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Abstract

[By the translator] This lecture covers the problems of energy velocity
and its relation to group velocity. The effect of negative group velocity on
the familiar problems of reflection and refraction is considered. This was
Prof. Mandel’shtam’s last lecture; he died on November 27, 1944.

Lecture 4

Last time, we explained in detail the question of the concept of velocity in a
dispersive medium. We saw that in the presence of dispersion this concept
becomes ambiguous. Besides the phase velocity v = ω/k, at which a harmonic
wave of frequency ω is propagated, we can introduce the concept of the group
velocity u = dω/dk, connected with the presence of a train and in general a
slowly varying amplitude. The applicability of this concept of group velocity
is subject to a number of conditions, and in particular it is not suitable when
the medium is strongly absorptive. However, if the absorption is sufficiently
small, it can still be used. In addition to u and v, we have also talked about
the velocity of a wavefront and the signal velocity.

The introduction of these concepts supposes that the superposition principle
is valid, and that a harmonic wave is propagated without undergoing any change.
The former means that the equation governing the propagation of the wave is
linear; the latter that this equation is homogeneous. Of course, if k is given
for all ω, i. e., we have given to us the equation for the dispersion law, then
the group velocity can be calculated immediately. However, this does not mean
that the result of such a calculation has a definite meaning for all cases without
exception. The conditions under which u really characterizes the propagation
were explained in detail last time.

∗This is an English translation by E. F. Kuester of one of Mandel’shtam’s lectures which
originally appeared in Polnoe Sobraniye Trudov, tom 5 (Leningrad: Izdat. Akademiya Nauk
SSSR, 1950, pp. 461-467); also in his Lektsii po Optike, Teorii Otnositel’nosti i Kvantovoi

Mekhanike (Moscow: Nauka, 1972, pp. 431-437).
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We now consider one more important question: how is energy propagated in
the medium? Suppose a sinusoidal wave extending from −∞ to ∞ is propagat-
ing in the medium (Fig. 11).

Fig. 11

Its phase A is propagated with the phase velocity. The energy is proportional
to the square of the amplitude, but since the amplitude (the maximum dis-
placement) moves at the phase velocity, one would think that the energy would
also be propagated at this same velocity. But such a definition of the energy
velocity is vacuous. It does not satisfy a fundamental requirement connected
with energy propagation. In a sinusoidal wave there is no motion of energy; it
is not transferred from point A to point A′. A sinusoidal infinite wave can be
represented by a model consisting of an array of identical but uncoupled pendu-
lums (Reynolds1). In this chain of pendulums one can form such a sequence of
phases that the form of the oscillations will exactly correspond to a travelling
sinusoidal wave, however no transfer of energy takes place here at all. Rayleigh
noted in connection with this model that “to call the Reynolds pendulums a
medium is to pay them a compliment.”2 Therefore, in identifying the energy
velocity with the phase velocity, we fail to obtain the main thing—the flow of
energy from one part of space to another. In an arbitrary volume through which
a sinusoidal wave passes, the energy will remain constant at all times.

So then, what definition of energy transport velocity could be considered
more suitable? We split the wave by a surface perpendicular to the direction of
propagation. If the average amount of energy per unit time in a unit area on
the right side of this surface increases by S̄, while on the left side it decreases
by the same amount (or conversely), while the mean energy density near the
area under consideration is Ē, then it is natural to consider

U =
S̄

Ē

as the energy transport velocity. This definition has a simple hydrodynamic
analogy: the quantity of fluid flowing through a unit area per second (oriented
normally, i. e., such that the amount of fluid flow is maximized), divided by the
fluid density gives the velocity of the flow. But there is a fundamental difference
here. In hydrodynamics we can localize a particle of the fluid (we can mark it)
and therefore we can speak of the velocity of the flow even in the case when this

1[Translator’s note: O. Reynolds, “On the rate of progression of groups of waves and the
rate at which energy is transmitted by waves,” Nature, vol. 16, pp. 343-344 (1877).]

2[Translator’s note: The exact quote is “it is only by compliment that it [Reynolds’ system
of pendulums] is regarded as a single system.”: Lord Rayleigh, “On iso-periodic systems,”
Phil. Mag., vol. 46, pp. 567-569 (1898).]
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flow is stationary and homogeneous over all space. In the electromagnetic field,
there is no such localization. Thus in the case of an unlimited sinusoidal wave
our definition loses meaning: here it is not proper to speak of such an increase
or decrease of energy on both sides of the surface. The change in the amount
of electromagnetic energy in an arbitrary volume of the medium can be stated
only when we have a limited “sinusoid”, i. e., a train or group of waves. Then
the velocity U is valid, and will characterize how fast the energy flows through
the surface.

Can we then find a connection between the energy transport velocity U and
the group velocity u?

M. A. Leontovich has proved an extremely general theorem, valid for arbi-
trary waves. If a Lagrangian function, dependent on quantities characterizing
the state of the medium (strength of the electromagnetic field, displacement of
a particle of the fluid) is a quadratic form of these quantities and of their first
derivatives with respect to spatial coordinates and time, then in those cases
where the group velocity has meaning at all, it coincides with the energy trans-
port velocity U , i. e., we then have

S̄ = Ēu

The very general assumptions about the existence and form of the Lagrangian
function that were made in order to prove this theorem nonetheless impose
known limitations on the properties of the medium: there can be no absorption
or such phenomena as rotation of the plane of polarization. On the other hand,
for the concept of group velocity to make sense, the spectrum of the wave group
must, as we have seen, be narrow enough for the given dispersion.

Let all these conditions be satisfied, and consequently the energy be trans-
ported at the group velocity. But we know that the group velocity can be
negative. This means that the group (and the energy) are moving in a direction
opposite to that of the phase of the wave. Can such a thing happen in real life?

In 1904, Lamb3 proposed a certain artificial mechanical model of a one-
dimensional “medium”, in which the group velocity can be negative. Appar-
ently, he himself did not think his example could have any physical application.
But as it turns out, there exist entirely real media in which for certain frequency
ranges the phase and group velocities are in fact directed towards each other.
This happens in the so-called “optical” branch of the acoustic spectrum of a
crystal lattice, considered by M. Born.4 The possibility of similar phenomena
permits such seemingly well-known things as reflection and refraction of plane
waves at a plane interface between two nonabsorbing media to be approached
from a rather different viewpoint. The consequences of these phenomena, in
which the choice of group velocity is usually not mentioned, depend critically
upon its sign.

3[Translator’s note: H. Lamb, “On group-velocity,” Proc. London Math. Soc., ser. 2,
vol. 1, pp. 473-479, 1904.]

4[See L. I. Mandel’shtam, Polnoe Sobraniye Trudov, tom 2 (Leningrad: Izdat. Akademiya
Nauk SSSR, 1947, paper 52] [Translator’s Note: L. I. Mandel’shtam, “Group velocity in a
crystal lattice,” [Russian] Zh. Eksp. Teor. Fiz., vol. 15, pp. 475-478, 1945.]
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In fact, how does the idea of the derivation of the Fresnel formula usually
proceed?

Consider a sinusoidal plane wave, incident at an angle ϕ to the plane interface
y = 0:

Einc = ei[ωt−k(x sin ϕ+y cos ϕ)]

and the two waves which result from it—reflected:

Erefl = ei[ωt−k(x sin ϕ′
−y cos ϕ′)]

and refracted:
Erefr = ei[ωt−k1(x sin ϕ1+y cos ϕ1)]

At the plane y = 0 these waves must satisfy the so-called boundary conditions.
For an elastic body these conditions are the continuity of stress and displacement
on both sides of the boundary. In electromagnetic problems the tangential
components of the intensities and the normal components of the inductions must
be continuous at the plane interface. It is easy to show that these boundary
conditions cannot be satisfied with only a reflected wave (or only a refracted
wave). Conversely, in the presence of both waves the conditions can always be
satisfied. By the way, however, it does not follow at all that there must be
only three waves and no more: the boundary conditions allow for the presence
of another, fourth, wave, travelling at an angle π − ϕ in the second medium.
Usually it is tacitly assumed that this wave is absent, i. e., it is postulated that
there is only one wave propagating in the second medium.

From the boundary conditions there immediately follow the law of reflection

sin ϕ = sin ϕ′ or ϕ = ϕ′

and the law of refraction
k sin ϕ = k1 sin ϕ1

However, the latter equation is satisfied both by the angle ϕ1 and by the
angle π − ϕ1. The wave in the second medium corresponding to ϕ1 propagates
in a direction away from the interface (Fig. 12).
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Fig. 12

But the wave corresponding to π − ϕ1 propagates in a direction towards the
interface (Fig. 13).

Fig. 13

It is taken to be self-evident that the second wave is not possible, since the light
is incident from the first medium towards the second, but it means that in the
second medium energy must flow away from the interface. But where is the
energy going here? In fact, the direction of wave propagation is determined by
its phase velocity, while energy is transported at the group velocity. Therefore
we postulate here a logical jump, which feels that way only because we are used
to the directions of phase and energy propagation being the same. If such is the
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case, i. e., if the group velocity is positive, then all these things are found to be
true. If on the other hand we have the case of negative group velocity—a case
as I already said which is completely real—then everything changes. Requiring
as before that the energy in the second medium flows away from the interface,
we then find that the phase must approach this interface, and consequently the
direction of propagation of the refracted wave will make an angle of π−ϕ1 with
the normal. There is nothing out of the ordinary in such a construction, nor
anything remarkable in it in the end, because again phase velocity says nothing
about the direction of energy flow.

The problems which we have worked out are very general—they are prob-
lems of the propagation of oscillations. As I already emphasized, they relate
to oscillations of quite diverse types. I should point out that in essence this
is a geometry of oscillatory motion, not connected with this or that concrete
physical object. But it is true that the propagation of energy already brings us
outside this circle of ideas somewhat, since it is a question of dynamics.

We turn now to other, likewise very general questions of the geometry (or
kinematics) of oscillations. The question before us is now not the propagation
but the behavior, so to speak, of the wave process at a given point. Here also
there arise analogous and very essential questions, for which besides touching
on oscillations of very different origins, so that here again we can and must
make an effort to select those features which are common to the widest possible
class of phenomena. First of all, here again the physics requires us (and this
is typical) to answer questions about approximately sinusoidal oscillations. To
show what kinds of problems arise here, it is most convenient to consider some
examples.

In any radio transmission, via telephone, telegraph, it is important to us that
the transmission is represented not by a sinusoidal oscillation, but by a carrier
marked by the transmitting process—a sound oscillation, dashes and dots, or
an image-facsimile signal. Here it is typical that there is a slow perturbation
of the true sinusoidal nature of the signal: to the high-frequency oscillation
y = A cos ωt there is introduced a variation of the amplitude (or phase) at the
rate of our speech or telegraph signal, i. e., at frequencies considerably smaller
than ω. Such oscillations are called modulated. Why is it appropriate to separate
them?

First of all, it can be noted that they arise in all branches of physics and en-
gineering where we deal with oscillations in general. Modulation of oscillations
is used in musical instruments (vibrato, in particular), where we also encounter
combinational dispersion, in ultrasound, in nonuniform sea swells, etc. Fur-
thermore, the nearness of modulated oscillations to harmonic ones means that
their theory is relatively simple, and a number of problems can be worked out
in considerably more detail than they could if the oscillation had an arbitrary
form. All these questions and a general exposition of the theory of modulated
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oscillations has been carried out in the monograph of S. M. Rytov.5

A special case of modulation is so-called amplitude modulation, in which the
oscillation is endowed with a “varying amplitude”

y = B[1 + kf(t)] cos ωt

in which, as mentioned before, the function f(t) varies quite slowly compared
to the oscillation frequency ω. In radiotelephony the variation of f(t) is carried
out at audio frequencies while ω is a high radio frequency. If we take the special
case f(t) = cos Ωt, then this means that Ω � ω. Such an oscillation can be
written in either of two ways:

y = B[1 + k cos Ωt] cos ωt

= B

[

cos ωt +
k

2
cos(ω + Ω)t +

k

2
cos(ω − Ω)t

]

This is a mathematical identity, i. e., two perfectly equivalent representations
for one and the same process. The question now concerns the action of such
oscillations at the receiver, i. e., at a device acting as an ordinary harmonic

analyzer. You see how essential a role is played in all statements of problems
involving modulated oscillations by the properties of the receiving apparatus,
and how ignoring this has led and still leads to various statements that are
largely devoid of meaning. Thus, for example, Fleming asserted that “really”
there are not three harmonic oscillations in the signal y, rather there is only one

oscillation of frequency ω, but of variable amplitude. Hence he deduced that it
was not necessary to extend the transmitted radio signal to a specific frequency
interval. The question at hand, therefore, deals with extremely fundamental
practical issues.6

5[He had in mind the dissertation “Modulated oscillations and waves,” Trudy FIAN, vol.
2, p. 41, 1938.]

6[Here ends the last lecture of L. I. Mandel’shtam. In his abstracts, he would lay out plans
for the problems to be considered in future lectures. On one of these abstracts was written
the following:

“We have considered nearly sinusoidal oscillations in the sense of their propagation. Now
we will look at them in the sense of their action at a given point. What does ‘action’ mean?
What are the problems here? — The action on a receiver, analyzer. Experiments: I) Tuning
fork a acts on a resonant tuning fork b; a1 does not act on b; a + a1 acts on b just like a

did, but to the ear it sounds completely different: beating. II) a1 does not act on b, but
when interrupted, does act. III) Frequency meter. What kind of receivers do we deal with in
physical problems? These problems are on one hand deeply theoretical (white light), and on
the other, quite practical (discussion of Fleming, frequency modulation).”]
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