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INTRODUCTION

In the solution of certain problems in the theor§ of diffraction of
electromagnetic waves, particularly those encountered in antenna theory,
shielding theory, or other areas of electrodynamics, one often has to deal
with summations containing oscillating terms. The direct evaluation of such
sums is not infrequently fraught with difficulties, and a relation permit-
ting replacement of these sums with integrals could be quite useful here.

We shall first quote the result without proof, show how it can be
applied to a particular exaqple, and then give its derivation.

Let f£(x) alqng with its first derivative be a continuous function
given on the interval 1 < x < N, where N is some natural number. Then the

following relation holds:
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Here f'(m) = df/dx x=m’ R is a remainder term; and v is an arbitrary, gen-

erally complex, number.
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We note in passing that we can always choose IRe vl <m, inasmuch ‘as
subtracting an integer multiple of 27 from Re Vv has no effect on the value

of the left hand side of (1).

For real v, the following estimate can be obtained for the remainder

term R:
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1. DIFFRACTION OF A PLANE WAVE FROM A WIRE ARRAY
As an example to illustrate the application of formula (1), we consider
the problem of diffraction of a plane wave by an array consisting of parallel

equidistant wires. To this end we consider an infinite plane array formed

by parallel cylindrical wires of radius L the wires are uniformly spaced

a distance b from adjacent wires; we assume that r << A, b; where A is the
wavelength. We choose a rectangular coordinate system XYZ such that the

plane XOY coincides with the plane array; the X axis is parallel to the

wires as shown in the figure.
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Electromagnetic plane wave incident onto a wire array.



Let a plane wave be incident from the half-spacé z > 0, its direction
of propagation given by the wave vector ko, which forms the angles § and o
- with the coordinate axes. The vector direction of the incident wave Einc

is taken to be perpendicular to the Z axis. Under these assumptions
inc

E, = E,cos ag~**(#sind « sinatysind . cosa-scoss) (2)
where k = w/c (w is the angular frequency and c the speed of light).

We number the wires as shown in the figure. Thus the current in the

mth wire can be represented as
I.— [oe-&kxsina + sina,-ikmbsindcosa (3)
m— 1

where Io is the current in the zeroth wire at x = 0.

Before we can evaluate Io we must obtain the field induced by all the

wires on the surface of the zeroth wire. We have

E=—-i—c-m(A+kiz'graddivA),1 (4)
where ‘
© :
2 Ap= 2 Am+ 2 An+ Ag (5)
m=—co . m=—co m—l

A is the vectot-potential of the field induced by the mth wire on the

~

zeroth wire.

For m # O,
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where x" is a point on the wire axis.

!The Gaussian system of units is used here; time dependence is taken to be
eiwt



This integral reduces by means of the substitution /Qx-x!)2-+(mb)2 =

mb ch t to a known integral representation for the Hankel function

@
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As a result, we obtain
Ay, =— %‘_ Ioe-iksinﬁ (zsinatmbcose) grea) [f {m|b V1 — sin¢ b sintal, (6)

Also, in particular,
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The summations in (5) may now be written as
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To evaluate the sums of (7) and (8), we make use of formula (1). We intro-

duce the continuous functions

. -k
&1, () = HED (pk | ]) PF 1T,

1y (1) = HEP (pk | ) !PT 0T,

Here p = /& - sin?8 sin?a , Y. =p+ sind cosd, Yo =P - sind coso.

For n = mb, where m is an integer, these functions reduce to the ex-
pressions under the summations on the right sides of (7) and (8).

Consider now the case of 'large" distances between wires, when pkb >> 1;

we use the asymptotic form of the Hankel function and put

1 oy = ) I v, @



In this case fl(n) and fz(n) can be considered to be slowly varying.

After applying formula (1) to (7) and (8) and some manipulations, we obtain

the following expression:
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in which C(Yl 2kb) and S(Yl 2kb) are Fresnel integrals.
2 b

The value of the tangential electric field component at the surface of

the zeroth wire is now equal, according to (4), to

E, =—l§ Igx (1 — sin?3 sin? q) ¢-*k@sindsina (11)

On the surface of a perfectly conducting wire, we must have

E;"% E,=0,

and consequently, as a result of (1l),

i
E,cos a4 — Ign (1 — sin?3 sin? ) =0,
whence we find the desired expression for the current

cOS a .
wx (§ — sin3d sin?a) ?
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and consequently, the current in the mth wire, according to (3), is

cos a i
Im= icE e i1:8ind (zsinatmbcosa) .

0 wx (1 — sin??d sin? a)

2. FIELD SCATTERED BY THE ARRAY
After determining the currents induced in the wires of the array by
the incident wave, it is not difficult to determine the field produced by
these currents in the surrounding space. Performing a few manipulations and

and then using the Poisson summation formulaz, we obtain

Ex'= —_— 2_1:‘:# e—ik.zslnasing (1 < sin?$ sin? d)v X
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where d = kb sind cosa.

The minus sign in the exponents under the summation sign refers to the
field for z > 0, the plus sign to z < 0; the plus sign in front of Ez refers
to z > 0, the minus sign to z < 0.

Thus, the field scattered by the array is a superposition of plane
waves (spatial harmonics) with various propagation constants along the Z-
axis. It should be noted that not all the spatial harmonics defined in
relations (12) are propagating. Those harmonics whose propagation con-

stants along the Z-axis have a purely imaginary value, i.e., those harmonics

2See, e.g., [1].



with orders for which the inequality
b\2 . b . 2
(T). {1 — sin? 3% sin? a) <( — s dcosaj ,

is satisfied, decay with distance from the surface of the array.

3. DERIVATION OF FORMULA (1)
Let ¢(x) and f(x) be functions continuous along with their first deri-
vatives, given on the interval 0 < x < N, where N is some natural number.

Let us also introduce the step-function ¢l(x), defined by the relations

Py (z)=ap for k<z<k4+1 (=0, 1, ..., V)

with ak some constants, in general complex.

The function f(x) is to be slowly-varying in the sense that its second
derivative is somehow nearly constant on each interval k < x < k + 1 (but
can be different on different intervals).

Consider now an integral of the form

4

[ o (2)1(2) aa,

0

where &(x) = ¢(x) + ¢l(x), ®'(x) = dd(x)/dx. Integrating by parts twice,

we get

N—1

N
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Here we have used the notations

vw={ o@mat+c, san=a—o
0

where C is an arbitrary constant.
If £f"(x) is constant (to a sufficient degree of accuracy) on each in-

terval k < x < k + 1, then the last integral in (13) can be made to vanish



by requiring that on each interval the inequality

k

S U@ dz=0 (k=1, 2, ..., N—1). (14)
k=1 .

holds. Then (13) takes the form
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The value of U(x) on k - 1 < x §;k can be cast in the form

x

k—2
v@={ @&+ a+E—kthaa+l (15a)
0 =0
and equation (14) becomes
k=1 A k i
So—gaa=— | e=fema-c (16)
=0 k=1 0

Relation (16), valid for every k = 1,2,...,N, gives a system of equations
for determining the ay -

Consider now a special case (though very important for applicatioms),
where ¢(x) = eux, and ﬁ is an arbitrary complex number. In this case (16)

takes the form

k=1 . -k Bz _ g
e o
za.—fak-x=—[§ m dz4+C |=

=0 k—1
an
A gy & ]—c
=—1a|2 sh3 —p .
Equation (17) can be satisfied by putting a_ = aerS, then
k—1
— ek 1
a, {Z ot — .%.ep.(k—n]= a, [11__.%? - —z-e*"(k°1)]==.
=0 (18)

ag k= i
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It is clear that (17) is satisfied by putting
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Thus the coefficients a, are defined by
»
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Now we can evaluate U(k):
ke Rk k-1 l‘k
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The coefficients in (15) are then determined by the relations
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U (V) =Ce*¥.
We can now rewrite (15) as
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(21)
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Consider the case of purely imaginary U, a case of great interest for
problems in applied electrodynamics, for instance. We put U = -iv, where

Vv is real. Then formula (22) takes the form

x WA
) a_”—l e sind g}
o) P 2 F et — L 2. () +
v3 cos : k=1 cos
g (23)
—$9/2 ﬁu“— _ '
sl 2o+ (1 -3 tg—,: 1 (W) =¥ — 1 ()],
' cos 5
or
y v
M be~P2sind— \ |
o { 2 iV —
Ef (k) e~ivk —v >z 2 f(2) e‘“"dz+—3; { ——— | *THN)
k=1 8 sm“ 7 ) vicos g
1
1 4e"v125in3-?— ! 1 ‘ 2 v [, N “"N—f'(i)e-"’] .
Al — einp(t) — 5 (1 = 5 te ) [F (e
Y V3 cos 3
Let us make some additional remarks:
1.) For v +~ 0, carrying out the appropriate calculations in (23), we
obtain
N N—1
S f(z)d-’t—z R+ 3 3 [f(N)+f(0)l— 2[1" (N)y—1" (O
0 k=1

i.e., the Euler-Maclaurin summation formula, if all derivative terms of
higher order than two at the ends of the interval are neglected. Applica-
tions of this formula are well-known.

2.) Formula (23) is suitable for summing series with oscillating terms,
i.e., for computing sums of the form

N-1

S= D f(k) "
k=1
It is important, however, to note the following point. 1If the value

of v is close to 2mq for some integer q # 0, then 8 sin®(v/2)/v?® cos(v/2)
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is close to zero, and at first glance, this would seem to render (23) use-
less. But in fact we can always take IVI < T because an integer multiple
of 27 can always be subtracted from v without changing the value of the sum
S.

3.) Let us also remark upon the case when we must sum an alternating
series of terms whose absolute value varies slowly. Putting v = T, we
obtain

N1
— DR =Tl O) + (=" F )]+ 11 (0) = =1)" 1 ()]

k=1

As an example, we evaluate

[=+]
1 1 i 1 i
m2=t=g 43— =l hg+ X 1) =
=1

1
=0.500 4- 0.333 — 53+ 7;1-3—2 =0.694,

In fact, %n 2 = 0.693.

4.) We now give an estimate of the error involved in replacing the sum
by the integral according to (23). To this end we return to equation (13).
It is clear that the error is determined by the last termkon the right side

of (13), i.e., the quantity

N

r={ r@u@e, (24)
0 .

which must be estimated.

We restrict ourselves to the case when f£"'(x) does not change sign on
the interval of interest, i.e., when f"(x) is a monotonic function. The
results obtained can be extended in an obvious manner to the case when the
interval can be broken up into a finite number of sub-intervals on each of
which f"(x) is monotonic.

Integrating (24) by parts, we have

N N z
T=f'(N)S U(z)dz-—-S f'"(z)[g U(E)dE]dz,

0 0 0
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N
and since, according to (14), f U(x)dX = (0, then
o
z N x
IT|< gu(e)ds S [ £ (2) | dz = SU(ﬁ)dE)max[f'(‘v)—‘f,(O“‘ (24a)
1o max 0 , 0
in which SU (€)dt is the maximum modulus of the integral under the
0 : max

absolute value signs.
Let us now specialize this estimate to the very interesting, practical
ivx

case when ¢(x) = e , where VvV is a real number, less than T in absolute

value (this incurs no loss of generality).

Formula (23) with the remainder term is

: N
. v
N1 3 _V- 43"I2 sin3d = )
v €08 = 2 —ivN
fyemivem 2\ eisp @)k | 1 — W) -
=1 8sin? v cos 5
0
1 4e-o‘vlzsinz%. 1 2 v i o _ )]
—i1-— 10 —5(1=5tg)lr W e =1
v c0s 3
v2 cos % '
—_i " T,
8 sin 5

wherein the remainder term is given by

v
v’cos—z-
= =i —T,

' Ssin3-§'
We define the function U(E) entering into (24a). 1In accordance with (15a)

we write

\

! ., k—2
U®={e"a 4 G-kt Do+ Da4C
0 =9

and, taking (19) and (20) into account, we obtain after some algebraic

manipulations

1 X tg % . v
UE)=i 5 g~i(k=1) } g=iva —-— [2 — 4ide™25in -2—} . (25)
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where A = § - k + 1, WithO_<_A<l.

The expression in brackets is denoted by P(A) = PR + iPi. Then

tg-Z‘ Y
Py (8) =cos vA—-V—[Z-—Im sin? 7],

v
tg—z-

P" (A)-_—'-—Sin VA+ 2A Sin Yo

Now form the expressions

tg < 3
SR— P,, 4) dA =-=sinvA ————[2A—2A’ sin? —2-]

tg‘i
S;= S‘P¢ (A)dA=—(cos VA —1) +——4a%sin v,

We can now estimate SR and Si by writing

‘ sin v
s s (s ) s i )
+2~3(1—A)bg2 sin? = l

v .. vA A
1 . tg 3 2s1n2—2- smz— ( )

[ S;]=|— (cosvA —1) + ———Alsin v | = —
(2 ) smz

Now consider

. v vA
Av_ sinv sin? & (2)
1—SinAv. 5 =hv 8), - — 7 i =/F (v 3),

('2") sm 2

For A =
fi0 )=f (v, 1)=0,
and for A =
sinv sz_
v

Hi{v O)=1_—'——’ fa(vy 0) =1 — ( )
Considering that fl(\),A) and fz(\),A) are monotonic functions which

attain a maximum for A = 0, we can write

v
sm

sin v 1 v o,V
| S| < l (1-— )-{—-z—tg-z—sm-z— .
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Here use has been made of the fact that sinvA=2sin % cos 124< 2 sin 2 2sin -

and also that A(1-A) has a maximum of 1/4 at A = 1/2.

For |Si| we obtain the following estimate

- ~l
2 sin? sm’

” (—)

[S:l <

and we can now write

v v
v3 co8 3 v COS 5

2 2
|R|= SITI< S [ Sa]+1Ssl]=
8 sin® 5 8 sin?~
(26)
1 sm’-—
=E1—4ng21— +mnz ()' 117 (©0) — 7 (V) ].

Formula (26) gives an estimate for the remainder term and consequently for

the error involved in approximating a sum using (23).

4. CONCLUSION

The problem of plane wave diffraction by an array, whose solution was
given above, has been considered previously (see, e.g., [2-5]). However,
the indicated papers only carried out the solution for special cases of the
incident wave (normal or oblique, with the g vector parallel to the wires
of the array), and an expressibn for the current in the wires was obtained
in the form of an infinite sum. In the present paper, the case of arbitrary
incidence was considered, onto an array whose period is not small compared
to a wavelength. An expression for the current Io was obtained in finite
form. In the case of small wire separations, the method of averaged boundary
conditions can be applied to solve the problems.

In order to evaluate the accuracy of formula (12), the reflection co-
efficient was evaluated numerically using (12) and compared with the corre-

sponding values computed from formulas derived in [2]; for an array whose

3See, e.g. [5].
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period is 0.6A, with wire radii r, = 0.002Xx, at oblique incidence (0=0),
results obtained for the absolute value IROI of the reflection coefficient

are presented in the following table:

5° Formula Formula
’ (12) from [2]
0 0.195 0.199
15 0.203 0.208
30 0.209 0.215

Thus the numerical agreement is seen to be good.
Formula (1), finally can also be applied to the solution of other
problems in diffraction theory, and is useful for numerical purposes as

well.
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