Features

- Four-Sided Receiver Circuit Enables Yaw Control
- 5 m/s Max Trackable Velocity
- 1 m/s² Max Trackable Acceleration
- 7.5 meter Max Operational Range
- Images Processed at 45 fps
- Search Behavior on loss of visual contact

STILL COMPILING

Sponsor: Dr. Marco M. Nicotra

AIDAN FITTON, HENRY TOMERLIN, SAMUEL ROBERTSON, DANIEL LEE, NASSER ALLANQAWI, FRANK MCDERMOTT

Ground-Based Tracking Station and Laser Transmitter that **Replaces Interceptable RF** Communication

Drone

Computer Vision Control Loop

The Raspberry Pi M12 Camera detects the QR marker and calculates the distance from the center of the marker to the setpoint. That distance is fed into the ESP32 via UART and used in a PID Control Loop, which calculates a frequency to drive the stepper motors

Control Loop

- Acceleration

Compiling Sketch...

Eric Bogatin, Gabriel Altman, Rory Duncan, Tyler Davidson, John Lettang, Rylan Moore, Arielle Blum, Fhubale

Challenges

 Maintaining Up-Link through PID Small Solid Angle of Laser Beam **Creating "Dead Spots" on Receiver** Mechanical Jitter Impacting Control Loop and Inducing Motion Blur Image Processing Speed Limiting Max Mounting Hardware Payload to Drone

Special Thanks To: