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• Chern Number C = 1
2π ∫BZ

d2q Ωq

Ωq = − i∇q × ⟨uq |∇quq⟩ ⋅ ̂zBerry curvature

2-band models

• Physical consequences

• Symmetry Protected Topological Insulators and Superconductors & 
Beyond

• Far-from-equilibrium dynamics
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  Measurements of Chern bands
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• Band mapping & Berry curvature

• Edge states in synthetic dimensions

• Anomalous velocity 

• Quantized transport of bosons: Chern number

• Quantized circular dichroism

[M. Aidelsburger et al. [Munich], Nat. Phys. 2015]

[N. Fläschner et al. [Hamburg] Science 352, 1091 (2016)]
[W. Sun et al. [USTC] Phys. Rev. Lett. 121, 150401 (2018)]

[Jotzu et al. [ETH], Nature 515, 237 (2014)]

[L. Asteria et al. [Hamburg], Nat. Phys. 15, 449 (2019)]

[Mancini et al. [LENS] Science 349, 1510 (2015); Stuhl et al. [NIST], Science 349, 1514 (2015)]
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  Symmetry Protected Topological Insulators and Superconductors
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[Chiu, Teo, Schnyder & Ryu, RMP 2016]“Ten-fold way” for free fermions

[Time-reversal, particle-hole & chiral symmetries]

symmetries spatial dimension

discrete PH transformation, Ψ̂ → −iΨ̂c or −Ψ̂c. That is, if we
interpret Eq. (2.29) as a particle-number conserving system,
then Ûπ

Si ŜzÛ
−π
Si ¼ −Ŝz for i ¼ x, y can be viewed as a charge

conjugation Ĉ Q̂ Ĉ−1 ¼ −Q̂. Observe that the π rotations Ûπ
Si

are examples of PH transformations which square to −1,
which is in contrast to the PH constraint of class D. For the
single-particle Hamiltonian H the π-rotation symmetries Ûπ

Si
lead to the condition

ρ2HTρ2 ¼ −H: ð2:34Þ

The ensemble of Hamiltonians satisfying this condition is
called symmetry class C. We note that for quadratic
Hamiltonians the π-rotation symmetry constrains of Ûπ

Si
actually correspond to a full SUð2Þ spin-rotation symmetry.
This is because for an arbitrary SUð2Þ rotation around Sx or
Sy, the Hamiltonian Ĥ is transformed into a superposition of
Ψ̂†HΨ̂ and its conjugate Ψ̂c†HΨ̂c [i.e., Ĥ → αΨ̂†HΨ̂þ
ð1 − αÞΨ̂c†HΨ̂c, for some α], since Ψ̂†HΨ̂c ¼ Ψ̂c†HΨ̂ ¼ 0.
It follows from Ψ̂†HΨ̂ ¼ Ψ̂c†HΨ̂c together with the Sz
invariance that the BdG Hamiltonian is fully invariant under
SUð2Þ spin-rotation symmetry.
Finally, imposing TRS (2.31) in addition to Sz conservation

leads to Ψ̂†HΨ̂ → Ψ̂Tρ2H%ρ2ðΨ̂†ÞT ¼ −Ψ̂†ρ2H†ρ2Ψ̂ ¼ Ĥ,
i.e., ρ2H†ρ2 ¼ −H. Combined with PHS (2.34), this gives
the conditions

ρ2HTρ2 ¼ −H; H% ¼ H; ð2:35Þ

which defines symmetry class CI.

E. Symmetry classes of tenfold way

Let us now discuss a general symmetry classification of
single-particle Hamiltonians in terms of nonunitary sym-
metries. Note that unitary symmetries, which commute with
the Hamiltonian, allow us to bring the Hamiltonian into a
block diagonal form. Here our aim is to classify the symmetry
properties of these irreducible blocks, which do not exhibit
any unitary symmetries. So far we have considered the
following set of discrete symmetries:

T−1HT ¼ H; T ¼ UTK; UTU%
T ¼ &1;

C−1HC ¼ −H; C ¼ UCK; UCU%
C ¼ &1;

S−1HS ¼ −H; S ¼ US; U2
S ¼ 1; ð2:36Þ

where K is the complex conjugation operator. As it turns out,
this set of symmetries is exhaustive. That is, without loss
of generality we may assume that there is only a single TRS
with operator T and a single PHS with operator C. If the
Hamiltonian H was invariant under, say, two PH operations
C1 and C2, then the composition C1 · C2 of these two
symmetries would be a unitary symmetry of the single-particle
Hamiltonian H, i.e., the product UC1

· U%
C2

would commute
with H. Hence, it would be possible to bring H into block

form, such thatUC1
· U%

C2
is a constant on each block. Thus, on

each block UC1
and UC2

would be trivially related to each
other, and therefore it would be sufficient to consider only one
of the two PH operations. The product T · C, however,
corresponds to a unitary symmetry operation for the single-
particle Hamiltonian H. But in this case, the unitary matrix
UT ·U%

C does not commute, but anticommutes with H.
Therefore, T · C does not represent an “ordinary” unitary
symmetry of H. This is the reason why we need to consider
the product T · C [i.e., chiral symmetry S in Eq. (2.36)] as an
additional crucial ingredient for the classification of the
irreducible blocks, besides TR and PH symmetries.
Now it is easy to see that there are only ten possible ways

for how a Hamiltonian H can transform under the general
nonunitary symmetries (2.36). First we observe that there are
three different possibilities for how H can transform under
TRS (T): (i) H is not TR invariant, which we denote by T ¼ 0
in Table I; (ii) the Hamiltonian is TR invariant and the TR
operator T squares toþ1, in which case we write T ¼ þ1; and
(iii) H is symmetric under TR and T squares to −1, which we
denote by T ¼ −1. Similarly, there are three possible ways
for how the Hamiltonian H can transform under PHS with
PH operator C (again, C can square to þ1 or −1). For these
three possibilities we write C ¼ 0, þ1, −1. Hence, there are
3 × 3 ¼ 9 possibilities for how H can transform under both
TRS and PHS. These are not yet all ten cases, since it is also
necessary to consider the behavior of the Hamiltonian under
the product S ¼ T · C. A moment’s thought shows that for
eight of the nine possibilities the presence or absence of
S ¼ T · C is fully determined by howH transforms under TRS
and PHS. (We write S ¼ 0 if S is not a symmetry of the
Hamiltonian, and S ¼ 1 if it is.) But in the case where both
TRS and PHS are absent, there exists the extra possibility
that S is still conserved, i.e., either S ¼ 0 or S ¼ 1 is possible.
This then yields ð3 × 3 − 1Þ þ 2 ¼ 10 possible behaviors of
the Hamiltonian.

TABLE I. Periodic table of topological insulators and supercon-
ductors; δ ≔ d −D, where d is the space dimension and Dþ 1 is the
codimension of defects; the leftmost column (A;AIII;…;CI) denotes
the ten symmetry classes of fermionic Hamiltonians, which are
characterized by the presence or absence of time-reversal (T),
particle-hole (C), and chiral (S) symmetries of different types denoted
by&1. The entriesZ,Z2, 2Z, and 0 represent the presence or absence
of nontrivial topological insulators or superconductors or topological
defects, and when they exist, types of these states. The case ofD ¼ 0
(i.e., δ ¼ d) corresponds to the tenfold classification of gapped bulk
topological insulators and superconductors.

δ
Class T C S 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI þ 0 0 Z 0 0 0 2Z 0 Z2 Z2

BDI þ þ 1 Z2 Z 0 0 0 2Z 0 Z2

D 0 þ 0 Z2 Z2 Z 0 0 0 2Z 0
DIII − þ 1 0 Z2 Z2 Z 0 0 0 2Z
AII − 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII − − 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 − 0 0 0 2Z 0 Z2 Z2 Z 0
CI þ − 1 0 0 0 2Z 0 Z2 Z2 Z

Chiu et al.: Classification of topological quantum matter …

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035005-9
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Beyond the ten-fold way

•  Crystalline symmetries, higher order topological phases…

• Interacting symmetry-protected topological phases

e.g. Haldane phase of spin-1 chain  

[T. Senthil, Ann. Rev. Cond. Matt. Phys. (2015)]

[Image: Wierschem & Sengupta, Mod Phys Lett B (2015)]

• “Intrinsic Topological Order”: particle fractionalization

e.g. Fractional quantum Hall effect

➡  Dynamical Effects

[Y. Ando & L. Fu, Ann. Rev. Condens. Matter Phys. 2015]

[FQHE: New developments, Eds. B. Halperin & J. Jain, World Scientific (2020)] 

[S. de Léséleuc et al. [Paris], Science 2019]

Rydberg systems: Hardcore bosons on SSH lattice

[S. Parameswaran & Y. Wan, Physics Viewpoint 2017] 
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• Adiabatic pumping

• Floquet topology

• Far-from-equilibrium dynamics 




































































•Preparation of topological phases?

[⇒ stability of boundary modes in non-equilibrium settings]

•Is there a topological classification of non-equilibrium many-body states?

e.g. dynamical change in band topology

   Far-from-equilibrium dynamics
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Unitary evolution: | (t)i = T exp


�i

Z t

0
Ĥ(t0)dt0

�
| (0)i

ν=1

k k k

E E E

ν=0 ν=?

time

[Focus on free fermions, but applies also for interacting systems]




































































  Non-Equilibrium Topological Classification
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Short-range entangled symmetry-respecting wave functions

Equilibrium: 
adiabatically connected under 
symmetric Hamiltonian

Non-equilibrium: 
connected by (finite-time) unitary evolution
governed by a symmetric Hamiltonian

[Max McGinley & NRC, PRB 2019; PRR 2019]
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[Altland-Zirnbauer: Time-reversal, charge-conjugation & sublattice symmetries]

  Non-Equilibrium Topological Classification

• Interacting symmetry-protected topological phases [Max McGinley & NRC, PRR 2019]

6

Class Symmetries Spatial dimension d
T C S 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z ! 0 0 Z ! 0 0 Z ! 0 0 Z ! 0
AI + 0 0 Z 0 0 0 2Z 0 Z2 ! 0 Z2 ! 0
BDI + + 1 Z2 Z ! Z2 0 0 0 2Z ! 0 0 Z2 ! 0
D 0 + 0 Z2 Z2 Z 0 0 0 2Z 0
DIII � + 1 0 Z2 ! 0 Z2 ! 0 Z ! 0 0 0 0 2Z ! 0
AII � 0 0 2Z 0 Z2 ! 0 Z2 ! 0 Z 0 0 0
CII � � 1 0 2Z ! 0 0 Z2 ! 0 Z2 Z ! Z2 0 0
C 0 � 0 0 0 2Z 0 Z2 Z2 Z 0
CI + � 1 0 0 0 2Z ! 0 0 Z2 ! 0 Z2 ! 0 Z ! 0

Even primary (IVB1) Even descendants (IVB2) Odd primary (IVB3) Odd descendants (IVB4) 2Z series (IVB5)

TABLE II. Classification of topological insulators out of equilibrium. The non-equilibrium classification describes the set of
topological classes which remain distinct after time evolution under a Hamiltonian possessing the set of symmetries in question,
as outlined in Section III. The ten symmetry classes of the ten-fold way are listed on the left, and defined by the presence (+,�,
1) or absence (0) of time-reversal (T), particle-hole (C), and chiral (S) symmetries [13, 36]. For each symmetry class and spatial
dimension d, the equilibrium and non-equilibrium classifications are given. A single entry indicates that the classification does
not change out of equilibrium, whilst the notation G1 ! G2 indicates that the classification changes from G1 in equilibrium to
G2 out of equilibrium. The di↵erent series of the classification are coloured as described in the main text, and the references
to the discussions of each series are given below the table. Systems in dimension d > 7 have the same classification as the
corresponding system in (d� 8) dimensions (Bott periodicity).

which is characterized by the second Chern number Ch2.
Because the reference Hamiltonian ⇢ref is ~k-independent,
we can contract the subregions ✓ = ±⇡ to a single point,
and so the higher dimensional momentum space is a ‘sus-
pension’ ⌃(BZ), as illustrated in Figure 2.
Following Teo and Kane [37], one can show that the

super-TRS condition (3) forces the contributions to Ch2
for ✓ > 0 and ✓ < 0 to be equal, and so we need only
consider one hemisphere, which we call ⌃N (BZ). The
Chern form ch2 can be written as a total derivative of
a 3-form called the Chern-Simons form ch2 = dQ3 [14],
and so the integral over ✓ > 0 can be computed as a
surface integral on the boundary ✓ = 0, i.e. the physical
BZ. We then have

Ch2 = 2

Z

⌃N (BZ)

ch2 = 2

Z

BZ

Q3 =: 2CS3, (4)

where CS3 is the Chern-Simons (CS) invariant, which is
entirely determined by the physical system at ✓ = 0.
The CS invariant is gauge invariant only up to an inte-

ger. This gauge dependence reflects the fact that di↵er-
ent embeddings of ⇢(A)(~k) in 4D can yield Chern num-
bers that di↵er by an even integer. Ch2 mod 2 defines
a Z2-valued topological invariant which can characterize
the 3D system unambiguously – this relates the first de-
scendant (3D) to the primary series (4D) in class AII. A
similar construction is also possible for the second descen-
dants, which are classified by the Fu-Kane (FK) invariant
[38]

FKd=2n =

Z

BZ1/2

chn �
Z

@BZ1/2

Q2n�1, (5)

where BZ1/2 is the half of the BZ where one of the mo-
menta 0  ki < ⇡, and @BZ1/2 is its boundary. To

✓ = 0

✓ = +⇡

✓ = �⇡

⌃N (BZ)

⌃S(BZ)

⇢ref

⇢ref

BZ

FIG. 2. The physical Brillouin zone (BZ) as the equator of
a higher dimensional momentum space ⌃(BZ) parametrized

by (~k, ✓). At the poles ✓ = ±⇡, the BZ is contracted to

a point, representing the ~k-independent reference state. We
also identify the two poles, ensuring periodicity in ✓.

avoid ambiguity, this quantity must be calculated in a
particular gauge that is specified by the TRS (or PHS)
symmetry operator.

2. Chiral classes

Systems with only Chiral symmetry (class AIII) in odd
dimensions also inherit their topology from a higher di-
mensional insulator in a similar way. The procedure is
slightly di↵erent to the above, in that the higher dimen-

[Max McGinley & NRC, PRB 2019]

• e.g. Haldane phase…

• Free-fermion topological insulators / superconductors
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  Non-Equilibrium Topological Classification: Physical Consequences

1) Preparation of topological states

e.g. Su-Schrieffer-Heeger model (class BDI in 1D):  ℤ → ℤ2

 Topological “invariant” can be changed by even integers

[Max McGinley & NRC, PRB 2019; PRR 2019]

Determines which states can be quickly interconverted dynamically 
by symmetry-respecting Hamiltonians

External symmetry-respecting noise

2) Stability of “topologically protected” surface states

Determines which symmetry-protected topological quantum registers decohere

[Image: Wierschem & Sengupta, Mod Phys Lett B (2015)]

 Relevant also to topological protection in open quantum systems
[Lectures of Sebastian Diehl]




































































   Overview
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• Topological Phases of Matter

‣ Topological band theory

‣ Symmetry protection

‣ Strong Interactions

• Dynamical Effects

‣ Adiabatic pumping

‣ Floquet topology

‣ Far-from-equilibrium systems

NRC, Jean Dalibard & Ian Spielman, RMP 91, 015005 (2019)Review article:

Work with: Marcello Caio, Joe Bhaseen, Gunnar Möller, Max McGinley























































































































































































































































































































