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Exercises

1. MSD of a single Active Brownian Particle.
Consider a single APB with dynamics described by the equations
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where r is the center of mass of the particle. The ABP moves with a speed vy along a unit
vector v = cos #x + sin 8y that is pinned to its body axis. The self propulsion is not perfect
in that it meanders a bit. This is captured by the 6 equation where g is a stochastic white
noise that causes the direction to fluctuate. n is the translational white noise that gives rise
to diffusion. The noise has zero mean and correlations
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and all higher cumulants are zero, i.e., the noise is Gaussian. Our goal is to compute the
MSD of the partcile, i.e., derive Eq. (21) of the notes.(r, (t) 75 (¢)).

(a) Show that
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(b) Now compute (r; (t) r; (t)) (assume r(t = 0) = 0). You can average over the initial angle
Oo.

(¢) Now analyze the form of the mean square displacement at short times i.e., t << DLR and
at long times, i.e., t >> DLR.

(d) Write a program to evaluate numerically the MSD of a single APB neglecting the trans-
lational noise and compare your numerical result to your calculation, as well as to the
MSD of a single overdamed Brownian particle.

(e) Define an effective temperature T,y for your ABP. Research the literature to find suit-
able parameters for, say, a typical Janus active colloid and evaluate T,y .

2. Run-and-Tumble in 1D.
Consider N particles undergoing run-and-tumble dynamics in one dimensions. These particles
tumble at a constant rate a, but their run speed v(z) is spatially varying. Such a situation
can be achieved experimentally using, for instance, photokinetic E.coli [see G. Frangipane
et al., Dynamic density shaping of photokinetic E. coli, eLife 7:e36608 (2018)]. Denote by
R(z,t) and L(x,t) the density of right-moving and left-moving particles at time ¢.



(a) Write Smoluchowski equations for the time evolution of R and L.

(b) Reformulate the dynamics in terms of the total particle density p = R + L and their
polarization p = R — L.

(c¢) Show that the dynamics can be recast in the mean-field form given in Egs. (??7-7?) and
identify the expression for D. Clearly state the approximations you need to make to
obtain this form and discuss whether you think they may apply to the experiments of
Frangipane et al..

(d) Find the steady state solution pss(x) of the equation you obtained in item 3 and contrast
it to the steady state solution in the case where v = vy.

Open-ended Problems:

1. Mainly a literature search problem: Experimental observation of traveling waves
or oscillations.
A very recent press release by Ramin Golestanian in Europhysics News hihglights the
rapidly growing interest in nonreciprocal interaction in non-equilibrium systems (https:
//www.europhysicsnews.org/articles/epn/pdf/2024/03/epn2024553p12.pdf).

Research the literature to identify an experimental system where traveling and/or oscillating
states are observed and the dynamics can be mapped onto the NRCH model. Address the
following questions:

(
(

a) Which are the coupled hydrodynamic fields at play in the system of your choice?
b) Why are they “hydrodynamics” (conserved fields, Goldstone modes, other)?

)
)
(c) What are the physical mechanisms that engender effective NR interactions?
(d) What are the experimental observations that may suggest NR intercations?
)

(e) Do you think the system you have identified is a promising candidate for observing
some of the predictions of NRCH models? What would you measure to establish the
connection?

2. A data analysis problem.
In this Box folder https://ucsb.box.com/s/6579eanfb8irrjnjdl3aabOkphvyotxr you will
find the dataset data.tif. This is a tif stack of the spatio-temporal dynamics of the field ¢
encoded as grayscale color values. The data were used to create Fig. 12 of F. Brauns and M.
C. Marchetti, Phys. Rev. X 14, 021014 (2024). Below I use the notation of that paper.

The simulation was run with parameters D = 0.3, Doy = 0.1, D;; = —1,x = 1, on a square
domain with periodic boundary conditions and side length L = 400. Snapshots were saved
every 200 time units.

Suggested analysis:

(a) Basic: Threshold and segment the images to analyze droplet morphologies (area, perime-
ter, tortuosity) and their statistics. (Use Mathematica’s Mathematical Morphology func-
tionality https://reference.wolfram.com/language/guide/MathematicalMorphology.
html| or equivalent functionality in python or Matlab).
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(b) Advanced: Use PIV or optical flow analysis (e.g. using the PIVIlab plugin in Matlab,
OpenPIV in Python, or Mathematica’s ImageDisplacements function) to find the droplet
velocity field. Analyze the velocity fluctuations and correlations.

(c) Bonus: Based on the PIV velocity fields, you can track droplets. The main challenge
here is to account for droplet splitting and merging. How does the splitting rate of a
droplet depend on it’s size? Can you come up with a stochastic model that describes
the splitting and merging dynamics to reproduce the observed droplet size statistics?



