Boulder summer school, 2024: Wan - problems

1 Closed problem

Consider the Stokeslet, the fundamental solution of the Stokes equations for a delta function forcing $\mathbf{F} = F\mathbf{e}$ located at $\mathbf{x} = \mathbf{x}_0$, often expressed as

$$\mathbf{v}(\mathbf{x}) = \frac{F}{8\pi\mu} \left(\frac{\mathbf{e}}{r} + \frac{\mathbf{e} \cdot (\mathbf{x} - \mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)}{r^3} \right) := F\mathbf{G}(\mathbf{x} - \mathbf{x}_0; \mathbf{e})$$

where $r = |\mathbf{x} - \mathbf{x}_0|$.

- a) Plot this flow field for $\mathbf{F} = (F, 0, 0), \mathbf{x_0} = 0.$
- b) Now plot the flow field due to a pair of Stokeslets located along the x-axis, separated by a distance L, with equal and opposite, colinearly directed forces.
- c) Derive an expression for the far-field flow (i.e. in the limit of $r \gg L$) due to the pair of Stokeslets in b), in terms of L, θ and r (hint: use polar coordinates). How does the result scale with r?
- d) By linearity, the derivative of a Stokeslet is also a solution. For an arbitrary $\mathbf{F} = F\mathbf{e}$, compute the quantity $-\mathbf{d} \cdot \nabla \mathbf{G}$ (i.e. the first derivative of the Stokeslet in the **d**-direction), and express the result in terms of a symmetric part and an antisymmetric part. Discuss the physical meanings of these quantities.
- e) Investigate the flow field constructed from three Stokeslets. It may be helpful to visualise a *Chlamydomonas*-like swimmer. If we oscillate the 'side' Stokeslets up and down, does the whole thing swim? Suggest strategies to improve the effectiveness of the swimmer.

2 Open problem

Many organisms are capable of sensing environmental cues, such as light or chemical gradients.

- a) how does detection of light differ from the detection of chemicals?
- b) investigate and describe in detail some strategies by which organisms navigate towards light (consider both macroscopic and microscopic organisms), paying close attention to the role of oscillations
- c) are there any fundamental limits to light perception at the smallest scales? (particularly by prokaryotic organisms)