Lecture 2



Blackboard interlude 2

e Laminar-turbulent transition in convection
— Linear stability analysis
— Supercritical transition

 Laminar-turbulent transition in pipe
— Linear stability analysis
— Subcritical transition
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* Boundary conditions not periodic

 Turbulence generated by instabilities
— Linear and long-wavelength
— Nonlinear and spatially-localized
— Not artificial noise
* Turbulence interacts with mean flow
— Turbulence can generate emergent mean flows



What is turbulence?

»

laminar flow laminar-turbulent fully-developed turbulence
steady transition fluctuating
predictable critical behavior unpredictable
>
Re <1600 Re ~ 2000 Re > 10°

Fully-developed turbulence

* Energy cascade: Non-equilibrium steady state (gm) @Cascade \
Energy transfers step by step - power law L A ;

* Dissipative anomaly:
energy dissipation rate = 0 when viscosity =0
energy dissipation rate # 0 when viscosity - 0 \
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What is turbulence?
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Puff decays l

Transitional pipe flow

Splitting puffs
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What is turbulence?

fully-developed turbulence
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steady transition
predictable critical behavior

Re <1600 Re ~ 2000
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Energy cascade

/ \ * Eddies spin off other
log E(K) @ Cascade eddies in a Hamiltonian
. process.

— Does not involve friction!
— Hypothesis due to

Richardson, Kolmogoroy, ...
| * Implication: viscosity will
not enter into the
equations




Kolmogorov’s similarity hypotheses

* Dimensional analysis
e E(k)=E(k g, v, L)
— Kolmogorov length n, = (v3/g)Y/4

* E(k) = (v?/ny) F(kn,, kL)

— Complete similarity as kL = oo

* E(k) = (v?/ny) F(kny, =)
— Complete similarity as kn, =2 0

* E(k) = F(O, oo) £2/3 k>/3
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Kolmogorov’s similarity hypotheses

* Dimensional analysis
 E(k) =E(k, €, v, L)

— Kolmogorov length n, = (v3/€)Y/4

* E(k) = (v?/ny) F(kn,, kL)

— Complete similarity as kL = oo

* E(k) = (v?/ny) F(kny, =)
— Complete similarity as kn, =2 0

* E(k) = F(0, oo) €2/3 k5/3




The energy spectrum

Integral scale E(k) = V2 d(u,2)/dk

L—5/3
Inertial range

Dissipation

0.1 1 10 100 1000 10* 10°



Kolmogorov’s similarity hypotheses

* Dimensional analysis
 E(k) =E(k, €, v, L)

— Kolmogorov length n, = (v3/€)Y/4

* E(k) = (v?/ny) F(kn,, kL)

— Incomplete similarity as kL = oo

* E(k) = (Vz/r]K) Fl(kr]K) (kL)"

— Complete similarity as kn, =2 O
* E(k) = F,(0) &2/3 k>/3 (kL)"




2. Puffs



Transitional turbulence in pipe flow: puffs

* Reynolds’ original pipe turbulence (1883) reports on the

transition

UL

* Defined Reynolds’ number Re = —

14

smooth, regular: laminar

/’
trammonal ‘flashes” (puffs)

ink — z—
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jagged, irregular: turbulent
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How much turbulence is in the pipe?

a Experiments
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How much turbulence is in the pipe?

a Experiments
10f -

~~ Transition not

o8 spatially uniform:
rare sharp bursts
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How much turbulence is in the pipe?

a Experiments
10

What is the quantitative description of the
transition to turbulence?

0.01 | . . . : ‘
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Turbulence & Phase Transitions

e ina?
How much turbulence is in the pipe~ The energy spectrum

— Transition not '”tegr?'_fca'e Ek) = 2 d(u2)/dk
spatially uniform: ~~
rare sharp bursts

of turbulence Inertial range

2>, Dissipation

* Turbulent fraction as a e Strong power-law
function of Re is correlated fluctuations
reminiscent of a is reminiscent of a
continuous phase continuous phase

transition transition



Why is fully-developed
turbulence hard?



Why is turbulence unsolved?
4

Why are phase transitions hard?

* Strong interactions + fluctuations
in the order parameter ¢ :

— Very non-Gaussian

— Intermittency

* No usable small parameter!

Landau free energy
' 1 1 1
H = /ddr [—’Y (V§)? + srog” + —u0¢4]
2 2 4
t= (1T

— c)/Tc ro ~1

d<4: uyg— o0
rescaling Up ~ Uot(d_4)/2 { d>4: up—0

The coefficient of the interaction becomes

relatively large at phase transition { — 0
\_ J




Why is turbulence unsolved?

\_

Why is turbulence hard?

 Strong interactions + fluctuations
in the velocity derivatives 9;v;:
— Very non-Gaussian

— Intermittency: intervals of weak fluctuations
interspersed with bursts of strong fluctuations

mf"" i W/ MWH“W\WW"
By, Hol |

..........

* No usable small parameter!

The Navier-Stokes equation
1
v +|(v-V)vE—=Vp +.y Vv + f
p .

Turbulence: Re — o0, v — 0

The coefficient of the nonlinearity becomes
relatively large as the viscosity v — 0

~

-

Why are phase transitions hard?

* Strong interactions + fluctuations
in the order parameter ¢ :

— Very non-Gaussian

— Intermittency

L bz

Time

* No usable small parameter!

Landau free energy

' 1 1 1

H = /ddr [—’Y (V§)? + srog” + —u0¢4]
2 2 4

— 1)/ T

rescaling Up ~ uot(d_4)/2 {

t=(T ro ~t

d<4: uy — o0
d>4: up—0

The coefficient of the interaction becomes
relatively large at phase transition { — 0
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How was critical phenomena solved?

Ben Widom discovered Leo Kadanoff explained loped

“data collapse” (1965) data collapse, with the RG based on
scaling concepts (1966) i'ﬁ%%%"(ﬁg%)sca“”g

e Common features
— Strong fluctuations
— Power law correlations

e Can we solve turbulence by following critical phenomena?
* Does turbulence exhibit critical phenomena at its onset?



Transition to turbulence



Precision measurement of turbulent transition

Q: will a turbulent puff survive to the end of the pipe?

0 reservoir LDA

Disturbance

D=10 mm
j Do

]

L= 690D

4

Many repetitions =2 Survival probability = P(Re, t)

Hof et al., PRL 101, 214501 (2008)



Pipe flow turbulence
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Pipe flow turbulence

&
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Pipe flow turbulence

&
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Pipe flow turbulence
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Pipe flow turbulence

Decaying single puff
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Theory for the laminar-turbulent
transition in pipe flow



Logic of modeling phase transitions

Magnets

Electronic structure

!

Ising model

!

Landau theory

!

Renormalization group
universality class
(Ising universality class)



Critical phenomena in magnets

M

—/

‘MNM()[

T - T| /Tc]ﬁ kor H=0as1T—T1T, Critical isotherm:

Wz;ongwavelength H
1
T %—q —T

M ~ H1/5 forT:Tc‘

e Widom (1963) pointed out that both these results

followed from a similarity formula:

M{(t, h) = [t]7 fpr (h/t2)

where t = (T'—T.,) /T, for some choice of exponent A and scaling function f;,(x)



Critical phenomena Iin magnets

M(t, h) =[t]° far(h/t2)

where t = (T'—T.) /T, for some choice of exponent A and scaling function f;,(x)

o To determine the properties of the scaling function and
unknown exponent, we require:
— fy(z) = const. forz=0
— This gives M ~ Mo||T — Te|/Tc]P for T < T,
— For large values of z, i.e. non-zero h, and t =0, t dependence must cancel
out so that M ~ H*'/°

Thus fy;(2) ~ 21/9, 2 — 0.
Calculate A: t dependence will only cancel out if 3 — A/§ =0
M = (4P far(h/1H7°)
o This data collapse formula connects the scaling of
correlations with the thermodynamics of the critical point



Universality at a critical point

Scaled magnetization

Scaled temperature

FIG. 1. Experimental MHT data on five different magnetic
materials plotted in scaled form. The five materials are CrBry,
EuO, Ni, YIG, and PdsFe. None of these materials is an ide-
alized ferromagnet: CrBr; has considerable lattice anisotropy,
EuO has significant second-neighbor interactions. Ni is an
itinerant-electron ferromagnet, YIG is a ferrimagnet, and
Pd;Fe is a ferromagnetic alloy. Nonetheless, the data for all
materials collapse onto a single scaling function, which is that
calculated for the d=3 Heisenberg model [after Milosevic and

Stanley (1976)]. Stanley (1999)

Magnetization M of a
material depends on
temperature T and applied
field H

— M(H,T) ostensibly a function
of two variables

Plotted in appropriate
scaling variables get ONE
universal curve

Scaling variables involve
critical exponents



A theoretical physics success

A model ...

Gives a precise prediction in agreement with
experiment!

materials collapse onto a single scaling function, which is that
calculated for the d=3 Heisenberg model [after Milosevic and

Stanley (1976)]. Stanley (1999)



A theoretical physics success

A model of a model of a model of a model of a model
I

Quantum chemistry

Landau theory Electronic structure

/Quantum Heisenberg

Classical Heisenberg

Gives a precise prediction in agreement with
experiment!

Non-systematic approximations

materials collapse onto a single scaling function, which is that
calculated for the d=3 Heisenberg model [after Milosevic and

Stanley (1976)]. Stanley (1999)



Logic of modeling phase transitions

Magnets Turbulence
Electronic structure Kinetic theory
Ising model Navier-Stokes egn

!
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Logic of modeling phase transitions

Magnets Turbulence
Electronic structure Kinetic theory
Ising model Navier-Stokes egn

Landau theory <>

!

Renormalization group e—s
universality class
(Ising universality class)

N e— ) —



Identification of long-wavelength
collective modes at the laminar-
turbulent transition

To avoid uncontrolled approximations,
we use direct numerical simulation of
the Navier-Stokes equations



DNS of 3D Navier-Stokes equations

Use pseudospectral method to deal with both derivatives and
nonlinear terms in streamwise direction and azimuthal
directions

Use Chebyshev polynomials to resolve large gradients in the
boundary layer, in the radial direction

60 grid points in the radial (r) direction,

32 Fourier modes in the azimuthal (0) direction and 128
modes in the axial (z) direction

The spatial resolutions were chosen such that the resolvable
power spectra span over six orders of magnitude.

The pipe length L is 10 times its diameter D, with periodic
boundary conditions in the z direction

Simulation based on the open source
code by Ashley Willis: openpipeflow.org



Predator-prey oscillations in pipe flow

Zonal flow

E'()

max u, = 0.00211353

0.08f i
Re = 2600 Time = 0.50 (R/U)
>
>
(b}
c
LLl 10.01
0.06F
—Zonal flow
—Turbulence
500 1500

Time

Simulation based on the open source
code by Ashley Willis: openpipeflow.org



Decomposition into large & small scales

* Use pseudospectral method to deal with both derivatives and
nonlinear terms in streamwise direction and azimuthal
directions

* Use Chebyshev polynomials to resolve large gradients in the
boundary layer, in the radial direction

e Zonal flow velocity uzr = (i, 4, %), where u, =0
e Zonal flow energy is defined as
Ey:(t)=(1/2) [ 0(0,0,r)?dV With Uzp=u(k=0,m=0,r)

* Turbulence energy is defined as
ET(t) = (1/2) Zlklzl,mlzl f |ﬁ(ka m, ?’)|2 dV

Simulation based on the open source
code by Ashley Willis: openpipeflow.org



1)

2)

What drives the zonal flow?

m( (
\/7

Zonal flow

Interaction in two fluid model
— Turbulence, small-scale (k>0)

— Zonal flow, large-scale (k=0,m=0): induced by turbulence
and creates shear to suppress turbulence

Anisotropy of turbulence creates Reynolds stress which
generates the mean velocity in azimuthal direction

d;(vg) = —0,((Vg - V,)) — 1 (va)
Mean azimuthal velocity decreases the anisotropy of
turbulence and thus suppress turbulence

induce suppress suppress

turbulence T—) zonal rowT—) turbulence l—) zonal flow l

t |

induce
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What drives the zonal flow?
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Zonal flow

Interaction in two fluid model
— Turbulence, small-scale (k>0)

— Zonal flow, large-scale (k=0,m=0): induced by turbulence
and creates shear to suppress turbulence

Anisotropy of turbulence creates Reynolds stress which
generates the mean velocity in azimuthal direction

d;(vg) = —0,((Vg - V,)) — 1 (va)
Mean azimuthal velocity decreases the anisotropy of
turbulence and thus suppress turbulence

induce suppress suppress

prey § |——{ predator f——| prey | |—— predator |

t |

induce




Pipe flow near transition
to turbulence

Turbulence
(prey) {

¢

Zonal flow
(predator)
E'(t)
0.08F '
>
o
[}
c
LUl 10.01
0.06
—Zonal flow
—Turbulence . Re = 2600
500 1500

Time
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Blackboard interlude 3

* Predator-prey equations description of cyclical
behavior is strange, because a deterministic
description based on the physics does not
work! Let’s see this ...

* |ntrinsically stochastic description is required



Stochastic model of predator-prey dynamics

« Stochastic individual-level model
fluctuations in number — demographic stochasticity that induces quasi-cycles

A = predator

B = prey

E =food or
available space

B+ESB+B

B+B-=> B+ E

A+BL A+ A

P —

McKane & Newman (2005)

density of A

Stochastic individual-level simulation

0.24 i
0.23 +

— stochastic

solution

-t--deterministic

solution

2 Lty
AN T

Butler & Goldenfeld (2009)

00



Normal population cycles in a predator-prey system

Resource

Prey

Predator

v

1t/2 phase shift between prey and predator population
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Persistent oscillations
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Fluctuations



Cartoon picture for normal cycles (/2 phase shift)
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Cartoon picture for normal cycles (/2 phase shift)

Predator

v

Resource Prey

Prey consumes resource
and grows

Population

Predator eats prey
and grows

Y

Time



Cartoon picture for normal cycles (/2 phase shift)
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Cartoon picture for normal cycles (/2 phase shift)
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Predator decreases
due to lack of prey
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Cartoon picture for normal cycles (/2 phase shift)

Resource Prey > Predator
(4) )
_— Prey increases because of
A | i
| I lower predation pressure
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Cartoon picture for normal cycles (/2 phase shift)
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Predator increases again
due to increasing prey

Population




Cartoon picture for normal cycles (/2 phase shift)
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Cartoon picture for normal cycles (/2 phase shift)

Predator

v

Resource Prey

Predator can only start to grow after
prey grows and before prey declines

A |

Phase shift is a
quarter period

Population

0=rm/2 Time



Lotka-Volterra equations for predator-prey dynamics

» Lotka-Volterra egn: conventional model for population dynamics
» L-V for prey-predator system:



Lotka-Volterra equations for predator-prey dynamics

» Lotka-Volterra egn: conventional model for population dynamics

» L-V for prey-predator system:
— Reproduction of prey proportional to prey density — exponential growth

du
oy
t !



Lotka-Volterra equations for predator-prey dynamics

» Lotka-Volterra egn: conventional model for population dynamics

» L-V for prey-predator system:
— Reproduction of prey proportional to prey density — exponential growth
— Limited food resource — consider carrying capacity of prey, K,

du u

— = bu(l — —)



Lotka-Volterra equations for predator-prey dynamics

» Lotka-Volterra egn: conventional model for population dynamics

» L-V for prey-predator system:
— Reproduction of prey proportional to prey density — exponential growth
— Limited food resource — consider carrying capacity of prey, K,
— Predator hunts prey — predation proportional to prey & predator densities

l
ffi = bu(1l — IL} — puv

{ 1”



Lotka-Volterra equations for predator-prey dynamics

Lotka-Volterra eqn: conventional model for population dynamics
L-V for prey-predator system:

Reproduction of prey proportional to prey density — exponential growth
Limited food resource — consider carrying capacity of prey, K,

Predator hunts prey — predation proportional to prey & predator densities
Death of predator proportional to predator density

l u
% = bu(1l — [gu) — puv
dv
= Uy — d )
praal 1

u: prey v:predator b:prey metabolic rate
K,: prey carrying capacity
p: predation rate d: predator death rate



Lotka-Volterra equations for predator-prey dynamics

Lotka-Volterra eqn: conventional model for population dynamics
L-V for prey-predator system:

Reproduction of prey proportional to prey density — exponential growth
Limited food resource — consider carrying capacity of prey, K,
Predator hunts prey — predation proportional to prey & predator densities

Death of predator proportional to predator density

= prey

du u
—_— = lFH.‘ 1 — — DUV — predator
dt ( K, ) P
d!b?
= puv — dv
ar v

u: prey v:predator b:prey metabolic rate
K,: prey carrying capacity

Population density

p: predation rate d: predator death rate 500

1
1000

Predicts /2 phase shift between prey and predator
Problems: No oscillations — Contrary to experiments!




Stochasticity can qualitatively
change the predictions of ecological
models

Noise can stabilise persistent cycles
in time and patterns in space

T. Newman, A. McKane PRL (2006)



Predator-prey models

Deterministic

dx . 5
prey — — — —
dt X ex pXxXy
dy
predator L — — d
dt pxy y

T. Newman, A. McKane PRL (2006)



Predator-prey models

Deterministic

dx growth competition  predation

pre — = bx — 2 _
y dt X ex pXxXy

predator d_y= X _d
dt pxy y

predation death

T. Newman, A. McKane PRL (2006)



Predator-prey models

Deterministic

dx . 5
prey _— = — —
I X —exc —pxy

predator d_y= X _d
dt pxy y

Oscillatory damping toward
a steady state.

Cycles are not persistent.

T. Newman, A. McKane PRL (2006)

population density

—prey

—predator

100

200 300
time

400

500



Deterministic

dx_
dt
d

predator _— =

dt

prey

Predator-prey models

bx

2

— ex* — pxy

pxy — dy

T. Newman, A. McKane PRL (2006)

Stochastic

b
X—2X

vV
x + vy

e/V
X+ X—X

d
Y—O



Predator-prey models

Deterministic Stochastic
b e/V
prey Ccll—x = bx — exz — pXY X—2X X+ X—X
t
p/V d
dy X +Y—>2Y Y—O
predator E — pxy — dy

T. Newman, A. McKane PRL (2006)



Predator-prey models

Deterministic Stochastic
b e/V
prey Ccll—x = bx — exz —|pxy X—2X X+ X—X
t
p/V d
dy X +Y—>2Y Y—O
predator E — pxy | dy

T. Newman, A. McKane PRL (2006)



Predator-prey models

Deterministic Stochastic
dx b e/V
prey E = bx — exz — pxy X—2X X+ X—X
p/V d

dy X +Y—>2Y Y—O
predator E — pxy — dy




Predator-prey models

Deterministic Stochastic
prey — = hx — exz — pxy X—2X X+ X—X
dt
p/V d
dy X+Y—2Y Y>>0
predator — — pxv —|d
dt pxy y "
* prey stochastic
é\ + predator stopha§tic
D15t = e eterholariiafel
3
. . =
Noisy persistent S
. @
quasi-cycles =
Q.
o
o

T. Newman, A. McKane PRL (2006)



Predator-prey models

Deterministic Stochastic
dx e/V
prey — =] —X
dt
dy Stochasticity recapitulates the population cycles without needing to
predator 2. — 1 invoke additional levels of realism such as predator satiation or
dt other assumptions about functional response

ochastic
or stochastic

Persistent oscillations are not reproduced by the deterministic mean  sterministc | |
q q g q . >r deterministic

field theory, without additional assumptions such as functional S
response

Noi Sty o
qua -

0 100 200 300 400 500
T. Newman, A. McKane PRL (2006) time



Noise-induced quasi-cycles

-

N

Populations decay
toward the steady
state.



Noise-induced quasi-cycles

Noise “kicks” the trajectory
away from the original path,
and resets the decay.



Noise-induced quasi-cycles

Noise “kicks” the trajectory
away from the original path,
and resets the decay.



Noise-induced quasi-cycles

Noise “kicks” the trajectory
away from the original path, and
resets the decay, again.



Noise-induced quasi-cycles

Noise “kicks” the trajectory
away from the original path, and
resets the decay, again.



Noise-induced quasi-cycles

N

1.5

population density

0 100 200 300 400 500
time

The phase portrait winds around
the steady state but never stays at
it, corresponding to quasi-cycles in
time series.

The winding period is close to the period of stable
complex eigenvalue about the fixed point.



predator

Phase portrait

0.5 1
prey

1.5

Deterministic

Damped motion
toward the fixed point

Noise stimulates
deviation from fixed
point, followed by
relaxation to fixed
point, followed by
noise ...



What is the problem with Lotka-Volterra?

P




http://www.scholarpedia.org/article/Predator-prey_model

Comparison of Models

Lotka-Volterra equations (Holling type | response function):

du the fixed point is a center

— = bu — puv ; "
dt existence of a conserved quantities
% = puv — dv Initial cond. dependent
Volterra equations: _ o

du " the fixed point is a stable focus

— =bu(l — —) — puv : ——

dt I No persistent oscillations
v _ puv — duv

ar P

Satiation model (Holling type |l response function):

du the fixed point is a limit cycle
dt Persistent oscillations
dv No fluctuations

Not robust

Individual level model (Volterra equations + demographic stochasticity)

A=Y demographic stochasticity drives the trajectory

A+B—A+A out from the fixed point (a stable focus)

B—B+E Persistent random oscillations
Generic

May., Science 177, 4052 (1972)

Predator

yyyyy

Predator
TN
O

- ~.

Predator




Quasi-cycles vs. Limit cycles in Experiments

* Qualitative differences predicted by stochastic simulations:
stable node
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Landau theory for transitional pipe
turbulence is stochastic predator-prey



ANNALS OF PHYSICS: 14: 143-165 (1961)

B i I I Wyl d ( 1 2 8- 2 O 1 3 ) Formulation of the Theory of Turbulence in an

Incompressible Fluid

H. W. WyLp, Jr.

Physics Department, University of Illinois, Urbana, Iilinots and Space Technology
Laboratories, Los Angeles, California

The theory of turbulence in an incompressible fluid is formulated using
methods similar to those of quantum field theory. A systematic perturbation
theory is set up, and the terms in the perturbation series are shown to be in one
to one correspondence with certain diagrams analogous to Feynman dia-
grams. From a study of the diagrams it is shown that the perturbation series
can be rearranged and partially summed in such a way as to reduce the prob-
lem to the solution of three simultaneous integral equations for three func-
tions, one of which is the second order velocity correlation function. The
equations have the form of infinite power series integral equations, and the
first few terms in the power series are derived from an analysis of the diagrams
to sixth order. Trunecation of the integral equations at the lowest nontrivial
order yields Chandrasekhar’s equation, and trunecation at a higher order
yields the equations discussed by Kraichnan.

THEORY OF TURBULENCE

othorder w——

d Y e S
Porder 2 00—, 4wy 4 @
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Derivation of predator-prey equations

Zonal flow =~~~~~ Turbulence A = predator B = prey
Vacuum = Laminar flow E = food/empty state
Zonal flow-turbulence Predator-prey

B+EYB+B

“< >~ B+B% B+E

A+BS A+ A

j> < ; A+BL A+ E
B5 A

A p B E



Stochastic predator-prey
recapitulates turbulence data

Phase diagram
Lifetime statistics
Universality class prediction



Pipe flow turbulence

S ey =
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Decaying single puff \l/ | Splitting puffs

laminar metastable spatiotemporal expanding
| puffs intermittency slugs
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Predator-prey model

e —
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only | opulation | fronts | population
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“Puff splitting” in predator-prey systems

o
o)
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space
X
Population-splitting in Puff-splitting in pipe turbulence

predator-prey ecosystem Avila et al., Science (2011)



Pipe flow turbulence

i T Tt =
- = ) Shdeas v ™
Y $4

B | W
- S

Decaying single puff \l/ | Splitting puffs

: metastable spatiotemporal expanding
laminar : :
| puffs | intermittency | slugs

I I e I
Re

Measure the statistics of the extinction time and the
time between populationsplit events in predator-prey
system.

nutrient metastable traveling expanding
only | opulation | fronts | population
prey | | |

birth rate 0.02 ‘ 0.05 T — I
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Predator-prey vs. transitional turbulence

Prey lifetime Turbulent puff lifetime
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Avila et al., Science 333, 192 (2011)
Nature Physics 12, 245 (2016)
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Predator-prey vs. transitional turbulence

Prey lifetime
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Extinction in Ecology =

Death of Turbulence
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Roadmap: Universality class of laminar-turbulent transition

Universality
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Roadmap: Universality class of laminar-turbulent transition
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