Joseph (Joe) Izraelevitz

joseph.izraelevitz@colorado.edu

https://www.colorado.edu/ecee/joseph-joe-izraelevitz

Research Interests

I work at the intersection of *systems software* and *distributed computing theory*, and most of my work is tied together by the twin themes of *emerging memory technologies* and *parallel programming*. On the systems side, I have built run-time libraries for ensuring consistent state on machines with new nonvolatile memory technologies, concurrent and persistent data structures, and novel consensus protocols using network-accessible memory. On the theory side, I have proven my systems work correct and developed formal tools for reasoning about programs in nonvolatile memory. In general, I build practical systems with formal guarantees, and publish in both systems (e.g., ASPLOS, MICRO) and theory (e.g., DISC) venues.

Education

2012-2018 Ph.D. in Computer Science - University of Rochester, Rochester, NY

Dissertation title: Concurrency Implications of Nonvolatile Byte-Addressable Memory [48]

Advisor: Prof. Michael L. Scott, Dept. of Computer Science

2004-2009 B.S./M.S. in Computer Science - Washington University in St. Louis

Second major in History

Thesis title: Automated Archaeological Survey of Ancient Irrigation Canals [51]

Advisor: Prof. Robert Pless, Dept. of Computer Science

Work Experience

Aug 2019- University of Colorado, Boulder, CO

Present Assistant Professor, Electrical, Computer, and Energy Engineering

My research addresses the entire system stack as the memory system becomes more heterogeneous, to include non-uniform memory, nonvolatile memory, secure memory, and network-

accessible memory.

Aug 2018- UC San Diego, San Diego, CA

Aug 2019 Postdoctoral Scholar, Mentor: Prof. Steven Swanson

Nonvolatile Systems

The Nonvolatile Systems Lab at UCSD is a research group investigating the impact of new nonvolatile memory (NVM) on the design of computer systems, while there I participated in various projects on NVM including file systems [15], data structures, and hardware [14].

Jan 2018- IMDEA Software Institute, Madrid, Spain

Aug 2018 Postdoctoral Researcher, Mentor: Dr. Alexey Gotsman

Primitives for RDMA

In contrast to event based network protocols, RDMA allows us to directly access the memory of a remote machine, bypassing the remote CPU. This project investigated how to leverage RDMA primitives in order to build extremely fast and provably correct consensus algorithms [6].

Curriculum Vitae 1 of 10 Joseph Izraelevitz

Aug 2012- University of Rochester, Computer Science Department, Rochester, NY
Jan 2018 Doctoral Student, Advisor: Prof. Michael L. Scott

Infrastructure for Nonvolatile Memory

The replacement of DRAM with nonvolatile memory technologies (NVM) promises to create a new opportunity for fast, durable storage. In this line of work, I built practical and theoretical techniques to allow application programmers to use and reason about NVM and its state on power failure. In particular, I developed a composable correctness condition called *durable linearizability* [36, 23], and further built new libraries and data structures that use NVM [16, 33, 20].

Shared Memory Synchronization

In large shared-memory machines, synchronization and communication between threads is often a major obstacle to scalability; useful and performant tools are needed for the programmer. This work produced new nonblocking concurrent data structures [18, 21], garbage collection techniques [17], and hardware primitives [19].

June 2015- Hewlett-Packard (HP) Labs, Palo Alto, CA

Aug 2016 Research Associate, Systems Group, Mentor: Dr. Terence Kelly

Nonvolatile Memory and Persistent Caches

This work studied the implications that using NVM caches, in addition to NVM main memory, would have on system design, resulting in two papers [20, 22], and three patent applications [41, 42, 43].

June 2014- Oracle Labs, Burlington, MA

Sep 2014 Research Intern, Scalable Synchronization Group, Mentors: Dr. Yossi Lev, Dr. Virendra Marathe

Side-effects of Lock Elision

This project investigated the performance effects of lock elision using both optimistic software synchronization techniques and hardware transactional memory on real-world benchmarks [35].

 ${\bf May\ 2009\text{-}\ United\ States\ Army,\ Fort\ Carson,\ CO}$

Aug 2012 Armor Officer

My three year service in the United States Army included one year-long deployment to Afghanistan as a staff officer. During my service, I filled positions in the battalion communications and planning groups, as well serving as a Tank Platoon Leader. While deployed, I served as the Battalion Afghan National Security Forces Liaison Officer, coordinating American logistical and training support for partnered security forces in Kandahar City.

Publications

Publications are organized by venue. Note that in computing, conference papers are generally rated higher than journal articles, while "workshops" take the role that "conferences" play in most fields. All publications published in 2020 or later were published while a professor at CU.

Conference and Journal Publications

[1] Heewoo Kim, Sanjay Sri Vallabh Singapuram, Haojie Ye, <u>Joseph Izraelevitz</u>, Trevor Mudge, Ronald Dreslinski, and Nishil Talati. Nmp-pak: Near-memory processing acceleration of scalable de novo genome assembly. *In: 52nd Annual Intl. Symp. on Computer Architecture*, ISCA '25, Tokyo, Japan, 2025.

Curriculum Vitae 2 of 10 Joseph Izraelevitz

- [2] Mingyao Shen, Suyash Mahar, Heewoo Kim, Joseph Izraelevitz, and Steven Swanson. Autossd: Cxlenhanced autonomous ssds for low tail latency. *In: 34th ACM Intl. Symp. on High-Performance Parallel and Distributed Computing*, HPDC '25, Notre Dame, IN, USA, 2025.
- [3] Suyash Mahar, Mingyao Shen, TJ Smith, <u>Joseph Izraelevitz</u>, and Steven Swanson. Puddles: Application-independent recovery and location-independent data for persistent memory. *In: Nineteenth European Conf. on Computer Systems*, EuroSys '24, Athens, Greece, 2024.
- [4] Samuel Thomas, Kidus Workneh, Jac McCarty, <u>Joseph Izraelevitz</u>, Tamara Lehman, and R. Iris Bahar. A midsummer night's tree: Efficient and high performance secure scm. *In: 29th ACM Intl. Conf. on Architectural Support for Programming Languages and Operating Systems, Volume 3*, ASPLOS '24, La Jolla, CA, USA, 2024.
- [5] George Hodgkins, Yi Xu, Steven Swanson, and Joseph Izraelevitz. Zhuque: Failure is not an option, it's an exception. *In: 2023 USENIX Annual Technical Conf.* USENIX ATC 23, Boston, MA, USA, 2023.
- [6] <u>Joseph Izraelevitz</u>, Gaukas Wang, Rhett Hanscom, Kayli Silvers, Tamara Silbergleit Lehman, Gregory Chockler, and Alexey Gotsman. Acuerdo: Fast atomic broadcast over RDMA. *In: 51st Intl. Conf. on Parallel Processing*, ICPP '22, Bordeaux, France, 2023.
- [7] Zhang Liu, Dirk Grunwald, <u>Joseph Izraelevitz</u>, Gaukas Wang, and Sangtae Ha. Mrtom: Mostly reliable totally ordered multicast, a network primitive to offload distributed systems. *In:* 43rd IEEE Intl. Conf. on Distributed Computing Systems, ICDCS '23, Hong Kong, China, 2023.
- [8] Casey Nelson, <u>Joseph Izraelevitz</u>, R. Iris Bahar, and Tamara Silbergleit Lehman. Eliminating microarchitectural side-channel attacks using near memory processing. *In: 2022 IEEE Intl. Symp. on Secure and Private Execution Environment Design (SEED)*, 2022.
- [9] Yi Xu, Joseph Izraelevitz, and Steven Swanson. Clobber-nvm: Log less, re-execute more. In: 26th ACM Intl. Conf. on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2021, Virtual, USA, 2021.
- [10] Juno Kim, Yun Joon Soh, <u>Joseph Izraelevitz</u>, Jishen Zhao, and Steven Swanson. Subzero: Zero-copy io for persistent main memory file systems. *In: 11th ACM SIGOPS Asia-Pacific Wkshp. on Systems*, APSys '20, Tsukuba, Japan, 2020.
- [11] Amirsaman Memaripour, <u>Joseph Izraelevitz</u>, and Steven Swanson. Pronto: Easy and fast persistence for volatile data structures. *In: 25th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems*, ASPLOS '20, Lausanne, Switzerland, 2020.
- [12] Jian Yang, Joseph Izraelevitz, and Steven Swanson. Filemr: Rethinking rdma networking for scalable persistent memory. *In: 17th USENIX Conf. on Networked Systems Design and Implementation*, NSDI '20, Santa Clara, CA, USA, 2020.
- [13] Jian Yang, Juno Kim, Morteza Hoseinzadeh, <u>Joseph Izraelevitz</u>, and Steven Swanson. An empirical guide to the behavior and use of scalable persistent memory. *In: 18th USENIX Conf. on File and Storage Technologies*, FAST '20, Santa Clara, CA, USA, 2020.
- [14] Kunal Korgaonkar, Joseph Izraelevitz, Jishen Zhao, and Steven Swanson. Vorpal: Vector clock ordering for large persistent memory systems. In: 2019 ACM Symp. on Principles of Distributed Computing, PODC '19, Toronto ON, Canada, 2019.
- [15] Jian Yang, <u>Joseph Izraelevitz</u>, and Steven Swanson. Orion: A distributed file system for non-volatile main memories and RDMA-capable networks. *In: 17th USENIX Conf. on File and Storage Technolo*gies, FAST '19, Boston, MA, 2019.
- [16] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H. Noh, and Changhee Jung. Ido: Compiler-directed failure atomicity for nonvolatile memory. *In: 51st IEEE/ACM Intl. Symp. on Microarchitecture*, MICRO '18, Fukuoka, Japan, 2018.

- [17] Haosen Wen, <u>Joseph Izraelevitz</u>, Wentao Cai, H. Alan Beadle, and Michael L. Scott. Interval based memory reclamation. *In: 23rd ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming*, PPoPP '18, Vienna, Austria, 2018.
- [18] <u>Joseph Izraelevitz</u> and Michael L. Scott. Generality and speed in nonblocking dual containers. *In: ACM Trans. on Parallel Computing*, 3(4):22:1–22:37, 2017.
- [19] Joseph Izraelevitz, Lingxiang Xiang, and Michael L. Scott. Performance improvement via always-abort HTM. In: 26th Intl. Conf. on Parallel Architectures and Compilation Techniques, PACT '17, Portland, OR, USA, 2017.
- [20] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey, Dhruva Chakrabarti, and Michael L. Scott. Dalí: A periodically persistent hash map. In: 31st Intl. Symp. on Distributed Computing, DISC '17, Vienna, Austria, 2017.
- [21] Matthew Graichen, <u>Joseph Izraelevitz</u>, and Michael L. Scott. An unbounded nonblocking double-ended queue. *In:* 45th Intl. Conf. on Parallel Processing, ICPP '16, Philadelphia, PA, USA, 2016.
- [22] <u>Joseph Izraelevitz</u>, Terence Kelly, and Aasheesh Kolli. Failure-atomic persistent memory updates via <u>JUSTDO</u> logging. *In: 21st Intl. Conf. on Architectural Support for Programming Languages and Operating Systems*, ASPLOS '16, Atlanta, GA, USA, 2016.
- [23] <u>Joseph Izraelevitz</u>, Hammurabi Mendes, and Michael L. Scott. Linearizability of persistent memory objects under a full-system-crash failure model. *In: 30th Intl. Conf. on Distributed Computing*, DISC '16, Paris, France, 2016.

Short Peer-reviewed Publications (Workshop papers, posters, etc.)

- [24] Ian Soukup, <u>Joseph Izraelevitz</u>, and Lauren Hosek. Poster presentation: Modeling oral health in the loretto bioarchaeology project. *In: 2025 Conf. of the Society for American Archaeology*, SAA '25, Denver, CO, 2025.
- [25] Abhiram Bellur, Razan Alghamdi, Kidus Workneh, and Joseph Izraelevitz. Leroy: Library learning for imperative programming languages. In: Wkshp. on Human Aspects of Types and Reasoning Assistants, HATRA '24, Pasadena, CA, USA, 2024.
- [26] Samuel Thomas, Kidus Workneh, Ange-Thierry Ishimwe, Zack McKevitt, Phaedra Curlin, R. Iris Bahar, Joseph Izraelevitz, and Tamara Lehman. Baobab merkle tree for efficient secure memory. *In: IEEE Computer Architecture Letters*, 2024.
- [27] Samuel Thomas, Kidus Workneh, Jac McCarty, <u>Joseph Izraelevitz</u>, Tamara Lehman, and R. Iris Bahar. A midsummer night's tree: Efficient and high performance secure scm. *In: 15th Annual Non-Volatile Memories Wkshp.* NVMW '24, San Diego, CA, USA, 2024.
- [28] George Hodgkins, Yi Xu, Steven Swanson, and <u>Joseph Izraelevitz</u>. Zhuque: Failure is not an option, it's an exception. *In:* 14th Annual Non-Volatile Memories Wkshp. NVMW '23, San Diego, CA, USA, 2023.
- [29] Fernando Villanea, Max Eaton, Penglei Huang, and Joseph Izraelevitz. Poster presentation: Implement a better random seed generator for genomic simulation. *In: 2023 Conf. of the Society of Molecular Biology and Evolution*, SMBE '23, Ferrara, Italy, 2023.
- [30] Amirsaman Memaripour, Yi Xu, <u>Joseph Izraelevitz</u>, and Steven Swanson. Poster presentation: Nvhooks: Compiler support for non-volatile memory programming. *In: 11th Annual Non-Volatile Memories Wk-shp.* NVMW '20, San Diego, CA, USA, 2020.
- [31] Jian Yang, Juno Kim, Morteza Hoseinzadeh, <u>Joseph Izraelevitz</u>, and Steven Swanson. An empirical guide to the behavior and use of scalable persistent memory. *In:* 11th Annual Non-Volatile Memories Wkshp. NVMW '20, San Diego, CA, USA, 2020.

Curriculum Vitae 4 of 10 Joseph Izraelevitz

- [32] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey, Dhruva Chakrabarti, and Michael L. Scott. Dalí: A periodically persistent hash map. In: 9th Annual Non-Volatile Memories Wkshp. NVMW '18, San Diego, CA, USA, 2018.
- [33] Joseph Izraelevitz, Virendra Marathe, and Michael L. Scott. Poster presentation: Composing durable data structures. In: 8th Annual Non-Volatile Memories Wkshp. NVMW '17, San Diego, CA, USA, 2017
- [34] <u>Joseph Izraelevitz</u>, Lingxiang Xiang, and Michael L. Scott. Performance improvement via always-abort HTM. *In: 12th ACM SIGPLAN Wkshp. on Transactional Computing*, TRANSACT '17, Austin, TX, USA, 2017.
- [35] <u>Joseph Izraelevitz</u>, Alex Kogan, and Yossi Lev. Implicit acceleration of critical sections via unsuccessful speculation. *In: 11th ACM SIGPLAN Wkshp. on Transactional Computing*, TRANSACT '16, Barcelona, Spain, 2016.
- [36] <u>Joseph Izraelevitz</u>, Hammurabi Mendes, and Michael L Scott. Brief announcement: Preserving happensbefore in persistent memory. *In: 28th ACM Symp. on Parallelism in Algorithms and Architectures*, SPAA'16, Asilomar Beach, CA, USA, 2016.
- [37] <u>Joseph Izraelevitz</u> and Michael L. Scott. Brief announcement: A generic construction for nonblocking dual containers. *In: 2014 ACM Symp. on Principles of Distributed Computing*, PODC '14, Paris, France, 2014.
- [38] <u>Joseph Izraelevitz</u> and Michael L. Scott. Brief announcement: Fast dual ring queues. *In: 26th ACM Symp. on Parallelism in Algorithms and Architectures*, SPAA '14, Prague, Czech Republic, 2014.

Patents and Patent Applications

- [39] George Hodgkins, Zack McKevitt, Ben Feinberg, Sapan Agarwal, Josh Joffrion, and Joseph Izraelevitz. Seup: Soft error protection for unhardened processors, Provisional patent application filed, no.: 63/694,702, US, 2024. University of Colorado, Boulder.
- [40] Virendra Marathe and <u>Joseph Izraelevitz</u>. Systems and methods for constructing composable persistent data structures, Patent <u>US10007581B2</u>, <u>US</u>, 2018. Oracle International Corporation.
- [41] <u>Joseph Izraelevitz</u>, Terence Kelly, Aasheesh Kolli, and Charles B. Morrey. Resuming execution in response to failure, Patent WO2017074451A1, US, 2017. Hewlett Packard Enterprise Development Lp.
- [42] Terence Kelly, Charles B. Morrey, Dhruva Chakrabarti, Aasheesh Kolli, Qiong Cai, Andrew C. Walton, and <u>Joseph Izraelevitz</u>. Register store, Patent WO2017155551A1, US, 2017. Hewlett Packard Enterprise Development Lp.
- [43] Faisal Nawab, <u>Joseph Izraelevitz</u>, Terence Kelly, Charles B. Morrey, and Dhruva Chakrabarti. Memory system to access uncorrupted data, Patent WO2017171809A1, US, 2017. Hewlett Packard Enterprise Development Lp.

Unreferred Publications (TRs, theses, etc.)

- [44] George Hodgkins, Mark Madler, and Joseph Izraelevitz. Loco: Rethinking objects for network memory. In: arXiv preprint arXiv:2503.19270, 2025.
- [45] Ange-Thierry Ishimwe, Raghuveer Shivakumar, Heewoo Kim, Tamara Lehman, and Joseph Izraelevitz. Prediprune: Reducing verification overhead in souper with machine learning driven pruning. *In: arXiv* preprint arXiv:2509.16497, 2025.
- [46] <u>Joseph Izraelevitz</u>, Jian Yang, Lu Zhang, Amirsaman Memaripour, Yun Joon Soh, Subramanya R. Dulloor, Jishen Zhao, Juno Kim, Xiao Liu, Zixuan Wang, Yi Xu, and Steven Swanson. Basic performance measurements of the intel optane dc persistent memory module. *In: arXiv preprint arXiv:1903.05714*, 2019.

- [47] Jian Yang, Juno Kim, Morteza Hoseinzadeh, <u>Joseph Izraelevitz</u>, and Steven Swanson. An empirical guide to the behavior and use of scalable persistent memory. *In: arXiv preprint arXiv:1908.03583*, 2019.
- [48] <u>Joseph Izraelevitz</u>. Concurrency implications of nonvolatile byte-addressable memory, Department of Computer Science, University of Rochester, 2018. Ph.D. Thesis.
- [49] <u>Joseph Izraelevitz</u> and Michael L. Scott. A generic construction for nonblocking dual containers. Technical report TR 992, Department of Computer Science, University of Rochester, 2014.
- [50] <u>Joseph Izraelevitz</u> and Michael L. Scott. Fast dual ring queues. Technical report TR 990, Department of Computer Science, University of Rochester, 2014.
- [51] <u>Joseph Izraelevitz</u>. Automated archaeological survey of ancient irrigation canals, Department of Computer Science, Washington University in St. Louis, 2009. Master's Thesis.
- [52] <u>Joseph Izraelevitz</u>. Poster presentation: Analyzing software dependencies on supercomputers with REV. *In: Los Alamos National Laboratory Student Symp*. Los Alamos, NM, USA, 2007.

Teaching

- Instructor, Compiler Construction. (SP2022, SP2023, SP2024, SP2025) This project-based class explores the compiler pipeline through the intensive development of a Python to x86 compiler.
- Instructor, Concurrent Programming. (FL2019, FL2020, FL2022, FL2023, FL2024) This class explores the essentials of concurrent programming, covering shared memory synchronization.
- Instructor, Modern Computer Systems. (SP2023, SP2024, SP2025) This class introduces students to the state-of-the-art research in computer systems through a semester long project.
- Instructor, C Programming. (SP2020, SP2021, FL2024) This introductory programming class covers the essentials of the C and C++ languages for engineering majors.

Mentored Students and Researchers

Advised Postdoctoral Researchers.

- Heewoo Kim (start FL2024)

Advised Doctoral Students.

- Mark Madler (start FL2024)
- Henri Malahieude (start FL2024)
- Pedro Kasprzykowski (start FL2024)
- Kidus Workneh (start SP2022, passed prelim FL2023)
- George Hodgkins (start FL2020, defended SU2025)

Advised Masters Students.

- Razan Alghamdi
- Abhiram Bellur
- Zachary McKevitt
- Liam Semeria
- Rohan Jha
- Raghu Shiyakumar
- Ayush Gupta
- Keval Shah
- Shravan Shetty

- Sarthak Jain

Advised Undergraduate Students.

- Alan La (SPUR)
- Nathan Keyt
- Cheng Zhou
- Penglei Huang (SPUR)
- Max Eaton (SPUR)
- Ian Soukup (DLA)
- Anusha Venkateswaran (SPUR)
- Nolan Porter
- David Wade
- Gaukas Wang
- Kayli Silvers (DLA)

The Discovery Learning Apprenticeships (DLA) and Summer Program for Undergraduate Research (SPUR) programs are run by the College of Engineering at CU and facilitate the matching of interested undergraduates with research projects.

Other Mentored Students.

- Erika Hunhoff (CU PhD, Committee Member)
- Ange-Thierry Ishimwe (CU PhD, Close collaborator, Committee Member)
- Phaedra Curlin (CU PhD, Committee Member)
- Christian Fontenot (CU PhD, Committee Member)
- Prasanth Prahladan (CU PhD, Committee Member)
- Zachary Moolman (CU PhD, Committee Member)
- Rhett Hanscom (CU PhD, Close collaborator, Research assistant funded by my lab for one semester)
- Mingyao Shen (UCSD PhD, Close collaborator on two projects)
- Suyash Mahar (UCSD PhD, Close collaborator on two projects, defended SP2025)
- Samuel Thomas (Brown PhD, Close collaborator on two projects, defended SP2025)
- Yi Xu (UCSD PhD, Committee Member, Close collaborator on two projects, defended FL2023.)
- Juno Kim (UCSD PhD, Close collaborator on two projects, defended SP2023.)
- Gregory Cusack (CU PhD, Committee Member, defended FL2022)
- Marcelo De Abranches (CU PhD, Committee Member, defended FL2022)
- Zhang Liu (CU, Close collaborator, Committee Member, defended FL2021)

Above, a close collaborator is a student who was not primarily advised by me, but with whom I had a strong research collaboration. With these students, I met weekly for the duration of a research project, generally at least a year, and often met with them in a one-on-one setting.

Honors and awards

- Outstanding Mentor for CU's Summer Program for Undergraduate Research (SPUR), 2024.
- Faculty Speaker at Departmental Commencement, chosen by students, 2023.
- Holland Departmental Award Winner for Outstanding Teaching, 2023.
- Commendation (Runner-up) Outstanding Dissertation Award for Engineering, U. of Rochester, 2018.
- Hopeman Fellowship (School of Engineering scholarship), 2013-2014.
- Sproull Fellow (full-tuition award to U. of Rochester), 2012-2013.
- Induction into Tau Beta Pi Engineering Honor Society, 2009.

- Induction into Phi Alpha Theta History Honor Society, 2009.
- George C. Marshall Cadet Award (top military graduate at Washington U. in St. Louis), 2009.
- Alexander S. Langsdorf Fellow (full-tuition award to Washington U. in St. Louis), 2004-2009.
- J. Robert Oppenheimer Memorial Scholar, 2004.
- National Merit Finalist, 2003.

Grants

- Gift recipient for university research and collaboration (\$15,500) funded by Cerfe Labs, 6/2025.
- co-PI for Bioarchaeological Synthesis of Deviant Burials in Early Medieval Central Europe (\$59,976 Izraele-vitz as unfunded co-PI) funded by CU Boulder's Research and Innovation Office (SEED grant), 6/2025-1/2027.
- sole-PI for *Ultra-fast Self Checkpointing Recovery Architecture* (\$291,128) funded by Sandia National Laboratories (DOE), 10/2023-9/2025.
- sole-PI for CAREER: Programming Heterogeneous Memory Hierarchies (\$524,470) funded by NSF, 5/2023-4/2028.
- co-PI for Optimizing Computer Simulation for Use in Archaic Genomics (\$50,000 with \$4,500 for Co-PI Izraelevitz) funded by CU Boulder's Research and Innovation Office (SEED grant), 6/2023-5/2025.
- sole-PI for Resilient Memory Systems for Recovery in Hybrid Systems (\$54,339) funded by Sandia National Laboratories (DOE), 2/2023-9/2023.
- External collaborator on SACRED-MA: Safe And seCure REmote Direct Memory Access, funded by EP-SRC, 2023.
- Sold non-exclusive software license to LOCO library [44] to Genuen (\$20,000), 1/2023.
- sole-PI for Optimized Reflective Memory over RDMA for Real-time System Testing (\$67,820) funded by Genuen, 1/2023-8/2023.
- sole-PI for Low-latency Communication over RDMA for Real-time System Testing (\$168,268) funded by Genuen, 1/2022-12/2022.
- Co-PI for Enabling High IPC in Future Multi-NUMA Systems (\$415,000, with \$95,000 for Co-PI Izraele-vitz) funded by the NSF/Intel Partnership on Foundational Microarchitecture Research (FoMR) Program, 7/2020-6/2021.

External Service

- PC Member. Vail Computer Elements Wkshp. (VCEW), 2026.
- PC Member. Conf. Architectural Support for Programming Languages & OS's (ASPLOS), 2026.
- Reviewer. IEEE Micro, 2025.
- External PC. ACM Conf. on Object-Oriented Programming, Systems, Languages and Applications (OOP-SLA), 2025.
- *PC Member*. ACM Workshop on Advanced tools, programming languages, and PLatforms for Implementing and Evaluating algorithms for Distributed systems (ApPLIED), 2025.
- PC Member. Vail Computer Elements Wkshp. (VCEW), 2025.
- Working Group Member. CRA LEVEL UP Workshop on Inclusive Undergraduate Computing Education, 2024.

- Reviewer. ACM Trans. on Parallel Computing (TOPC), 2024.
- Reviewer. IEEE Trans. on Distributed Systems (TPDS), 2024.
- External PC. Intl Symp. on Computer Architecture (ISCA), 2024.
- External PC. Symp. Principles & Practice of Parallel Programming (PPoPP), 2024.
- External PC. Conf. Architectural Support for Programming Languages & OS's (ASPLOS), 2024.
- Panelist. NSF Review Panel, 2023.
- PC Member. Conf. Architectural Support for Programming Languages & OS's (ASPLOS), 2023.
- PC Member. Conf. Architectural Support for Programming Languages & OS's (ASPLOS), 2022.
- PC Member. Symp. on Operating Systems Design and Implementation (OSDI), 2021.
- Reviewer. ACM Trans. on Storage (TOS), 2021.
- External PC. Conf. Architectural Support for Programming Languages & OS's (ASPLOS), 2021.
- Reviewer. ACM Trans. on Storage (TOS), 2020.
- Organizing Committee. Persistence in Real Life (PiRL), 2020.
- PC Member. Intl. Symp. on Distributed Computing (DISC), 2020.
- Reviewer. Very Large Data Base (VLDB) Journal, 2020.
- PC Member. ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), 2020.
- PC Member. Nonvolatile Memories Workshop (NVMW), 2020.
- Reviewer. IEEE Computer Architecture Letters (CAL), 2020.
- PC Member. IEEE/ACM Intl. Symp. on Cluster, Cloud and Grid Computing (CCGrid), 2020.
- Organizing Committee. Persistence in Real Life (PiRL), 2019.
- External PC. ACM Symp. on Principles of Distributed Computing (PODC), 2019.
- Reviewer. IEEE Trans. on Parallel and Distributed Systems (TPDS), 2019.
- Reviewer. ACM Trans. on Architecture and Code Optimization (TACO), 2019.
- PC Member. Nonvolatile Memories Workshop (NVMW), 2019.
- Publicity Chair. Nonvolatile Memories Workshop (NVMW), 2019.
- PC Member. IEEE/ACM Intl. Symp. on Cluster, Cloud and Grid Computing (CCGrid), 2019.
- External PC. Intl. Symp. on Memory Management (ISMM), 2017.
- Artifact Evaluation PC. Symp. on Principles & Practice of Parallel Programming (PPoPP), 2017.
- External PC. Intl. Conf. on Parallel Architectures and Compilation Techniques (PACT), 2016.
- External PC. Intl. Conf. on Distributed Computing (DISC), 2014.

Internal Service

- Committee Member. College of Eng. Intro to Computing Committee, 2024-present.
- Committee Member. Dept. Undergraduate Student Committee, 2024-present.
- Committee Co-Chair. Dept. Graduate Student Committee, 2023-2024.
- Lead Author. Dept. Policy on Ph.D. Admission, Evaluation, Dismissal, 2021.
- Committee Member. Dept. Graduate Student Committee, 2019-2024.

Talks

- Invited talk at AFRL Space Cyber Summit: Space Resiliency and What it Means for Space Cyber, 2024.
- Invited talk at Vail Computer Elements Workshop: SEUP Robust Detection and Correction of Radiation Errors for Commodity Microprocessors, 2024.
- Invited talk at Intel Foundations of Microarchitecture Research: Providing Failure Atomicity on Storage Class Memory, 2022.
- Invited talk at Intl. Wkshp. on High Performance Transaction Systems (HPTS): An Empirical Guide to the Behavior of Scalable Persistent Memory, 2019.
- Invited talk at Microsoft Research: Distributed Algorithms over RDMA. Cambridge, UK. July, 2018
- Invited talk at VMWare Research: Linearizability of Persistent Memory Objects Under a Full-System-Crash Failure Model. Palo Alto, CA, August 2016.
- Presented papers at ASPLOS $\times 2$ [11, 22], DISC $\times 2$ [20, 23], PACT [19], SPAA $\times 2$ [36, 38], FAST [13], ICPP [6], TRANSACT $\times 2$ [34, 35].