Idea

- Solicit authors for an edited book focused on practicing scientific thinking
- Each chapter is a short “case study” focused on describing context, proposing hypotheses, collecting data, testing hypotheses, and using a scientific approach for the ultimate purpose of engaging in evidence-based revision of curricula and teaching strategies
 - Grounded in a discipline but approaches transcend disciplines
 - Adopt a similar approach: Why? How? What?
- I am committed to editing and have access to some funding for publication fees

"The first principle is that you must not fool yourself and you are the easiest person to fool."

Richard Feynman

As educators trying to be better educators, we suffer from confirmation bias?

Translation: we are not doing as well as we think we are
Practicing scientific teaching

- Scientific teaching involves enacting practices that enabling data-driven revision of curricula and teaching strategies.

- As with the pursuit of science for making sense of the world, scientific teaching begins with potentially falsifiable claims.
 - Example claim: My instruction improved student understanding
 - Example claim: My instruction improved students’ abilities to be critical thinkers

- Can you confidently refute the null? How large and what direction is the effect of your teaching?

- The approach is as important as the outcomes

- The approach is useful for the pursuit of the scholarship of teaching and learning and for developing an “excellent” teaching dossier
 - Publication in SOTL journals
 - Development of a teaching dossier for P&T

SOTL example

Building bridges: An active learning lesson in evolution and collaboration
Carscadden, K.A.*, McDermott, M., Turbek, S., Tittes, S. & Martin, A. (Univ. of Colorado Boulder)
*kelly.carscadden@colorado.edu

Example data from SALG

This meets the criterion from Article 5, section D, 2.B. Standards for Tenure from Regent policy “A recommendation of tenure based on excellence in teaching or scholarly/creative work shall include evidence of impact beyond the institution.”
Dossier examples: Nancy Emery, EBIO

Emphasis in the dossier is on WHY the data were collected and HOW the data were used to revise and improve teaching and learning.

Practicing scientific teaching

What does this mean?
Begin with a working model...

Theories of learning

- **Behavioralism**
 - Behavioralism emphasizes a reductionistic notion of learning: a stimulus triggers a response and the response becomes more and more correct with practice.

- **Cognitivism**
 - Cognitivism emphasizes knowledge acquisition, the construction of mental models, and the processing of information.

- **Constructivism**
 - Constructivism is a broadly encompassing idea of how intellect develops through the assimilation of new information and the accommodation of an individual’s particular world view to account for new information.

- **Others**
 - Socio-culturalism
 - Enactivism
 - Intuitionism

Theories of motivation

- **Value-expectancy**
 - Student and teacher motivation reflects perceptions of value and probability of success.

- **Attribution**

- **Self determination**
 - Confidence, self-regulation, and intrinsic motivation underlying learning (and teaching) success.

... or other educational frameworks ("theories of learning")...
...or perhaps with a theory of change

Fundamental theorem of evolution (the Price equation)

\[
\Delta z = \frac{1}{w} \text{cov}(w_i, z_i) + \frac{1}{w} \text{E}(w_i \Delta z_i).
\]

- Change in a trait (e.g. cognitive ability)
- Effect of other factors (e.g. group effects)
- Average fitness
- The covariance of fitness on the trait value of an individual in a population (i.e. the effect of selection)
- For teaching and learning, this is the covariance of performance on the trait value of an individual in a population (i.e. the effect of instruction)

...after you know WHY you want to pursue gathering data, you have to know HOW to get the data and knowing HOW depends on WHAT you want to know

Response variable
Predictive variable

- Teaching

- What goes in here?

1) Fear of science
2) Apply content knowledge
3) Conceptual understanding
4) Confidence
Practicing scientific teaching

Hypotheses:
My instruction, curricula, whatever...
1) ...has no effect
2) ...has a positive effect
3) ...has a negative effect

Once you have “objective” data on the effect, you can use the data for revision

Two examples of practicing scientific thinking

• Students use of visualization for explaining evolution (and their understanding of evolution) with Katie Ryan, undergraduate student
• Interpreting phylogenetic trees

I am currently working on these from my last iteration to revise the curricula and teaching strategies
Students use of visualization for explaining evolution

- Same study executed in two different sections of same course
- Students complete a pre-assessment
- Expert visualization of evolution used multiple times during the semester
- How students engage with the information

Model

Experimental design

Importantly: We NEVER told students...“This is what you should draw if you are ever asked to visualize evolution.”
We wanted to know what they CHOOSE to draw after a course that emphasizes a particular visualization of evolution.
Assessment question

“What does evolution look like?”

“Explain evolution. In your answer, consider developing some sort of visualization (an illustration, graph, diagram, etc) that is useful for effectively explaining evolution.”

Coding student answers
Example curriculum

Domestication

Cognitive ability and brain size

What students produce

This violates our understanding of the heritability of traits
Example curriculum

Simplest “expert” example

Most students used ALL of the different possible ancestors
Example curriculum

Describe in writing your interpretation of the information in this tree

Three clicker questions similar to this one

Coding student answers

0 = no visualization
1 = linear sequence of evolutionary “stages”
2 = specific scenario (example is black and white moths on bark)
3 = graph
4 = Darwinian (expert answer)
5 = tree
Results

The progressive view of evolution is resilient.

Possible revisions

New formative assessment

Part 1: Describe the process depicted in Darwin’s illustration of evolution.

Part 2: Answer the following questions

Why do you think Darwin drew multiple lines of different lengths emerging from a single point?

Why do you think Darwin drew lines with different lengths coming from each point?

Why do you think Darwin included horizontal lines?
What is the meaning of a branch length?

A key concept in evolution is deciphering phylogenetic information.

A phylogenetic tree MAY contain THREE important pieces of information:
1) The relatedness of taxa
2) The amount of evolution along each “branch”
3) The relative time of origin of lineages
CR 1

Which lineage has been evolving for the longest period of time?

A) Sunflower
B) Algae
C) Both have been evolving for the same amount of time
D) Need fossils to know for sure
Example

Which lineage has been evolving for the longest period of time?

A) Sunflower
B) Algae
C) Both have been evolving for the same amount of time
D) Need fossils to know for sure

*-Indicates values is less than expected if students randomly chose an answer

Q5: Which cousin(s) is (are) most closely related to Betty Sue?
A) Cousin Anne
B) Cousin Greta
C) Cousin Greta and cousin Frieda are equally related to Betty Sue
D) Cousins Anne and cousin Greta are equally related to Betty Sue
E) Cousins Anne, Greta and Frieda are equally related to Betty Sue

-Indicates values is less than expected if students randomly chose an answer

Example question for discussion of extracting information about relatedness
Q4: Which taxon (taxa) is (are) most closely related to turtles?

A) Lizard
B) Mammal
C) Bird, crocodile and lizard are equally related to turtles
D) Lizard and mammal are equally related to turtles
E) All species (bird, crocodile, lizard & mammal) are equally related to turtles

- Indicates values is less than expected if students randomly chose an answer.

Constructing trees

Students make these trees

Free response question: What is the meaning of a branch length?
An example of a branch length is the length of the horizontal lines from an ancestor (labeled with a blue box) and a descendant (labeled with letters, e.g. from ancestor 22 to frog gamma).
Interpreting trees: examples from their curriculum

Results

Same question asked on three different occasions (in class) as a formative assessment
Results

Free response question:
What is the meaning of a branch length?

Example correct answer: “Longer branch lengths show more change, and shorter branch lengths show less change from the ancestor.”

Almost NO gain from pre-assessment
Normalized gain = 0.054
Correct answer patterns

What to do?

• Have students construct trees with branch length information by hand (they used a computer program)
• Use examples that more closely relate to student interests
 • Example

 Using humans tends to impose other cognitive challenges
• Get suggestions from my peers
Some potential confounding issues

• Students are distracted and may not invest the necessary time and effort into learning
 • Self-reported data: 74% of students are on their phones at least once during class (an underestimate)
 • Most students do not enact effective learning strategies outside of class