On the propagation of light in media with periodic structure*

H. Chipart

1924^{\dagger}

In his theory of double refraction and natural optical activity, Sarrau ${ }^{1}$ tried to deduce, from considerations based on the periodic structure of the medium, the vector equality

$$
\mathbf{E}=\mathbf{f}_{1}\left(\mathbf{D}, \frac{\partial \mathbf{D}}{\partial x}, \frac{\partial \mathbf{D}}{\partial y}, \frac{\partial \mathbf{D}}{\partial z}\right)
$$

Around the same time (1867-1868), Potier ${ }^{2}$ was in possession of an integration method that gives more complete results. I intend to establish that Potier's analysis gives the vector equality

$$
\mathbf{P}=\mathbf{f}_{2}\left(\mathbf{E}, \frac{\partial \mathbf{E}}{\partial x}, \frac{\partial \mathbf{E}}{\partial y}, \frac{\partial \mathbf{E}}{\partial z}\right)
$$

Let us first suppose, as do Briot, ${ }^{3}$ Sarrau and Potier, that we are dealing with an isotropic medium with a periodic structure. The equations to be integrated are

$$
\begin{align*}
\nabla^{2} \mathbf{E}-\nabla \nabla \cdot \mathbf{E} & =K \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \tag{1}\\
\nabla \cdot(K \mathbf{E}) & =0 \tag{2}
\end{align*}
$$

[^0]where the dielectric constant K is a periodic function of (x, y, z).
Neglecting terms due to structural scattering ${ }^{4}$, we easily see that the solution to the problem is
$$
\mathbf{E}_{m} e^{i Q}+\nabla\left(\Phi e^{i Q}\right)
$$
where
$$
Q=\frac{2 \pi}{\tau}(n \alpha x+n \beta y+n \gamma z-t)
$$
\mathbf{E}_{m} denotes a constant vector and Φ a periodic function of (x, y, z). In what follows, \mathbf{E}_{m} will be written simply as \mathbf{E}.

Putting

$$
\Theta=\alpha E_{x}+\beta E_{y}+\gamma E_{z}
$$

we obtain the system $\left(1^{\prime}\right),\left(2^{\prime}\right)$:

$$
\begin{align*}
& n^{2}(\mathbf{E}-\boldsymbol{\nu} \Theta)=K\left[\mathbf{E}+e^{-i Q} \nabla\left(\Phi e^{i Q}\right)\right] \\
& \nabla \cdot\left[K \nabla\left(\Phi e^{i Q}\right)\right]+(\mathbf{E} \cdot \nabla)\left(K e^{i Q}\right)=0
\end{align*}
$$

Consistent with the order of approximation already used, (2') will be replaced by $\left(2^{\prime \prime}\right)$:

$$
\nabla \cdot(K \nabla \Phi)+(\mathbf{E} \cdot \nabla) K+\frac{2 \pi n i}{\tau}[K \Theta+(\boldsymbol{\nu} \cdot \nabla)(K \Phi)+K(\boldsymbol{\nu} \cdot \nabla) \Phi]=0
$$

The symbols $(\mathbf{E} \cdot \nabla)$ and $(\boldsymbol{\nu} \cdot \nabla)$ in these equations represent the differential operators ${ }^{5}$

$$
(\mathbf{E} \cdot \nabla)=E_{x} \frac{\partial}{\partial x}+E_{y} \frac{\partial}{\partial y}+E_{z} \frac{\partial}{\partial z}, \quad(\boldsymbol{\nu} \cdot \nabla)=\alpha \frac{\partial}{\partial x}+\beta \frac{\partial}{\partial y}+\gamma \frac{\partial}{\partial z}
$$

Limiting ourselves to the first two terms $\Phi_{0}+\frac{2 \pi n i}{\tau} \Phi_{1}$ of an expansion of Φ, we obtain from ($2^{\prime \prime}$) equations (3) and (4) that must be satisfied by Φ_{0} and Φ_{1} :

$$
\begin{gather*}
\nabla \cdot\left(K \nabla \Phi_{0}\right)+(\mathbf{E} \cdot \nabla) K=0 \tag{3}\\
\nabla \cdot\left(K \nabla \Phi_{1}\right)+(\boldsymbol{\nu} \cdot \nabla)\left(K \Phi_{0}\right)+K(\boldsymbol{\nu} \cdot \nabla) \Phi_{0}+K \Theta=0 \tag{4}
\end{gather*}
$$

From (1^{\prime}), we end up with equation (5) for the average values E_{x}, E_{y} and E_{z} :

$$
\begin{equation*}
n^{2}(\mathbf{E}-\boldsymbol{\nu} \Theta)=\left\langle K\left(\mathbf{E}+\nabla \Phi_{0}\right)\right\rangle+\frac{2 \pi n i}{\tau}\left\langle K\left(\boldsymbol{\nu} \Phi_{0}+\nabla \Phi_{1}\right)\right\rangle \tag{5}
\end{equation*}
$$

where the symbol $\langle g\rangle$ denotes the average value of the function g over a period cell.

[^1]
Consequences

1. The equations for the average values E_{x}, E_{y} and E_{z} are of Boussinesq's type. ${ }^{6}$
Indeed, the solutions of (3) and (4) are

$$
\begin{equation*}
\Phi_{0}=E_{x} \varphi_{0}^{\prime}+E_{y} \varphi_{0}^{\prime \prime}+E_{z} \varphi_{0}^{\prime \prime \prime}, \quad \Phi_{1}=E_{x} \varphi_{1}^{\prime}+E_{y} \varphi_{1}^{\prime \prime}+E_{z} \varphi_{1}^{\prime \prime \prime} \tag{6}
\end{equation*}
$$

where $\varphi_{0}^{\prime}, \varphi_{1}^{\prime}, \ldots$ satisfy the partial differential equations

$$
\begin{equation*}
\nabla \cdot\left(K \nabla \varphi_{0}^{\prime}\right)+\frac{\partial K}{\partial x}=0, \quad \nabla \cdot\left(K \nabla \varphi_{1}^{\prime}\right)+(\boldsymbol{\nu} \cdot \nabla)\left(K \varphi_{0}^{\prime}\right)+K \alpha=0, \tag{7}
\end{equation*}
$$

etc.
Upon using (6), equations (5) can be written
$n^{2}\left(E_{x}-\alpha \Theta\right)=K_{11} E_{x}+K_{12} E_{y}+K_{13} E_{z}+\frac{2 \pi n i}{\tau}\left(H_{11} E_{x}+H_{12} E_{y}+H_{13} E_{z}\right)$
and so on, with

$$
\begin{gathered}
K_{11}=\left\langle K\left(1+\frac{\partial \varphi_{0}^{\prime}}{\partial x}\right)\right\rangle, \quad K_{12}=\left\langle K \frac{\partial \varphi_{0}^{\prime \prime}}{\partial x}\right\rangle, \quad K_{21}=\left\langle K \frac{\partial \varphi_{0}^{\prime}}{\partial y}\right\rangle \\
H_{11}=\left\langle K\left(\alpha \varphi_{0}^{\prime}+\frac{\partial \varphi_{1}^{\prime}}{\partial x}\right)\right\rangle, \quad H_{12}=\left\langle K\left(\alpha \varphi_{0}^{\prime \prime}+\frac{\partial \varphi_{1}^{\prime \prime}}{\partial x}\right)\right\rangle \\
H_{21}=\left\langle K\left(\beta \varphi_{0}^{\prime}+\frac{\partial \varphi_{1}^{\prime}}{\partial y}\right)\right\rangle, \quad \ldots
\end{gathered}
$$

By (7) the $K_{i j}$ are constants while the $H_{i j}$ are linear functions of (α, β, γ).
2. The equations for the average values conform to the notion of a potential.

In other words, the matrix formed from the $K_{i j}$ is symmetric, and that formed from $H_{i j}$ is skew-symmetric.
This important property is a consequence of Potier's formulas (Oeuvres, pp. 250-256). For example, the relation $H_{12}+H_{21}=0$ results from the two equalities (8):

$$
\left\{\begin{array}{l}
\left\langle K \frac{\partial \varphi_{1}^{\prime \prime}}{\partial x}\right\rangle+\left\langle\varphi_{0}^{\prime}\left[K \beta+(\boldsymbol{\nu} \cdot \nabla)\left(K \varphi_{0}^{\prime \prime}\right)+K(\boldsymbol{\nu} \cdot \nabla) \varphi_{0}^{\prime \prime}\right]\right\rangle=0 \tag{8}\\
\left\langle K \frac{\partial \varphi_{1}^{\prime}}{\partial y}\right\rangle+\left\langle\varphi_{0}^{\prime \prime}\left[K \alpha+(\boldsymbol{\nu} \cdot \nabla)\left(K \varphi_{0}^{\prime}\right)+K(\boldsymbol{\nu} \cdot \nabla) \varphi_{0}^{\prime}\right]\right\rangle=0
\end{array}\right.
$$

which is obtained upon integration by parts and using equations (5^{\prime}). Taking the sum of the equations in (8) we get

$$
H_{12}+H_{21}=-2\left\langle(\boldsymbol{\nu} \cdot \nabla)\left(K \varphi_{0}^{\prime} \varphi_{0}^{\prime \prime}\right)\right\rangle=0
$$

[^2]
Remark

Potier's method of integration can be applied to anisotropic media with periodic structure. For such media we have the equations

$$
\nabla^{2} \mathbf{E}-\nabla \nabla \cdot \mathbf{E}=\frac{\partial^{2} \mathbf{D}}{\partial t^{2}}, \quad \nabla \cdot \mathbf{D}=0, \quad D_{x}=k_{11} E_{x}+k_{12} E_{y}+k_{13} E_{z}
$$

with the $k_{i j}\left(=k_{j i}\right)$ being periodic functions of (x, y, z). We again arrive at (5^{\prime}) with $K_{i j}=K_{j i}, H_{i j}+H_{j i}=0$; as far as dispersion is concerned, we conclude that optical activity of structural origin obeys the same laws as optical activity of atomic origin.

[^0]: *This is an English translation by E. F. Kuester of a paper which originally appeared in Comptes Rendus de l'Académie des Sciences (Paris), vol. 178, pp. 319-321 (1924). For easier readability, mathematical notation has been made somewhat more consistent with that normally used today. Thus, vector quantities appear in bold, while grad $\rightarrow \nabla$, etc. Some clarifying comments have also been made, indicated as Translator's Notes. The translator is grateful to Dr. Alain Bossavit and Dr. Sébastien Rondineau for their comments on the translation.
 ${ }^{\dagger}$ Session of 7 January 1924, presented by L. Lecornu.
 ${ }^{1}$ [Translator's note: E. Sarrau, "Sur la propagation et la polarisation de la lumière dans les cristaux," J. Math. Pures Appl., ser. 2, vol. 12, pp. 1-46 (1867) and vol. 13, pp. 59-110 (1868).]
 ${ }^{2}$ [Translator's note: A. Potier, "Recherches sur l'integration d'un système d'équations aux différentielles partielles à coefficients périodiques," Comptes Rendus de l'Association Française pour l'Avancement des Sciences (Bordeaux), Sess. 1, pp. 255-272 (1872); also in A. Potier, Mémoires sur l'Électricité et l'Optique. Paris: Gauthier-Villars, 1912, pp. 239-256.]
 ${ }^{3}$ [Translator's Note: C. Briot, Essais sur la Théorie Mathématique de la Lumière. Paris: Mallet-Bachelier, 1864, especially livre III.]

[^1]: ${ }^{4}$ [Translator's Note: i. e., Bragg scattering.]
 ${ }^{5}$ [Translator's Note: That is, the vector $\boldsymbol{\nu}=\alpha \mathbf{u}_{x}+\beta \mathbf{u}_{y}+\gamma \mathbf{u}_{z}$, where $\mathbf{u}_{x, y, z}$ are the cartesian unit vectors. The author appears to intend that $\boldsymbol{\nu}$ is a unit vector. Clearly, $\Theta=\boldsymbol{\nu} \cdot \mathbf{E}$.]

[^2]: ${ }^{6}$ TTranslator's Note: M. Boussinesq, "Théorie nouvelle des ondes lumineuses," J. Math. Pures Appl., ser. 2, vol. 13, pp. 313-339 (1868).]

