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Abstract

[In this note we point out the existence in real media—crystal lattices—
of a range of frequencies with negative group velocity, i. e., group velocity
which is directed oppositely to the phase velocity.]

The usual ideas of phase and group velocity are applied to waves in continu-
ous homogeneous media. The situation with which we almost always deal is one
where the group velocity dω/dk, being in the presence of dispersion different in
value from the phase velocity ω/k (ω is the frequency, k is the wave number),
nonetheless has the same direction. In these cases it is said that the group
velocity is positive.

We should perhaps emphasize that the nature of such phenomena depends
essentially on the sign of the group velocity, because the group velocity is ordi-
narily not mentioned in connection with the analysis.

I have in mind, for example, the reflection and refraction of a plane wave at
the interface between two nonabsorbing media.

In the derivation of the corresponding relations—the direction of the re-
fracted ray, the values of the amplitudes of the reflected and refracted waves—a
large part is played by an unstated assumption: that the direction of the phase
velocity of the refracted wave forms an acute angle with the normal to the
interface (directed into the “second” medium).

But in accordance with the meaning of the physical problem, this assumption
must be imposed on the group velocity (to the velocity of energy propagation).
A valid result is obtained only when, as indicated above, the actual case deals
with positive group velocity.

{For negative group velocity, the requirement of outward flow of energy from
the interface is tantamount to the requirement of the motion of the phase toward
this interface. In this case, the refracted ray is oriented not in the usual way,
but along a direction flipped relative to the normal in comparison to the usual
direction. Certainly, it is also numerically different from the usual one. Thus,
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the phenomena of reflection and refraction depend essentially on the sign of the
group velocity.}1

As is known, Lamb worked out several cases of fictitious one-dimensional
media with negative group velocities.2

Lamb himself evidently did not regard the examples he provided as having
physical application. {He saw their significance in this way: “. . . the preceding
discussion may serve to emphasize the point that ideas of wave-propagation
acquired in the study of air-waves (for example) need to be used with some
caution when we are dealing with a dispersive medium”.}

In the present note, I want to direct attention to the fact that there exist real
media for which the phase and group velocities have in fact opposite directions
within certain frequency ranges. I have in mind wave propagation in crystal
lattices. It is important to note, however, that when we speak of waves—for
example, plane harmonic waves—in such lattices, we are not speaking yet of
the necessity of accounting for the discrete structure of the medium; we have in
mind a certain extension of the ordinary notion of a “wave”.

Specifically, by a plane wave is to be understood a complex of plane waves
of a single frequency, a single direction and wave number, but with various
amplitudes. Each of the n waves of the complex (where n is the number of basis
points of the lattice) determines the displacement of homologous points of the
lattice as functions of the spatial coordinates and time.

It is known that each of the given values of the wave number k corresponds

to n different values of the frequency ω
(k)
i

(i = 1, 2, . . . , n).
For many applications, as Born indicates in this connection, the important

waves are those whose wavelengths are large compared to the lattice constant.
I would remark that it is this very case which is important to us, for example,
in problems of molecular light scattering in crystals.

Born also showed the following: if we denote by ω
(0)
i

the frequencies corre-
sponding to the value k = 0, then near each of these values (which, generally
speaking, separate real values of the wavenumber from imaginary ones), the

frequency can be expanded into a power series in k. That value of ω
(0)
i

which
tends to zero simultaneously with k corresponds to the “acoustic spectrum.”
The amplitudes of the separated wave complex here become equal to each other
when k = 0.

These very types of oscillations are approximated by considering the crystal
as a continuous medium. In the acoustic region of the spectrum, the group
velocity is positive.

We are interested in the “optical” region of the spectrum, where

(ω
(k)
i

)2 = (ω
(0)
i

)2 + a
(1)
i

k + a
(2)
i

k2 + . . . ,

in which ω
(0)
i

6= 0. In the nondegenerate case when a
(1)
i

= 0, it is likewise easy

1Curly brackets { } indicate insertions made from the rough draft.
2[Translator’s note: H. Lamb, “On group-velocity,” Proc. London Math. Soc., ser. 2,

vol. 1, pp. 473-479, 1904.]
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to show that a
(2)
i

can be either positive or negative. In the latter case we will
have negative group velocity.

The relations herein are easy to follow in the one-dimensional case of longitu-
dinal oscillations of a chain, consisting of an alternating sequence of equidistant
masses m1, m2, . . . , mn, in which each is connected with its neighbors by a
quasi-elastic spring with a constant spring coefficient f . Here one can show the
following.

If the frequencies ω
(0)
i

are arranged in increasing order, beginning with ω
(0)
1 =

0, then, firstly, of course, all a
(1)
i

= 0, and a
(2)
i

is positive for odd indices i and
negative for even i, i. e., the regions of the spectrum in which the group velocity
is positive alternate with regions in which it is negative.

I believe that analogous results will prove to be true for rather general cases
of three-dimensional lattices.

Perhaps it is best to carry out as an illustration of the assertions concerning
this chain a very simple example, namely the case of two different alternating
masses m1 and m2, located at distances d from each other. Here

ω2
1 =

2k2d2f

m1 + m2
+ . . . ,

ω2
2 = 2f

m1 + m2

m1m2
−

2d2f

m1 + m2
k2.

Thus, in the optical spectrum the group velocity is

dω

dk
= −

2kd2f

(m1 + m2)ω
(0)
2

.

From this example it is easy to to convince oneself that the energy in the
chain is propagated at the group velocity. Here, the energy propagation velocity
W by definition (due to Lord Rayleigh) has the following value:

W = P̄ /Ē

where P̄ is the time-average value of the “Poynting vector”, while Ē is the
average value of the energy per unit length.

If by ξl (where l is even) we denote the displacements of the particles of
mass m2, by ξl with odd index the displacements of the masses m1 (l =
. . . ,−3,−2,−1, 0, 1, 2, . . .), and by b and a the amplitudes of the correspond-
ing waves, then it is easy to see that the one-dimensional Poynting vector has
the form

P = f(ξm−1 − ξm)ξ̇m.

A simple calculation gives

P̄ =
ω

(0)
2

2
fab sin kd

Thus, P̄ is indeed invariant for all particles of the lattice.
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We further have

Ē =
(m1a

2 + m2b
2)(ω

(0)
2 )2

4d
and

a

b
= −

m2

m1
.

Hence,

W =
P̄

Ē
= −

2

ω
(0)
2

fkd2

(m1 + m2)
, i. e. W =

dω

dk
.

It only remains perhaps to make the following remarks. In the degenerate
case m1 = m2 the preceding considerations remain in force. But here there
exists, also in contrast to the general case, one harmonic wave (with wavelength
on the order of d), which covers both the even and odd mass points. The velocity
of phase propagation of this wave has the same direction as the group velocity
and not the opposite, which certainly in no way contradicts the preceding results.
In conclusion I want to note also the following.

A crystal lattice is a limiting case of a continuous medium with periodically
varying parameters (density, permittivity, etc.).

Considerations related to wave propagation in lattices that were indicated
above can likewise be extended to such media; this will certainly cover more
than just the case of elastic waves. Specifically here too, particularly for “long
waves”, it is suitable to speak of group velocity, which also in this case becomes
negative in certain ranges. Without going into a detailed consideration of these
questions, I will remark only by way of example on the propagation of waves in
the x-direction in a medium whose properties depend only on x. The problem
of the propagation of oscillations in such a medium is known to lead to Hill’s
equation. There exist two “waves”:

f1(x)ei(kx+ωt) and f2(x)ei(−kx+ωt)

where f1 and f2 are functions periodic with the period of the medium. The
number of discrete values of frequency corresponding to k = 0 is infinite here
(the boundaries between stable and unstable regions). If, for example, the
material property of the medium (the dielectric constant ε, say) has the form

ε = ε0 + ε1 cos µx

then it is easy to show that the spectral regions with positive and negative
velocities alternate with each other.
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