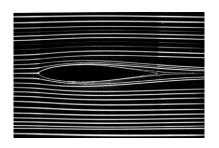
Lecture 2

Blackboard interlude 2

- Laminar-turbulent transition in convection
 - Linear stability analysis
 - Supercritical transition

- Laminar-turbulent transition in pipe
 - Linear stability analysis
 - Subcritical transition

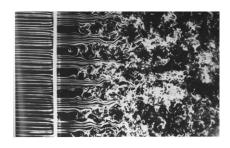


laminar flow

steady predictable

laminar-turbulent transition

critical behavior



fully-developed turbulence

fluctuating unpredictable

Re < 1600

Re ~ 2000

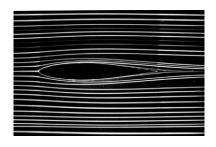
 $Re > 10^5$

$$\nabla \cdot \mathbf{u} = 0$$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u}$$

$$Re = \frac{UL}{\nu}$$

$$\upsilon = \mu/\rho$$

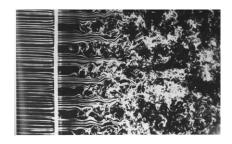


laminar flow

steady predictable

laminar-turbulent transition

critical behavior



fully-developed turbulence

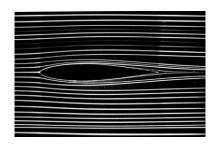
fluctuating unpredictable

Re < 1600

Re ~ 2000

 $Re > 10^5$

- Boundary conditions <u>not</u> periodic
- Turbulence generated by instabilities
 - Linear and long-wavelength
 - Nonlinear and spatially-localized
 - Not artificial noise
- Turbulence interacts with mean flow
 - Turbulence can generate emergent mean flows

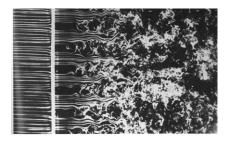


laminar flow

steady predictable

laminar-turbulent transition

critical behavior



fully-developed turbulence

fluctuating unpredictable

Re < 1600

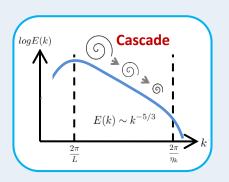
Re ~ 2000

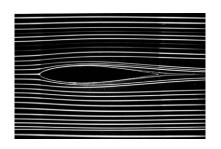
 $Re > 10^5$

Fully-developed turbulence

- Energy cascade: Non-equilibrium steady state
 Energy transfers step by step → power law
- Dissipative anomaly:
 energy dissipation rate = 0 when viscosity = 0
 energy dissipation rate ≠ 0 when viscosity → 0

$$\epsilon = \nu |\nabla u|^2 \neq 0 \text{ as } \nu \to 0$$



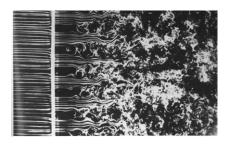


laminar flow

steady predictable

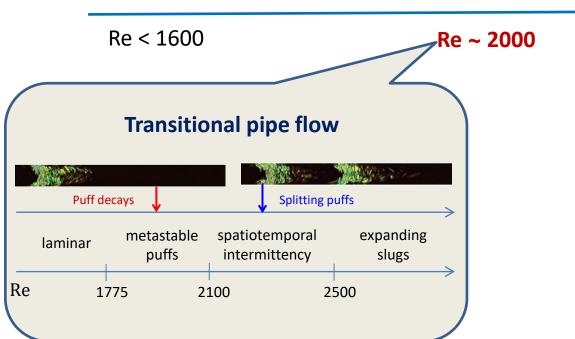
laminar-turbulent transition

critical behavior

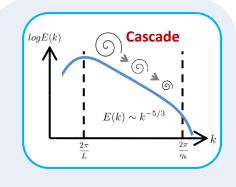


fully-developed turbulence

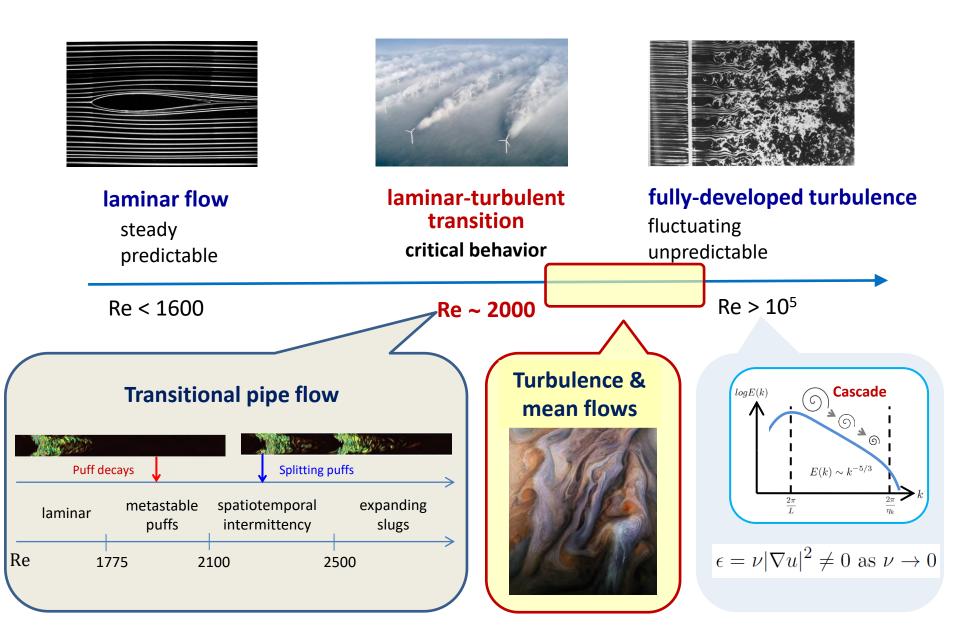
fluctuating unpredictable



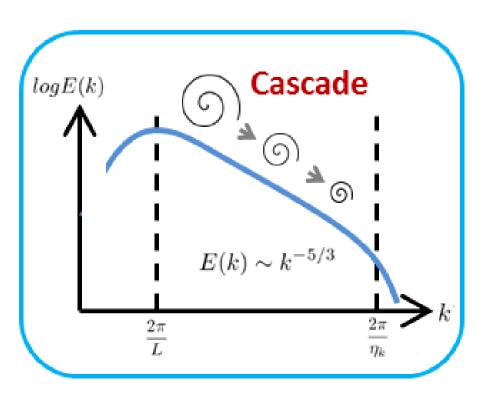
 $Re > 10^5$



$$\epsilon = \nu |\nabla u|^2 \neq 0 \text{ as } \nu \to 0$$

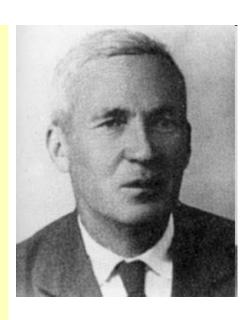


Energy cascade

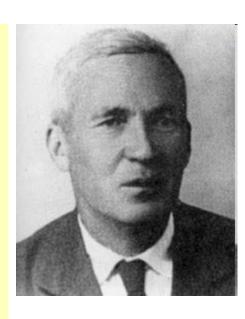


- Eddies spin off other eddies in a Hamiltonian process.
 - Does not involve friction!
 - Hypothesis due to
 Richardson, Kolmogorov, ...
- Implication: viscosity will not enter into the equations

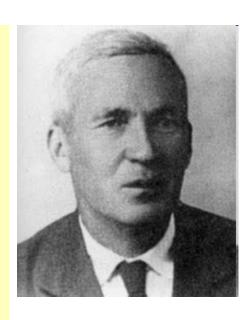
- Dimensional analysis
- $E(k) = E(k, \epsilon, v, L)$
 - Kolmogorov length $\eta_{\kappa} = (v^3/\epsilon)^{1/4}$
- $E(k) = (v^2/\eta_K) F(k\eta_K, kL)$
 - Complete similarity as kL → ∞
- $E(k) = (v^2/\eta_K) F(k\eta_K, \infty)$
 - Complete similarity as $k\eta_K \rightarrow 0$
- $E(k) = F(0, \infty) \varepsilon^{2/3} k^{-5/3}$



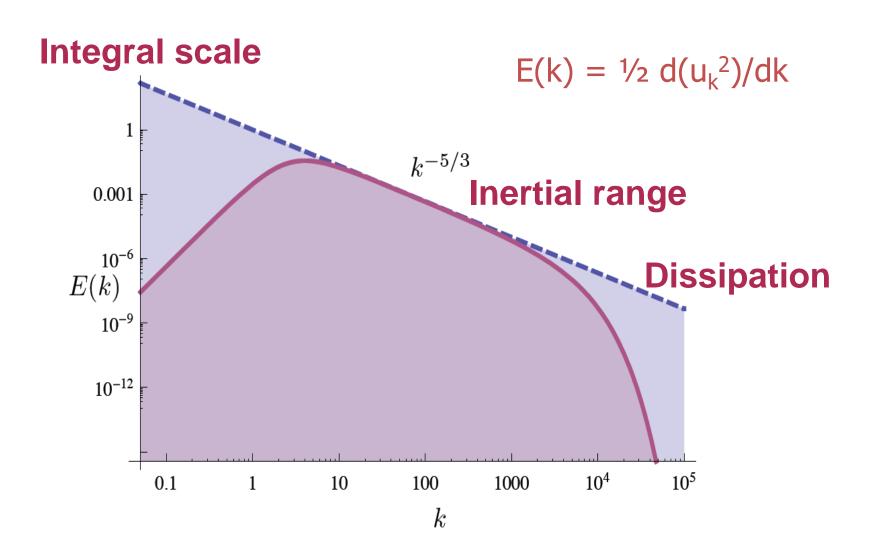
- Dimensional analysis
- $E(k) = E(k, \epsilon, v, L)$
 - Kolmogorov length $\eta_{\kappa} = (v^3/\epsilon)^{1/4}$
- $E(k) = (v^2/\eta_K) F(k\eta_K, kL)$
 - Complete similarity as kL → ∞
- $E(k) = (v^2/\eta_K) F(k\eta_K, \infty)$
 - Complete similarity as $k\eta_K \rightarrow 0$
- $E(k) = F(0, \infty) \varepsilon^{2/3} k^{-5/3}$



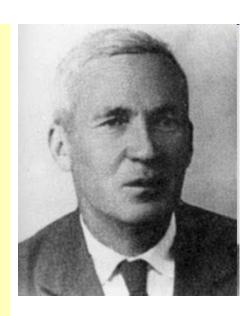
- Dimensional analysis
- $E(k) = E(k, \epsilon, v, L)$
 - Kolmogorov length $\eta_{\kappa} = (v^3/\epsilon)^{1/4}$
- $E(k) = (v^2/\eta_K) F(k\eta_K, kL)$
 - Complete similarity as kL → ∞
- $E(k) = (v^2/\eta_K) F(k\eta_K, \infty)$
 - Complete similarity as $k\eta_K \rightarrow 0$
- $E(k) = F(0, \infty) \varepsilon^{2/3} k^{-5/3}$



The energy spectrum



- Dimensional analysis
- $E(k) = E(k, \epsilon, v, L)$
 - Kolmogorov length $\eta_K = (v^3/\epsilon)^{1/4}$
- $E(k) = (v^2/\eta_K) F(k\eta_K, kL)$
 - Incomplete similarity as kL → ∞
- $E(k) = (v^2/\eta_K) F_1(k\eta_K) (kL)^{\eta}$
 - Complete similarity as $k\eta_{\kappa} \rightarrow 0$
- $E(k) = F_1(0) \varepsilon^{2/3} k^{-5/3} (kL)^{\eta}$

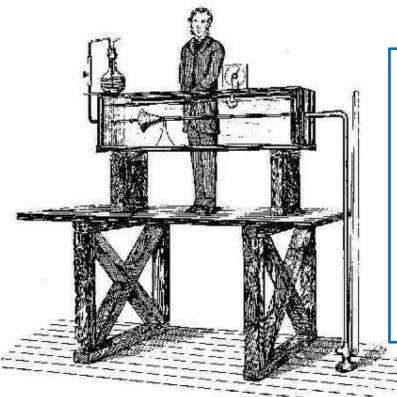


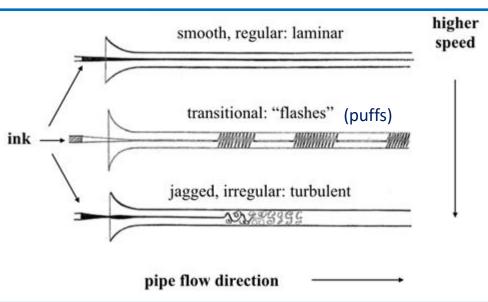
2. Puffs

Transitional turbulence in pipe flow: puffs

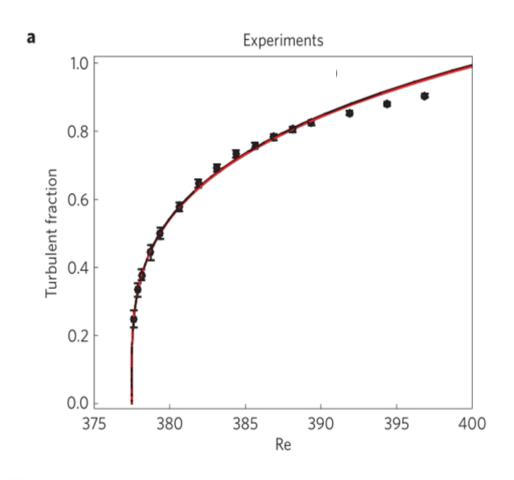
Reynolds' original pipe turbulence (1883) reports on the transition

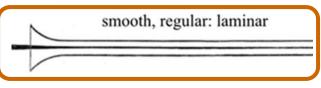
• Defined Reynolds' number $\mathrm{Re} = \frac{UL}{
u}$

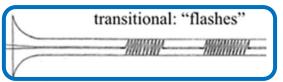


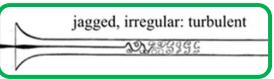


How much turbulence is in the pipe?

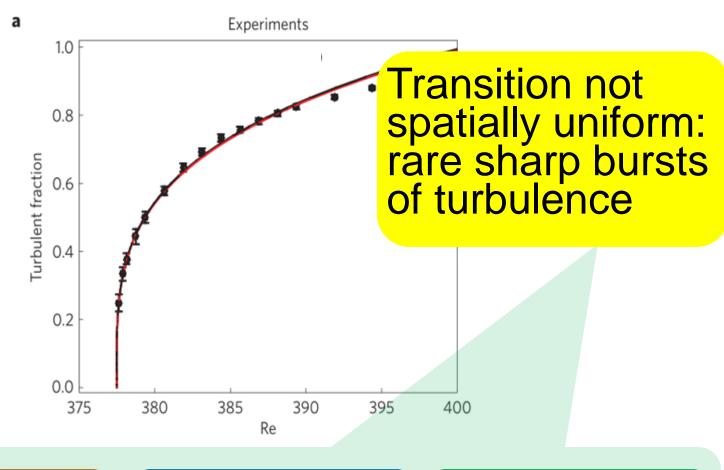


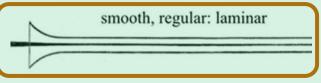






How much turbulence is in the pipe?

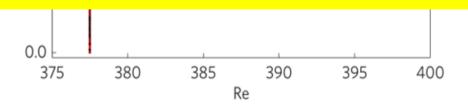


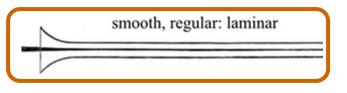


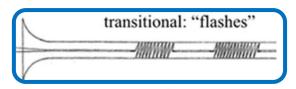
jagged, irregular: turbulent

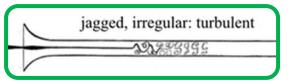
How much turbulence is in the pipe?

What is the quantitative description of the transition to turbulence?



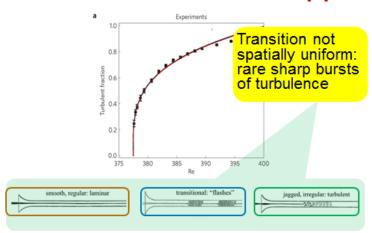






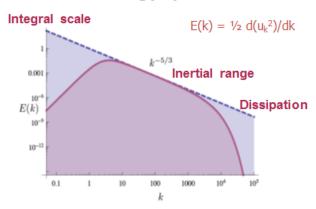
Turbulence & Phase Transitions

How much turbulence is in the pipe?



 Turbulent fraction as a function of Re is reminiscent of a continuous phase transition

The energy spectrum



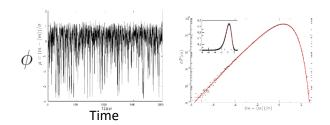
 Strong power-law correlated fluctuations is reminiscent of a continuous phase transition

Why is fully-developed turbulence hard?

Why is turbulence unsolved?

Why are phase transitions hard?

- Strong interactions + fluctuations in the order parameter ϕ :
- Very non-Gaussian
- Intermittency



No usable small parameter!

Landau free energy

$$\mathcal{H} = \int d^d \mathbf{r} \left[\frac{1}{2} \gamma \left(\nabla \phi \right)^2 + \frac{1}{2} r_0 \phi^2 + \frac{1}{4} u_0 \phi^4 \right]$$

$$t = (T - T_c)/T_c \qquad r_0 \sim t$$

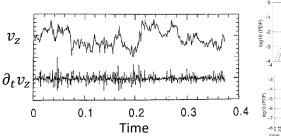
rescaling
$$\overline{u}_0 \sim u_0 t^{(d-4)/2} \left\{ \begin{array}{l} d < 4: \ \overline{u}_0 \to \infty \\ d > 4: \ \overline{u}_0 \to 0 \end{array} \right.$$

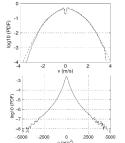
The coefficient of the **interaction** becomes relatively large at **phase transition** $t \to 0$

Why is turbulence unsolved?

Why is turbulence hard?

- Strong interactions + fluctuations in the velocity derivatives $\partial_i v_i$:
- Very non-Gaussian
- Intermittency: intervals of weak fluctuations interspersed with bursts of strong fluctuations





No usable small parameter!

The Navier-Stokes equation

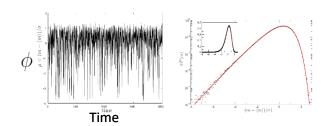
$$\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \nabla^2 \mathbf{v} + \mathbf{f}$$

Turbulence: Re $\rightarrow \infty$, $\nu \rightarrow 0$

The coefficient of the **nonlinearity** becomes relatively large as the **viscosity** $\nu \to 0$

Why are phase transitions hard?

- Strong interactions + fluctuations in the order parameter ϕ :
- Very non-Gaussian
- Intermittency



No usable small parameter!

Landau free energy

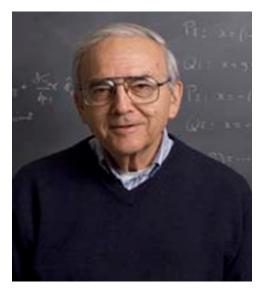
$$\mathcal{H} = \int d^d \mathbf{r} \left[\frac{1}{2} \gamma (\nabla \phi)^2 + \frac{1}{2} r_0 \phi^2 + \frac{1}{4} u_0 \phi^4 \right]$$

$$t = (T - T_c)/T_c \qquad r_0 \sim t$$

rescaling
$$\overline{u}_0 \sim u_0 t^{(d-4)/2} \left\{ \begin{array}{l} d < 4: \ \overline{u}_0 \to \infty \\ d > 4: \ \overline{u}_0 \to 0 \end{array} \right.$$

The coefficient of the **interaction** becomes relatively large at **phase transition** $t \to 0$

How was critical phenomena solved?



Ben Widom discovered "data collapse" (1965)

Leo Kadanoff explained data collapse, with scaling concepts (1966)

Ken Wilson developed the RG based on Kadanoff's scaling ideas (1970)

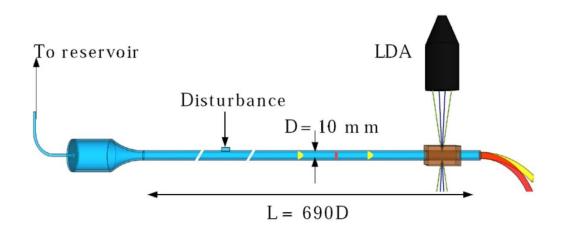
Common features

- Strong fluctuations
- Power law correlations
- Can we solve turbulence by following critical phenomena?
- Does turbulence exhibit critical phenomena at its onset?

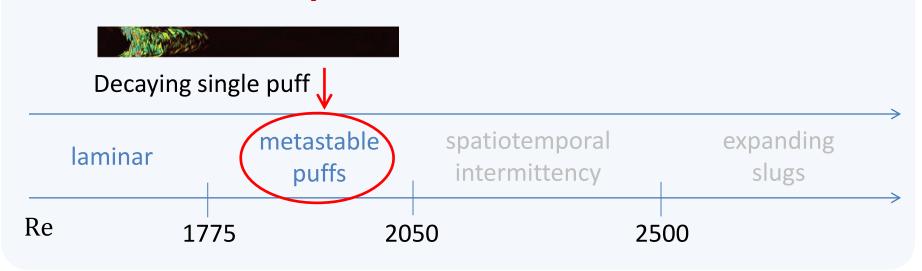
Transition to turbulence

Precision measurement of turbulent transition

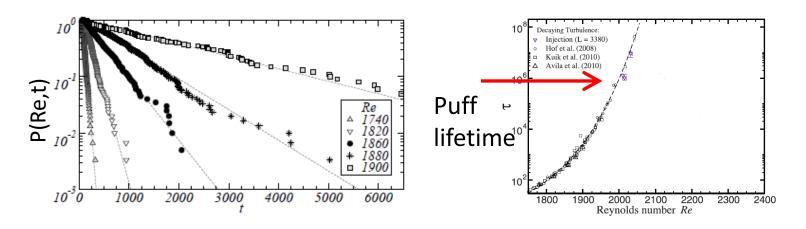
Q: will a turbulent puff survive to the end of the pipe?

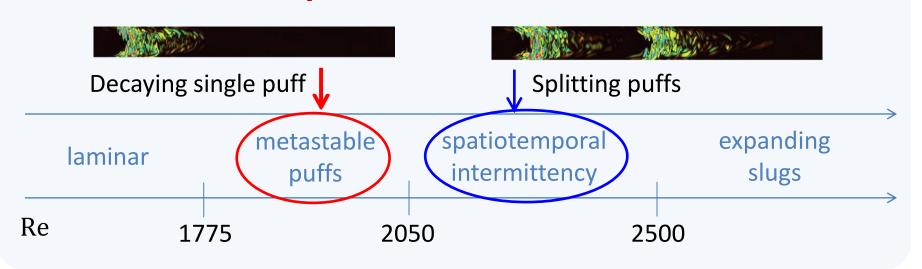


Many repetitions → Survival probability = P(Re, t)



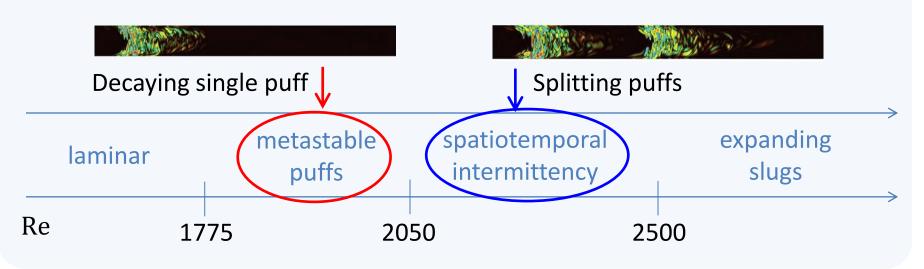
Survival probability $P(\text{Re}, t) = e^{-\frac{t - t_0}{\tau(\text{Re})}}$



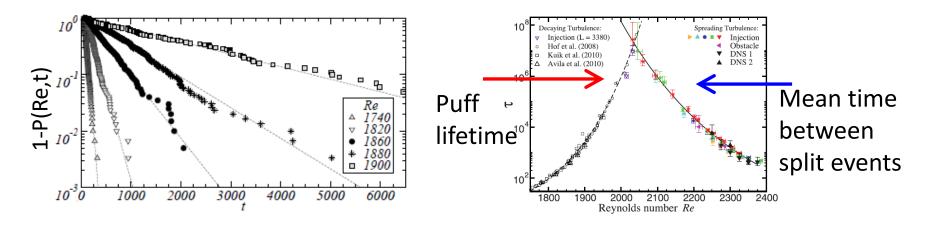


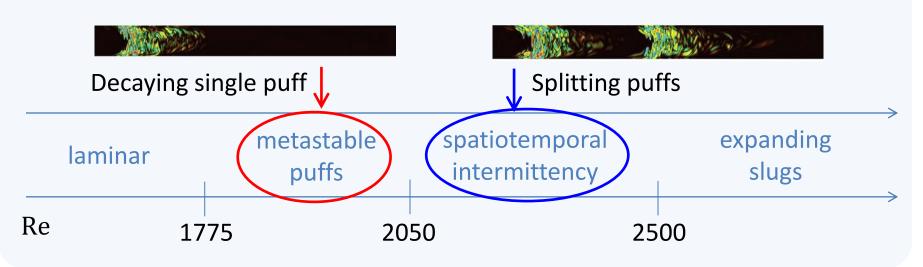
Survival probability $P(\text{Re}, t) = e^{-\frac{t - t_0}{\tau(\text{Re})}}$



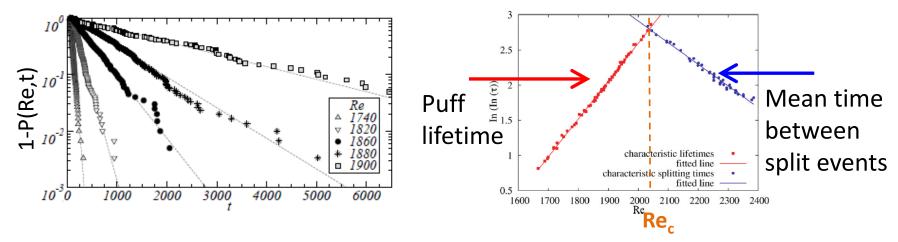


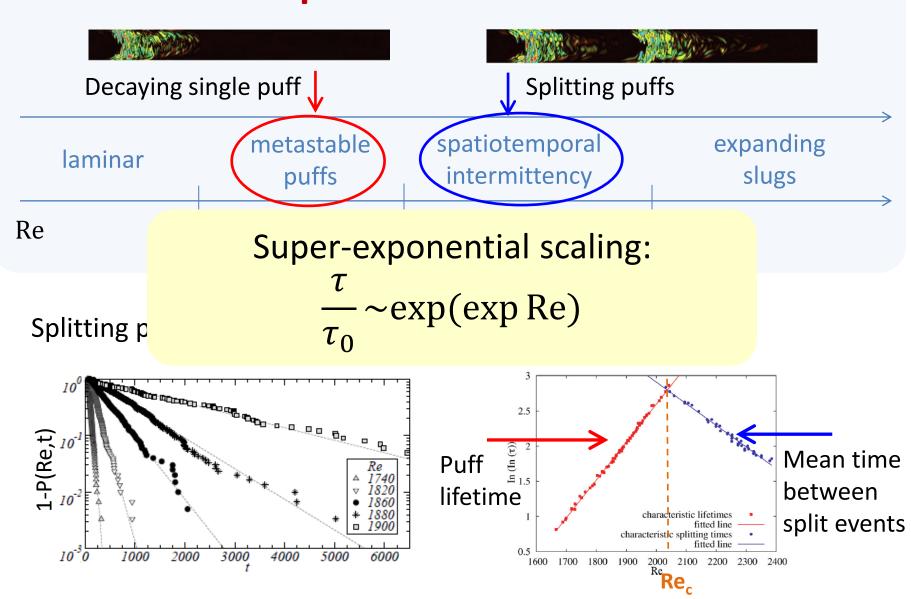
Splitting probability
$$1 - P(\text{Re}, t) = e^{-\frac{t - t_0}{\tau(\text{Re})}}$$





Splitting probability
$$1 - P(\text{Re}, t) = e^{-\frac{t - t_0}{\tau(\text{Re})}}$$





Theory for the laminar-turbulent transition in pipe flow

Logic of modeling phase transitions

Magnets

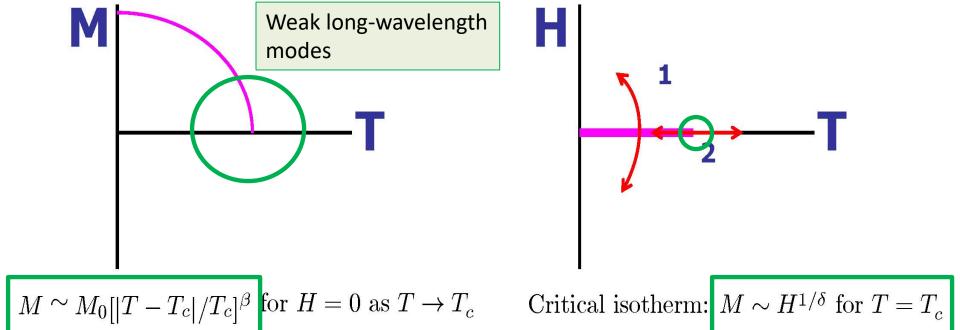
Electronic structure

Ising model

Landau theory

Renormalization group universality class (Ising universality class)

Critical phenomena in magnets



 Widom (1963) pointed out that both these results followed from a similarity formula:

$$M(t,h) = |t|^\beta f_M(h/t^\Delta)$$

where $t \equiv (T - T_c)/T_c$ for some choice of exponent Δ and scaling function $f_M(x)$

Critical phenomena in magnets

$$M(t,h) = |t|^{\beta} f_M(h/t^{\Delta})$$

where $t \equiv (T - T_c)/T_c$ for some choice of exponent Δ and scaling function $f_M(x)$

- To determine the properties of the scaling function and unknown exponent, we require:
 - $f_M(z) = const.$ for z = 0
 - This gives $M \simeq M_0[|T T_c|/T_c]^{\beta}$ for T < T_c
 - For large values of z, i.e. non-zero h, and t \rightarrow 0, t dependence must cancel out so that $M \sim H^{1/\delta}$

Thus $f_M(z) \sim z^{1/\delta}, z \to \infty$.

Calculate Δ : t dependence will only cancel out if $\beta - \Delta/\delta = 0$

$$M=|t|^{eta}f_{M}(h/|t|^{eta\delta})$$

 This data collapse formula connects the scaling of correlations with the thermodynamics of the critical point

Universality at a critical point

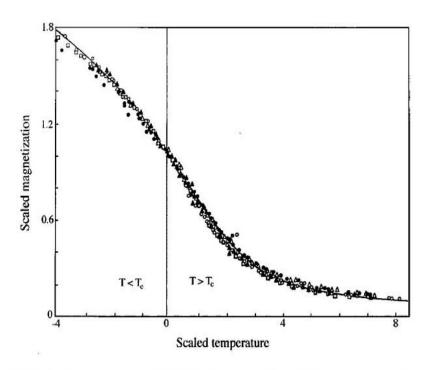


FIG. 1. Experimental MHT data on five different magnetic materials plotted in scaled form. The five materials are CrBr₃, EuO, Ni, YIG, and Pd₃Fe. None of these materials is an idealized ferromagnet: CrBr₃ has considerable lattice anisotropy, EuO has significant second-neighbor interactions. Ni is an itinerant-electron ferromagnet, YIG is a ferrimagnet, and Pd₃Fe is a ferromagnetic alloy. Nonetheless, the data for all materials collapse onto a single scaling function, which is that calculated for the d=3 Heisenberg model [after Milošević and Stanley (1976)].

- Magnetization M of a material depends on temperature T and applied field H
 - M(H,T) ostensibly a function of two variables
- Plotted in appropriate scaling variables get ONE universal curve
- Scaling variables involve critical exponents

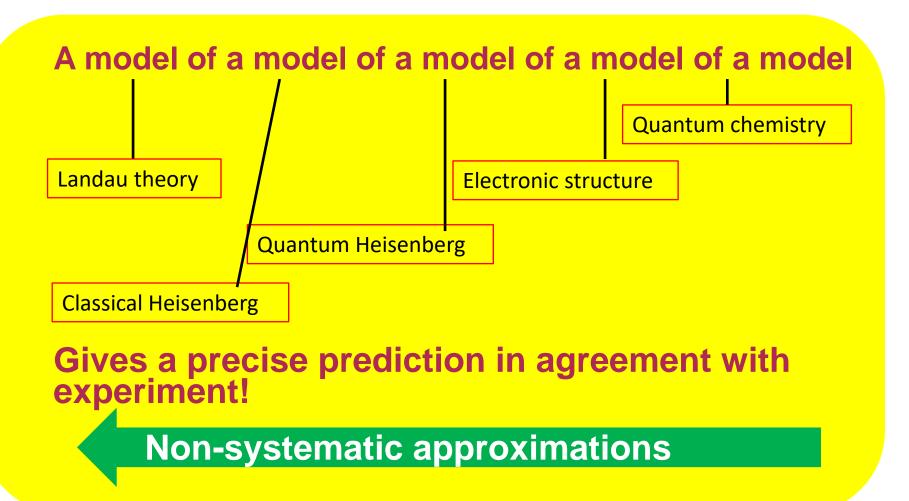
A theoretical physics success

A model ...

Gives a precise prediction in agreement with experiment!

materials collapse onto a single scaling function, which is that calculated for the d=3 Heisenberg model [after Milošević and Stanley (1976)]. Stanley (1999)

A theoretical physics success



materials collapse onto a single scaling function, which is that calculated for the d=3 Heisenberg model [after Milošević and Stanley (1976)]. Stanley (1999)

Logic of modeling phase transitions

Magnets

Electronic structure

Ising model

Landau theory

Renormalization group universality class (Ising universality class)

Turbulence

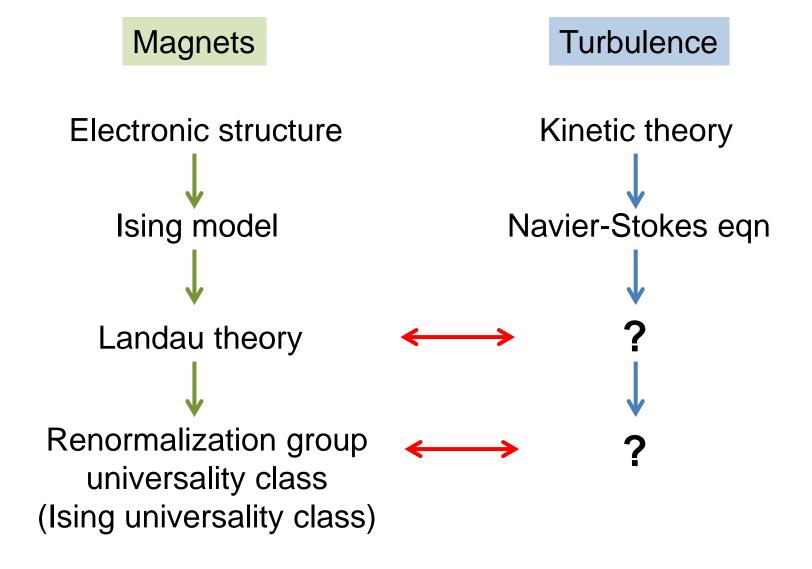
Kinetic theory

Navier-Stokes eqn

?

?

Logic of modeling phase transitions



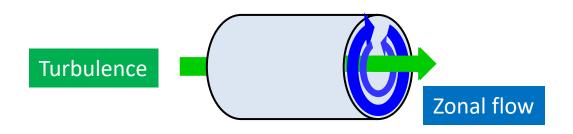
Identification of long-wavelength collective modes at the laminar-turbulent transition

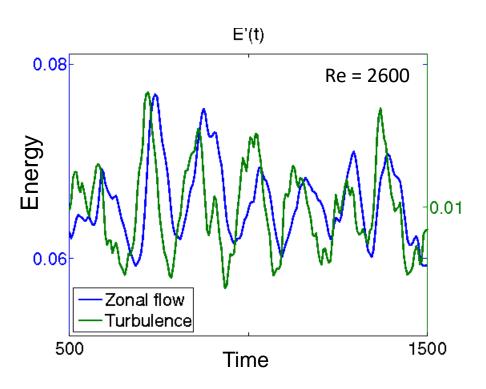
To avoid uncontrolled approximations, we use direct numerical simulation of the Navier-Stokes equations

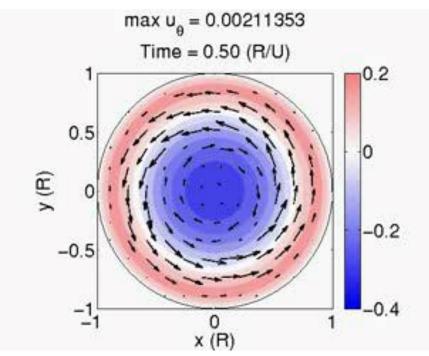
DNS of 3D Navier-Stokes equations

- Use pseudospectral method to deal with both derivatives and nonlinear terms in streamwise direction and azimuthal directions
- Use Chebyshev polynomials to resolve large gradients in the boundary layer, in the radial direction
- 60 grid points in the radial (r) direction,
- 32 Fourier modes in the azimuthal (θ) direction and 128 modes in the axial (z) direction
- The spatial resolutions were chosen such that the resolvable power spectra span over six orders of magnitude.
- The pipe length L is 10 times its diameter D, with periodic boundary conditions in the z direction

Predator-prey oscillations in pipe flow







Simulation based on the open source code by Ashley Willis: openpipeflow.org

Decomposition into large & small scales

- Use pseudospectral method to deal with both derivatives and nonlinear terms in streamwise direction and azimuthal directions
- Use Chebyshev polynomials to resolve large gradients in the boundary layer, in the radial direction
- Zonal flow velocity $u_{ZF} \equiv (\overline{u}_z, \overline{u}_\theta, \overline{u}_r)$, where $\overline{u}_r = 0$
- Zonal flow energy is defined as

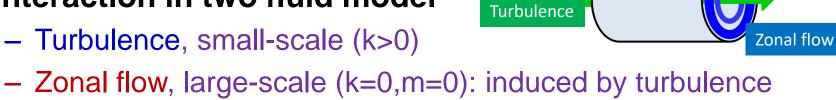
$$E_{\rm ZF}(t) \equiv (1/2) \int |\tilde{\mathbf{u}}(0,0,r)|^2 dV$$
 with $\tilde{\mathbf{u}}_{\rm ZF} \equiv \tilde{\mathbf{u}}(k=0,m=0,r)$

Turbulence energy is defined as

$$E_{\rm T}(t) \equiv (1/2) \sum_{|k|>1,|m|>1} \int |\tilde{\mathbf{u}}(k,m,r)|^2 dV$$

What drives the zonal flow?

- Interaction in two fluid model
 - Turbulence, small-scale (k>0)

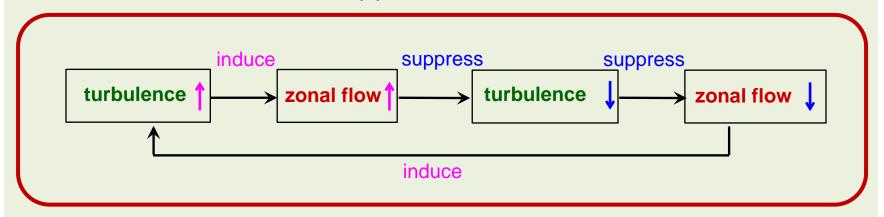


Anisotropy of turbulence creates Reynolds stress which generates the mean velocity in azimuthal direction

and creates shear to suppress turbulence

$$\partial_t \langle v_\theta \rangle = -\partial_r \langle (\widetilde{v}_\theta \cdot \widetilde{v}_r) \rangle - \mu \langle v_\theta \rangle$$

Mean azimuthal velocity decreases the anisotropy of turbulence and thus suppress turbulence



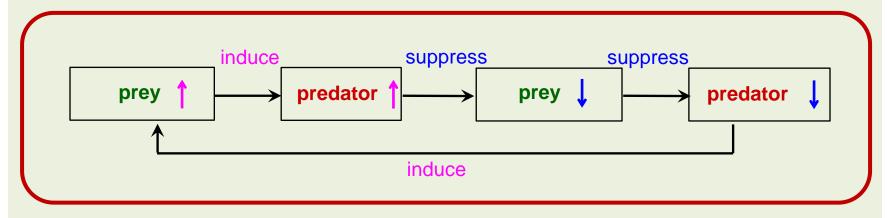
What drives the zonal flow?

- Interaction in two fluid model
 - Turbulence, small-scale (k>0)

- Zonal flow, large-scale (k=0,m=0): induced by turbulence and creates shear to suppress turbulence
- 1) Anisotropy of turbulence creates Reynolds stress which generates the mean velocity in azimuthal direction

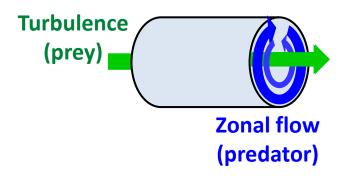
$$\partial_t \langle v_\theta \rangle = -\partial_r \langle (\widetilde{v}_\theta \cdot \widetilde{v}_r) \rangle - \mu \langle v_\theta \rangle$$

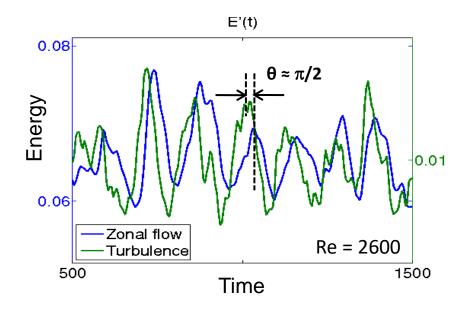
 Mean azimuthal velocity decreases the anisotropy of turbulence and thus suppress turbulence

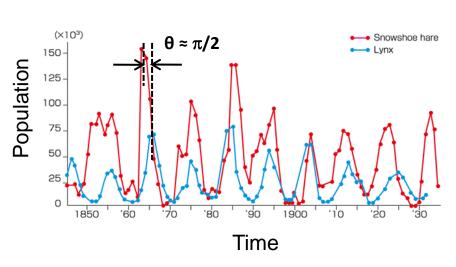


Pipe flow near transition to turbulence

Predator-prey ecosystem







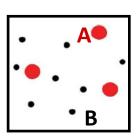
Blackboard interlude 3

- Predator-prey equations description of cyclical behavior is strange, because a deterministic description based on the physics does not work! Let's see this ...
- Intrinsically stochastic description is required

Stochastic model of predator-prey dynamics

Stochastic individual-level model
 fluctuations in number → demographic stochasticity that induces quasi-cycles

A = predator
B = prey
E = food or
available space

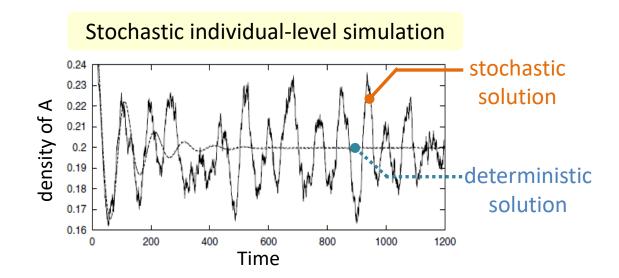


$$B+E \xrightarrow{b} B+B$$

$$B + B \xrightarrow{c} B + E$$

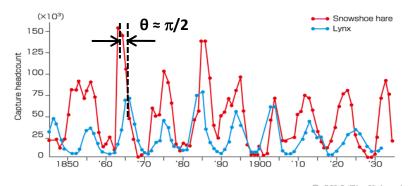
$$A + B \xrightarrow{p} A + A$$

$$A \xrightarrow{d_A} E \qquad B \xrightarrow{d_B} E$$



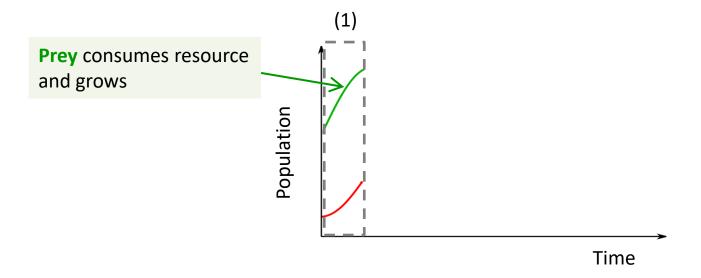
Normal population cycles in a predator-prey system

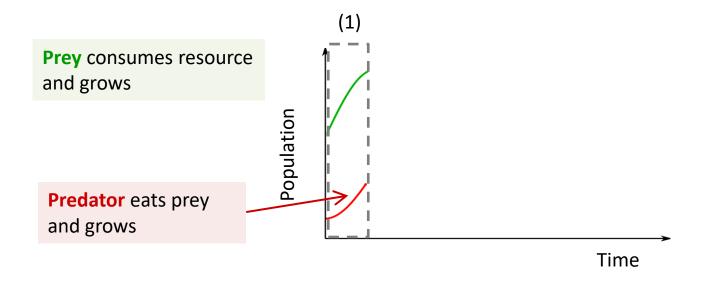
$\pi/2$ phase shift between prey and predator population

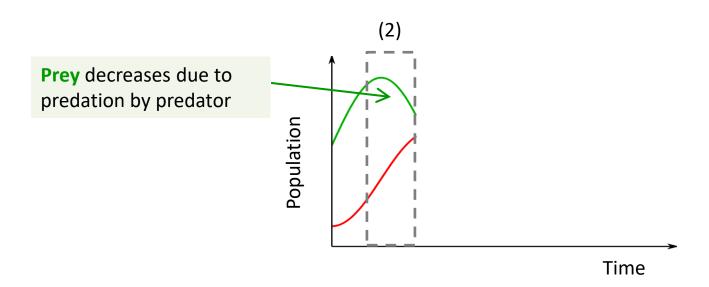


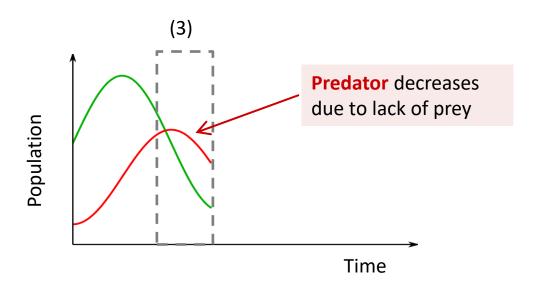
Persistent oscillations
+
Fluctuations

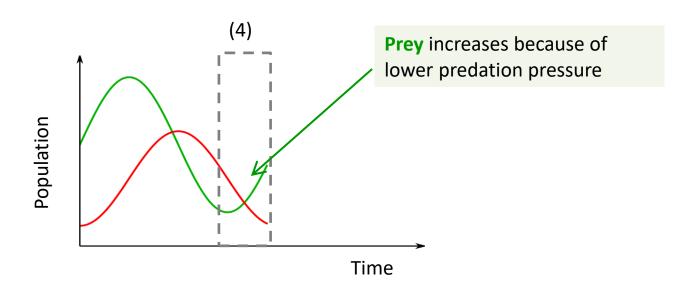
© CSLS/The University of Tokyo

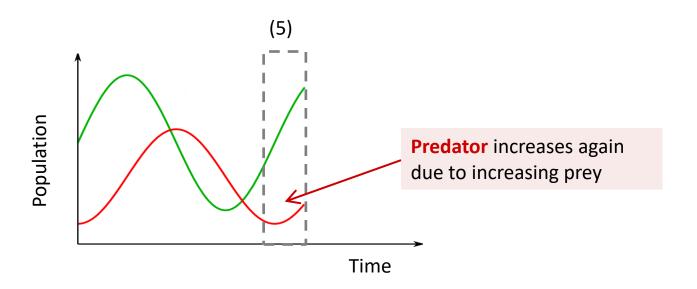


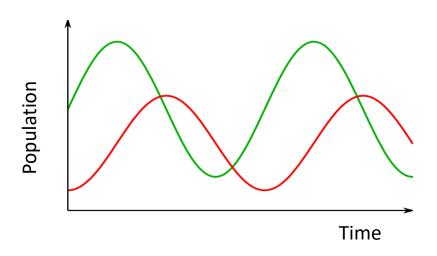


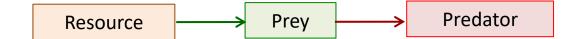


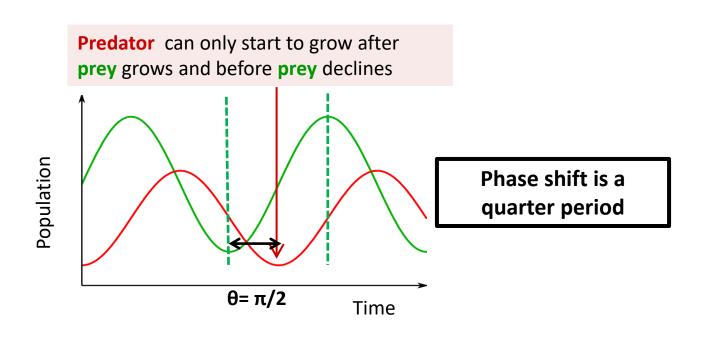












- Lotka-Volterra eqn: conventional model for population dynamics
- L-V for prey-predator system:

- Lotka-Volterra eqn: conventional model for population dynamics
- L-V for prey-predator system:
 - Reproduction of prey proportional to prey density → exponential growth

$$\frac{du}{dt} = bu$$

- Lotka-Volterra eqn: conventional model for population dynamics
- L-V for prey-predator system:
 - Reproduction of prey proportional to prey density → exponential growth
 - Limited food resource \rightarrow consider carrying capacity of prey, $\mathbf{K}_{\mathbf{u}}$

$$\frac{du}{dt} = bu(1 - \frac{u}{K_u})$$

- Lotka-Volterra eqn: conventional model for population dynamics
- L-V for prey-predator system:
 - Reproduction of prey proportional to prey density → exponential growth
 - Limited food resource → consider carrying capacity of prey, K_u
 - Predator hunts prey → predation proportional to prey & predator densities

$$\frac{du}{dt} = bu(1 - \frac{u}{K_u}) - puv$$

- Lotka-Volterra eqn: conventional model for population dynamics
- L-V for prey-predator system:
 - Reproduction of prey proportional to prey density → exponential growth
 - Limited food resource → consider carrying capacity of prey, K_u
 - Predator hunts prey → predation proportional to prey & predator densities
 - Death of predator proportional to predator density

$$\frac{du}{dt} = bu(1 - \frac{u}{K_u}) - puv$$
$$\frac{dv}{dt} = puv - dv$$

u: prey v: predator b: prey metabolic rate

K_{II}: prey carrying capacity

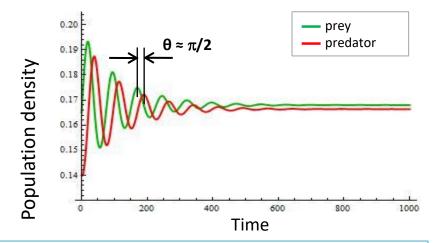
p: predation rate d: predator death rate

- Lotka-Volterra eqn: conventional model for population dynamics
- L-V for prey-predator system:
 - Reproduction of prey proportional to prey density → exponential growth
 - Limited food resource → consider carrying capacity of prey, K_u
 - Predator hunts prey → predation proportional to prey & predator densities
 - Death of predator proportional to predator density

$$\frac{du}{dt} = bu(1 - \frac{u}{K_u}) - puv$$
$$\frac{dv}{dt} = puv - dv$$

u: prey v: predator b: prey metabolic rate K_{..}: prey carrying capacity

p: predation rate d: predator death rate



- Predicts $\pi/2$ phase shift between prey and predator
- Problems: No oscillations → Contrary to experiments!

Stochasticity can qualitatively change the predictions of ecological models

Noise can stabilise persistent cycles in time and patterns in space

Deterministic

$$\frac{dx}{dt} = bx - ex^2 - pxy$$

predator
$$\frac{dy}{dt} = pxy - dy$$

Deterministic

prey
$$\frac{dx}{dt} = bx - ex^2 - pxy$$

predator
$$\frac{dy}{dt} = pxy - dy$$
 predation death

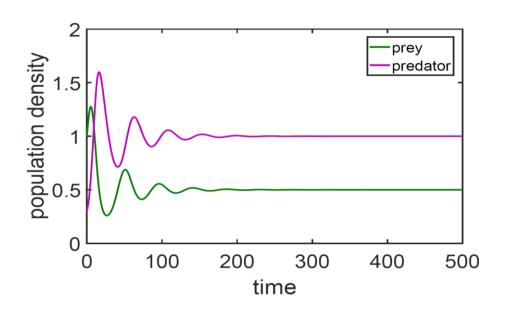
Deterministic

prey
$$\frac{dx}{dt} = bx - ex^2 - pxy$$

predator
$$\frac{dy}{dt} = pxy - dy$$

Oscillatory damping toward a steady state.

Cycles are not persistent.



Deterministic

prey
$$\frac{dx}{dt} = bx - ex^2 - pxy$$

predator
$$\frac{dy}{dt} = pxy - dy$$

$$X \xrightarrow{b} 2X$$

$$X \xrightarrow{b} 2X$$
 $X + X \xrightarrow{e/V} X$

$$X + Y \xrightarrow{p/V} 2Y \qquad Y \xrightarrow{d} \Phi$$

$$Y \xrightarrow{d} \Phi$$

Deterministic

prey
$$\frac{dx}{dt} = bx - ex^2 - pxy$$

predator
$$\frac{dy}{dt} = pxy - dy$$

$$X \xrightarrow{b} 2X$$

$$X + X \xrightarrow{e/V} X$$

$$X + Y \xrightarrow{p/V} 2Y \qquad Y \xrightarrow{d} \Phi$$

$$Y \xrightarrow{d} \Phi$$

Deterministic

prey
$$\frac{dx}{dt} = bx - ex^2 - pxy$$

predator
$$\frac{dy}{dt} = pxy - dy$$

$$X \xrightarrow{b} 2X$$

$$X + X \xrightarrow{e/V} X$$

$$X + Y \xrightarrow{p/V} 2Y$$

$$Y \xrightarrow{d} \Phi$$

Deterministic

prey
$$\frac{dx}{dt} = bx - ex^2 - pxy$$

predator
$$\frac{dy}{dt} = pxy - \boxed{dy}$$

$$X \xrightarrow{b} 2X$$

$$X \xrightarrow{b} 2X$$
 $X + X \xrightarrow{e/V} X$

$$X + Y \xrightarrow{p/V} 2Y \qquad Y \xrightarrow{d} \Phi$$

$$Y \xrightarrow{d} \Phi$$

Deterministic

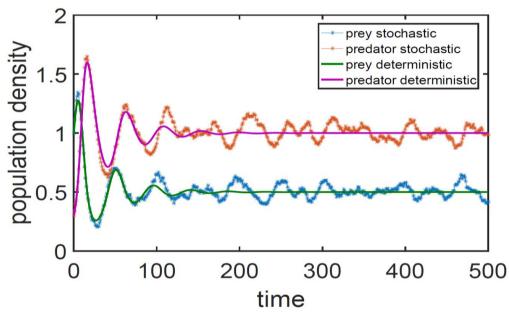
$$\frac{dx}{dt} = bx - ex^2 - pxy$$

predator
$$\frac{dy}{dt} = pxy - \boxed{dy}$$

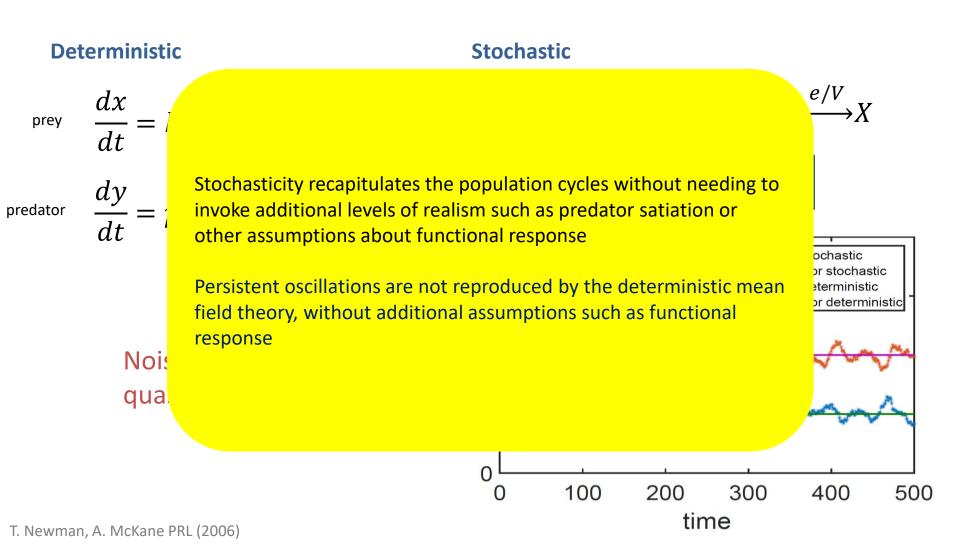
Noisy persistent quasi-cycles

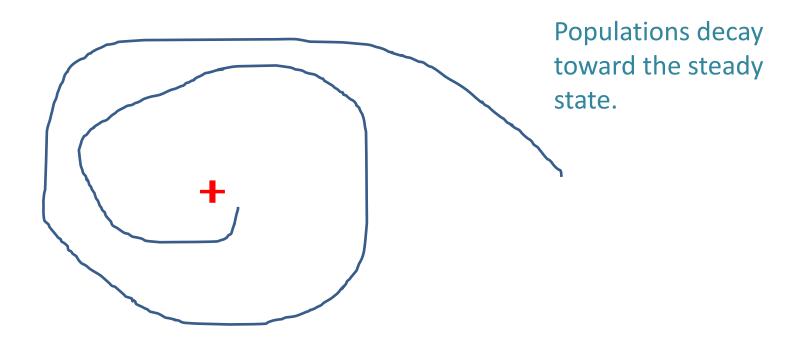
$$X \xrightarrow{b} 2X \qquad X + X \xrightarrow{e/V} X$$

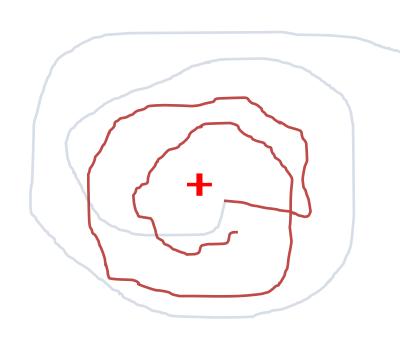
$$X + Y \xrightarrow{p/V} 2Y \qquad Y \xrightarrow{d} \Phi$$



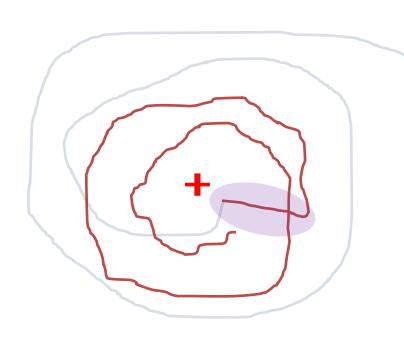
Predator-prey models



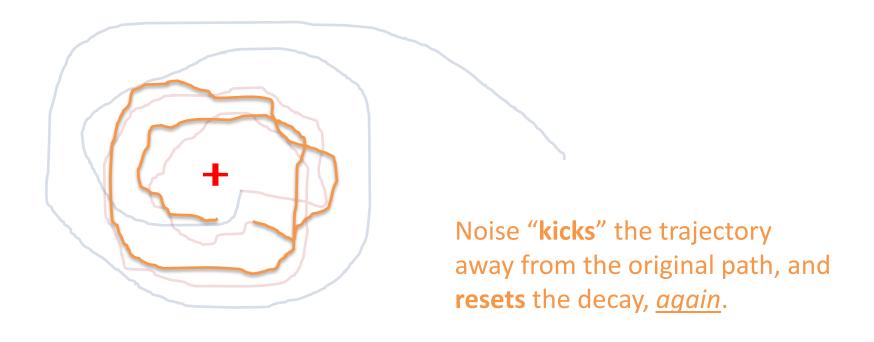


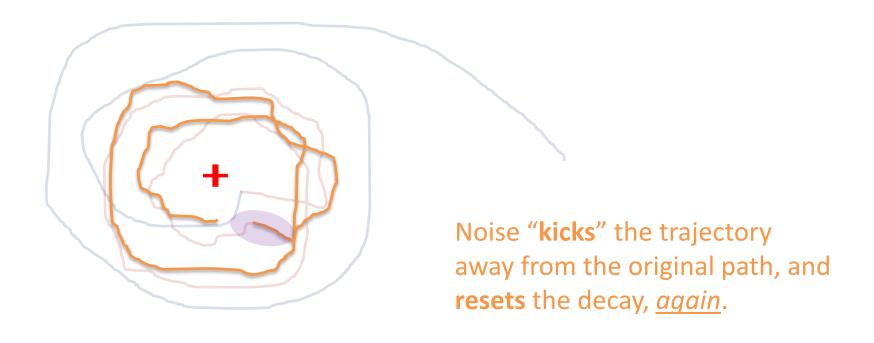


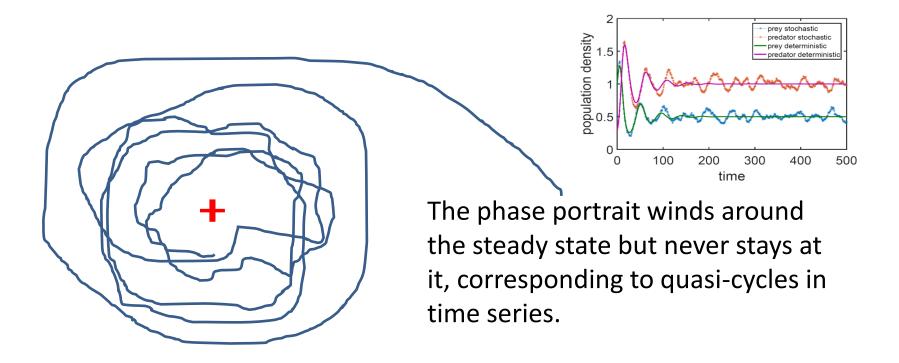
Noise "kicks" the trajectory away from the original path, and resets the decay.



Noise "kicks" the trajectory away from the original path, and resets the decay.

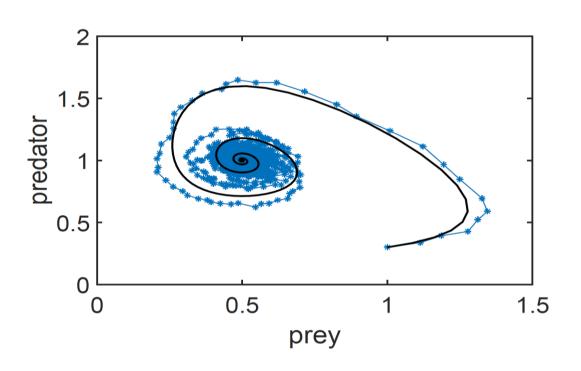






The winding period is close to the period of stable complex eigenvalue about the fixed point.

Phase portrait



Deterministic

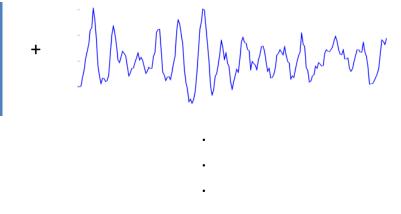
Damped motion toward the fixed point

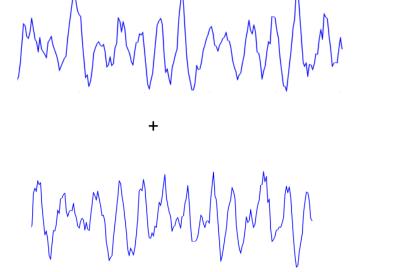
Stochastic:

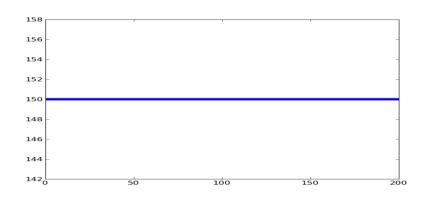
Noise stimulates deviation from fixed point, followed by relaxation to fixed point, followed by noise ...

What is the problem with Lotka-Volterra?

Averaging used to derive Lotka-Volterra removes cycles or spatial structure







Comparison of Models

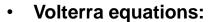
• Lotka-Volterra equations (Holling type I response function):

$$\frac{du}{dt} = bu - puv$$

$$\frac{dv}{dt} = puv - dv$$

the fixed point is a center existence of a conserved quantities

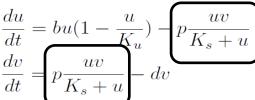
Initial cond. dependent



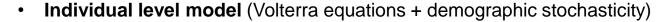
$$\frac{du}{dt} = bu(1 - \frac{u}{K_u}) - puv$$
$$\frac{dv}{dt} = puv - dv$$

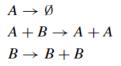
the fixed point is a stable focus

No persistent oscillations



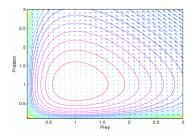
Persistent oscillations
No fluctuations
Not robust

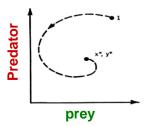


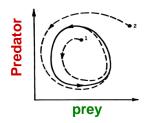


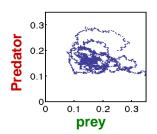
demographic stochasticity drives the trajectory out from the fixed point (a stable focus)

Persistent random oscillations Generic



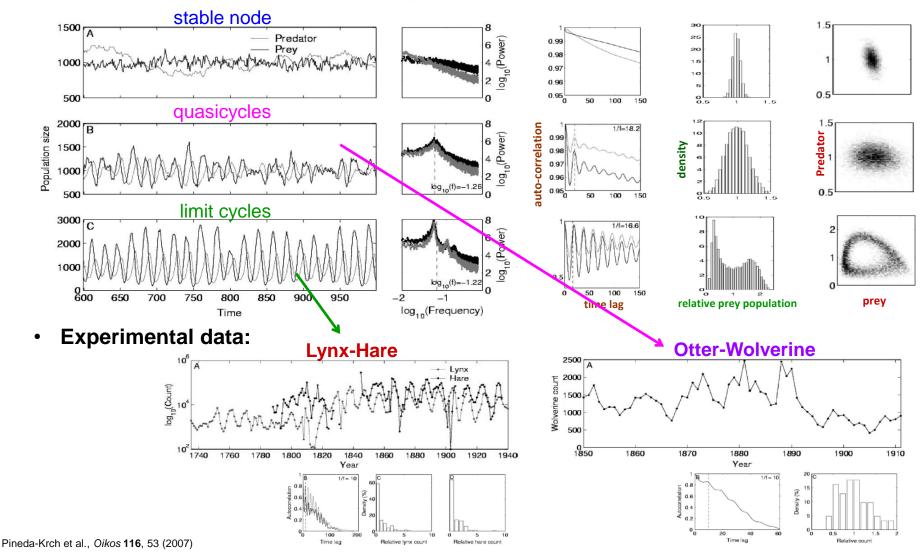






Quasi-cycles vs. Limit cycles in Experiments

• Qualitative differences predicted by stochastic simulations:



Landau theory for transitional pipe turbulence is stochastic predator-prey

Bill Wyld (1928-2013)

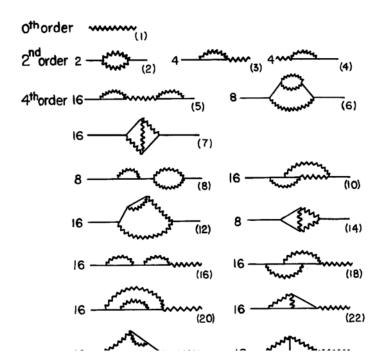
Formulation of the Theory of Turbulence in an Incompressible Fluid

H. W. WYLD, JR.

Physics Department, University of Illinois, Urbana, Illinois and Space Technology Laboratories, Los Angeles, California

The theory of turbulence in an incompressible fluid is formulated using methods similar to those of quantum field theory. A systematic perturbation theory is set up, and the terms in the perturbation series are shown to be in one to one correspondence with certain diagrams analogous to Feynman diagrams. From a study of the diagrams it is shown that the perturbation series can be rearranged and partially summed in such a way as to reduce the problem to the solution of three simultaneous integral equations for three functions, one of which is the second order velocity correlation function. The equations have the form of infinite power series integral equations, and the first few terms in the power series are derived from an analysis of the diagrams to sixth order. Truncation of the integral equations at the lowest nontrivial order yields Chandrasekhar's equation, and truncation at a higher order yields the equations discussed by Kraichnan.

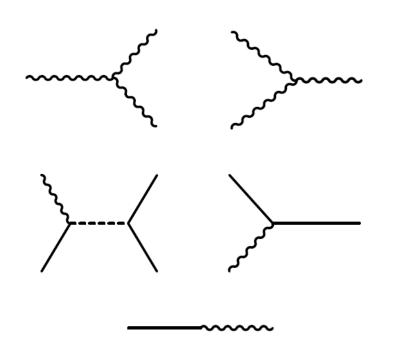
THEORY OF TURBULENCE



Derivation of predator-prey equations

Zonal flow Turbulence
Vacuum = Laminar flow

Zonal flow-turbulence



A = predator B = prey E = food/empty state

Predator-prey

$$B + E \xrightarrow{b} B + B$$

$$B + B \xrightarrow{c} B + E$$

$$A + B \xrightarrow{p} A + A$$

$$A + B \xrightarrow{p'} A + E$$

$$B \xrightarrow{m} A$$

$$A \xrightarrow{d_A} E B \xrightarrow{d_B} E$$

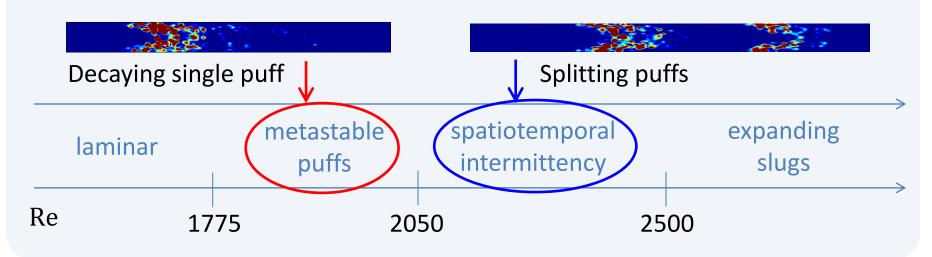
Stochastic predator-prey recapitulates turbulence data

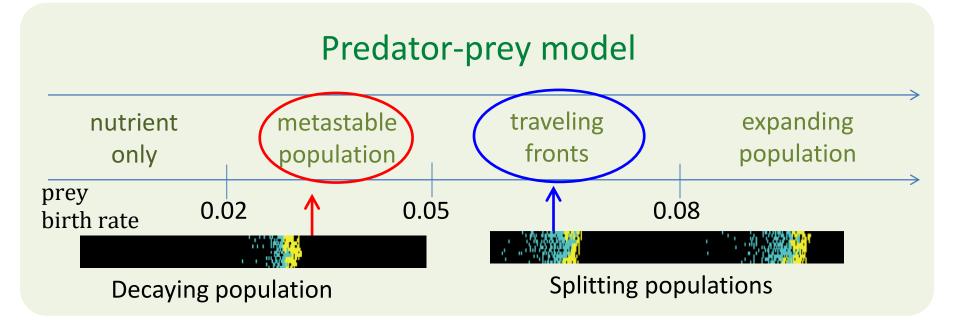
Phase diagram

Lifetime statistics

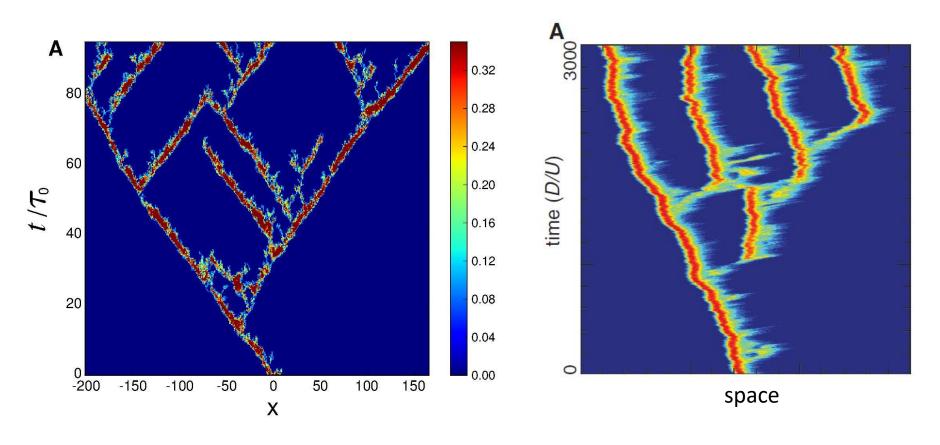
Universality class prediction

Pipe flow turbulence





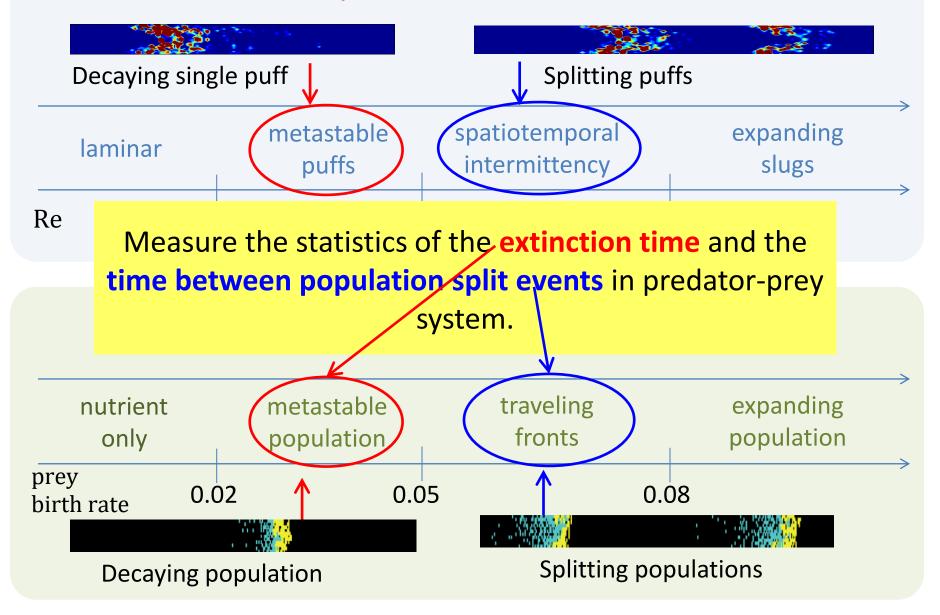
"Puff splitting" in predator-prey systems



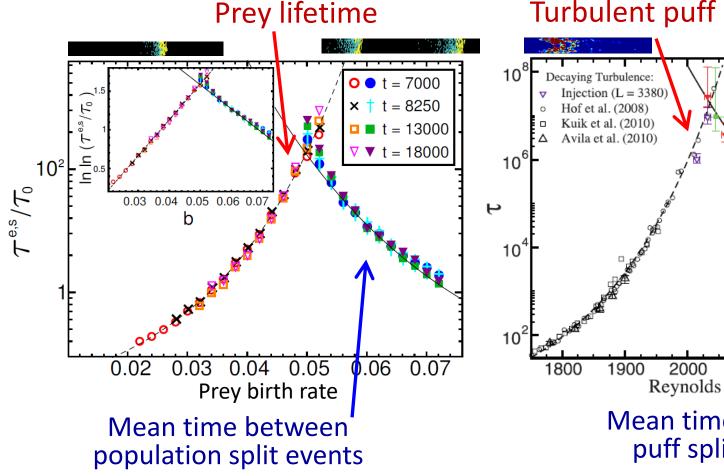
Population-splitting in predator-prey ecosystem

Puff-splitting in pipe turbulence Avila et al., Science (2011)

Pipe flow turbulence

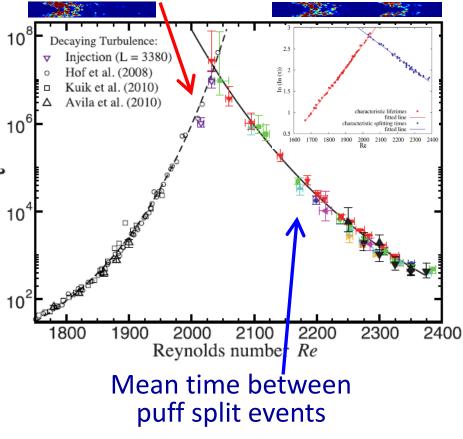


Predator-prey vs. transitional turbulence



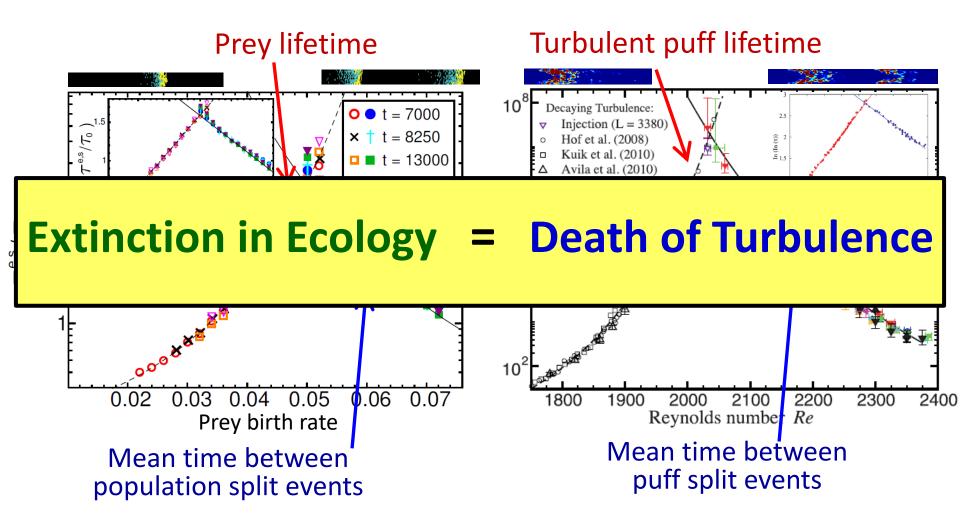
Shih, Hsieh and Goldenfeld *Nature Physics* **12**, 245 (2016)

Turbulent puff lifetime



Avila et al., Science **333**, 192 (2011) Song et al., J. Stat. Mech. 2014(2), P020010

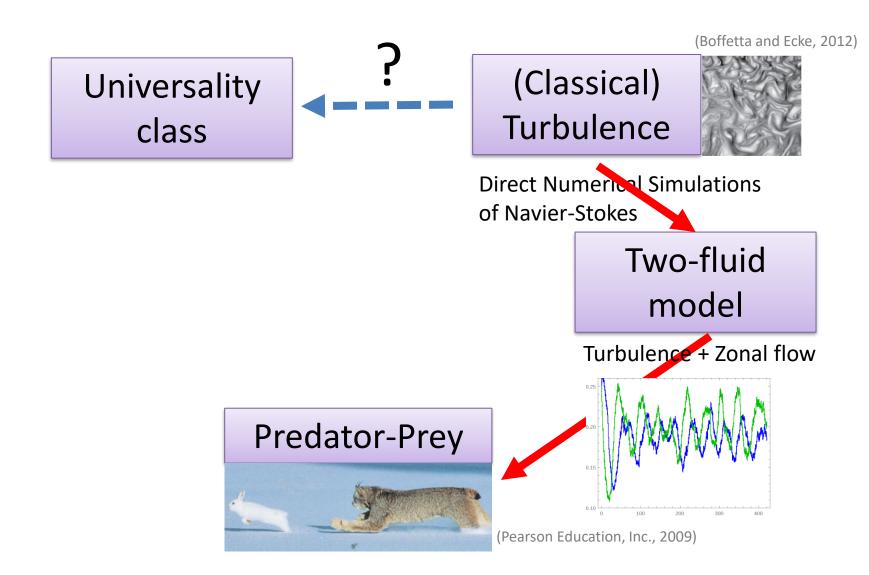
Predator-prey vs. transitional turbulence



Shih, Hsieh and Goldenfeld *Nature Physics* **12**, 245 (2016)

Avila et al., Science **333**, 192 (2011) Song et al., J. Stat. Mech. 2014(2), P020010

Roadmap: Universality class of laminar-turbulent transition



Roadmap: Universality class of laminar-turbulent transition

