

The Multiplexed Source Measure Unit

Claire Markus, Dylan Schafer, Mahdi Al-Marhoon, Ali Brzostowicz, Senayt Wolde, and Owen Hushka

Sponsored by Teradyne Inc., North Reading, Massachusetts, USA
Department of Electrical Engineering, University of Colorado, Boulder, Colorado, USA

Project Summary: A power source and measurement device that can automatically test devices assemblies

Purpose:

Laboratory testing PCB traces, cables, and other devices can be a huge time sink. For this project our sponsor challenged us to develop an affordable, versatile system that could precisely test 16 devices fully automated from the UI.

Available Products vs The OGCAD SMU

Custom User Interface:

- IV and VI curve capabilities with custom averaging, step size, and calibration mode on up to 16 devices
- Coded in Python using Tkinter package
- Weight: ~4oz, handheld device

COTS User Interface:

- Keithley SMU resistor characterization curve, cost \$4000
- 1-3 devices at a time
- Weight: 10lbs-40lbs

OGCAD offers 85% Price Reduction with 5% Accuracy.

Iterative Process:

Measurement:
16-bit ADC and
PGA (ADS1115)
Source: 12-bit
DAC (MC4725)

+/-12V Sourcing:
Relays for
polarity switching
Current Ranging:
Sense resistor
switching matrix
Wi-Fi Host:
ESP32 WROOM-

DA

The Hardware:

- Precision is achieved through automated sense resistor and PGA gain cycling program.
- Remote control is achieved by hosting a network on the ESP32 allowing custom test protocols to be triggered on any wifi network.

Block Diagram:

Key Learnings: Component selection, switching architecture design, and precision measurement techniques.