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Blackboard interlude 2

• Laminar-turbulent transition in convection

– Linear stability analysis

– Supercritical transition

• Laminar-turbulent transition in pipe

– Linear stability analysis

– Subcritical transition



What is turbulence?

Re ~ 2000Re < 1600

laminar flow fully-developed turbulencelaminar-turbulent
transitionsteady

predictable critical behavior
fluctuating
unpredictable

Re > 105

u = m/r



What is turbulence?

Re ~ 2000Re < 1600 Re > 105

laminar flow fully-developed turbulencelaminar-turbulent
transitionsteady

predictable critical behavior
fluctuating
unpredictable

• Boundary conditions not periodic
• Turbulence generated by instabilities 

– Linear and long-wavelength
– Nonlinear and spatially-localized
– Not artificial noise

• Turbulence interacts with mean flow
– Turbulence can generate emergent mean flows



What is turbulence?

• Energy cascade: Non-equilibrium steady state

Energy transfers step by step → power law

Fully-developed turbulence

Re ~ 2000Re < 1600 Re > 105

laminar flow fully-developed turbulencelaminar-turbulent
transitionsteady

predictable critical behavior
fluctuating
unpredictable

Cascade

• Dissipative anomaly: 

energy dissipation rate = 0 when viscosity = 0

energy dissipation rate ≠ 0 when viscosity → 0
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Re ~ 2000Re < 1600 Re > 105
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Splitting puffs

Transitional pipe flow
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mean flows



Energy cascade

• Eddies spin off other 
eddies in a Hamiltonian 
process.
– Does not involve friction!

– Hypothesis due to 
Richardson, Kolmogorov, …

• Implication: viscosity will 
not enter into the 
equations



Kolmogorov’s similarity hypotheses

• Dimensional analysis

• E(k) = E(k, , ν, L)

– Kolmogorov length ηK = (ν3/ε)1/4 

• E(k) = (ν2/ηK) F(kηK, kL)

– Complete similarity as kL→∞

• E(k) = (ν2/ηK) F(kηK, ∞)

– Complete similarity as kηK→ 0

• E(k) = F(0, ∞) 2/3 k-5/3
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• E(k) = E(k, , ν, L)

– Kolmogorov length ηK = (ν3/ε)1/4 

• E(k) = (ν2/ηK) F(kηK, kL)

– Complete similarity as kL→∞
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The energy spectrum

E(k) = ½ d(uk
2)/dk

Integral scale

Dissipation

Inertial range



Kolmogorov’s similarity hypotheses

• Dimensional analysis

• E(k) = E(k, , ν, L)

– Kolmogorov length ηK = (ν3/ε)1/4 

• E(k) = (ν2/ηK) F(kηK, kL)

– Incomplete similarity as kL→∞

• E(k) = (ν2/ηK) F1(kηK) (kL)η

– Complete similarity as kηK→ 0

• E(k) = F1(0) 2/3 k-5/3 (kL)η

Intermittency exponent



2. Puffs



Transitional turbulence in pipe flow: puffs

• Reynolds’ original pipe turbulence (1883) reports on the 
transition

• Defined Reynolds’ number

Univ. of 
Manchester

“Flashes” of turbulence:
(puffs)



How much turbulence is in the pipe?



How much turbulence is in the pipe?

Transition not 
spatially uniform:
rare sharp bursts 
of turbulence



How much turbulence is in the pipe?

What is the quantitative description of the 
transition to turbulence?



Turbulence & Phase Transitions

• Turbulent fraction as a 
function of Re is 
reminiscent of a 
continuous phase 
transition

• Strong power-law 
correlated fluctuations 
is reminiscent of a 
continuous phase 
transition



Why is fully-developed 
turbulence hard?



Why is turbulence unsolved?

• No usable small parameter!

Why are phase transitions hard?

Time

Landau free energy

• Strong interactions + fluctuations 
in the order parameter 𝜙 : 

– Very non-Gaussian

– Intermittency

The coefficient of the interaction becomes 
relatively large at phase transition

rescaling



Why is turbulence unsolved?

• No usable small parameter!

Why are phase transitions hard?Why is turbulence hard?

• Strong interactions + fluctuations 
in the velocity derivatives 𝜕𝑖𝑣𝑗: 

– Very non-Gaussian

– Intermittency: intervals of weak fluctuations 
interspersed with bursts of strong fluctuations

• No usable small parameter!

Turbulence:

The Navier-Stokes equation

The coefficient of the nonlinearity becomes 
relatively large as the viscosity

Time

𝜕𝑡𝑣𝑧

𝑣𝑧

Time

Landau free energy

• Strong interactions + fluctuations 
in the order parameter 𝜙 : 

– Very non-Gaussian

– Intermittency

The coefficient of the interaction becomes 
relatively large at phase transition

rescaling

Time



How was critical phenomena solved?

• Common features
– Strong fluctuations
– Power law correlations

• Can we solve turbulence by following critical phenomena?
• Does turbulence exhibit critical phenomena at its onset?

Ben Widom discovered 
“data collapse” (1965)

Leo Kadanoff explained 
data collapse, with 
scaling  concepts (1966)

Ken Wilson developed
the RG based on 
Kadanoff’s scaling
ideas (1970)



Transition to turbulence



Precision measurement of turbulent transition

Hof et al., PRL 101, 214501 (2008)

Q: will a turbulent puff survive to the end of the pipe?

Many repetitions ➔ Survival probability = P(Re, t)
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Decaying single puff Splitting puffs

Hof et al., PRL 101, 214501 (2008)Avila et al., Science 333, 192 (2011)
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Mean time 
between 
split events

Puff 
lifetime

Splitting probability 1 − 𝑃 Re, 𝑡 = 𝑒
−

𝑡−𝑡0
𝜏(Re)

Pipe flow turbulence

Rec

Super-exponential scaling: 
𝜏

𝜏0
~exp(expRe)



Theory for the laminar-turbulent 
transition in pipe flow



Magnets

Electronic structure

Ising model

Landau theory

Renormalization group

universality class

(Ising universality class)

Logic of modeling phase transitions



Weak long-wavelength
modes





Universality at a critical point

• Magnetization M of a 
material depends on 
temperature T and applied 
field H
– M(H,T) ostensibly a function 

of two variables

• Plotted in appropriate 
scaling variables get ONE 
universal curve

• Scaling variables involve 
critical exponents

Stanley (1999)



A theoretical physics success

• M(H,T) ostensibly a 
function of two variables

• Plotted in appropriate 
scaling variables get ONE 
universal curve

• Scaling variables involve 
critical exponents

A model …

Gives a precise prediction in agreement with 
experiment!

Stanley (1999)



A theoretical physics success

• M(H,T) ostensibly a 
function of two variables

• Plotted in appropriate 
scaling variables get ONE 
universal curve

• Scaling variables involve 
critical exponents

A model of a model of a model of a model of a model

Gives a precise prediction in agreement with 
experiment!

Classical Heisenberg

Quantum Heisenberg

Electronic structure

Quantum chemistry

Landau theory

Non-systematic approximations

Stanley (1999)
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Navier-Stokes eqn

?

?

Logic of modeling phase transitions
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Identification of long-wavelength 
collective modes at the laminar-

turbulent transition

To avoid uncontrolled approximations, 
we use direct numerical simulation of 

the Navier-Stokes equations



DNS of 3D Navier-Stokes equations

• Use pseudospectral method to deal with both derivatives and 
nonlinear terms in streamwise direction and azimuthal 
directions

• Use Chebyshev polynomials to resolve large gradients in the 
boundary layer, in the radial direction

• 60 grid points in the radial (r) direction, 

• 32 Fourier modes in the azimuthal (θ) direction and 128 
modes in the axial (z) direction

• The spatial resolutions were chosen such that the resolvable 
power spectra span over six orders of magnitude. 

• The pipe length L is 10 times its diameter D, with periodic 
boundary conditions in the z direction

Simulation based on the open source 

code by Ashley Willis: openpipeflow.org



Predator-prey oscillations in pipe flow

Turbulence

Zonal flow

E
n
e
rg

y

Time

Re = 2600

Simulation based on the open source 

code by Ashley Willis: openpipeflow.org



Decomposition into large & small scales

• Use pseudospectral method to deal with both derivatives and 
nonlinear terms in streamwise direction and azimuthal 
directions

• Use Chebyshev polynomials to resolve large gradients in the 
boundary layer, in the radial direction

• Zonal flow velocity                            , where

• Zonal flow energy is defined as

• Turbulence energy is defined as

𝒖ZF ≡

with ෥𝒖ZF ≡

Simulation based on the open source 

code by Ashley Willis: openpipeflow.org



1) Anisotropy of turbulence creates Reynolds stress which 

generates the mean velocity in azimuthal direction

2) Mean azimuthal velocity decreases the anisotropy of 

turbulence and thus suppress turbulence

What drives the zonal flow?
• Interaction in two fluid model

– Turbulence, small-scale (k>0)

– Zonal flow, large-scale (k=0,m=0): induced by turbulence 

and creates shear to suppress turbulence

Turbulence

Zonal flow

zonal flow

induce

induce

zonal flowturbulence

suppress suppress

turbulence



1) Anisotropy of turbulence creates Reynolds stress which 

generates the mean velocity in azimuthal direction

2) Mean azimuthal velocity decreases the anisotropy of 

turbulence and thus suppress turbulence

What drives the zonal flow?
• Interaction in two fluid model

– Turbulence, small-scale (k>0)

– Zonal flow, large-scale (k=0,m=0): induced by turbulence 

and creates shear to suppress turbulence

Turbulence

Zonal flow

predator

induce

induce

predatorprey

suppress suppress

prey



Turbulence
(prey)

Zonal flow
(predator)

θ ≈ p/2

Time

P
o
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u
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n

E
n
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rg
y

Time

Re = 2600

θ ≈ p/2

Pipe flow near transition
to turbulence

Predator-prey ecosystem=
?



Blackboard interlude 3

• Predator-prey equations description of cyclical 
behavior is strange, because a deterministic 
description based on the physics does not 
work!  Let’s see this …

• Intrinsically stochastic description is required



McKane & Newman (2005)

A

B

• Stochastic individual-level model

fluctuations in number → demographic stochasticity that induces quasi-cycles

d
en

si
ty

 o
f 

A

Time

deterministic
solution

stochastic
solution

A = predator
B = prey
E = food or 

available space

Stochastic individual-level simulation

Stochastic model of predator-prey dynamics

Butler & Goldenfeld (2009)



θ ≈ p/2

Normal population cycles in a predator-prey system

p/2 phase shift between prey and predator population

https://interstices.info/jcms/n_49876/des-especes-en-nombre

Prey PredatorResource

Persistent oscillations
+

Fluctuations



Prey consumes resource 
and grows

Po
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(1)

Cartoon picture for normal cycles (p/2 phase shift)

Prey PredatorResource

Time



Prey consumes resource 
and grows

Predator eats prey 
and grows

Po
p
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(1)

Cartoon picture for normal cycles (p/2 phase shift)

Prey PredatorResource

Time



Prey decreases due to 
predation by predator

Po
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(2)

Prey PredatorResource

Cartoon picture for normal cycles (p/2 phase shift)

Time



Predator decreases 
due to lack of prey

Po
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Time

(3)

Prey PredatorResource

Cartoon picture for normal cycles (p/2 phase shift)



Prey increases because of 
lower predation pressure
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Prey PredatorResource

Time

Cartoon picture for normal cycles (p/2 phase shift)



Predator increases again 
due to increasing prey
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Prey PredatorResource

Time

Cartoon picture for normal cycles (p/2 phase shift)
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Po
p
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n

Prey PredatorResource

Time

Predator can only start to grow after  
prey grows and before prey declines

Cartoon picture for normal cycles (p/2 phase shift)

θ= π/2

Phase shift is a 
quarter period



• Lotka-Volterra eqn: conventional model for population dynamics

• L-V for prey-predator system:

Lotka-Volterra equations for predator-prey dynamics
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– Limited food resource → consider carrying capacity of prey, Ku
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• Lotka-Volterra eqn: conventional model for population dynamics

• L-V for prey-predator system:

– Reproduction of prey proportional to prey density → exponential growth

– Limited food resource → consider carrying capacity of prey, Ku

– Predator hunts prey → predation proportional to prey & predator densities

– Death of predator proportional to predator density

Po
p

u
la

ti
o

n
 d

en
si

ty

Time

u: prey     v: predator   b: prey metabolic rate
Ku: prey carrying capacity
p: predation rate   d: predator death rate

— prey
— predator

• Predicts p/2 phase shift between prey and predator

• Problems: No oscillations → Contrary to experiments!

θ ≈ p/2

Lotka-Volterra equations for predator-prey dynamics



Stochasticity can qualitatively 
change the predictions of ecological 

models

Noise can stabilise persistent cycles 
in time and patterns in space

T. Newman, A. McKane PRL (2006)



Predator-prey models

𝑑𝑥

𝑑𝑡
= 𝑏𝑥 − 𝑒𝑥2 − 𝑝𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝑝𝑥𝑦 − 𝑑𝑦

Deterministic

prey 

predator

T. Newman, A. McKane PRL (2006)



Predator-prey models

𝑑𝑥

𝑑𝑡
= 𝑏𝑥 − 𝑒𝑥2 − 𝑝𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝑝𝑥𝑦 − 𝑑𝑦

Deterministic

growth competition predation

deathpredation

prey 

predator

T. Newman, A. McKane PRL (2006)



Predator-prey models

𝑑𝑥

𝑑𝑡
= 𝑏𝑥 − 𝑒𝑥2 − 𝑝𝑥𝑦

𝑑𝑦

𝑑𝑡
= 𝑝𝑥𝑦 − 𝑑𝑦

Oscillatory damping toward 
a steady state.

Cycles are not persistent.

Deterministic

prey 

predator

T. Newman, A. McKane PRL (2006)



Predator-prey models
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T. Newman, A. McKane PRL (2006)
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Predator-prey models
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𝑑𝑦

𝑑𝑡
= 𝑝𝑥𝑦 − 𝑑𝑦

Noisy persistent 
quasi-cycles

StochasticDeterministic

prey 

predator

Stochasticity recapitulates the population cycles without needing to 
invoke additional levels of realism such as predator satiation or 
other assumptions about functional response

Persistent oscillations are not reproduced by the deterministic mean 
field theory, without additional assumptions such as functional 
response

T. Newman, A. McKane PRL (2006)



Noise-induced quasi-cycles

Populations decay 
toward the steady 
state.



Noise-induced quasi-cycles

Noise “kicks” the trajectory 
away from the original path, 
and resets the decay.
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Noise-induced quasi-cycles

Noise “kicks” the trajectory 
away from the original path, and 
resets the decay, again.



Noise-induced quasi-cycles

The phase portrait winds around 
the steady state but never stays at 
it, corresponding to quasi-cycles in 
time series.

The winding period is close to the period of stable 
complex eigenvalue about the fixed point.



Phase portrait

Damped motion 
toward the fixed point

Noise stimulates 
deviation from fixed 
point, followed by 
relaxation to fixed 
point, followed by 
noise ...

Stochastic: 

Deterministic



What is the problem with Lotka-Volterra?

Averaging used to derive 
Lotka-Volterra removes cycles 
or spatial structure

+

+

.

.

.

=



Comparison of Models

• Lotka-Volterra equations (Holling type I response function):

existence of a conserved quantities 

• Volterra equations:

• Individual level model (Volterra equations + demographic stochasticity) 

http://www.scholarpedia.org/article/Predator-prey_model

• Satiation model (Holling type II response function):

the fixed point is a center

the fixed point is a limit cycle

prey

P
re

d
a
to

r

the fixed point is a stable focus

May., Science 177, 4052 (1972)

demographic stochasticity drives the trajectory

out from the fixed point (a stable focus)

prey

P
re

d
a
to

r

prey

P
re

d
a
to

r

Initial cond. dependent
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No fluctuations

Not robust

Persistent random oscillations
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Quasi-cycles vs. Limit cycles in Experiments

Pineda-Krch et al., Oikos 116, 53 (2007)

• Qualitative differences predicted by stochastic simulations: 

stable node

quasicycles

limit cycles

• Experimental data:
Lynx-Hare Otter-Wolverine
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Landau theory for transitional pipe 
turbulence is stochastic predator-prey



Bill Wyld (1928-2013)



Derivation of predator-prey equations

Zonal flow-turbulence Predator-prey

TurbulenceZonal flow A = predator  B = prey   
E = food/empty stateVacuum = Laminar flow



Stochastic predator-prey 
recapitulates turbulence data

Phase diagram

Lifetime statistics

Universality class prediction
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“Puff splitting” in predator-prey systems

Population-splitting in 
predator-prey ecosystem

Puff-splitting in pipe turbulence

Avila et al., Science (2011)

space
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Measure the statistics of the extinction time and the 
time between population split events in predator-prey 

system.



Turbulent puff lifetime

Mean time between 
puff split events

Song et al., J. Stat. Mech. 2014(2), P020010

Avila et al., Science 333, 192 (2011)

Prey lifetime

Mean time between 
population split events

Predator-prey vs. transitional turbulence

Shih, Hsieh and Goldenfeld
Nature Physics 12, 245 (2016)

Prey birth rate



Turbulent puff lifetime

Mean time between 
puff split events

Song et al., J. Stat. Mech. 2014(2), P020010

Avila et al., Science 333, 192 (2011)

Prey lifetime

Mean time between 
population split events

Predator-prey vs. transitional turbulence

Shih, Hsieh and Goldenfeld
Nature Physics 12, 245 (2016)

Prey birth rate

Extinction in Ecology = Death of Turbulence



Direct Numerical Simulations 
of Navier-Stokes

Roadmap: Universality class of laminar-turbulent transition

Universality 
class

Predator-Prey

Two-fluid 
model

(Classical) 
Turbulence

(Pearson Education, Inc., 2009)

(Boffetta and Ecke, 2012)

?

Turbulence + Zonal flow



Direct Numerical Simulations 
of Navier-Stokes

Field Theory

Directed 
Percolation

Predator-Prey

Two-fluid 
model

(Classical) 
Turbulence

Reggeon field theory
(Janssen, 1981)

Extinction transition 
(Mobilia et al., 2007)

(Wikimedia Commons)

(Wikimedia Commons)

(Pearson Education, Inc., 2009)

(Boffetta and Ecke, 2012)

?

Roadmap: Universality class of laminar-turbulent transition

Turbulence + Zonal flow

http://upload.wikimedia.org/wikipedia/commons/1/11/Bond_Directed_Percolation.svg
http://upload.wikimedia.org/wikipedia/commons/1/1f/Feynmann_Diagram_Gluon_Radiation.svg

