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Local quantum systems and gapped quantum systems

e A local quantum system is described by (Vy, Hy)
Vy: a Hilbert space with a tensor structure Vy = ®,’-V:1V,-
Hp: a local Hamiltonian acting on Vy:

Hy =3 05

- A ground state is not a single state in Vy, but a subspace
wgrnd space - VN-

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and f



Local quantum systems and gapped quantum systems

e A local quantum system is described by (Vy, Hy)
Vy: a Hilbert space with a tensor structure Vy = ®,’-V:1V,-
Hp: a local Hamiltonian acting on Vy:

Hy =3 05

ground-state A—>finite gap
subspace e—>0

.

- A ground state is not a single state in Vy, but a subspace
wgrnd space C VN-

e A gapped quantum system (a concept for N — oo limit):
{Wnys Hy )i (Vg Haw )i (Vs Hiv )i - -+ + with gapped spectrum.

- A gapped quantum system is not a single Hamiltonian, but a
sequence of Hamiltonian with larger and larger sizes.
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A gapped (ie short-range correlated) quantum phase

e A gapped state is a sequence of ground subspaces: Wy, , Wy, , - -

e A gapped quantum phase is an equivalent class of local unitary

(LU) transformation of gapped states
(1)) = P(e T ) o HE)) jw(0))

— FEEEE )

where H(g) = >, O; is local.
Hastings-Wen cond-mat/0503554; Bravyi-Hastings-Michalakis arXiv:1001.0344
Chen-Gu-Wen arXiv:1004.3835

\UNU\UNQ?ng;WNu“' WNI WZ W3 W4

Vi Vi Vi Vi W

Wy, Wy, Wy, Y,

e OK definition with translation symmetry, since there is natural way
N; — Ni;1. Not OK without translation symmetry.
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A gapped (short-range correlated) quantum liquid phase

e A gapped quantum liquid phase:

\UNlawsz\UNwau"' WNI (V (V (V
Wi Wy Wi Wl
Nlerl = 25/\/;(, 3S ~ 3 WNI WNZ l|IN3 WN4
oWy, , 2 Uy ® W%’LPNI. Generalized local unitary (gLU) trans.

where Ny Ne Ni+1
VY=ol 1) R

Co| 4 sess)

SEERIRT

Zeng-Wen arXiv:1406.5090
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A gapped (short-range correlated) quantum liquid phase

e A gapped quantum liquid phase:

\UNlawsz\UNwau"' WNI (V (V (V
Wi Wy Wi Wl
Nlerl = ZSNk, 3S ~ 3 WNI WNZ l|IN3 WN4
oWy, , 2 Uy ® W%’LPNI. Generalized local unitary (gLU) trans.

where Ne Ne Ni+1
VY=ol 1) R

Co| 4 sess)

SEERIRT

Zeng-Wen arXiv:1406.5090

e gl U transformations allow us to take the thermal dynamical limit
(Nk — oo limit) without translation symmetry.
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Example of gapped quantum liquid: topological order

For gapped systems with no symmetry:
e According to Landau theory, no symm. to break
— all systems belong to one trivial phase
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Example of gapped quantum liquid: topological order

For gapped systems with no symmetry:
e According to Landau theory, no symm. to break
— all systems belong to one trivial phase

e Thinking about entanglement: there are  Chen-Gu-Wen arXiv:1004.3835
- long range entangled (LRE) states

- short range entangled (SRE) states
ILRE) # %%%%mroduct state) = |SRE)

local unitary
transformation

LRE SRE
state  product
state

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and f



Example of gapped quantum liquid: topological order

For gapped systems with no symmetry:
e According to Landau theory, no symm. to break
— all systems belong to one trivial phase

e Thinking about entanglement: there are  Chen-Gu-Wen arXiv:1004.3835
- long range entangled (LRE) states — many phases

- short range entangled (SRE) states — one phase

|
“_RE> # %%:%’product State> — ‘SRE> g2 topological order
LRE 1 - LRE2
local unitary local unitary local unitary )
transformation transformation transformation \ _ phase
LRE SRE RE SRE LRE1 LRE?2 SRE transition
state  product product product
state state state
e All SRE states belong to the same trivial phase g,

e LRE states can belong to many different phases: different
patterns of long-range entanglements defined by LU trans.
= different topological orders wen PRB 40 7387 (89)
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Examples of gapped quantum non-liquid states

e Stacking 2+1D FQH states — gapped quantum state,

but not liquids.
\
- Layered v = 1/m FQH state: —— §
— ——=
Ground state degeneracy can be —— —
GSD — mLZ, m, m2 periodic 1-twisted 2-twisted

e Haah's cubic code on 3D cubic lattice:

1Z— 71 jo'e X1
zZI v ZZ/ XI/ II/
— E V4 X ] i
cubes / e
I1Z zI IX XI
G? e

Jeongwan Haah, Phys. Rev. A 83, 042330 (2011) arXiv:1101.1962
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More exotic long-range entanglement

e Topo. order = gapped quantum liquid Zeng-Wen14; Swingle-McGreevy14

— gauge theory Ne Ne Nevs
— Fermi statistics IRRILT

— quantum field theory '52 ;*i*ﬁ '5U>

— MERA rep. Vidal 06
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More exotic long-range entanglement

e Topo. order = gapped quantum liquid Zeng-Wen14; Swingle-McGreevy14

— gauge theory M Ne Ness
— Fermi statistics R
— quantum field theory '52 ;*i*ﬁ '5U>
— MERA rep. Vidal 06
e s-source entanglement structure Swingle-McGreevy 14
- Quantum liquid has s = 1 Ne 2N, N1
- 3D layered FQH: s = 2 IR
- d+1D Fermi liquid:s = % 'l:} *44?:: 5/>
- no MERA rep.
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More exotic long-range entanglement

e Topo. order = gapped quantum liquid Zeng-Wen14; Swingle-McGreevy14

— gauge theory M Ne Ness
— Fermi statistics R
— quantum field theory '52 ;*i*ﬁ '5U>
— MERA rep. Vidal 06
e s-source entanglement structure Swingle-McGreevy 14
- Quantum liquid has s = 1 Ne 2N, N1
- 3D layered FQH: s = 2 IR
- d+1D Fermi liquid:s = % 'l:} *44?:: 5/>
- no MERA rep.

e Haah's cubic code

- no MERA rep. i 2 et %
- No quantum field > = |
theory description A 2 ’

Many-body entanglement goes beyond quantum field theory.
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Bosonic/fermionic gapped quantum liquid phases

Both local bosonic and fermionic systems have the following local
property: Viot = ®;V; Gu-Wang-Wen arXiv:1010.1517

o, U= A e

e Bosonic liquid phases are defined by glLU trans. U = [ Uj:
(1) [Uijk, Urjrr] = 0
(2) Ujjk acts within V; @ V; @ V. eg. Uy = ei(bibjbj+h.c)

e Fermionic I|qU|d phases are defined by gLU trans. U’ =] Uuk
(1) [Uuk, ,k/] =0, but U,-'J(-k may not act within V; ® V; ® V.
e.g. Uuk ei(tﬁcfcf+h'°'), where ¢; = o} [[;_; 0F

Gapped quantum liquids for bosons and fermions have very

different mathematical structures
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Examples of topological orders (before 2000)

e V(z;,25,--+) =1 — equal amplitude superposition of all particle
configurations — A product state = superfluid state

Z ’> ®z(|0); + 1), +--+)

all conf.
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Examples of topological orders (before 2000)

e V(z;,25,--+) =1 — equal amplitude superposition of all part|c|e
conflguratlons — A product state = superfluid state

Z ’> ®z(|0); + 1), +--+)

all conf.
e Examples: 1) scamble the phases Laughlin 83

_ 2 o
\UII/:E?I{I/2(21?Z2 .. ) — |:H(ZI' — Zj)of%2|zf|2 — [Xl(zi)]2,
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Examples of topological orders (before 2000)

e V(z;,25,--+) =1 — equal amplitude superposition of all particle
configurations — A product state = superfluid state Y ‘”‘

Z ’> ®z(|0); + 1), +--+)

all conf.
e Examples: 1) scamble the phases Laughlin 83 |G
2
=1/2 12
Vi ez ) = [ - z)e i 7] = pa@)P
e Il) Put v = 1 state of spin-up(down) electrons y1(z T)Xl( i) on
lattice, with one electron per site — Chiral spin liquid
Kalmeyer-Laughlin PRL 59 2095 (87), Wen-Wilczek-Zee PRB 39 11413 (89)
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Examples of topological orders (before 2000)

e V(z;,25,--+) =1 — equal amplitude superposition of all particle
configurations — A product state = superfluid state Y ‘”‘

Z ’> ®z(|0); + 1), +--+)

all conf.
e Examples: 1) scamble the phases Laughlin 83 |G
2
=1/2 12
Vi ez ) = [ - z)e i 7] = pa@)P
e Il) Put v = 1 state of spin-up(down) electrons y1(z T)Xl( i) on
lattice, with one electron per site — Chiral spin liquid
Kalmeyer-Laughlin PRL 59 2095 (87), Wen-Wilczek-Zee PRB 39 11413 (89)

e 111) The square of v = 2 IHQ wavefunction [y2(z;)]> — bosonic
v=1 SU(2)£ non-abelian state. y1[x2]? fermionnic v = % state
Wen PRL 66 802 (91). CFT construction: Moore-Read NPB 360 362 (91)
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Examples of topological orders (before 2000)

e V(z;,25,--+) =1 — equal amplitude superposition of all particle
configurations — A product state = superfluid state Y ‘”‘

Z ’> ®z(|0); + 1), +--+)

all conf.
e Examples: 1) scamble the phases Laughlin 83

_ 2 o
\UII/:E?I{I/2(21?Z2 .. ) — |:H(ZI' — Zj)of%2|zf|2 — [Xl(zi)]2,

e Il) Put v = 1 state of spin-up(down) electrons y1(z T)Xl( i) on
lattice, with one electron per site — Chiral spin liquid
Kalmeyer-Laughlin PRL 59 2095 (87), Wen-Wilczek-Zee PRB 39 11413 (89)

e 111) The square of v = 2 IHQ wavefunction [y2(z;)]> — bosonic
v=1 SU(2)£ non-abelian state. y1[x2]? fermionnic v = % state
Wen PRL 66 802 (91). CFT construction: Moore-Read NPB 360 362 (91)
e IV) Put an electrons superconducting state on lattice, with one
electron per site — Z, topological order — 75 spin liquid
Read-Sachdev PRL 66 1773 (91), Wen PRB.44 2664 (91)
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Why Laughlin states have topological order?

K-matrix states (generalize Laughlin states):
/ K / NKy 1 112
wK:H(Zi_Zj) ! H(Zi_zj)”e a2l
i<jil ijil<J
e Quasiparticle excitations are labeled by integer vectors m

ve = [ - 2™ v,
il
- If m is the /{" column of K — W, discribe a missing hole in the /i"
layer, which is a local excitation (not fractionalized).
- Topological excitation is labeled by m mod columns of K.
Number of topo. exc. = det(K).
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Why Laughlin states have topological order?

K-matrix states (generalize Laughlin states):
/ K / NKy 1 112
wK:H(Zi_Zj) ! H(Zi_zj)”e a2l
i<jil ijil<J
e Quasiparticle excitations are labeled by integer vectors m

Ky
\U5 - H(€ - Zil)mle7 L= alpa aJ)\fu VA + m/é(f — X)a/O

il

- If m is the /{" column of K — W, discribe a missing hole in the /i"
layer, which is a local excitation (not fractionalized).

- Topological excitation is labeled by m mod columns of K.

Number of topo. exc. = det(K). Statistics: O = 7m " K~tm
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Why Laughlin states have topological order?

K-matrix states (generalize Laughlin states):
/ K / NKy 1 112
wK:H(Zi_Zj) ! H(Zi_zj)”e a2l
i<jil ijil<J
e Quasiparticle excitations are labeled by integer vectors m

Ky
\Us :H(f—zil)m’\UK, ﬁ— a,H(? aJ,\e“ /\+m/5(§—x)a/0
il
- If m is the /{" column of K — W, discribe a missing hole in the /i"
layer, which is a local excitation (not fractionalized).
- Topological excitation is labeled by m mod columns of K.
Number of topo. exc. = det(K). Statistics: O = 7m " K~tm

K-matrix classification of abelian topological order
- Even K-matrix (all Kj; are even) classify all 241D Abelian
topological orders (in a many-to-one way) in local bosonic systems.
- Odd K-matrix (one of the Kj; is odd) classify all 2+1D Abelian
topological orders (in a many-to-one way) in local fermionic
systems. Wen-Zee PRB 46 2290 (92)
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Why is the state [x(z)]?

a non-Abelian QH state?

where yi(z1, ..., zy) is the IQH wave function of k filled Landau
levels.

- What kind of non-Abelian state?
- What is its effective theory
and edge excitations?
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Why is the state [x,(z)]? = xi(z")xx(z?

a non-Abelian QH state?

where yi(z1, ..., zy) is the IQH wave function of k filled Landau
levels.

- What kind of non-Abelian state?
- What is its effective theory
and edge excitations?

Projective construction:
Split an eletron into partons
and glue them back together
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Projective construction: Wen PRL 66 802 (91); cond-mat/9811111

(21, zn) = [xu(z, o 20)]" = P2, (22, ) ]

electron — n-partons, a-kind partons z'¥) form v = k IQH xx

i

e Effective theory of independent partons
1 .
H = %M(a— Ay, I=1,---.,n

e Many-body wave function ®(z;) = (0| [ [ ¥e(zi)|xk - - X&)
The electron operator 1. = 1)1 - - -1, is SU(n) singlet,
if ¢, form an fundamental representation of SU(n).

e Introduce SU(n) gauge field to glue partons back to electrons:

1 . ;
H = %@[;}L(@ — iAdy — Iau)21/u

e Effective theory is obtained by integrating out the gapped parton

fields: k 2 N
L= ETr(aM&,a,\ + §aua,,a,\)e“”

SU(n)! CS theory. (Level k =1 SU(n)] CS theory is abelian.)
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Quasiparticle excitations in [x«(z)]* = Xk(Z,-T)Xk(Z,-i)\ler_z,

Consider the [x,(z)]* state: SU(2)! Chern-Simons theory

e A charge g = 1 hole can be splited into two — two charge
q = 1/2 quasiparticles. > ! o—

| ———

ahole ¢=1, s=0 q=1/2, =12 q=1/2, s=1/2

e The number of four-quasiparticle states: project to SU(2) singlet.
leolelel=(0ol)(0el)=001010(00102)

But 5U(2)£ state has - o — e—
no quasiparticle with spin s > &~ /

(@] O ¢
q=1, s=1
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Quasiparticle excitations in [x«(z)]* = Xk(z,-T)Xk(z,-i)\zl;r

Consider the [x,(z)]* state: SU(2)! Chern-Simons theory

e A charge g = 1 hole can be splited into two — two charge
q = 1/2 quasiparticles. > !

o—

_— ; D O
ahole ¢=1, s=0 q=1/2, =12 q=1/2, s=1/2

e The number of four-quasiparticle states: project to SU(2) singlet.
leolelel=(0ol)(0el)=001010(00102)

But SU(2)£ state has - o — e—
no quasiparticle with spin s > &~ /

(@] O ¢
q=1, s=1

Level-k fusion: s1 ® 5o = |s1 — 2| @ -+ - @ min(sy + s2, k — 51 — )
-Level-k=1: 3 0@ (3®3)=(0)®(0)=0
-Levekk=2ielelel=(0e)®(001)=081614(0)

Xiao-Gang Wen, Boulder summer school
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Edge excitations in [xk(z)]" state: U(1) x SU(k), CFT
e Edge state: Independent partons — filled Landau levels

ﬁ - ¢La(at - Vax)wozaa

a=1,--,n,
a=1,--,k
01 2' 3 e m
e Excitations are generated by (a, a' generate exc. in an oscillator)
U1) : J = Pfatbaa, — U(1) Kac-Moody algebra CFT

SU(k) : J™ = ba T o, — SU(k), Kac-Moody algebra CFT

Su(n):j! = wgasc’wq/)ﬂa, — SU(n), Kac-Moody algebra CFT
e Glue partons back to electrons = remove the SU(n) excitations.
e Edge excitations are generated by

U(l) = w:&awrlay

SU(K) - J7 = da Totbas

Edge CFT: U(1) x SU(k), Kac-Moody algebra ¢ = 1 4 221,
o Bulk effective theory SU(n)! CS theory

-k
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Another example S[[1(z; — z)* [T(wi — w;)?]

e Consider with two partons 11, 1, each fills the first Landau level.
— v = 1/2 Laughlin state [[(z; — z)? = (0| [T ¥1(z:)v2(2i)|x1x1)

e Now start with four partons 11, 15, 13, 14, each fills the first
Landau level:

[1(zi — 2)* TI(wi — w;)? = (01 TT¥1(2)v2(2) TT s (wi)a(wi) [ x1x1x1x2)
o S[[1(zi — 2)* [T(wi = w;)*] = (O TT ¥e(Z))Ix1x1X1X1)

where 1e(Zj) = 1(Zj)2(Zi) + v3(Zi)va(Z).
e Under SO(8) trans. between (Ret;, Im);), 1)e is an SO(5) singlet
o Effective theory H = ! (9 — A — a;)?¢; — SO(5) CS theory
e Edge states: Wen cond-mat/9811111

Independent partons — 4 Dirac fermions = 8 Majorana fermions
After projection — 8-5 chiral Majorana fermions.

e S[[1(zi — z)? [1(w; — w;)?] is the bosonic Pfaffian state.

Vs(a20) = S[TI(zi — z)* [1(wi — w))°] = Al 25 525 111z - 2)
Moore-Read NPB 360 362 (91); Rezayi-Wen-Reéad arXiv:1004.2563
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How to realize non-Abelian QH states in experiments?

Wen cond-mat/9908394; Rezayi-Wen-Read arXiv:1004.2563
nnm bi-layer state with no interlayer tunneling

e (nnm) state
P = [[(2i = 2)"(wi = w))"(z; — wyyme s Bl 4l

where n = odd for fermionic electron and n = even for bosonic
“electron”.

e (nnm) state ~ (n— m,n — m,0) state: ®ppm = X" Pr_mn—mo
Will consider only (nn0) state.
(220) ~ (331) state with » = 1/2 and (330) with v =2/3

e Intralayer repulsion Vi, = 1, increase interlayer repulsion

nn0 double
layer state ?7? Chimb state

\

inter
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Two possibilities

Interlayer-exciton = charge —% quasiparticle in one layer +
charge % quasihole in the other layer

e Interlayer-exciton condensation at k # 0

™~

nn0 double

| layerstate  ~ ST/WC | Chimb state
\

00 —e— V
[ o o [ & o ool

inter
e Interlayer-exciton condensation at k = 0

AP

nn0 double
Igyer state
\

‘WC | Chimb state
2e Laughlin \;

inter
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Why 2e-Laughlin state? — Hierarchical construction

e (nn0) is described by U(1) x U(1) CS theory

£=tadankle™ 1 J=12 K= (g S)

e The interlayer exciton (with statistics § = 27/n) is described by
L= ﬁa,@aJK“ + m’a,ﬂ“(x), m = <_11> ;

e Exciton condensation £ = (j°)? —J with J,j/" = 0: j# = a”a* eHrA
1 1 L 1
L=-—ada;K" B? - ~E
4719 27 87T2X( v2 )

e — new FQH state:

K m n O 1 2n 0 0
Koew = (mT o> ={o n —1]=w|[0 n%2 1|WT~(@2n
1 -1 0 0 1 0
K and K = WKWT, we SL(k, Z), describe the same FQH state.

e New state is v* = 1/2n Laughlin state of charge-2e electron pairs.
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Critical theory for quantum phase transition

e Start with GL theory for excitons and anti-excitons:
L= 10,01 + alg® + Blgl*

« = 0 at the transition.
e GL-CS theory to reproduce statistics ¢ = 27/n

. . 1
L =1(0 — a1 + ia) o> + a|d|* + Blo|* + Ea/OaJKU.

e CS term does not destroy the critical point of GL theory, but
changes the critical exponents
(nn0) — 2e-Laughlin is a continuous transition between two states
with the SAME symmetry

e When n = 2, critical theory is massless Dirac fermion
£ = T 0t + miby

m = 0 at the transition.
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Turn on interlayer tunneling

Effective theory near transition .
L= (0 — iay + ia) > + a|¢> + Blo|* + (t¢"M + h.c) + Ea;f)aJKU.
L= '(/_J’y“a,,,w + mp + (thz/J + h.c.), forn=2

e When n = 2, the t) 1) term split the massless Dirac critical
point into two massless Majorana critical points.

t t
S(330) state S(220) state
Vinter 220 double Vinter
330 double charge-2e layer state charge-2e
layer state Laughlin state Laughlin state
S(330) state S(220) state

e Weak p + ip superconductor to strong p -+ ip superconductor is
connected by massless Majorana fermion Read-Green cond-mat/9906453

Vs (220) = S[[I(zi — 2)* TI(wi — wy)’l = Al 25 25, 1Tz = 2)
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Projective construction of topo. ordered states on lattice

Consider a spin—% system on lattice.
e View spin-| as zero-boson state and spin-T as one-boson state
e Split the boson ¢; into to fermionic partons ¢; = 1112, where
i form a 2-dim. rep. of SU(2) and ¢; is the SU(2) singlet.
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Projective construction of topo. ordered states on lattice

Consider a spin—% system on lattice.
e View spin-| as zero-boson state and spin-T as one-boson state
e Split the boson ¢; into to fermionic partons ¢; = 1112, where
i form a 2-dim. rep. of SU(2) and ¢; is the SU(2) singlet.
e Consider the mean-field ground state of a free parton Hamiltonian
Hmean = Z(U) 1/)I-Tu,-j1/1j, uj =2 X 2 matrix; — ]Wﬁq”gan>

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and f



Projective construction of topo. ordered states on lattice

Consider a spin—% system on lattice.
e View spin-| as zero-boson state and spin-T as one-boson state
e Split the boson ¢; into to fermionic partons ¢; = 1112, where
i form a 2-dim. rep. of SU(2) and ¢; is the SU(2) singlet.
e Consider the mean-field ground state of a free parton Hamiltonian
Hmean = Z(U) ’L/)}Luijl/Jj, uj =2 X 2 matrix; — ]Wﬁq”gan>
e Project to physical subspace on each site
[ 1) =10), | 1) = v}¢50), both SU(2) singlet.
Unphysical states ¢/, |0), ¢j2|0) form a SU(2) doublet.
- Project into SU(2)-singlet subspace on each site:

|W;”;y> 'DSU |Wmean>

\\Uphy> is a trial wave function with varlatlonal parameter uj;.
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Projective construction of topo. ordered states on lattice

Consider a spin—% system on lattice.
e View spin-| as zero-boson state and spin-T as one-boson state
e Split the boson ¢; into to fermionic partons ¢; = 1112, where
i form a 2-dim. rep. of SU(2) and ¢; is the SU(2) singlet.
e Consider the mean-field ground state of a free parton Hamiltonian
Hmean = Z(U) 1/)I-Tu,-j1/1j, uj =2 X 2 matrix; — ]Wﬁq”gan>
e Project to physical subspace on each site
[ 1) =10), | 1) = v}¢50), both SU(2) singlet.
Unphysical states ¢/, |0), ¢j2|0) form a SU(2) doublet.
- Project into SU(2)-singlet subspace on each site:

|W;”;y> 'DSU |Wmean>

\\Uphy> is a trial wave function with varlatlonal parameter uj;.

e What is the low energy effective theory that describes the low
energy excitations above the many-body state |V ) 7
Lattice partons v; couple to lattice SU(2) gauge field a,(x):

Her = > i ?/J ujet @iy + 374 ag (i)
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Z, topological order

e Choose Read-Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91)
3 1
Uii4+x = Ujj+y = —X0O, 4o = CO,
1 2 1 2
Uiitxty =10 + A0, Uijixty =10 — A0

Hest = 3 1y ) vty + 3=, ¥} agibi will be fully gapped.
— The fermions are all gapped. The potential gapless excitations
may come from the SU(2) gauge fluctuations.

e a9 and SU(2) flux ®; = ujjujui; behave like Higgs fields.
a0 — UagUT, &; — Ud;UT, U e SU(2).

- If they are invariant under the SU(2) transformation — The SU(2)

is unbroken — gapless gluon.
- If they are not invariant under the SU(2) transformation — Break

SU(2) to smaller gauge group.
e In our case, ap and ®; break the SU(2) down to Z»
— Z» gauge theory which is gapped — Z, topological order.
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Quasiparticle excitations in the Z, topological order

e The pure Z, gauge theory: le
- Z» charge e: boson. el |
- 7> vortex m: boson.

e and m have mutual 7 statistics.
- e-m bound state e: fermion.

e Our 2> topological order = dressed Z, gauge theory, which also
has spin rotation, time reversal and all the lattice symmetry:

- Z> charge e: spin—% fermion.

- Z» vortex m: spin-0 boson (fermion).

- e-m bound state ¢: spin-3 boson (fermion).

e We have two possibilities: (2 bosons 1 fermion) or (3 fermions).
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Quasiparticle excitations in the Z, topological order

e The pure Z, gauge theory: le
- Z» charge e: boson. el |
- 7> vortex m: boson.

e and m have mutual 7 statistics.
- e-m bound state e: fermion.

e Our 2> topological order = dressed Z, gauge theory, which also
has spin rotation, time reversal and all the lattice symmetry:

- Z> charge e: spin—% fermion.

- Z» vortex m: spin-0 boson (fermion).

- e-m bound state ¢: spin-3 boson (fermion).

e We have two possibilities: (2 bosons 1 fermion) or (3 fermions).

The above is the history before 2000

3 fermions) has a time reversal anomaly, and s not possible:
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Examples of topological orders (after 2000)

To make topological order, we need to sum over many different
product states, but we should not sum over everything.

Nay=]—-=".)

Zall spin config.
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Examples of topological orders (after 2000)

To make topological order, we need to sum over many different
product states, but we should not sum over everything

Zall spin config. > = ‘ - > @@@ CD {}% 2/@

e sum over a subset of spin config.: @ @@@ M
‘(Dloops - Q‘>

O
‘¢|oops> - Z(_)# of loops \ Q<>
‘¢Ioops> _ Z(eie)# of loops x g>

e Can the above wavefunction
be the ground states of
local Hamiltonians?

P
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Sum over a subset: local rule — global wave function
XX
POPPD
POOPD 90@ﬁ> @ 9@@@ @
® @
odo00 O O

e Local rules of a string liquid:
(1) Dance while holding hands (no open ends)

2 () =80 (11 0 (0 &) =00 ()

— Global wave function g, (g)g =1

e Local rules of another string liquid:
(1) Dance while holding hands (no open ends)

(2) O () = 0 (I5), 0 (> W) = — o0 (HW)
— Global wave function ®g;, (&j)&) = (—)# of loops

e Two topo. orders: Z> topo. order Read-Sachdev PRL 66, 1773 (91), Wen
PRB 44, 2664 (91), Moessner-Sondhi PRL 86 1881 (01) and double-semion
topo. order. Freedman etal cond-mat/0307511, Levin-Wen cond-mat /0404617
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Toric-code model — 2, topological order, Z, gauge theory

e Toric code model: Kitaev quant-ph/9707021
H=-UY,Q—-g>,F
@ = Hlegs of 1 Uiz'

— X
FP - Hedges of p g
e Topological excitations:

etype: Q=1—Q =-1
m-type: Fp =1 — F, = —1
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Toric-code model — 2, topological order, Z, gauge theory

e Toric code model: Kitaev quant-ph/9707021
H:—UZ|QI_gZpr ﬁ /_P
@ = Hlegs of 1 Uiz'

FP = Hedges of p Uix

e Topological excitations:
etype: Q=1—Q =-1
m-type: Fp =1 — F, = —1

e Type-e string operator W, =[], o

z

e Type-m string operator W, =[]« 07
e Type-¢ string op. W, =[], o7 H|egs of

o [H, W] = [H, W9 = 0. — Closed strings cost no energy
o [Q, WSP"] £ 0 flip Q — —Qy, [Fp, W= # 0 flip Fp — —Fp
— open-string create a pair of topo. excitations at their ends.
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Toric-code model — 2, topological order, Z, gauge theory

e Toric code model: Kitaev quant-ph/9707021
H:—UZ|QI_gZpr ﬁ /_P
@ = Hlegs of 1 Uiz'

FP = Hedges of p Uix

e Topological excitations:
e-type: Q=1— @Q =-1
m-type: Fp =1 — F, = —1

e Type-e string operator W, =[], 0F — e-type. exe=1
e Type-m string operator Wy, = [[,«07 — m-type. mx m=1

e Type-¢ string op. W, =[], o7 H|egs of — etype =ex m

o [H, W] = [H, W9 = 0. — Closed strings cost no energy

o [Q, WSP"] £ 0 flip Q — —Qy, [Fp, W= # 0 flip Fp — —Fp
— open-string create a pair of topo. excitations at their ends.

e Fusion algebra of string operators — fusion of topo. excitations:
We2 = W2 = Wf = WeW,, W, = 1 when strings are parallel
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Topological ground state degeneracy

e The —U ), @ enforce closed-string ground state.
e [, adds a small loop and generates a permutation among the loop

o o
states @Q(> — Ground states on torus [V ) = Zloops X Q<>

grnd

e There are four degenerate ground states o = ee, eo, oe, 00
€
®
Doodd Lol [0k
® ® e 0 T
(6]
O®ODOD® O] P
(6]

(o}

- The four sectors do not mix.
- The states in the four sectors are locally indistinguishable.

e On genus g surface, ground state degeneracy D, = 4%
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Double-semion model

Local rules: Levin-Wen cond-mat/0404617

bsr (I) = 0 (1), 0 (B> W) = —0 (W)

e The Hamiltonian to enforce the local rules:

1—0?

H=-U>,Q — %ZP(FP + h.c.),
2 « . i
Q' = Hlegs of 195 Fo = (Hedges of p Uj )(* Hlegs of p 12 )

e Ground state wave function ®(X) = (—)*¢, where X, is the
number of loops in the string configuration X.
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Emergence of fractional spin/statistics

e Why electron carry spin-1/2 and Fermi statistics?
e Ends of strings are point-like excitations,
which can carry spin-1/2 and Fermi statistics?
Fidkowski-Freedman-Nayak-Walker-Wang cond-mat/0610583

o O (?g) — 1 string liquid ¢str< > < ) - cbst,( [ | )
360° rotation: T% C? and C? = @ — T: R3600 = <(1) é)

T+C? = e spin 0 mod 1. T—@E em spin 1/2 mod 1.
o o, (?&) = (=) oo string fiquid @, ([ <) = —ou (1)
360° rotation: | — Pand ¥ = ¥ = 1 Rygpo = <(1’ 01>

T—é— i@zs_ spin —% mod 1. T— i@zar spin % mod 1.

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and f



Spin-statistics theorem

(e

e (a) = (b) = exchange two string-ends.

e (d) — (e) = 360° rotation of a string-end.

e Amplitude (a) = Amplitude (e)

e Exchange two string-ends plus a 360° rotation of one of the
string-end generate no phase.

— Spin-statistics theorem
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Statistics of ends of strings

e The statistics is determined by particle hopping operators
tde(IJ Tha Y }

Levin-Wen cond-mat/0302460:
; c
ch
b tbd a 3
1 b

. tha
tba Tebtpd
a Q . :

e An open string operator is a hopping operator of the ‘ends’.
The algebra of the open string operator determine the statistics.
e For type-e string: tp, = 0f, top = 03, tpd = 05
We find tpgtopths = thatcntpd
The ends of type-e string are bosons
e For type-c strings: tp, = 07, tcp, = 0307, thg = 0503
We find thgtontba = —tpalcotbs o
The ends of type-¢ strings are fermions

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and f



Systematic theory of topo. orders from topo. invariants

Topological order describes the order in gapped quantum liquds.
We conjectured that 241D topological order can be
completely defined via only two topological properties:

Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen 1JMPB 7, 4227 (93)

e (1) Wgng = space of locally indistinguishable (L1) states
- Given Wy(z;), 3 other LI Wy(z), '
- Topo. degeneracy D, = d|m\Ugmd, ‘ ‘

depends on topology of space Deg=1  Deg.=Dj
Wen PRB 40, 7387 (89), Wen-Niu PRB 41, 9377 (90)

e The notion of LI states is defined respect to the notion of local
operators: symmetric function O¢(zi, zp, - - - ) which is non-zero
only when |§ — z| </

/H d2z,' \U’{ngl — /H d2Zi \IJ;O£W2, VO

- Also known as topological degeneracy
The degeneracy is robust against any local purtabations
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Topological invariants that define LRE and topo. orders

e (2) Vector bundle on the moduli space
i. Consider a torus X1 w/ metrics gj. ii. Different metrics g;; form
the moduli space M = {gj;}. iii. The LI states depend on spacial
metrics: W, (gjj) — a vector bundle over M with fiber W, (gj).
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Topological invariants that define LRE and topo. orders

e (2) Vector bundle on the moduli space
i. Consider a torus X1 w/ metrics gj. ii. Different metrics g;; form
the moduli space M = {gj;}. iii. The LI states depend on spacial
metrics: W, (gjj) — a vector bundle over M with fiber W, (gj).

j27c
- Local curvature detects grav. Chern-Simons term e’ 24 Jwz st ws

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and f



Topological invariants that define LRE and topo. orders

e (2) Vector bundle on the moduli space
i. Consider a torus X1 w/ metrics gj. ii. Different metrics g;; form
the moduli space M = {gj;}. iii. The LI states depend on spacial
metrics: W, (gjj) — a vector bundle over M with fiber W, (gj).

%51 W3

Vs)

- Local curvature detects grav. Chern-Simons term ol % I
- Loops 11 (M) = SL(2,7): 90° rotation |V, ) — |V ) = S,z

S, T generate a rep. of modular group: S = (ST)> = C,C? =1
Wen 1JMPB 4, 239 (90); KeskiVakkuri-Wen IJMPB 7, 4227 (93)
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Topological invariants that define LRE and topo. orders

e (2) Vector bundle on the moduli space
i. Consider a torus X1 w/ metrics gj. ii. Different metrics g;; form
the moduli space M = {gj;}. iii. The LI states depend on spacial
metrics: W, (gjj) — a vector bundle over M with fiber W, (gj).

%51 W3

Vs)

- Local curvature detects grav. Chern-Simons term ol % I
- Loops 11 (M) = SL(2,7): 90° rotation |V, ) — |V ) = S,z

S, T generate a rep. of modular group: S = (ST)> = C,C? =1
Wen 1JMPB 4, 239 (90); KeskiVakkuri-Wen IJMPB 7, 4227 (93)

Conjecture: The vector bundles from all genus-g ¥, (ie the
data (S, T,c), ...) completely characterize the topo. orders

Conjecture: The vector bundle for genus-1 ¥; (e the data
(S, T,c)) completely characterize the topo. orders
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Measure topo. order: Universal wavefunction overlap

Moradi-Wen 13, He-Moradi-Wen 14
e Ground states |V,,) on torus T2 under S and T.
The non-Abelian geometric phases S, T via overlap
Sape S+ = (v alS|Ws) s i

—fTL2+O( ) o -

= (Wo| T|Wg)

Tage
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Measure topo. order: Universal wavefunction overlap

Moradi-Wen 13, He-Moradi-Wen 14
e Ground states |V,,) on torus T2 under S and T.
The non-Abelian geometric phases S, T via overlap

Sape™ ST — (0, |S|wy)
Tage TEHT) = (| T|wg)

e For Z> topo. order:
— gstring—length

_) W, gstr—len

)
(24) = (
\U3() — (_)Wygstr—len
(E24) = (

o ) Wi+W, gstr—len

Xiao-Gang Wen, Boulder summer school
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Measure topo. order: Universal wavefunction overlap

Moradi-Wen 13, He-Moradi-Wen 14
e Ground states |V,,) on torus T2 under S and T.
The non-Abelian geometric phases S, T via overlap
Sape S+ = (v alS|Ws) s i
Tage THEHe) = (W, | T|wy)
° For Z> topo. order:
( ) strmg length
- t ‘I —a— 12 steps of RG
i) - (g [TER
( ) ( )Wygstr—len -
\U4() — (7) X+Wygstr—len #|
e g < 0.8 small-loop phase @ °
|W,,) are the same state

e g > 0.8 large-loop phase 5‘=(
|W,,) are four diff. states
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Measure topo. order: Universal wavefunction overlap

Moradi-Wen 13, He-Moradi-Wen 14

e Ground states |W,,) on torus 72 under S and T.
The non-Abelian geometric phases S, T via overlap
Sape S+ = (v alS|Ws) s i
Tape™ T = (W | TIWg) Rz

° For Z> topo. order:
( strmg length

) =
() ( ) Wx gstr-len o] | e
=) =

—e— 24 steps of RG
( ( )Wygstr—len - 2
\U4() _ (7) X-‘rWygstr—Ien =] 2
e g < 0.8 small-loop phase @ ° * b
g
|W,,) are the same state i L EF0802 Cooo
e g > 0.8 large-loop phase 5'=(}}H)T(HH) 5’(3?53)“(353?)
|W,,) are four diff. states L A v
. 1 0 0 0 1 0 0 0
e For double-semion topo. order: . _ o o 1 o} ._fo 1 0o o
o] — 1o 1 0 0 [ ) 0 0 1]
\U() = (_)# of lOOP 0 0 0 —1 0 0 — 0
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Classify 2+1D topo. orders (ie patterns of entanglement)

via the topological invariants (S, T, ¢)

e A 241D topological order — a (S, T, ¢)
e An arbitary (S, T,c) # a 241D topological order

e (5, T,c)'s satisfying a set of conditions <> 2+1D topo. orders
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Classify 2+1D topo. orders (ie patterns of entanglement)

via the topological invariants (S, T, ¢)

e A 241D topological order — a (S, T, ¢)
e An arbitary (S, T,c) # a 241D topological order

e (5, T,c)'s satisfying a set of conditions <> 2+1D topo. orders
assuming each (S, T, c) — one topological order, otherwise
(S, T,c)'s satisfying a set of conditions <> several topo. orders
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Classify 2+1D topo. orders (ie patterns of entanglement)

via the topological invariants (S, T, ¢)

e A 241D topological order — a (S, T, ¢)
e An arbitary (S, T,c) # a 241D topological order

e (5, T,c)'s satisfying a set of conditions <> 2+1D topo. orders
assuming each (S, T, c) — one topological order, otherwise
(S, T,c)'s satisfying a set of conditions <> several topo. orders

e How to find the conditions,
beyond S% = (ST)3,5* = 17

Study topological excitations above the ground states.
ie consider vector bundle from the degenerate ground states on ¥
with punctures (quasiparticles).

- In particular, the vector bundles from the degenerate ground states
on Yo = S? with punctures (quasiparticles)
— unitary modular tensor category theory (UMTC)
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Category theory — a theory of relations (morphism)

e A category C is a set {«, 3,-- - } of objects, with morphism
(relation) av — 3

- Morphism o — « exists.

- If morphisms o — 3 and § — ~ exist, — morphism o — ~ exists.

e «v is a simple object if, V5, a — [ implies 8 — a.

e Example | A category of set S:
- An object = a subset: « C S
- Morphism —=D>: a — [ means « include 5: a D f3
- A simple object = one-element set.
if o« D B implies 5 O o« — « is an one-element set.

We obtain the notion of a single element (the building block) via
the relations (the morphism).
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How to measure the symmetry group of a quantum

system, if all your probes respect the symmetry?

e Example |l a symmetric quantum system:

- An object = the ground subspace of a symmetric H

- Morphism o — [ if Oa D B.

« the ground subspace a symmetric H.
[ the ground subspace a symmetric H + 0H.
O the time evolution operator.

- A simple object = an irreducible representation. T
the ground subspace (the degeneracy) is robust against
all symmetric perturbations dH.

- Composite object = reducible rep., accidental degeneracy.

e From the dimension of simple «, we get the dimension of

irreducible representation. Not quit the symmetry group yet.

e For SO(3) symmetry:
No morphism between (spin-1) and (spin-2) ground space.
A morphism from (spin-1@spin-2) to (spin-2) ground spaces.
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Add stacking — Tensor (fusion) category theory

Add another probe: composition (ie stacking) of two systems
H ® H' — Tensor category: a category with fusion o ® [3.

In general simple-object ® simple-object = composite object.
For example: (spin-1) & (spin-2) = (spin-1 & spin-2 & spin-3)

e Fusion ring (Grothendieck ring): Fusion of simple objects
aRQB=n®1®: - :@7/\/,(;[37

- The fusion ring (ie Ng‘d) determine the symmetry group G, if G is
simple or abelian.
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Local and topological quasiparticle excitations

In a system: H =) Hy excitation ;
o a particle-like excitation |W . (¢)):engeray densityy & /’g’;(gé‘;gysga;ﬁsity
gapped ground state of H + 5ngap

e Local quasiparticle excitation:
Wexe) = (A)E]\Ugmd> created by local operator O st | A=>finite gap

e Topological quasiparticle excitation: T e0
|Wexe) # (A)E]\Ugmd> cannot be created by local operators O
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Local and topological quasiparticle excitations

In a system: H =) Hy excitation ;
o a particle-like excitation |W . (¢)):engeray densityy & /’g’;(;‘é‘;gysgagﬁsity
gapped ground state of H + 5H£rap

e Local quasiparticle excitation: :
Were) = O¢|Wgng) created by local operator O unesue | A->finite gap

subspace ' ¢->0

e Topological quasiparticle excitation:
Were) # O¢|Wgrng) cannot be created by local operators O

e Topological types: equivalent classes defined by local op. O¢
if (WL ) = O Wexe), then [V, ) [W.,.) belong to the same type.

-if [V, ) and |W,) can deform into each other without closing the
/

gap, then |V ) |We) belong to the same type.

e With symmetry — O, 5H2rap to be symmetric local operators.
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Local and topological quasiparticle excitations

In a system: H =) Hy excitation ;
o a particle-like excitation |W . (¢)):engeray densityy & /’g’;(;‘é‘;gysgagﬁsity
gapped ground state of H + 5H£rap

e Local quasiparticle excitation:
Wexe) = @Eng,mp created by local operator O — [ A->finite gap

e Topological quasiparticle excitation: T e0
|Wexe) # @Eng,mp cannot be created by local operators O

e Topological types: equivalent classes defined by local op. O¢
if (WL ) = O Wexe), then [V, ) [W.,.) belong to the same type.

-if [V, ) and |W,) can deform into each other without closing the
/

gap, then |V ) |We) belong to the same type.

e With symmetry — O, 5H2rap to be symmetric local operators.

e But there may be ground state degeneracy. |V) and |We,.) should
be ground subspaces, and they may have different dimensions.
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Theory of topological excitations = category theory

e Local excitations: 1) We, and Wg,q are LI except near points &;.
2) Veie(&1,&2) = ground subspace of Hiap = H + 0Hg, + dHe,.

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and f



Theory of topological excitations = category theory

e Local excitations: 1) We, and Wg,q are LI except near points &;.
2) Veie(&1,&2) = ground subspace of Hiap = H + 0Hg, + dHe,.

- Trivial excitation: can be created by local operators
OV D Ve - W — Vg and O (E)Veue DV 1 Ve — V.
“—" (include)
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Theory of topological excitations = category theory

e Local excitations: 1) We, and Wg,q are LI except near points &;.
2) Veie(&1,&2) = ground subspace of Hiap = H + 0Hg, + dHe,.

- Trivial excitation: can be created by local operators
OV D Ve - W — Vg and O (E)Veue DV 1 Ve — V.
“=" (include) = morphism in category. Vyvial exc <+ Vgrnd
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Theory of topological excitations = category theory

e Local excitations: 1) We, and Wg,q are LI except near points &;.
2) Veie(&1,&2) = ground subspace of Hiap = H + 0Hg, + dHe,.

- Trivial excitation: can be created by local operators
OV D Ve - W — Vg and O (E)Veue DV 1 Ve — V.
“=" (include) = morphism in category. Vyvial exc <+ Vgrnd

- Topological excitation if cannot be created by local operators
(Or wtopo. exc(€17§2) 7L> wgrnd: \Ugrnd 7L> \Utopo. exc(§17§2) )
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Theory of topological excitations = category theory

e Local excitations: 1) We, and Wg,q are LI except near points &;.
2) Veie(&1,&2) = ground subspace of Hiap = H + 0Hg, + dHe,.

- Trivial excitation: can be created by local operators
OV D Ve - W — Vg and O (E)Veue DV 1 Ve — V.
“=" (include) = morphism in category. Vyvial exc <+ Vgrnd

- Topological excitation if cannot be created by local operators
(Or wtopo. exc(€17§2) 7L> wgrnd: \Ugrnd 7L> \Utopo. exc(§17§2) )

e Topological type / = equivalence class of W : Weye ~ WL _iff

exc
Ve = V., cand V. o — Ve isomorphic in category

- simple type: WP 5 W implies Wey — WETPE
The subspace WEmPe(¢) s robust against local perturbation near €.
- composite type: k=i®j, i — k, j — k.
The subspace Wy (&) (degeneracy) can be splitted by local
perturbation near £, ie contain accidental degeneracy.

Fusion space = Ve, (&1,82, ) = Vrus(i,J,--7)
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Fusion ring of (non-Abelian) topological excitations

e For simple /., if we view (/,) as one particle,
it may correspond to a composite particle:
Vfus(i;ja /17 /27 to ) - @nvfus(k_n; /17 /27 o )
i®j=k®k @ =Nk
— the fusion ring (Grothendieck ring). = (k. ..)

~ —(k,.)
e Associativity: ) ) (6j>---) ) |
(@) @k=ie(ek) =N, N*=3,NaN™ =3, Ny N

e Topologically protected non-local degrees of freedom:
For simple quasiparticles, 7, /, - - -, we cannot view their fusion space
Vius(i,J, k, -+ ) as V(i) @ V(j) @ V(k) @ - - -, where the space V(i)
describes the local degrees of freedom of the quasiparticle-i.
If so, we can add local perturbations near / to split the degeneracy.

For simple quasiparticles, the degrees of freedom described
by their fusion space Vys(/,/, k, - --) are non-local and
topologically protected.
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Quantum dimension and “fractional” degree of freedom

Vector space fractionalization:

e In general, dim[Vsys(i, 7,1, - -+ )] # (integer)”.
Quasiparticle i may carry fractional degree freedom.
dim[Ves (7,1, )] = 3, Ny Nt =+ N7 = (ND) 7t ~ P

1

where the matrix (N'); = Nf;", and d; the largest eigenvalue of N':
dim[Vas(is )] = Nif,  dim[Veus(i, i, )] = N NJ™
dim[Vas (i, i, i, )] = N NN

e d; is called the quantum dimension of the quasiparticle /.
Abelian particle — d; = 1. Non-Abelian particle — d; # 1.
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Theory of topological excitations = braided fusion category

e Above 1D, particles can braid — unitary braided fusion category

e Braiding requires that e o b ole .
N} =N
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Theory of topological excitations = braided fusion category

e Above 1D, particles can braid — unitary braided fusion category
e Braiding requires that o --© - Lo
ND = N

. . gt
e Braiding — mutual statistics el

and non-trivial fractional spin s;
27 rotation of (i,j) = 2 rotation of k /" o
27 rotation of (i,j) = 27 rotation N/ 1
of i and j and exchange i,/ twice R R
o = <> D

e Pl e

6127r5,-6127r5jei0,-j _ ei27TSk

A unitary braided fusion category (UBFC) is a set of topological
types with fusion and braiding, which is described by data (], s;)
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Relation between (S, T,c) and (N!, s;, ¢)

Conjecture: A bosonic topological order [ie a non-degenerate
UBFC = an unitary modular tensor category (UMTC)] is
fully characterized by data (S, T, c) or by data (N/,s;,c) .

e From (S T,c)to (N/,sj,c):  E Verlinde NPB 300 360 (88)
SiiSi(Si)* i27s; —i2nS
Z/ JS“ 5 € 4 € 24 — 7—”.
e From (NJ s,-, c)to (S, T,c):
’J 27r1 si+s;—s . ai2ms —i27m
= V@ Sk N, T = oo

Conditions on (N,’{,s,-, c¢) +» Conditions on (5, T, ¢)
— A theory of unitary modular tensor category (UMTC)
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Relation between (S, T,c) and (N!, s;, ¢)

Conjecture: A bosonic topological order [ie a non-degenerate
UBFC = an unitary modular tensor category (UMTC)] is
fully characterized by data (S, T, c) or by data (N/,s;,c) .

e From (S T,c)to (N/,sj,c):  E Verlinde NPB 300 360 (88)
SiiSi(Si)* i27s; —i2nS
Z/ JS“ 5 € 4 € 24 — 7—”.
e From (NJ s,-, c)to (S, T,c):
’J 27r1 si+s;—s . ai2ms —i27m
= V@ Sk N, T = oo

Conditions on (N,’{,s,-, c¢) +» Conditions on (5, T, ¢)
— A theory of unitary modular tensor category (UMTC)
simplified theory of UMTC Rowell-Stong-Wang arXiv:0712.1377

e The standard point of view:
B et
UMTC's are fully characterized by (N F,’f,;"% RV ) (but not
one-to-one). Conditions on those data + the equwalent relations
— a theory of UMTC. hard to work with
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The relations between (N, s;, ¢) and (S, T, ¢)

e Number of particle types (dimensions of N,’(J, si)
= ground state degeneracy on torus (dimensions of S, T).
Type-i particle is created as the end of type-i string operator,
which also describe particle-anti-particle tunneling process.

- A particular ground state |V/) on torus is obtained via the time
evolution on space-time of a solid torus. Other ground state |V;)
is obtained by inserting a loop of type-i string operator W;.

| W) |W;)
=p (&
Y () (b)

e S-matrix and link loops:
S = (Wil3|w)) = Z
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Verlinde formula — The relations between N,'(j and S

Witten CMP 121 351 (89); Wang-Wen-Yau arXiv:1602.05951
e A surjery formula <MU|MD><NU|ND> = <MU‘ND><NU|MD>

provided that the ground state degeneracy on the space-B is one.
°e— (WilSI1(Wi|SIWj @ k) = (Wil SWj) (W] S| W)

where we have used the string operator algebra

ijstr W/ftr _ Z N{k Vvistr N ‘VVJWk> = Z ka‘ W/>
i /

e Verlinde formula: >, 5;15,-/ka = S Si
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The relation between quantum dimension d; and S

= S1i = (W3 W3) > 0

—i

e Let vector v; = (Sj1, Si2, - -+ ). Verlinde formula can be rewritten as
S.
k k k
N%v; = Sivi,  Af = 57:
i1
Since v; has positive components, /\’1‘ is the largest eigenvalue of
NK — 2k — d;. Using > S2 =1, we find

St
Si=S1=d/D, D*=> d.
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The relation between quantum dimension d; and S

=5 = < IHI‘ /~>I> >0

e Let vector v; = (Sj1, Si2, - -+ ). Verlinde formula can be rewritten as

S.
Nkv,- = 5,-kv,-, )\f( = ik
Sit

Since v; has positive components, /\’1‘ is the largest eigenvalue of
N< — gﬁ = d;. Using >, S2 =1, we find

Si=S1=d/D, D*=> d.

e We also find

$3

Sii Si
=S = 21 2(5%) = d:Z(S%); @:571_

S
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The relation between fractional spin s; and T

e A particle is not an ideal point. ;| i% A Je '
It has internal structure. We (Y} — 4 — ei2ns |/ e=l
. $ ‘ m =1
can use the framing to represent ‘

the internal structure.

|
G 4-b d-p

(b) e—i27rs,-
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The relation between fractional spin s; and T

Q

It has internal structure. We
can use the framing to represent

e A particle is not an ideal point. ;| [ I
() "eﬂnv :

the internal structure.

° (a) ei27rs,- d
b e—i27r5,' P %
( ) (d) (b)
e T is a 27 twist of the
particle world line:

:
|
TIW) = e!2m| W)

e But 7 also change the metrics of the solid tours — / independent

: 2me [
phase from the gravitational CS term e’ 24 Jwz st s

7-‘ VV,> _ ei27rs,-efi27rc/24‘ VV,>
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From (NY,s;, ) to (S, T, c) — Graphic calculus

GO >GRO CO -

127r(s,+sj 5 D _ Zk U 127TSkd
The above can be rewritten as

1 .
Sy = 55 2 Nj eI =g,
k
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A relation between

Anderson-Moore CMP 117 441 (88); Vafa PLB 206, 421 (88)
Wi jk

det( /Jk) = det( VV,"_J') det( VV,'J()
ei2ms NI Nk Qﬁ
o) =TI (o)™ .

ei2msj gl 27s;
i [

)

e127rsr > N;"‘ N7’J

det(Wik) =[] <W
r

. P
el27‘(‘$7 )N{ N7rr

det(Wijk) = H(W
r

Wi j, Wi, W, jic are diagonal with the dimension of the fusion
space Vius(i.j, k. 1): 30, NPNI = 0, NiKNG = 2 M

— Z Vs =0 mod 1

Vi, = NINK 4 N;"N%k n N;'kN%'/ — (8ir + 0jr + Oker + Or) Z NI NK

y
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A simplified theory of UMTC based on (N,'Z,s,-, c)

Wen arXiv:1506.05768
e Fusion ring: N,’{ are non-negative integers that satisfy

Ny =N, N =gy, Z/v N =
N . . . . .
> NENTK = Z Nim N5 or NFNK = NFNF

where i, - mii 1,2,- N and the matrix N/ is given by
(N = N,’j U deflnes a charge conjugation i — i:

N' 07 We refer N as the rank.

There are only finite numbers of solutions for each fixed N, D.

U?

° NJ and s; satisfy >, V/ FgSr =0 mod 1
Vi = NINE + NI NE + NENE — (85 + 0 + Oier + 01r) D NI NE
This determines s; to be a rational number. There are onlg/nfinite

sets of solutions.
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A simplified theory of UMTC based on (NU,S,', c)

From (NJ si,c) = (S, T)
e Let d; be the largest eigenvalue of the matrix N’. Let

ij 271 si+s;j—s, 2 2
SI — Ek NJ e ( i) k)d , D — E d/ .
Ihen, 5 Satisﬁes

5,5
511 >0, ZSkIN s

s=sfc, ¢=n.
o Let Tj;. = cl?™ie” 127T24 §;j then (SL(2,Z) modular representation)
S2— (ST =C.

L1 Uk . Ami(s;—s L . H
o Let v = 1y Yo N djdie®™ (57%). Then v; = 0/if i # 7, and
vi==+1if i =1i. Rowell-Stong-Wang arXiv:0712.1377
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241D bosonic topo. orders (up to Eg-states) via (N, s;, ¢

Rowell-Stong-Wang arXiv:0712.1377; Wen arXiv:1506.05768

n inlam /n«L')\
NCB dy, do, - 51,52, ¢ wave func. NCB dy, do, - S1,50, " wave func.
LR 0
28 1,1 0, ! [z —z)? | 2E 1,1 0,-1 Tz — %)
2B 11,4 0, 2 Fibonacci TO || 28, | 1,¢3 0,—2
¥ 11,1 01,1 (221) double-layer 35 1,1,1 0,-1,-1
3%, |1.6.G 0,-7.% 3%, | LG G 0.3, -%
3?2 1,1,¢ 0,1, % Ising TO 321/2 1,1,¢t 0,1,-%
333/2 L1L,G 0.3, % 5(220) Vptaffian || 32372 | L1 G 0,3,-%
1 1 5 B 1 1 5
52 | LG 0.3 15 Vi SURL | 375/ 111G 0,1, -2
1 1 7 1 1 7
37, | L1, G 0,5, g 3270 | L L, G 0,5, —1g
45*” 1,1,1,1 0,0,0, 3 (1, e, m, €) Z,-gauge 45 1,1,1,1 0,3,1,1
af 11,11 0113 [z —z)* || 48, |1,1,1,1 0,-%,-1,1
48 1,111 0,%,%,3 (220) double-layer 48 1,1,1,1 0,—1,-%,1
B 3 3 1 B 3 3 1
AR 03,31 4%y 1110 0,-3,-3,1
45 1,1,1,1 0,01, -1 double semion 4575 1,1,¢,¢ 0,—-1, 5,2
B 1 1 1 3 2 B 1 1 1 7 2
495 |1 1,G5: G 0,2, —%—"% 4195 | 11,635 63 0,235 %
B, . .
4“119/5 1,1, C§7 C% 0, _%’ 210’ _% ‘U121:3 SU(2)§ 4y € 1, C%v C317 C%C% 0, %, —%,0 Fibonacci?
1 1 1x1 2 2 1 B 1 1 1x1 2 2 1
45 | 1,63,¢3,63¢3 0,—5,—%:3 47105 | 15635 63:63G3 0, 5,5 —5
a8 . 11,88, 0,3.2,-1 Bl |L¢h ¢ 0,—-%1,-2,1
%5? 1,1,1,1,1 0}, 1, -1, -1 (23)0DL %Eb 1,1,1,1,1 0,2,2,-2 -2
5@’3 1,1,63, 61,2 0,01, -2, 1 5 1,1,64,¢,2 0,0,—3,3, 1
b ,
529 | 1,1,¢4,¢,2 0,0, 3, -3, -3 529 11,1,¢3,¢4,2 0,0,—3, 3, -3
B 1 2 3 4 2 2 1 5 B 1 2 3 4 2 2 1 5
513/11 17%%7(3,694 077%717?11»?137ﬁ 57315/11 1,437%2»(37(94 O,Fylfﬁl,*ﬁ;ﬁ
5 1,¢¢,¢2.¢%,. ¢t |0 -1, -1,12 58 o7 | 1 ¢ ed ity o7l 1 =1 2
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Remote detectability: why those (N?,s;, ¢) are realizable

e The list cover all the 2+1D bosonic topological orders.
But the list might contain fake entries that are not
realizable.

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and f



Remote detectability: why those (N?,s;, ¢) are realizable

e The list cover all the 2+1D bosonic topological orders.
But the list might contain fake entries that are not
realizable. Schoutens-Wen arXiv:1508.01111 used
simple current algebra to construct many-body wave
functions for all the entries in the list.

All the topological order in the table can
be realized in multilayer FQH systems
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Remote detectability: why those (N, s;, c) are realizable

e The list cover all the 2+1D bosonic topological orders.
But the list might contain fake entries that are not
realizable. Schoutens-Wen arXiv:1508.01111 used
simple current algebra to construct many-body wave
functions for all the entries in the list.

All the topological order in the table can
be realized in multilayer FQH systems

»

P8

Levin arXiv:1301.7355, Kong-Wen arXiv:1405.5858
e Remote detectable = Realizable (anomaly-free):
Every non-trivial topo. excitation / can be remotely detected by at
least one other topo. excitation j via the non-zero mutual braiding
QEJ-k) 40— Si=3>, N,’;je_m'(fk) dy is unitary (one of conditions)
— the topological order is realizable in the same dimension.
e The centralizer of BFC C = the set of particles with trivial mutual
statistics respecting to all others: C5" = {/ | Hl(.jk) =0, Vj, k}.
Remote detectable <» C5" = {1} <> Realizable (anomaly-free)
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Bosonic/fermionic topo. orders with /without symmetry

e “Topological” excitations with symmetry: Two particles are
equivalent iff they are connected by symmetric local operators.
Equivalent classes = topological types with symmetry

e Example: for G = SO(3):

- Trivial “topogical” types: spin-0. (centralizer=SFC)

- Non-trivial “topogical” types: spin-1, spin-2, - - - ~ irreducible reps.
(Cannot be created by local symmetric operators, but can be
created by local asymmetric operators.)

- Really non-trivial “topogical” types. (Other types)
(Cannot created by local symmetric operators, nor by local
asymmetric operators.)

e How to classify topological orders with symmetry?

How to classify fermionic topo. orders with/without symmetry?
Consider braided fusion category whose centralizer is non-trivial.
centralizer = symmetric fusion catgeory (SFC) = symmetry
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SFC = Exc. in bosonic/fermionic product states

with symmetry = a categorical description of symmetry

Symmetric fusion catgeories (SFC):

e For bosonic product states, 1) Particle are bosonic with trivial
mutual statistics (not remotely detectable);
2) Particles are labeled by irrep. R;.
Topological types = irreducible representation R; € Rep(G)
The fusion and the trivial braiding of R; define a spectial UBFC,
called symmetric fusion category (SFC) and denoted as Rep(G)
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SFC = Exc. in bosonic/fermionic product states

with symmetry = a categorical description of symmetry

Symmetric fusion catgeories (SFC):

e For bosonic product states, 1) Particle are bosonic with trivial

mutual statistics (not remotely detectable);

2) Particles are labeled by irrep. R;.

Topological types = irreducible representation R; € Rep(G)

The fusion and the trivial braiding of R; define a spectial UBFC,
called symmetric fusion category (SFC) and denoted as Rep(G)

e For fermionic product states, 1) Some particles are bosonic, and
others are fermionic, and all have trivial mutual statistics
2) Particles are labeled by irrep. R;. The full symm. group G*
contain fermion-number-parity 7 = (—)Nf e G*.

- Topological types = irreducible representation R; (ex. spin-s)
The particle R; has a Fermi statistics if f # 1in R;  (ex. spin-1)
The particle R; has a Bose statistics if f = 1in R} (ex. spin-1)

- The fusion and bosonic/fermionic braiding of R; — SFC = sRep(G')
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Classifcation of bosonic/fermionic topo. orders with symm.

Classify 2+1D topological orders using unitary braided fusion (BF)
categories (particles with fusion and braiding) that contain a SFC:
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Classifcation of bosonic/fermionic topo. orders with symm.

Classify 2+1D topological orders using unitary braided fusion (BF)
categories (particles with fusion and braiding) that contain a SFC:

e Bosonic topo. orders: trivial particle 1 is the only particle
that has trivial mutual statistics with all other particles.
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Classifcation of bosonic/fermionic topo. orders with symm.

Classify 2+1D topological orders using unitary braided fusion (BF)
categories (particles with fusion and braiding) that contain a SFC:

e Bosonic topo. orders: trivial particle 1 is the only particle
that has trivial mutual statistics with all other particles.

e Fermionic topo. orders: (1,f) = sRep(Z}) are the only
particles that have trivial mutual statistics with all others

— All abelian fermionic topogical orders
= bosonic topogical orders XI fermion product state
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Classifcation of bosonic/fermionic topo. orders with symm.

Classify 2+1D topological orders using unitary braided fusion (BF)
categories (particles with fusion and braiding) that contain a SFC:

e Bosonic topo. orders: trivial particle 1 is the only particle
that has trivial mutual statistics with all other particles.

e Fermionic topo. orders: (1,f) = sRep(Z}) are the only
particles that have trivial mutual statistics with all others

— All abelian fermionic topogical orders
= bosonic topogical orders XI fermion product state

e Bosonic topo. orders with symm. G: Rep(G) are the only
particles that has trivial mutual statistics with all particles.
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Classifcation of bosonic/fermionic topo. orders with symm.

Classify 2+1D topological orders using unitary braided fusion (BF)
categories (particles with fusion and braiding) that contain a SFC:

e Bosonic topo. orders: trivial particle 1 is the only particle
that has trivial mutual statistics with all other particles.

e Fermionic topo. orders: (1,f) = sRep(Z}) are the only
particles that have trivial mutual statistics with all others

— All abelian fermionic topogical orders
= bosonic topogical orders XI fermion product state

e Bosonic topo. orders with symm. G: Rep(G) are the only
particles that has trivial mutual statistics with all particles.

e Fermionic topo. orders with symm.: sRep(G’) are the only
particles that have trivial mutual statistics with all particles.
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UMTC ¢ and topological phases with symmetry/fermion

e To describe topological phases with symmetry/fermion, we need
- a unitary BFC C
- that contains a SFC €&,
- such that the particles (objects) in £ are transparent
- and there is no other transparent particles (objects).
— Unitary non-degenerate braided fusion category over a
SFC (UMTC ).
Using the notion of centralizer: C5*" = &, £5" = C.
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UMTC ¢ and topological phases with symmetry/fermion

e To describe topological phases with symmetry/fermion, we need
- a unitary BFC C

- that contains a SFC €&,

- such that the particles (objects) in £ are transparent

- and there is no other transparent particles (objects).

— Unitary non-degenerate braided fusion category over a
SFC (UMTC ).

Using the notion of centralizer: C5*" = &, £5" = C.

Can UMTC¢'s classify topological phases with symmetry/fermion?
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UMTC ¢ and topological phases with symmetry/fermion

e To describe topological phases with symmetry/fermion, we need
- a unitary BFC C
- that contains a SFC €&,
- such that the particles (objects) in £ are transparent
- and there is no other transparent particles (objects).
— Unitary non-degenerate braided fusion category over a
SFC (UMTC ).
Using the notion of centralizer: C5*" = &, £5" = C.

Can UMTC¢'s classify topological phases with symmetry/fermion?
Answer: No.

We also require the symmetry to be gaugable: the UMTC ¢ must
have modular extension.
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Why do we require modular extensions?

e The symmetry G in a physical system is always twistable (on-site)
ie we can always put the physical

system on any 2D manifold with
any flat G-connection, still with

consistent braiding and fusion.

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and f



Why do we require modular extensions?

e The symmetry G in a physical system is always twistable (on-site)
ie we can always put the physical

system on any 2D manifold with x
any flat G-connection, still with @

consistent braiding and fusion.
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Why do we require modular extensions?

e The symmetry G in a physical system is always twistable (on-site)
ie we can always put the physical
system on any 2D manifold with
any flat G-connection, still with
consistent braiding and fusion.

e We can add extra particles that braid non-trivially with the
particles in SFC £, and make the UMTC ¢ C into a unitary
non-degenerate braided fusion category (ie an UMTC) M.

M is called the modular extension of C:

E=C—= M, DiDZ = D3,
In M, the set of particles that have trivial double-braiding with the
particles in £ is given by C. Using centralizer: C§' = &, £57" = C.

e Only UMTC ¢’s C that have modular extensions are
realizable by physical 2D bulk systems (maybe with
symmetry and/or fermion).
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2+1D fermionic topo. orders (up to p + ip) via (NU, Si, C)

Classified by UMTC /¢’s with & = {1,f}. : @
Lan-Kong-Wen arXiv:1507.04673 =%

©
NF(Alazz/lz,,) D? |di,dy, - 1,92, COmme"tA “
0(%2) 2 1,1 0,% Fo :sRep(ZZ) fermion product state
F(O 11 1 B0 _ (22
45 () 4 una 0,3,1,-1 Fom28(3) k=(39)
1.1
F (¢3¢ 1 41 11 2
4/5(3258) | 72360 1,1, G5, G5 0,3, 15, — 2 Fo &2_14/5(3/20)
aF (2 )| 7,360 | 1,1, ¢, ¢ 0,1, -1,2 FoR2B ( )
—1/5% _3/20 . » 463563 271075 0 14/5 3/20
F Cg- 2 ~2 11 1
41/4(1 ) 13.656 | 1,1,¢¢,66 =1+V2 [ 0,5, %, —% F(A;.6)
133 1
65(1/24) 6 1,1,1,1,1,1 0,4,¢,-1,1,-1 J—‘0®352(1/4) K = (3), Wy 3(z)
1
Fe € 1 11 11 B 1 _
6o _124) 6 1,1,1,1,1,1 015!767§v761§ ‘7?0&32(,1/4)}(*(*3) Wf/g(zi)
Fo ¢ 11 B (G
60(1/616) 8 1111111,C27C2:\/§ Oﬁ%aoa%v%ﬁ’—%ﬁ ]:0®31/2(1/616),fu(1)2/22
F Cg 1 .1 1 1 107 Cé
60(_1%6) 8 1,1,1,1,6,6 0,5,0,3,— 7> 1 -7:0@3,1/2( 1%16)
F(1.0823 1.1 0.765:
60(3/16) 8 1,1,1,1,4, 6 01%,0,%71%7—1% -7'-0&33/2( 3/16)
1.0823 0.7653
65(,3{16) 8 |1,1,1,1,¢3,¢} 0,3,0%,-3.& fo®353/2(,3/m)
2
F ¢3¢ 1 .1 .2 2 1 5 1 3 2
61/7(72 ?4) 18.501 1a15457C5v<57C5 O,f,ﬁ,77,7ﬁ,7 ~7:0®38/7( 5/14)
¢ 1 41 2 2 1 5 1 3 2
6,1/7(52/14?) 18.591 1:1:<5’C51C5,§5 0;5;*ﬁ’7vﬁ:*7 -7'-0®3 3/7(5/14)
ol
66( 2119, | 44788 | 1,1, ¢k, B¢l ¢y 0,33, -3.0.4 Flag,—10)
ocl
65 ( °lo) 44.784 | 1,1, 6o, ¢y, Clo, o | 0,3, — 3, £.0, 3 F(A;,10
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2+1D bosonic topo. orders with Z, symmetry

Classified by UMTC /¢'s

with centralizer £ = Rep(2).

N D? |di,da,--- | 51,5, -+ | comment
2521 2 1,1 0,0 £ = Rep(2)
362 6 |1,1,2 0,0, |k- G ;)
33212 6 [1,1,2 0,02 |k-= (j :;)
46 4 |1,1,1,1 0,01, 1 | Wil @ Rep(2,)
462 4 |1,1,1,1 (0,011 | W R Rep(2,)
45211 4 111,11 |0,0,3,3 | v ) K Rep(Z2)
45211 4 |L,1,1,1 (0,033 |WIPEY R Rep(22)
4?/5 72360 1,1,¢},¢1{0,0,2, 2 | 28,  ®Rep(2)
45214/5 7.2360 | 1,1,¢3,¢3 (0,0, 3,3 | 25, )5 M Rep(22)
48 | 10 [1,1,22 (0,018 k= G 3
1 2 1 0 O
452 10 [1,1,22 (00,23 |k=|} 2 9!
0 1 1 2

A
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2+1D bosonic topo. orders with Z, symmetry (conitnu

Nlel D? di,dy, - S1,80, " comment
T
282 2 [1,1 0,0 & = Rep(2)
T
5¢ 8 |1,1,1,1,2 |0,0,1,1,0|SB:4B F:Z, x 2
1
52 | 8 |1,1,1,1,2 [0,0,1,11|SB4EF:zx 2,
a 111 4B E.
5§ 8 |1,1,1,1,2 [0,0,1,1,1|SB:4B F:zo x 2
11 3 B E.-
552 8 [1,1,1,1,2 |0,0,1,1,3|5B:45 F'zzzfzﬁ 1
G 111 . 1 2 0 o0
5,2 8 |L,1,1,1,2 [0,0,5,5,5|SB4Z% (1 & 5
1 0 0 2
a 115 B
5%, 8 |1,1,1,1,2 |0,0,1,1,5|5B:48, F:Z, x 2
1
5%, 8 [1,1,1,1,2 |0,0,1,1,3|SB:4B, F.zo x 2,
1
52, 8 [1,1,1,1,2 |0,0,1,1,7|5B:4B F:Z, x 2
1
552 14 |1,1,2,2,2 (0,012 4 |sB:75
1
5%, | 14 [1,1,2,2,2 |0,0,2,2,8|SB:78,
1
5f§/5 26.180 | 1,1,¢2,¢2,¢4 0,0, 2,1, 3 SB:4132/5
3] 2 2 4 4 4 2 4B
52,5 26180 | 1,1,¢3, 3,4 (0,0, %, 2,2 | SB4E .

SB: 4(')3 — topo. order after symmetry breaking is Z»>-gauge theory.
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2+1D bosonic topo. orders with Z, symmetry (conitnu

The Z> symmetry is anomalous, since the following BF categories
have no modular extensions:

Nle‘ D2 | dy,do,--- | 51,50, - comment

2521 2 |1,1 0,0 £ = Rep(2,)

5521 8 (1,1,1,1,2(0,0,1,1,0 | SB:48 F:Z, anom.
52 | 8 |1,1,1,1,2 0,0,1,1,1|5B:48 F:Z, anom.
5¢ | 8 [1,1,1,1,2]0,0,3, 1,1 [SB:4B F:Z, anom.
59 | 8 [1,1,1,1,2(0,0,1, 1,2 [SB:4B F:Z, anom.
5? 8 |1,1,1,1,2]0,0,3,1,1 | SB:45 F:Z anom.
54_%3 8 (1,1,1,1,2|0,0,1,1, 2| SB:45, F:Z, anom.
5%, | 8 [1,1,1,1,2 0,0,1,%,3 |SB:4B, F:Z, anom.
52, | 8 |1,1,1,1,2 0,0,3,%,%|SB:48, F:Z, anom.
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Z>-gauge theory with Z, symmetry

The first rows of last two tables are identical.
They have identical d; but different N/

They are Z>-gauge theory 1, e, m, ¢, with Z> symmetry: e <> m

Fusion rules: 7, x Z» Zs
1o 11 € € edm lo 11 €10 €302 edm
s |0 0 3 1 0 s |0 0 3 3 0
d |1 11 2 |1 1 1 1 2
T
521 2 3 4 5 5901 2 3 4 5
11 2 3 4 5 1|1 2 3 4 5
212 1 4 3 5 2|2 1 4 3 5
313 4 1 2 5 313 4 2 1 5
414 3 21 5 414 3 1 2 5
5|5 5 5 5 13029304 5|5 5 5§ 5 1020304
Anomaly-free Anomalous

- F: Z» x Z> means that the four d; = 1 particles
have a fusion described by Z> x Z5.
- F: Z4 means that the four d; = 1 particles

have a fusion described by Zy:

Xiao-Gang Wen, Boulder summer school
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Fermionic topo. orders with mod-4 fermion number

conservation: symmetry G = Zf

Classified by UMTC ¢’s with centralizer £ = sRep(Z]):

Nc‘el D? di,do, - S1,80, "+ comment
43 4 [1,1,1,1 0,0,1,1 € = sRep(Z))
63 12 [1,1,1,1,2,2 0,0,%,1,1,2 Kzf(é f)
0 1115 _ (1 2
6 12 [1,1,1,1,2,2 0,0,1,1,1,8 K_<2 1)
0 1 1 1 1 3 3 B id
88 8 1,1,1,1,1,1,1,1 0101?7?’§»§1§7§ 2E1|Z|SR9P(%4)
080 8 1,1,1,1,1,11,11,11 ) 0,0,?,?,11,1,13,313 215®5Rep(24) .
8,014/5 14.472 1 1,1,1,1, Ciy €3,¢3,¢310,0,5,5, 75355 5 2514/5 X SReP(sz;)
85 | 14472|1,1,1,1,¢3,¢3,¢3,63 (0,05, 3. 2. 2. %5 1% 214/5®slfep(z4)
85 20 |1,1,1,1,2,2,2,2 0,03,3, 4.2, 3 SB:10{§(<021)
0 111 3 7 4 10F( S
89 20 |1,1,1,1,2,2,2,2 0,0,3,3: %15 157 & SB:10g (2,)
04 11 11 1 .qF 8
105(¢) 16 |1,1,1,1,1,1,1,1,2,2 |1 0,0, 3, 3,0,0,5, 5,0, 5 SB,SO(\O[)
4 8
100(¢3) 16 (1,1,1,1,1,1,1,1,2,2 [ 0,0, 1,3,0,0, 1, 3,0, 3 | sB:8f ()
2
103(1‘@) 16 [1,1,1,1,1,1,1,1,2,2 [0,0,1,1,0,0,4, 1, 1,5 | sB:sf(,75)
0, V8 11 1115 oF( 2
100(168) 6 [1,1,1,1,1,1,1,1,2,2 [0,0,3,4,0,0,4,1, 1,8 SBABO(é/S)
1o§(8) 16 [1,1,1,1,1,1,1,1,2,2 | 0,0, 3, },0,0, 1,1, 13 SB:S(E(S)
11 111 3 .
100(% 16 |1,1,1,1,1,1,1,1,2,2 | 0,0,%,3,0,0, 3, 1,1, 3 saso(o)2
109( Yjg) | 16 |1,1,1,1,1,1,1,1,2,2 | 0,0,3,3,0,0, 5,3, %, Z | sB:8f( _{/5)
0 V8 11 113 7 oF( 2
109( %) | 16 |1,1,1,1,1,1,1,1,2,2 | 0,0,%,1,0,0,3, 1, 3,7 | sBi8f(_2;)
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Distinct topo. phases with identical set of bulk excitations

In the presence of symmetry/fermion, there are distinct topological
phases, such as SPT phases with the same symmetry, that have
identical bulk excitations. But they have different edge structures.

&1 topological order  SASY-LRE 1|SY—LRE2 | SET orders

(non—deg. UBF category) — intrinsic topo. order — (UBF ;zll:t(e:gory
U351 ‘ LLI3E 2 sB-LRE1|sB-LRE) )
symmetry breaking
SB-SRE 1 ‘ SB=SRE2 " (group theory)
SKRE SY-SRE 1 ‘ SY-SRE2 SPT orderes
(group cohomology
No symmetry 8 With symmetry 8§, theory)

e A UMTC ¢ C only describes the bulk excitations. But it can have
several different modular extensions. — Distinct topological phases
with identical set of bulk excitations, but different edge structures.
The main conjecture: Lan-Kong-Wen arXiv:1602.05946

- The triple (Rep(G) < C <— M) classifies 241D bosonic
topological phase with symmetry G.

- The triple (sRep(G) < C = M) classifies 241D fermionic
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From physical picture to mathematical theorem

e Stacking two topological phases a, b with symmetry G give rise to

a third topological phase
¢ = aWgiack b with c—TO a=TO
symmetry G b-TO

- For a fixed SFC &, there exists a “tensor product” X, under
which the triple (£ — C — M) form a commutative monoid

(€ —C1 = Mp)Kg (€ = Cor — M) = (€ — C3 — M3)

- K¢ is different from the Deligne tensor product X:
(5%61‘—)M1)|X(5‘—)C2‘—>M2)
= (5&5%& &Cz ‘—>M1®M2)

which has a symmetry G x G. Need to be reduced to G (or &).

- Lan-Kong-Wen arXiv:1602.05936 has constructed X¢ using
condensable algebra L = $,ccaX a:
E=(EREN,, C=(C1REG), Msz=(MiEM,),
eg, M is the category of local Lc-modules in M X M,
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From physical picture to mathematical theorem

e {(£ < C < M)} describes topological phases with symmetry £.
Its subset {(£ < £ < M)} describes symmetry protected trivial
(SPT) phases, which forms an abelian group under the stacking.

- For a fixed SFC &, the modular extensions of £ form an
abelian group. X¢ is the group product, the Drinfeld center Z(&)
is the identity, and the “complex conjugate” is the inverse.

- A special case: {(Rep(G) — M)} = H3*(G,R/Z)
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From physical picture to mathematical theorem

e {(£ < C < M)} describes topological phases with symmetry £.
Its subset {(£ < £ < M)} describes symmetry protected trivial
(SPT) phases, which forms an abelian group under the stacking.

- For a fixed SFC &, the modular extensions of £ form an
abelian group. X¢ is the group product, the Drinfeld center Z(&)
is the identity, and the “complex conjugate” is the inverse.

- A special case: {(Rep(G) — M)} = H3*(G,R/Z)

- The modular extensions of Rep(G), (Rep(G) — M), classifies
241D bosonic SPT phases with symmetry G.

- The ¢ = 0 modular extensions of sRep(G’), (sRep(G’) — M),
classifies 241D fermionic SPT phases with symmetry G*.
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From physical picture to mathematical theorem

e {(£ < C < M)} describes topological phases with symmetry £.
Its subset {(£ < £ < M)} describes symmetry protected trivial
(SPT) phases, which forms an abelian group under the stacking.

- For a fixed SFC &, the modular extensions of £ form an
abelian group. X¢ is the group product, the Drinfeld center Z(&)
is the identity, and the “complex conjugate” is the inverse.

- A special case: {(Rep(G) — M)} = H3*(G,R/Z)

- The modular extensions of Rep(G), (Rep(G) — M), classifies
241D bosonic SPT phases with symmetry G.

- The ¢ = 0 modular extensions of sRep(G’), (sRep(G’) — M),
classifies 241D fermionic SPT phases with symmetry G*.

e There can be several topological phases that have identical bulk
excitations. They are related by stacking SPT phases.
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From physical picture to mathematical theorem

e {(£ < C < M)} describes topological phases with symmetry £.
Its subset {(£ < £ < M)} describes symmetry protected trivial
(SPT) phases, which forms an abelian group under the stacking.

- For a fixed SFC &, the modular extensions of £ form an
abelian group. X¢ is the group product, the Drinfeld center Z(&)
is the identity, and the “complex conjugate” is the inverse.

- A special case: {(Rep(G) — M)} = H3*(G,R/Z)

- The modular extensions of Rep(G), (Rep(G) — M), classifies
241D bosonic SPT phases with symmetry G.

- The ¢ = 0 modular extensions of sRep(G’), (sRep(G’) — M),
classifies 241D fermionic SPT phases with symmetry G*.

e There can be several topological phases that have identical bulk
excitations. They are related by stacking SPT phases.
- All the modular extensions of a UMTC ¢ C are generated by
Xeing with the modular extensions of &:
(E—=C = M)=(E=C— M) Re (£ =L — M)
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Bosonic 2-+1D SPT phases from modular extensio

e Z>-SPT phases:

Nie[ D? | dy,do, - | 51,5, | comment
T
22 | 2 1,1 0,0 Rep(Z>)
45 14 1,1,1,1 Jo,0, o,l% Z, gauge
4(")3 4 11,1,1,1 10,0, %, 7 | double semion

Nle‘ D? | dy,dp,-- S1,82, " comment
3% |6 1,12 0,0,0 Rep(S3)
88 [36]1,1,2,2,2,2,3,3 o,o,o,o,%,%,o,l% S3 gauge
8¢ |36(1,1,2,2,2,2,3,3 o,o,o,o,g,%,%,g

8¢ 36(1,1,2,2,2,2,3,3]0,0,0, %, 2,£,0,% | (Bs,2)

8¢ |36(1,1,2,2,2,2,3,3 o,o,o,%%,%,%é

88 [36(1,1,2,2,2,2,3,3 o,o,o,f,g,g,o,%3 (Bs, —2)
8¢ 36(1,1,2,2,2,2,3,3 o,o,o,g,g,g,%,Z
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Fermionic 2+1D SPT phases from modular extensions

e ZI-SPT phases (16 modular extensions, 1 with ¢ = 0):

Nl.el D? | di,dp, - | s1,%, -+ | comment
28 1201,1 0,1 sRep(ZJ)
45 14 ]1,1,1,1 [0,5,0,0 |2 gauge
48 14 11,111 o,i,l,l F:Z,

48 1 411,111 0%%% F:Z> x Z»
48 1 411,111 o,%,§,§ F:Z,

48 1 411,111 0’%’@’3 F:Z x 2,
48,1 4 11,1,1,1 0’§’§’§ F:Z,
48, 1 4 11,1,1,1 ng’z’z F:Z, x 2,
48,14 11,1,1,1 o,%,g,g F:Z,
3?2 4 1,1,421 o,%,% p+ipSC
3%, | 4|LLG 0,3, =

35/2 4 1,1,¢3 0,3, %

35/2 4 1,1,¢ 0,1, %

3’37/2 4 1,1,¢ 0,1, %

3'35/2 4 1,1,¢ 0,1, 4

3'33/2 4 1,1,¢ 0,1,

38, 41,1, 01,8
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Fermionic 2+1D SPT phases from modular extensions

e Z/-SPT phases (only 8 modular extensions, 1 with ¢ = 0):

Nle‘ D? | di,dp, - | 51,5, comment
T 1
49 14 ]1,1,1,1 0,0,5,5 sRep(Z))
165 [ 16 [1x 16 0,0,%,,0,0,0,0,0,0,7, 7,5, %,3,3
168 |16 |1x16 |00 L1 1 111 1°1%9"8 % 17 25 2
1 sV 555, ) 78787878 ; ; ) ) )
165 |16 |1 x 16 ooiiffiififgﬁﬁﬁﬁsf?&zf?
2 ) 7%7%7 ’ ’ 7474’4716’1g7%87i8759759 1 1
165 |16 |1x16 |0,0,1,2 3 3 LAl 3/ 3°3°2 1B B o 2
B TN 111232 %0 120,808 8083y 3 s 32 oo B
164 16 |1 x 16 0107?7?171§7§7§ag7§7§7§1§1§7§7§ 43&41
168 16 |1 x 16 00 i 1 5 5 15 I3°5°5°5°5°21 21 29 29
5 P PR YRR HNEESLR R R s o8
1672 16 |1 x 16 O0)EvéaE)@)@)@7@7?717171)17?)? 87]_‘X|271
168,116 |1x16 0,01, 1 L L B D e e 11 1 308l
—1 72227327322 32732°32°32°8782878 327 32
f .
e Z;-SPT phases: Z; class
8 - 42
NPT D? [ di,dy,-- [ s1,50, -
80 [ 8]1x8 0,2,0,7,0,7,0,%
1 1 1 1 T 1T 1T 1
64(? 64 |1 x 64 07§7oa§70757075707oa07070a0707070707070»07070»07§7§7§»§v
111°11°11°13333111111115555
%7%7§’g’§’§7§7§7§7§7§?§’2’27272727272?2’8’87878!
s 4044°4°2,4°274878°8" 8 L1
645 | 64 |1 x 64 0,3,0,3,0,3,0,4,0,0,0,0,0,0,0,0,0,0,0,0, 3, 3¢, 7, 75
3'3 3 311115 5 5 5 7 7 7 7 1111
167 16’ 167 167 4747 47 4° 167 16° 16’ 162 16’ 16’ 16’ 16’ 2’ 27 27 2"
9 0 9 9 11 11 1 11 3 3 3°3 13 13 13 13 15 15 15 15
162 162 162 162 167 167 167 162 4° 4> 4> 47 16°16° 162 16’ 16’ 16’ 16’ 16
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Fermionic 2+1D SPT phases from modular extensions

e ZI x Z,-SPT phases (128 modular extensions, 8 with ¢ = 0):

Nlel D? |dy,do,--- S1,82, " comment
8 1401,1,1,1 0,0, ;,; s,Rep(z2 x ZF)
B 1 1 A1 A1 I 1 7 9 15
90 16 1X4’C27<27<2)C2a2 00’5’5’%’173’?6’?670 3 1/2&31/2
98 |16 |1x4,¢},¢3,¢3,¢3,2(0,0,3, 3, 55, &% 1% 12,0 3B 1/2&31/2
95 |16 |1x4,(3,3,¢3,83,2(0,0,3, 3, 15 167 16+ 160 3%, &3/
B 1 1 1 +1 11 3 5 11 13
9% |16|1x4,6,0,6,6:2(|0,0,3,5,35 35 16 16 ° 38 3/2&3/
165 |16 |1 x 16 0,0,%,% ooooooo,o,%,%,%,% 48 =4
165 |16 |1 x 16 °’°§50000§’§’§’§’57§’§’% 4§1®4f
168 | 16 |1 x 16 0,0,g,%,o,o,o,o,?ﬂ?,ﬂf,f,ﬂg 48 W48
165 | 16 |1 x 16 070,57%70707070717ZvZ?Z?Z7Z7ZVZ 88, 258
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Bosonic 2+1D Z,-SET phases from modular extensions

e Z>,-SET phases (Z>-gauge with Z> symmetry e <> m)
4 modular extensions, 2 distinct phases:

Nie‘ D2 | di,db, - 51,8, comment
5521 8 |1x4,2 0,01, 10

9 |16 |1xa2¢cixalo0d 408 & & & (3%, ,K37,
95 |16 |1x42.¢x4003.3.03. 8. 8. 535,835, ,
9 |16 [1xa2¢cixalo0d 404 B & & [37,835, ,
95 |16 |1x42.¢x400.3. 308 5 5 1[35,,K35,

e Z»,-SET phases (Z>-gauge with Z, symmetry e <> m,
plus fermion condensation to v = 1 IQH state)
4 modular extensions, 3 distinct phases:

Nlel D2 | di, b, - S1, 80, - comment
52 | 8 [1x4,2 003,11

9F [16|1xa2cdx4al00..3. 5. & & % 5% 35/2@352
of |16 |1xa2cix4]00 b B85 5(3%,,835,
9% [16 [1x4a2,cdxaf001, 11,8, %, L 1 3’31/2®3’§/2
of |16 |1xa2cix4[00 .88 % 8 8 535,835,
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Zoo of quantum phases of matter
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