
2024 Boulder School on Self-Organizing Matter
Problems on “Autonomous Learning Metamaterials”

Doug Durian <djdurian@physics.upenn.edu>

1. Compute the local coupled learning rule, from the gradient of clamped minus free total power
or energy, for the following edge elements and adjustable parameters. For each, keep in mind
the two conjugate physical degrees of freedom and the learning degrees of freedom.

(a) Resistors with resistances Ri, for current input/output tasks

(b) Fluidic pipes with diameters Di, for pressure tasks at low Reynolds number.

(c) Capacitors with gaps dk, for voltage tasks.

(d) Springs with constants ki and rest lengths Li, for motion tasks.

(e) Springs with constants ki and rest lengths Li, for force tasks.

2. Let’s consider the humble voltage divider as a contrastive learning network. This device
consists of two linear resistors with conductances {κ1, κ2} that obey Ohm’s law, ∆V = I/κ,
connected in series. One end of κ1 serves as the input node to be held at voltage Vin, while the
far end of κ2 is grounded to zero volts; these are fixed boundary conditions. The middle node
between the resistors is the output, whose voltage Vout under “free” conditions is computed (or
“inferred”) physically. The learning goal is to adjust the conductances so that the output node
learns the desired target voltage Vout → Vt = aVin where a is some chosen number between
zero and one. Under “clamped” conditions, during training, the middle node is nudged toward
the target by fixing its voltage to Vc = ηVt+(1− η)Vout where η is a hyperparameter between
zero and one. These situations are simple enough to exactly solve for the learning rules in
terms of the circuit parameters:

(a) Under free conditions, draw a circuit diagram and find the output voltage two ways: by
Kirchhoff’s laws and by minimizing total power dissipated in the two resistors. Find
the how the conductances must be related in order to achieve the desired target output
voltage, and find total free power Pf .

(b) Under clamped conditions, away from learning, draw a circuit diagram and find the total
clamped power Pc. Note that this involves current flowing into or out of the middle node.

(c) Compute the coupled learning rules for each conductor as given by gradient descent on
the total power difference cost function C = (Pc − Pf ). That is, compute dκj/dt =
−γ∂(Pc − Pf )/∂κj for the two edges, using your above results for clamped and free
powers, and verify that these vanish at learning.

(d) The local coupled learning rules for use in the lab are dκj/dt = −γη(V 2
jc−V 2

jf ), where Vjx

is the measured voltage drop across edge j under boundary condition x. Compute these
rules explicitly in terms of circuit parameters. Why are they not identical to gradient
descent on the total power difference found in the previous part?
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(e) Compute the global learning rules given gradient descent on the traditional loss function
L = (Vout − Vt)

2, and compare to all the above.

(f) (Open ended) Does it matter to what extent such learning rules coincide? Relevant issues
are training speed, avoiding local minima, and finding generalizable solutions.

As an alternative or supplement, you could do this for a current divider (two resistors con-
nected in parallel across a voltage source) or a bridge (four resistors in a ring, with a voltage
source connected across one pair of opposite nodes and the goal of bringing the voltage dif-
ference across the other pair to zero).

3. (Open ended; there’s probably an answer, which I’d like to know!) The minimal feedforward
artificial neural network for computing the XOR function (0 if the two inputs are the same,
1 if they are different) has two nodes in the input layer, two nodes in a hidden layer, one
node in the output layer, and six edges. What might be a minimal contrastive local learning
network (CLLN) that can learn analog computation of XOR? The general issue is how to
choose network architecture, input/output node selection, and type of nonlinearity.
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