium we take a cubic crystalline array
made up of isotropic point atoms. The position of each atom of the array can
be defined by the position vector rlmn with coordinates

xlmn ≡ xl = la, ylmn ≡ ym = ma, zlmn ≡ zn = na, (25)

where a is the lattice constant, while l, m and n are integers that for an un-
bounded array take on all values from −∞ to +∞. Our development will be
based on the following two results of Ewald [5, 10]:

a) In an unbounded array, there can propagate a transverse dipole wave of
constant amplitude:

plmn = pei(krlmn−ωt) (26)

provided the wavenumber k is equal to k0n = ωn/c, where n is the re-
fractive index of the array. This means that the radiation field from the
atoms of the array is maintained by the dipole wave (26); i. e., there is
a dynamic balance between the dipole oscillations (26) and the radiation
field of the atoms of the array. The Hertz vector of the radiation field of
the atoms of an unbounded array is thus:

Zd = −4πpa−3ei(kr−ωt)
∑
l,m,n

[
k20 − (k + qlmn)2

]−1
ei(qlmnr) (27)
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where the components of the vector qlmn are defined as:

(qlmn)x = 2πl/a ; (qlmn)y = 2πm/a ; (qlmn)z = 2πn/a . (28)

b) If the array is bounded above by the XY -plane, then in (25) the values of
the integers l and m run from −∞ to +∞, while n runs from 0 to +∞.
We assume for the moment that the dipole oscillations of such an array
are determined by the wave (26). We direct the Z-axis into the array.
Ewald showed that the radiation field of all the atoms of such an array is
determined inside it by the Hertz vector Zd + Zc, where2

Zc = −2πpi

a2

∑
l,m

ei(flmr−ωt)

flmz
[
ei(kz−flmz)a − 1

] , (29)

and outside the array by the Hertz vector

Zr = −2πpi

a2

∑
l,m

ei(flmr−ωt)

flmz
[
ei(kz+flmz)a − 1

] . (30)

Here we have introduced the notations

flmx = f ′lmx = kx + (2π/a)l , flmy = f ′lmy = ky + (2π/a)m,

flmz = −f ′lmz = +
√
k20 + (kx + (2πl/a))2 + (ky + (2πm/a))2 . (31)

The + sign in front of the square root is there so that all homogeneous
waves appearing in (29) and (30) should be moving away from the bound-
ary of the array. If the expression under the square root becomes negative,
then the imaginary part should also be given a + sign so that the corre-
sponding homogeneous waves decay with distance from the boundary of
the array.

In his treatment of the problem of light reflection, Ewald neglected in ex-
pression (29) for the boundary wave Zc all inhomogeneous components. In this
approximation, the dipole oscillations (25) of the atoms of the array are found
by dynamic balance of the radiation field of the array and the field of the inci-
dent wave. In this way, Ewald arrived at the classical Fresnel formulas. If on
the other hand we do not neglect the inhomogeneous components in (29), then
it must be recognized that in the presence of only one incident monochromatic
plane wave, a dipole wave of the form (26) in the crystalline array is impossible.
Therefore, we will solve the problem of the reflection of light from a crystalline
array more accurately, i. e., without neglecting the inhomogeneous components
in expression (29).

2. We consider a two-dimensional square grid of atoms located in the XY -
plane. The coordinates of the atoms are given by the expressions xlm = la,

2A typographical error in this equation has been corrected [Translator’s note].
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ylm = ma. A two-dimensional homogeneous dipole wave plm = pei(krlm−ωt)

moves along the grid. It is required to compute the radiation field of all the
atoms of our grid. We imagine a cubic array filling the half-space bounded by
the XY -plane, through which the dipole wave (26) passes. Our grid can be
considered as the first layer of atoms in such an array. The radiation field of the
atoms of the grid will be equal to the difference between the radiation fields of
two arrays, one of which is bounded by the XY -plane and the other of which
is obtained from the first by removing the first layer of atoms. Applying (27),
(29) and (30) to both arrays, we obtain for the Hertz vector of the radiation
field of the layer the expression

Z(r) = 2πpa−2i
∑
l,m

ei(flmr−ωt)/flmz , (32)

for z > 0, and

Z(r) = 2πpa−2i
∑
l,m

ei(f
′
lmr−ωt)/flmz , (33)

for z < 0. These expressions can also be obtained by applying Ewald’s summa-
tion method [5] to our grid.

3. Now we can turn to the problem of the reflection of light from a crystalline
array. In order to account for the effect of possible distortions in the structure
of the array near its surface, we assume that the array is made up of grids
of atoms, but that the distances between the grids near the boundary can be
different from a. Furthermore, we assume that the atoms in grids near the
boundary of the array can be anisotropic. The atoms within a single grid are
assumed to be identical. All atoms located far from the boundary of the array
are similarly assumed to be identical, and in addition isotropic. Finally, the
thickness of the transition layer is assumed to be very small in comparison with
the wavelength of the light.

Therefore the coordinates of each atom can be expressed as follows:

xlmn ≡ xl = la, ylmn ≡ ym = ma, zlmn ≡ zn = a1+a2+. . .+an , (34)

in which an → a as n→∞.
If a plane monochromatic light wave is incident at the surface of the array,

then the dipole oscillations of the atoms of the array must have the form:

plmn = pne
i(krlmn−ωt) (35)

The components of the wave vector k parallel to the boundary of the array must
be equal to the corresponding components of the wave vector of the incident
wave. If this were not so, then the dipole oscillations excited would be homo-
geneous waves propagating into the depths of the array with a velocity c, along
a direction different than that of the incident wave. Such a wave could not
extinguish the incident wave, and a condition of dynamic balance between the
field of the incident wave, the radiation field of the atoms of the array and its
dipole oscillations would be impossible. On the other hand, the z-component of
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the wave vector k might be chosen arbitrarily, since a change in this component
could be considered as a change in the amplitudes pn. As in Section 2, we put
k = k0n, where n is an index of refraction, and will take kz to be positive.
Then at infinite distances from the boundary of the array the amplitude pn
approaches a constant amplitude p∞.

The radiation field of the entire array is easily computed if we analyze it for
a square grid parallel to the boundary of the array and use formulas (32) and
(33). The superposition of homogeneous waves radiated towards the depths of
the array by all the grids of atoms gives the boundary wave at infinity:

Zc =
2πi

fza2
ei(fr−ωt)

∞∑
n=0

pne
i(kz−fz)(a1+a2+...+an) . (36)

The superposition of the very same homogeneous waves propagating outwards
from all the atomic grids of the array gives the reflected wave:

Zr =
2πi

fza2
ei(f

′r−ωt)
∞∑
n=0

pne
i(kz+fz)(a1+a2+...+an) , (37)

Here the wave vectors f = f00 and f ′ = f ′00 are determined by expressions (5).
According to the Oseen-Ewald extinction theorem, the boundary wave Zc must
be canceled by the incident wave. This gives:

Ze = − 2πi

fza2
ei(fr−ωt)

∞∑
n=0

Ane
i(kz−fz)na . (38)

where we have introduced the notation

An = pne
i(kz−fz)(a1+a2+...+an−na) .

We rewrite (38) in the form

Ze = − 2πi

fza2
ei(fr−ωt)

{
A0

∞∑
n=0

ei(kz−fz)na+

+ (A1 −A0)

∞∑
n=1

ei(kz−fz)na + (A2 −A1)

∞∑
n=2

ei(kz−fz)na + . . .

}
.

Clearly
∞∑
n=0

ei(kz−fz)na = lim
N→∞

1− ei(kz−fz)Na

1− ei(kz−fz)a

For kz real, this expression does not tend to any definite limit. In order to avoid
the indefiniteness that would result from this, we note that a true homogeneous
wave cannot exist, strictly speaking; all waves attenuate. Attenuation can be
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introduced if the component kz is taken to be complex with positive imaginary
part, though this imaginary part can be as small as desired. Then in the limit

∞∑
n=0

ei(kz−fz)na =
[
1− ei(kz−fz)a

]−1
which still makes sense when kz becomes real. Using the foregoing formulas, we
obtain

Ze = − 2πi

fza2
ei(fr−ωt)

1− ei(kz−fz)a

{
A0 +

∞∑
n=1

(An −An−1) ei(kz−fz)na

}
.

Since we supposed that the thickness of the transition layer is very small com-
pared to the wavelength of the light, the differences An −An−1 will be signifi-
cantly different from zero only for small values of n. Therefore, the exponential
function inside the summation can be expanded in a power series and trun-
cated after the linear term (it is then necessary to keep quadratic terms when
expanding the exponential function in the denominator). This gives

Ze = − 2π

fz(fz − kz)a3

{
A∞ + i(kz − fz)a

[ ∞∑
n=1

n (An −An−1)− A∞
2

]}
ei(fr−ωt) .

Furthermore, to the same accuracy,

A∞ − p∞

{
1 + i(kz − fz)

∞∑
n=1

(an − a)

}
.

As far as the sum
∑
n (An −An−1) is concerned, it is sufficient to compute it

to the zeroth approximation. To this order,

∞∑
n=1

n (An −An−1) =

∞∑
n=1

n (pn − pn−1) =

∞∑
n=0

(p∞ − pn) .

Thus,

Ze = − 2π

fz(fz − kz)a3
{p∞ − i(fz − kz)×

×

[
a

∞∑
n=0

(p∞ − pn) + p∞

∞∑
n=1

(an − a)− a

2
p∞

]}
ei(fr−ωt) , (39)

Zr = − 2π

fz(fz + kz)a3
{p∞ + i(fz + kz)×

×

[
a

∞∑
n=0

(p∞ − pn) + p∞

∞∑
n=1

(an − a)− a

2
p∞

]}
ei(f

′r−ωt) .

These expressions reduce to (6) if we put

p∞ = a3P(∞), a
∞∑
n=0

(p∞ − pn)+p∞

∞∑
n=1

(an−a)− a
2
p∞ = a3

∫
ζ dP0(ζ) .
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Thus we arrive at formulas (8) and we obtain the following theorem: the
reflection of light from a crystalline array behaves as if the array were a contin-
uous medium with a continuous transition layer at its surface. The parameters
of this layer are determined by the formula

γx =
a

p∞x

∞∑
n=0

(p∞x − pnx) (40)

and similarly for γy and γz. Inasmuch as the parameters γx, γy and γz are
determined to first order only to within one and the same arbitrary constant in
this theory, we have neglected the constant

∑∞
n=1(an − a)− a

2 in these expres-
sions. These parameters should be calculated in the electrostatic approximation.
Therefore they depend on the structure of the array, but not on the wavelength
of the light (if dispersion is neglected).

This theorem was proved by the author in 1941 [11] by a somewhat different
method for an array of less general structure. The quasi-microscopic theory laid
out in Section 2 shows that this theorem is valid for an arbitrary thin transition
layer on the surface of a transparent isotropic medium. Taking into account that
the parameters γx, γy and γz can be altered by the same arbitrary constant, it
is not difficult to show that our systematic solution of the molecular problem
leading to formulas (8) confirms the molecular interpretation of the parameters
γx, γy and γz that we gave in Section 2 for an arbitrary transition layer.

5 Electrostatic field of a square grid of dipoles

1. To calculate the parameters γx, γy and γz we need the solution of the fol-
lowing electrostatic problem. Consider a square grid of identical and identically
oriented point dipoles of moment p, laid out in the XY coordinate plane. It is
required to determine the electric field acting on the dipole located at the origin
produced by all the remaining dipoles.

The static field produced by a dipole of moment p is given by the expression:

3(pr)rr−5 − pr−3

where r is the position vector directed from the dipole to a given observation
point. Summing over all the dipoles except the one at the origin that has been
excluded, and denoting the position vector of an atom of the grid by rlm, we
obtain for the desired acting field

E′grid =
∑′

l,m

{
3(prl,m)rl,mr

−5
l,m − pr−3l,m

}
(the prime on the summation sign indicates that the term with l = m = 0
should be omitted). Hence

(E′x)grid =
pxA

2a3
;

(
E′y
)
grid

=
pyA

2a3
; (E′z)grid = −pzA

a3
, (41)
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where

A =
∑′

l,m

(l2 +m2)−3/2 = 4

∞∑
l=0

∞∑
m=1

(l2 +m2)−3/2 (42)

2. The series (42) converges slowly and is thus not convenient for calculating
the constant A. We will transform it into a more rapidly converging one. If
a low-frequency electromagnetic wave propagates in an unbounded cubic array,
then, as is well known, the field E′ acting on an atom of the array is given by
the expression

E′ = E +
4π

3
P =

4πp

a3[(n2 − 1) + 1
3 ]

(43)

On the other hand, the field acting on the atom located at the origin can be
calculated in the following way. We split our unbounded array into three parts:
1) a part consisting of the atoms lying above the XY -plane, 2) a part consisting
of the atoms lying below this plane, and 3) a part consisting of the atoms lying
in the XY -plane. The radiation field of the first part is an external field with
respect to the other two parts of the array, and must cancel (“extinguish”) the
boundary wave in these two parts. Therefore, on the basis of (29) we can write
the following expression for the Hertz vector Z1 of the radiation field of this
part (at points outside of it)

Z1 = −Zc =
2pi

a2

∑
l,m

ei(flmr−ωt)

flmz
[
ei(kz−flmz)a − 1

] .
Hence for the field E1 produced by the first part of the array at the origin we
obtain

E1 = rot rotZ1 = −2πi

a2

∑
l,m

[flm[flmp]]e−iωt

flmz
[
ei(kz−flmz)a − 1

] .
We take the electrostatic limit where k → 0 and consequently f2lm → 0. We
obtain

E1 =
2π

a2
(pf)f − f2p
fz(kz − fz)

− 2πi

a2

∑′ (pflm)

flmz [e−iflmza − 1]
flm .

To simplify the calculation we assume that the wave propagates along the X
direction and the dipole moments are oriented along the Z-axis. Then the
previous expression gives:

E1z =

[
2πn2

n2 − 1
+B

]
pz
a3

where B is a constant defined by the series:

B = −2πai
∑′ flmz

e−iflmza − 1
= 16π2

∞∑
l=0

∞∑
m=1

√
l2 +m2

e2π
√
l2+m2 − 1

(44)
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The exact same field is clearly created by the second part of the array at the
origin. The field due to the atoms lying in the XY -plane acting on the atom at
the origin is given by (41). Therefore the total acting field is equal to

E′z =

[
4πn2

n2 − 1
+ 2B −A

]
pz
a3

(45)

Comparing this expression with (43) gives

A− 2B =
8π

3
(46)

The series (44) converges extremely rapidly and is therefore well suited for
computations. With the help of this series and relation (46) we obtain3

A = 9.035; B = 0.329 (47)

3. In order to calculate the parameters γx, γy and γz, we will also need to
know the field strength acting on an arbitrary atom of an unbounded array due
to a homogeneous wave radiated by all the rows of atoms of the array except
for the one in which the atom under consideration is located. We denote this
field by Ehom. From the derivation of formula (45), it follows that the first term
on the right side of this formula is (Ez)hom and is the electric induction for the
case when the wave is propagating along the X-axis while the dipole moments
are directed along the Z-axis. This was to be expected. Indeed, if we consider
only a single homogeneous wave, then this corresponds to the average field over
a physically infinitely small volume. Moreover, if in order to calculate the field
we exclude from consideration the layer of atoms lying in the XY -plane, then
this corresponds to removing from the medium a thin slot perpendicular to the
direction of the field. As is well known, the field strength in such a slot is
equal to the induction field of the medium. If the wave propagates along the
Z-axis with dipole moments directed along the X-axis, then clearly our slot
will be parallel to the field strength, and consequently the vector Ehom will be
equal to the average Maxwell field E in the medium for this case. Finally, for
this situation it is again easy to verify calculations analogous to those used in
deriving formula (45). Therefore it follows from formulas (43) for the two cases
considered that

E′x = Ex +
4π

3
Px = (Ex)hom +

4π

3

px
a3

E′z = Ez +
4π

3
Pz =

Dz

n2
+

4π

3
Pz =

(Ez)hom
n2

+
4π

3

px
a3

3These results are not quite correct to the number of significant digits displayed. Modern
computational software gives

A = 9.033622; B = 0.328021

See also, e. g.:

J. Topping, “On the mutual potential energy of a plane network of doublets,”
Proc. Roy. Soc. London A, 114, 67-72, 1927.

[Translator’s note].
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In view of the fact that in electrostatics each component of the fields E′ and
Ehom can be expressed solely in terms of the corresponding component of the
vector p, these expressions are also valid for arbitrary directions of p. If β is
the polarizability of an atom, then p = βE′. Thus from the previous formulas
we obtain

(Ex)hom =

(
1

β
− 4π

3a3

)
px (48)

(Ez)hom = n2
(

1

β
− 4π

3a3

)
pz =

(
1

β
+

8π

3a3

)
pz

6 Calculation of the parameters γx, γy and γz

1. To determine the parameters γx, γy and γz we must evaluate in the electro-
static approximation the electric field acting on the atom located at the point
r00n. To this end we separate this field into the following parts:

a) The field Ehom, through which the incident light wave and the homoge-
neous wave radiated by all the rows of atoms except the row containing
the atom under consideration act on this atom.

b) The field E′grid through which all the remaining atoms of the grid act on
the atom under consideration. This field is determined by expression (41)
if we replace p by pn in it.

c) The field Einhom through which the inhomogeneous wave arising from all
the rows of the array except the one in which the atom under consideration
lies acts on this atom.

The Hertz vector Zhom is assembled first from the Hertz vector of the incident
wave:

− 2πi

fza2
ei(fr)

∞∑
n′=0

An′ei(kz−fz)n
′a .

Secondly, from the Hertz vector of the homogeneous wave radiated by the first
n rows of atoms of the array:

2πi

fza2
ei(fr)

n−1∑
n′=0

An′ei(kz−fz)n
′a .

Thirdly, from the Hertz vector of the homogeneous wave radiated by all the
rows of atoms lying below the one under consideration:

2πi

fza2
ei(f

′r)
∞∑

n′=n+1

A′n′ei(kz+fz)n
′a .

where
A′n = pne

i(kz+fz)(a1+a2+...+an−na) .
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Adding these expressions and taking the electrostatic limit, we obtain

Zhom = − 2πp

fz(fz − kz)a3
eifr − 2πp∞

fz(fz + kz)a3
eif

′r .

Thus, in the electrostatic approximation the field of this homogeneous wave is
just the same as the field of a homogeneous wave in an unbounded array by a
dipole wave of constant amplitude p∞. This result is almost self-evident. In
fact, the influence of the transition layer of the array on the formation of the
homogeneous wave is smaller, the smaller is the thickness of the transition layer
with respect to a wavelength. In the limit of infinite wavelength, this influence
disappears completely. Thus, the field Ehom can be calculated from formula (48)
if we replace p by p∞ in it.

We denote by Enn′ the field through which the inhomogeneous components
of the dipole waves plmn′ = pn′eikrlmn′ propagating in the (n′ + 1)st layer of
atoms act on the atom under consideration. This field is easily calculated with
the help of (32) and (33). We obtain

Enn′x = −Bnn
′pn′x

2a3
, Enn′z = −Bnn

′pn′z

a3
, (49)

where

Bnn′ ≡ Bn′n = 16π2
∞∑
l=0

∞∑
m=1

√
l2 +m2e−

2π
a (an′+1+an′+2+...+an)

√
l2+m2

. (50)

If n = n′, then we will put Bnn′ ≡ Bn′n = 0 by convention.
Summing Enn′ over n′ gives Einhom. If βn is the polarizability tensor of our

atom under consideration, then

pn = βn
(
Ehom + E′grid + Einhom

)
.

As a result of this we can write

pnx = βnx

[(
1

β
− 4π

3a3

)
p∞x +

pnx
2a3

A− 1

2a3

∞∑
n′=0

Bnn′pn′x

]
,

pnz = βnz

[(
1

β
+

8π

3a3

)
p∞z −

pnx
a3

A+
1

a3

∞∑
n′=0

Bnn′pn′z

]
.

We have assumed here that the principal axes of the tensor βn are parallel to
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the coordinate axes. The preceding equations can be written in the form

pnx − p∞x =
βn − β
β

p∞x +
βnx
2a3
{bnp∞x +A(pnx − p∞x)

−
∞∑
n′=0

Bnn′(pn′x − p∞x)

}
, (51)

pnx − p∞x =
βn − β
β

p∞x +
βnx
2a3
{bnp∞x +A(pnx − p∞x)

−
∞∑
n′=0

Bnn′(pn′x − p∞x)

}
,

where

bn = 2B −
∞∑
n′=0

Bnn′ (52)

From the infinite systems (51) of equations one can determine the unknowns
pnx−p∞x and pnz−p∞z for any n. Upon substituting these values into (40) we
find the parameters γx and γz. These unknowns can be calculated as accurately
as desired by truncating the infinite system of equations (51) to a finite number
of equations. Indeed, we can put all pn − p∞ equal to zero for n > N , where
N can be chosen at will. Then we obtain a system of N + 1 linear equations
with N + 1 unknowns. For the sake of simplicity we limit ourselves to the case
when N = 0, i. e., the transition layer is monatomic. In this approximation we
obtain:

γx =
β − β0x

β(1− Aβ0x

2a3 )
a− β0x

2a3
b0

1− Aβ0x

2a3

a , (53)

γz =
β − β0z

β(1 + Aβ0x

a3 )
a− β0z

a3
b0

1 + Aβ0z

a3

a .

Hence we can express the ellipticity coefficient of light reflected at the Brew-
ster angle as:

ρ =
π

λ

√
n2 + 1(γx − γz) . (54)

2. We see that ρ does not vanish even when the structure of the array near
the surface has no distortion at all. In this case,4

βn = β, an = a, b0 = 2B −
∞∑
n=1

B0n ' B = 0.329.

The polarizability β can be calculated from the formula

β =
3a3

4π

n2 − 1

n2 + 2
.

4See footnote3 [Translator’s note].
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Substituting this into (54), and using (53) and (47), we obtain the approximate
formula:

ρ = −3

2
(n2 − 1)

√
n2 + 1

a

λ

[
1

39− n2
+

1

20n2 − 1

]
. (55)

For a hypothetical crystal with the same refractive index as water (n = 1.33),
this formula gives ρ = −0.11(a/λ). Taking λ = 5500 Å and a = 3 Å, i. e.,
reckoning that the lattice constant is equal to the average distance between
water molecules in the absence of coordination, we find ρ = −0.00006. In his
experiments, Rayleigh [1] found the value ρ = +0.00042. Although our formulas
for γx and γz were derived for a crystal, while for liquids at least they have not
been validated, we can imagine that they give at least the correct order of
magnitude for γx and γz in the case of a liquid. Hence we can conclude that the
molecular structure of matter, even in the absence of distortion in the structure
of a body near its surface, produces a deviation from the Fresnel formulas that is
observed experimentally. However, this deviation is smaller than that observed
by Rayleigh for water, and by Raman and Ramdas for organic liquids. Moreover,
we find a discrepancy between the signs of the theoretical and experimental
ellipticity coefficients.

3. This disagreement can be ascribed to the compacting of the matter near
the surface of the body. In our model with a monatomic layer this means that
a1 < a. Then the numerical value of b0 entering into (53) changes, while in (55)
there appears a factor equal to the ratio of the new value of b0 to its old one. In
the following table the constant b0 is shown for various values of the ratio a1/a.

a1/a b0 ρ
1.0 +0.33 −0.00006
0.9 +0.02 −0.00000
0.8 −0.65 +0.00012
0.7 −1.8 +0.00033
0.6 −4.3 +0.00078
0.5 −9.8 +0.00178

The constants are calculated from formula (52). In the preceding table are
shown theoretical values of ρ for a hypothetical crystalline array with refractive
index n = 1.33 and lattice constant a = 3 Å.

4. For liquids made up of anisotropic molecules, the disagreement can also
be partly attributed to the orientation of the axis of largest polarizability of
molecules near the boundary being predominantly perpendicular to the bound-
ary of the medium. In this case we should understand βn in our formulas to mean
the average polarizability tensor of the molecules. When the layer is monatomic,
βn reduces to a scalar for all n except n = 0. Furthermore, β0x+β0y+β0z = 3β,
and since β0x = βoy, then 2β0x +β0z = 3β. Based on this, formulas (53) can be
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written in the form:

γx =
a

1− Aβ0x

2a3

{
β0z − β0x

3β
− b0

β0x
2a3

}
, (56)

γz = − 2a

1 + Aβ0z

a3

{
β0z − β0x

3β
− b0

β0z
2a3

}
.

If β0z−β0x = 1
10β, then for a hypothetical array with n = 1.33 and a = a1 = 3 Å

we obtain ρ = +0.00018; if β0z − β0x = 1
5β, then we obtain ρ = +0.00046.

When comparing theory with experiment, it should be kept in mind that
the foundation of our calculation of the parameters γx, γy and γz relies on a
very unrealistic model of the reflecting medium. Therefore the computations
carried out here can give only the orders of magnitude of these parameters; their
accurate calculation entails much more difficulty and requires knowledge of the
molecular structure of the body and of the transition layer.

The author is very grateful to academician M. A. Leontovich for a number
of important comments and for his interest in the work.
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