
454 Chapter 9

where we define r> =max(|r⃗|, |r⃗′|) and r< =min(|r⃗|, |r⃗′|).

f. By evaluating equation (9.152) at the core (i.e., taking r → 0),
recover the self-propulsion velocity of the defect. Calculate the
vorticity ω(r⃗) = ẑ · (∇⃗ × v⃗(r⃗)), and plot it as a function of the
azimuthal angle φ, holding r constant. Use this to help you draw a
rough sketch of the active flow around the defect core.

g. Repeat the calculation above, now for an s=−1/2 topological
defect. You should find the following expression for the velocity
field:

v⃗ active
− =

αr

12ηR

([(
3

4
r − R

)
cos 2φ−

R

5
cos 4φ

]
x̂

+

[(
3

4
r − R

)
sin 2φ+

R

5
sin 4φ

]
ŷ
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(9.154)

Problem 9.8 Odd elasticity: Matrix relations

Using the basis matrices ταij , we can write the elastic stress and
strain tensors as column vectors σα, uα defined by

σij = σα(τα)ij , uij = uα(τα)ij . (9.155)

a. Prove the identity (9.41), (τα)ij(τβ)ij = 2δαβ .

b. Show that the stress-strain relation σij =Kijklukl can be
written as a matrix equation σα=Kαβuβ and write the definition
of Kαβ that allows this.
Hint: Make use of the orthogonality condition derived in step a.

c. The basis matrices define four modes of deformation or stress
that can occur in a two-dimensional solid. We will obtain a pictorial
understanding of these modes. Start by drawing an arbitrary shape
such as a square or rectangle.

c1. Draw the same shape after a small deformation by each basis
matrix.

c2. Draw arrows on the shape corresponding to each stress
mode.

c3. Check the consistency of your result with equation (9.44).

Problem 9.9 The work done by an odd-elastic network during
a cycle

We showed in section 9.6.2 that one can use odd-elastic energy
cycles to extract work from an active solid. In this problem
we show this explicitly for the microscopic model with force
law (9.49).

a. Consider moving the end of the spring through the cyclic path
indicated in figure 9.15. Show that the energy needed to compress
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the spring during the first phase of the cycle is released again
during the third phase when the spring extends.

b. Analyze the energy needed to move the spring during the
second and fourth phases of the cycle and show that the net-
work during the cycle is given in accord with (9.48) by W =
ko × Area.

Problem 9.10** Nonreciprocal phase transitions: Parity-breaking
bifurcations and exceptional points

In this exercise we derive equations (9.67) and (9.68) for the coupled
amplitude equations (9.66).

a. Substitute the ansatz Ai = aie
iφi into equations (9.66). We

take a1 and a2 to be positive. Note that we are free to take a1 and a2 to be
positive because we can incorporate a change
of sign in a change of the phases by π.

Ignore the time dependence of the
ai—as explained in section 8.5.2.g, this is allowed since the ai relax
on the fast time scale to the steady-state values consistent with the
phases. Show that the real parts of the equations then yield

ϵ0 − ga2
1 + ϵ12 cos(∆φ)

a2

a1
=0,

ϵ0 − ga2
2 + ϵ21 cos(∆φ)

a1

a2
=0,

(9.156)

where ∆φ=φ2 −φ1.

b. These two equations determine a1 and a2 as functions of ∆φ.
They cannot be solved analytically in full generality. However, in
the limit in which the cross-coefficients are small,

|ϵ12| ≪ ϵ0, |ϵ21| ≪ ϵ0, (9.157)

the equations can be analyzed perturbatively. To do so, first show
that it follows from (9.156) that
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. (9.158)

c. Show that in the limit (9.157) the ratio a1/a2 is close to 1, and
that we can therefore expand the square root terms in (9.158) to
get

a1

a2
≈ 1+

ϵ−
ϵ0

cos ∆φ+ · · · , (9.159)

where, as in section 9.8.2,

ϵ12 = ϵ+ + ϵ−, ϵ21 = ϵ+ − ϵ−. (9.160)

d. Next we turn to the temporal evolution of the phases. Show
that the imaginary part of the equations, obtained by substituting
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c. Compare your results to the experimental findings reported in the paper 
“Odd dynamics of living chiral crystals”, Tan et. al. Nat. 2022 and identify 
the physical origin of transverse forces among the spinning embryos. 


