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ABSTRACT

The question of the appropriate definition of the charac-
teristic impedance of microstrip transmission line for
nonzero frequency is examined. By studying two specific
excitation problems, it is found that different choices
of the characteristic impedances can considerably simplify
equivalent circuits of microstrip sources or junctions in
particular cases. Since the choice of the impedance is
ultimately arbitrary, some suggestions are made as to how
a "universal" definition of this gquantity can be made.
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1. INTRODUCTION

In recent years, a controversy has arisen as to the
"correct" definition of the characteristic impedance of
microstrip transmission tine when frequency dependent
effects become important. Different definitions which are
equivalent in the static Timit generally exhibit a com-
pletely different dependence on frequency [1,2]. Since
for any non-TEM mode any transmission-line representation
must necessarily be an "equivalent" one, no unique defini-
tion of Z. can be given, despite some authors' insistence
to the contrary (e.g., [3]). In fact, one often chooses
the characteristic impedance equal to the wave impedance
of a mode (where one can be unambiguously defined, as in
the case of pure TE or TM modes) or even decide to set

Zc =1 (see, e.g., [4]). Neither of these choices agrees

with the “transmission-line" definition of Zc, even in the
static 1imit, and their use is strictly dictated by conven
ience in a particular application.

Discussions in the literature attempting to reconcile the
differences in the various definitions of Z¢(w) or pro-
moting one particular definition over the others have all
made certain approximations or assumptions about the quasi-
TEM mode which may not be reasonable in all applications
[1-3], [5]. Recently [6,7], an attempt has been made to
infer the characteristic impedance Zc(m) from a rigorous
calculation of the scattering matrix at a certain micro-
strip discontinuity to a transmission line which supports

a true TEM mode. Unfortunately, the manner in which Ze(w)
is inferred presupposes that no eguivalent circuit account-
ing for reactive effects near the junction need be included.
Thus, while the intent of [6,7] is certainly valid, the

use of Zc{w) as evaluated therein may actually require a
very complicated equivalent circuit in order to apply to
qther types of discontinuity.

What few experimental results exist for Z.{(w) are incon-
clusive [8,9]. As has been noted elsewhere [10], this may
be due to the fact that interpretation of the measured data
depends on several assumptions made, implicitly at least,
as to what equivalent ¢ircuit is needed to model junction
effects in the experiment. Specifically, assumptions
about the phases of the reflected signals appear to have
been made. Thus, these results suffer from the same am-
biguities as the theoretical results of [6,7].

In this paper, we shall briefly review the various defini-
tions of Zc{w) which have appeared in the literature.
Using two examples of the excitation of microstrip, we will
show how two of these definitions arise most naturally in
applications. It will be seen that the controversy sur-
rounding the definition of Z.{w) cannot be absolutely
resolved, and that its choice is largely a matter of con-
venience. Several criteria will be presented which, in
our opinion, should be considered if a "universal® defini-
tion of Zg(w) is to be agreed upon.

2. DEFINITIONS OF Ze(w)

Following [1,2], we can define several possible versions
of a frequency dependent characteristic impedance for the
quasi-TEM mode of open microstrip (Fig. 1). The line con-
sists of a conducting strip of width 22 lying on a dielec-
tric substrate of thickness t and relative permittivity

c,. deposited on a conducting ground plane. We will suppose
tHat the fields of the quasi-TEM mode can be computed by
some method, possibly only numerically, and are given by
Eo(y,z), Ho(y,z). The propagation factor exp(iwt-ikoaox)



is suppressed, where k° = w/hoeo, and o is the normal-
ized propagation constant of the mode (ug =eeff).

We define (somewhat arbitrarily) a voltage and current
associated with this mode as

t .
Vy = - J Eo(y,z)-azdz (1)
o]
I = - [1 azxfﬁa(y,wo) -Ho(y,t-o)}dy (2)

-3
and (not arbitrarily) the power carried by the mode as

00 o
-1 F oo -3

p 3 L} dz J dy on H0 a, (3)
assuming that, under lossless conditions, Eo and RO have

been chosen to be real. Three primary definitions of
Z-(w) suggest themselves:

Z,;(u) = Vy/I (4)
o2

Zq(w) = 2¢/1 (5)

7., t0) = vi/zp - zfi/zpi (6)

Further, definitions (4) and (6) also depend on the path
(value of y) selected for the definition of V_ in (1).

The quantities Zvi(“) and 7 i(m) have usually been

found to be increasing functions of frequency [13]. Little
can be said about the other definitions and analyses used
in [1-3,5] because they rely on a specific dispersion
model which is only approximate and restricts the general-
ity of the definitions.

3. EXCITATION BY A SLOT VOLTAGE GENERATOR

Consider the microstrip whose cross-section is shown in
Fig. 1. A voltage V, is impressed across an infinitesimal
gap in the strip at x=0. The formulation is similar to
that of (117 and [12], with the exception that the longi-
tudinal electric field no longer vanishes on the strip,
but satisfies

Ex(x,y.z=t)=—voa(x); [y| < &, =w<x<w (7)

Defining the Fourier transform with respect to x as
@ -ikoax
flx) = J Fla)e da
-~ k:: f" fkoax (8)
fla) = 5 ‘mf(x)e dx
we can obtain an integral equation for the charge density
5ly) = p(ysa) on the strip:

L ic a
J G (y-y*)ply )dy' = 20 Vg t A coshva®-1 kY
) a =1 (yf<l

(9)

where A is a constant to be determined later and G_ is
defined in {11] or [12]. The_integral equation for Sthe
current distribution Jx(y) = Jd, (y;a) is

2 . iv
me(y-y')JA(y')dy’ i
i ngla®=1)
%
* of [A cosh beo kY * f M{y-y' }5(y" Jdy']
) Iyl <2 (10)

- 3 - -3
where n -(uD/co) . g —(uoeo) . and G and M are
defined in [11] or [12]. The charge and current satisfy a
conservation equation which can be considered as fixing
the constant A:

2 L
a j ax(y)dy =<, L ply)dy
) -7
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Using the "one-term moment method” of (12], we assume that
. (o)
I (xsy) = 9 (x)a " (y)

where Jio)(y) is the static current distribution on the
strip, and find that -ikoulxl
o

i e
J (x) = Zﬂﬂz f — gy @ (m
where ;n
D(a) = a"/C(a) - L(a) (12}

and C{a) and L(a} are defined in (12] as Sommerfeld-type
integrals.

Deforming the contour of integration in (11) into the
iower half-plane around the singularities of the integrand
splits J _(x) into a component due to the quasi-TEM mode
and a comBonent due to higher-order (radiation modes):

v ik e [x]

iv “Tkgalx]
0 e da (13)
]*cz p{a)

Here ay is the pole corresponding to the quasi-TEM mode,

+

2wn0

while CI and C2 are contours enclosing the branch cuts of

D(a) in the Tower half of the complex a-plane. Although
the integral in (13) is infinite at x =0 (because of the
infinite capacitance associated with a delta-function
generator), this could be avoided by modifying the deriva-
tion for a finite-gap generator. Setting x=0+ in (13),
we find that the most natural interpretation of the result
in this case is that of Fig. 2. The characteristic imped-
ance Zc(w), from the first term of (13), is to be

o
Zc(m) = TD|(GO) (14)
whereas the admittance Y  due to the radiation modes is
-ikoot| x|

1 e
Y — 5 [ da , as x -+ 0 (15)
r Znno C]+C2 PIEY)

The significant point here is that the presence of Yr has
no effect on the rest of the equivalent circuit, and in
particular, upon the definition of Zc(m). In addition,
definition (14} can be shown to be equivalent to Zpi(w)
given by (5), within the approximations of the foregeing
analysis. For this particular means of exciation, there-
fore, Z i(m) seems to offer the most convenience in terms
of Simp?Ifying the equivalent circuit for the source.

4, EXCITATION BY A PIN CURRENT SOURCE

0f course, the slot voltage source might not be expected
to provide a very realistic picture of the type of excita-
tion used in practical microstrip configurations, particu-
larly for wide microstrip or microstrip patch antennas.
Perhaps more typical would be a "pin current source," a
1ine current J =1 s(x)é(y-yo) connected between the ground

plane z =0 and the strip at z=t. The analysis of the
current excited on the strip is'quite similar to that for
the slot voltage source, but the tangential electric field
at the strip, produced by the induced strip currents, must
now cancel that produced by the pin. Reciprocity argu-
ments similar to those employed in [14] can be used to
simplify the manipulations. From the strip current, a
voltage Vyo(x) can be defined (similar to (1)} at any

point along the strip. The results of this analysis
{which will not be reporduced here) suggest that the equi-
valent circuit of this pin generator should be that of
Fig. 3, where the characteristic impedance Zc(m) i5 now
most conveniently chosen as Z V(m) from (6). Once again,

the simplicity of this choice is reflected in the factthat
radiation effects, Tumped into Z_ in Fig. 3, have absolu-

tely no effect on the definition of ZC(mL

There is a certain nonuniqueness associated with the
choice of yq, since the voltage Vyo may well depend rath-
er strongly on this position if w is sufficiently large.



This situation is, however, similar to an ambiguity
encountered in defining a voltage for the TE]0 mode of a

rectangular waveguide [15]. The transverse variation of
this field in a guide of width a causes the "voltage"
to vary as sin(mx/a). When shunt discontinuities or
excitations are encountered which are not centered in the
guide, the referral of the voltage to its value at the
center can be accomplished in the equivalent circuit by
simply including an ideal transformer whose turns ratio

is sinz(nx/a). A similar conclusion can be made in micro-
strip problems, although the voltage transformation may

no longer take so simple a form as sinZ(nx/a) in this
case.

5. DISCUSSION

These two simple examples have shown that a specific
choice for Zc(w) can lead to a particularly simple equi-

valent circuit for certain types of sources, but will
generally produce a very complicated equivalent circuit
in other situations. It seems to us that the same thing
can be said regarding equivalent circuits of discontinui-
ties. The authors of [6,7] have made a choice of Z¢(w)
based on the requirement that a particular discontinuity
have a trivial equivalent circuit at the junction. This,
of course, will in general not lead to similarly simple
equivalent circuits for other junctions; indeed, very
different kinds of discontinuity may require a full T- or
M- network to represent the junction effects even though
the junction itself appears fairly simple.

We can make a number of speculations about the effects of
discontinuities. Purely shunt discontinuities, such as
shorting strips or pins to the ground plane, etc., are
probably best accommodated by the Z_~ definition. On the
other hand, discontinuities which afé primarily in series,
such as longitudinal gaps, are probably best described
using Z,;. We must await full, accurate, frequency-depen-
dent sc?utions of these and other canonical problems in
order to see whether these speculations are justified.

It may turn out that, for example, the additional compli-
cation in the equivalent circuit of a "series" discontinu-
ity when va is used is not too serious. If a "compromise”

candidate for a "best" or "universal" definition of Z (w)
can be agreed upon which can convenientiy be applied to a
sufficiently wide range of microstrip problems, this will
have to be determined on the basis of the solutions of
canonical problems. If no definition can be found which
has a sufficiently broad usefulness, one may have to bear
all three definitions in mind, and change between them as
circumstances dictate. .
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