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Local quantum systems and gapped quantum systems

• A local quantum system is described by (VN ,HN)
VN : a Hilbert space with a tensor structure VN = ⊗N

i=1Vi
HN : a local Hamiltonian acting on VN :
HN =

∑
Ôij

ε −> 0

∆

subspace
ground−state −>finite gap  

- A ground state is not a single state in VN , but a subspace
Ψgrnd space ⊂ VN .

• A gapped quantum system (a concept for N →∞ limit):
{(VN1 ,HN1); (VN2 ,HN2); (VN3 ,HN3); · · · } with gapped spectrum.

- A gapped quantum system is not a single Hamiltonian, but a
sequence of Hamiltonian with larger and larger sizes.
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A gapped (ie short-range correlated) quantum phase

• A gapped state is a sequence of ground subspaces: ΨN1 ,ΨN2 , · · ·

• A gapped quantum phase is an equivalent class of local unitary
(LU) transformation of gapped states

|Ψ(1)〉 = P
(

e− iT
∫ 1

0 dg H(g)
)
|Ψ(0)〉

= |Ψ(0)〉

where H(g) =
∑

i Oi is local.
Hastings-Wen cond-mat/0503554; Bravyi-Hastings-Michalakis arXiv:1001.0344

Chen-Gu-Wen arXiv:1004.3835

ΨN1 ,ΨN2 ,ΨN3 ,ΨN4 , · · ·
Ψ′N1

,Ψ′N2
,Ψ′N3

,Ψ′N4
, · · · LU LU

’ ’

ψ
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ψ

N
ψ

N
ψ

N1 2

2
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’
N

ψ

N
ψ

3

3

LU

’
N

ψ

N
ψ

4

4

• OK definition with translation symmetry, since there is natural way
Ni → Ni+1. Not OK without translation symmetry.
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A gapped (short-range correlated) quantum liquid phase

• A gapped quantum liquid phase:
ΨN1 ,ΨN2 ,ΨN3 ,ΨN4 , · · ·
Ψ′N1

,Ψ′N2
,Ψ′N3

,Ψ′N4
, · · ·

Nk+1 = sNk , s ∼ 2 ’

LU LU

’
N1 N

NN1 2

2

gLU

LU

’
N

N

gLU

4

4

LU

’
N

N3

3

gLU

ψ

ψ ψ ψ

ψψψ

ψ

• ΨNi+1

LA∼ ΨNi
⊗Ψdp

Ni+1−Ni
. Generalized local unitary (gLU) trans.

where
Ψdp

N = ⊗N
i=1| ↑〉

k+1k kN NN

LULA

Zeng-Wen arXiv:1406.5090

• gLU transformations allow us to take the thermal dynamical limit
(Nk →∞ limit) without translation symmetry.
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Example of gapped quantum liquid: topological order

For gapped systems with no symmetry:
• According to Landau theory, no symm. to break
→ all systems belong to one trivial phase

• Thinking about entanglement: there are Chen-Gu-Wen arXiv:1004.3835

- long range entangled (LRE) states

→ many phases

- short range entangled (SRE) states

→ one phase

|LRE〉 6= |product state〉 = |SRE〉

local unitary
transformation

LRE
product

SRE
state

state

local unitary
transformation

LRE 1 LRE 2

local unitary
transformation

product
state

product
state

SRE SRE

g
1

2
g

SRE

LRE 1 LRE 2

phase

transition

topological order

• All SRE states belong to the same trivial phase

• LRE states can belong to many different phases: different
patterns of long-range entanglements defined by LU trans.

= different topological orders Wen PRB 40 7387 (89)
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Examples of gapped quantum non-liquid states

• Stacking 2+1D FQH states → gapped quantum state,
but not liquids.

- Layered ν = 1/m FQH state:
Ground state degeneracy can be
GSD = mLz ,m,m2

1−twisted 2−twistedperiodic

• Haah’s cubic code on 3D cubic lattice:

H = −
∑
cubes

(GZ + GX ),

Jeongwan Haah, Phys. Rev. A 83, 042330 (2011) arXiv:1101.1962
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More exotic long-range entanglement

• Topo. order = gapped quantum liquid Zeng-Wen14; Swingle-McGreevy14

→ gauge theory
→ Fermi statistics
→ quantum field theory
→ MERA rep. Vidal 06

k+1k kN NN

LULA

• s-source entanglement structure Swingle-McGreevy 14

- Quantum liquid has s = 1
- 3D layered FQH: s = 2
- d+1D Fermi liquid:s = 2d

2
- no MERA rep.

k+1k kN N

LULA

2 N

• Haah’s cubic code Haah 11

- no MERA rep.
- No quantum field

theory description

kk k+1

s=2

LULA

N 2 N N

Many-body entanglement goes beyond quantum field theory.
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Bosonic/fermionic gapped quantum liquid phases

Both local bosonic and fermionic systems have the following local
property: Vtot = ⊗iVi Gu-Wang-Wen arXiv:1010.1517

H ′ ∼ UHU†, U =

• Bosonic liquid phases are defined by gLU trans. U =
∏

Uijk :
(1) [Uijk ,Ui ′j ′k ′ ] = 0

(2) Uijk acts within Vi ⊗ Vj ⊗ Vk . e.g. Uijk = e i(bibjb
†
k+h.c.)

• Fermionic liquid phases are defined by gLU trans. U f =
∏

U f
ijk :

(1) [U f
ijk ,U

f
i ′j ′k ′ ] = 0, but U f

ijk may not act within Vi ⊗ Vj ⊗ Vk .

e.g. U f
ijk = e i(tijcicj+h.c.), where ci = σxi

∏
j<i σ

z
j

Gapped quantum liquids for bosons and fermions have very
different mathematical structures
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Examples of topological orders (before 2000)

• Ψ(z1, z2, · · · ) = 1 → equal amplitude superposition of all particle
configurations → A product state = superfluid state

|Ψ〉 =
∑

all conf.

∣∣∣ 〉
= ⊗z(|0〉z + |1〉z + · · · )

• Examples: I) scamble the phases Laughlin 83

Ψ
ν=1/2
FQH (z1, z2 · · · ) =

[∏
(zi − zj)e

− 1
4

∑
|zi |2
]2

= [χ1(zi )]2,

• II) Put ν = 1 state of spin-up(down) electrons χ1(z↑i )χ1(z↓i ) on
lattice, with one electron per site → Chiral spin liquid

Kalmeyer-Laughlin PRL 59 2095 (87), Wen-Wilczek-Zee PRB 39 11413 (89)

• III) The square of ν = 2 IHQ wavefunction [χ2(zi )]2 → bosonic
ν = 1 SU(2)f2 non-abelian state. χ1[χ2]2 fermionnic ν = 1

2 state
Wen PRL 66 802 (91). CFT construction: Moore-Read NPB 360 362 (91)

• IV) Put an electrons superconducting state on lattice, with one
electron per site → Z2 topological order → Z2 spin liquid

Read-Sachdev PRL 66 1773 (91), Wen PRB 44 2664 (91)
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Why Laughlin states have topological order?
K -matrix states (generalize Laughlin states):

ΨK =
∏
i<j ;I

(z I
i − z I

j )KII
∏

i ,j ;I<J

(z I
i − zJ

j )KIJ e−
1
4

∑
|z Ii |

2

• Quasiparticle excitations are labeled by integer vectors m

Ψξ =
∏
i ;I

(ξ − z I
i )mI ΨK ,

L =
KIJ

4π
aIµ∂νaJλε

µνλ + mI δ(ξ − x)aI0

- If m is the I th
0 column of K → Ψξ discribe a missing hole in the I th

0

layer, which is a local excitation (not fractionalized).
- Topological excitation is labeled by m mod columns of K .

Number of topo. exc. = det(K ).

Statistics: θm = πmTK−1m.

K -matrix classification of abelian topological order
- Even K -matrix (all KII are even) classify all 2+1D Abelian

topological orders (in a many-to-one way) in local bosonic systems.
- Odd K -matrix (one of the KII is odd) classify all 2+1D Abelian

topological orders (in a many-to-one way) in local fermionic
systems. Wen-Zee PRB 46 2290 (92)
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Why is the state [χk(zi )]2

= χk(z
(1)
i )χk(z

(2)
i )|

z
(1)
i =z

(2)
i

a non-Abelian QH state?

where χk(z1, ..., zN) is the IQH wave function of k filled Landau
levels.

- What kind of non-Abelian state?
- What is its effective theory

and edge excitations?

Projective construction:
Split an eletron into partons
and glue them back together
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Projective construction: Wen PRL 66 802 (91); cond-mat/9811111

Φ(z1, ..., zN) = [χk(z1, ..., zN)]n = P[χk(z
(1)
1 , ...)χk(z

(2)
1 , ...) · · · ]

electron → n-partons, ath-kind partons z
(a)
i form ν = k IQH χk

• Effective theory of independent partons

H =
1

2m
ψ†I (∂ − iA)2ψI , I = 1, · · · , n

• Many-body wave function Φ(zi ) = 〈0|
∏
ψe(zi )|χk · · ·χk〉

The electron operator ψe = ψ1 · · ·ψn is SU(n) singlet,
if ψI form an fundamental representation of SU(n).
• Introduce SU(n) gauge field to glue partons back to electrons:

H =
1

2m
ψ†I (∂ − iAδIJ − iaIJ)2ψJ

• Effective theory is obtained by integrating out the gapped parton
fields:

L =
k

4π
Tr(aµ∂νaλ +

2

3
aµaνaλ)εµνλ

SU(n)fk CS theory. (Level k = 1 SU(n)fk CS theory is abelian.)
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Quasiparticle excitations in [χk(zi )]2 = χk(z↑i )χk(z↓i )|z↑
i =z↓

i

Consider the [χk(zi )]2 state: SU(2)fk Chern-Simons theory

• A charge q = 1 hole can be splited into two → two charge
q = 1/2 quasiparticles.

a hole q=1, s=0 q=1/2, s=1/2 q=1/2, s=1/2

• The number of four-quasiparticle states: project to SU(2) singlet.
1
2 ⊗

1
2 ⊗

1
2 ⊗

1
2 = (0⊕ 1)⊗ (0⊕ 1) = 0⊕ 1⊕ 1⊕ (0⊕ 1⊕ 2)

But SU(2)fk state has
no quasiparticle with spin s > k

2

q=1, s=1

Level-k fusion: s1 ⊗ s2 = |s1 − s2| ⊕ · · · ⊕min(s1 + s2, k − s1 − s2)

- Level-k = 1: ( 1
2 ⊗

1
2 )⊗ ( 1

2 ⊗
1
2 ) = (0)⊗ (0) = 0

- Level-k = 2: 1
2 ⊗

1
2 ⊗

1
2 ⊗

1
2 = (0⊕ 1)⊗ (0⊕ 1) = 0⊕ 1⊕ 1⊕ (0)
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i =z↓

i

Consider the [χk(zi )]2 state: SU(2)fk Chern-Simons theory

• A charge q = 1 hole can be splited into two → two charge
q = 1/2 quasiparticles.

a hole q=1, s=0 q=1/2, s=1/2 q=1/2, s=1/2

• The number of four-quasiparticle states: project to SU(2) singlet.
1
2 ⊗

1
2 ⊗

1
2 ⊗

1
2 = (0⊕ 1)⊗ (0⊕ 1) = 0⊕ 1⊕ 1⊕ (0⊕ 1⊕ 2)

But SU(2)fk state has
no quasiparticle with spin s > k

2

q=1, s=1

Level-k fusion: s1 ⊗ s2 = |s1 − s2| ⊕ · · · ⊕min(s1 + s2, k − s1 − s2)

- Level-k = 1: ( 1
2 ⊗

1
2 )⊗ ( 1

2 ⊗
1
2 ) = (0)⊗ (0) = 0

- Level-k = 2: 1
2 ⊗

1
2 ⊗

1
2 ⊗

1
2 = (0⊕ 1)⊗ (0⊕ 1) = 0⊕ 1⊕ 1⊕ (0)
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Edge excitations in [χk(zi )]n state: U(1)× SU(k)n CFT

• Edge state: Independent partons → filled Landau levels

0 2 31 ... ...

bulk excitation
edge excitation

mr

k

m

E

µ

ω c

L = ψ†αa(∂t − v∂x)ψαa,

α = 1, · · · , n,
a = 1, · · · , k

• Excitations are generated by (a, a† generate exc. in an oscillator)

U(1) : J = ψ†αaψαa, → U(1) Kac-Moody algebra CFT

SU(k) : Jm = ψ†αaTm
abψαb, → SU(k)n Kac-Moody algebra CFT

SU(n) : j l = ψ†αaS l
αβψβa, → SU(n)k Kac-Moody algebra CFT

• Glue partons back to electrons = remove the SU(n) excitations.
• Edge excitations are generated by

U(1) : J = ψ†αaψαa,

SU(k) : Jm = ψ†αaTm
abψαb

Edge CFT: U(1)× SU(k)n Kac-Moody algebra c = 1 + n(k2−1)
n+k .

• Bulk effective theory SU(n)fk CS theory
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Another example S[
∏

(zi − zj)
2
∏

(wi − wj)
2]

• Consider with two partons ψ1, ψ2, each fills the first Landau level.
→ ν = 1/2 Laughlin state

∏
(zi − zj)

2 = 〈0|
∏
ψ1(zi )ψ2(zi )|χ1χ1〉

• Now start with four partons ψ1, ψ2, ψ3, ψ4, each fills the first
Landau level:∏

(zi − zj)
2
∏

(wi − wj)
2 = 〈0|

∏
ψ1(zi )ψ2(zi )

∏
ψ3(wi )ψ4(wi )|χ1χ1χ1χ1〉

• S[
∏

(zi − zj)
2
∏

(wi − wj)
2] = 〈0|

∏
ψe(Zi )|χ1χ1χ1χ1〉

where ψe(Zi ) = ψ1(Zi )ψ2(Zi ) + ψ3(Zi )ψ4(Zi ).

• Under SO(8) trans. between (Reψi , Imψi ), ψe is an SO(5) singlet

• Effective theory H = ψ†i (∂ − Aδij − aij)
2ψj → SO(5) CS theory

• Edge states: Wen cond-mat/9811111

Independent partons → 4 Dirac fermions = 8 Majorana fermions
After projection → 8-5 chiral Majorana fermions.

• S[
∏

(zi − zj)
2
∏

(wi − wj)
2] is the bosonic Pfaffian state.

ΨS(220) = S[
∏

(zi − zj)
2
∏

(wi − wj)
2] = A[ 1

z1−z2

1
z3−z4

· · · ]
∏

(zi − zj)
Moore-Read NPB 360 362 (91); Rezayi-Wen-Read arXiv:1004.2563
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How to realize non-Abelian QH states in experiments?

Wen cond-mat/9908394; Rezayi-Wen-Read arXiv:1004.2563

nnm bi-layer state with no interlayer tunneling

• (nnm) state

Φnnm =
∏

(zi − zj)
n(wi − wj)

n(zi − wi )
me−

1
4

∑
|zi |2+|wi |2

where n = odd for fermionic electron and n = even for bosonic
“electron”.

• (nnm) state ∼ (n −m, n −m, 0) state: Φnnm = χm
1 Φn−m,n−m,0

Will consider only (nn0) state.
(220) ∼ (331) state with ν = 1/2 and (330) with ν = 2/3

• Intralayer repulsion Vintra = 1, increase interlayer repulsion

inter

???

nn0 double

ChImb state

V

layer state
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Two possibilities

Interlayer-exciton = charge − 1
n quasiparticle in one layer +

charge 1
n quasihole in the other layer

• Interlayer-exciton condensation at k 6= 0

E

k

inter

layer state

V

ChImb state

nn0 double

ST/WC

• Interlayer-exciton condensation at k = 0

inter

k

E

nn0 double

ChImb state

V

layer state WC

2e Laughlin
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Why 2e-Laughlin state? – Hierarchical construction

• (nn0) is described by U(1)× U(1) CS theory

L = 1
4πaIµ∂νaJλK IJεµνλ, I , J = 1, 2, K =

(
n 0
0 n

)
• The interlayer exciton (with statistics θ = 2π/n) is described by

L = 1
4πaI∂aJK IJ + mIaIµjµ(x), m =

(
1
−1

)
;

• Exciton condensation L = (j0)2 − j2 with ∂µjµ = 0: jµ = ∂ν ãλ
2π εµνλ

L =
1

4π
aI∂aJK IJ +

1

2π
mIaI∂ã +

1

8π2χ
(B̃2 − 1

v 2
s

Ẽ
2
)

• → new FQH state:

Knew =

(
K m

mT 0

)
=

n 0 1
0 n −1
1 −1 0

 = W

2n 0 0
0 n%2 1
0 1 0

W T ∼ (2n)

K and K ′ = WKW T , W ∈ SL(κ,Z ), describe the same FQH state.

• New state is ν∗ = 1/2n Laughlin state of charge-2e electron pairs.
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Critical theory for quantum phase transition

• Start with GL theory for excitons and anti-excitons:

L = |∂µφ|2 + α|φ|2 + β|φ|4

α = 0 at the transition.
• GL-CS theory to reproduce statistics θ = 2π/n

L = |(∂ − ia1 + ia2)φ|2 + α|φ|2 + β|φ|4 +
1

4π
aI∂aJK IJ .

• CS term does not destroy the critical point of GL theory, but
changes the critical exponents
(nn0) → 2e-Laughlin is a continuous transition between two states
with the SAME symmetry

• When n = 2, critical theory is massless Dirac fermion

L = ψ̄γµ∂µψ + mψ̄ψ

m = 0 at the transition.
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Turn on interlayer tunneling

Effective theory near transition

L = |(∂ − ia1 + ia2)φ|2 + α|φ|2 + β|φ|4 + (tφnM̂ + h.c) +
1

4π
aI∂aJK IJ .

L = ψ̄γµ∂µψ + mψ̄ψ + (tψTψ + h.c.), for n = 2

• When n = 2, the tψTψ term split the massless Dirac critical
point into two massless Majorana critical points.

interV

S(330) state

S(330) state

330 double

layer state

charge−2e

Laughlin state

t

inter220 double

S(220) state

S(220) state

t

Laughlin state

charge−2elayer state

V

• Weak p + ip superconductor to strong p + ip superconductor is
connected by massless Majorana fermion Read-Green cond-mat/9906453

ΨS(220) = S[
∏

(zi − zj)
2
∏

(wi − wj)
2] = A[ 1

z1−z2

1
z3−z4

· · · ]
∏

(zi − zj)
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Projective construction of topo. ordered states on lattice

Consider a spin- 1
2 system on lattice.

• View spin-↓ as zero-boson state and spin-↑ as one-boson state
• Split the boson φi into to fermionic partons φi = ψi1ψi2, where
ψiα form a 2-dim. rep. of SU(2) and φi is the SU(2) singlet.

• Consider the mean-field ground state of a free parton Hamiltonian
Hmean =

∑
〈ij〉 ψ

†
i uijψj , uij = 2× 2 matrix; → |Ψuij

mean〉
• Project to physical subspace on each site
| ↓〉 = |0〉, | ↑〉 = ψ†i1ψ

†
i2|0〉, both SU(2) singlet.

Unphysical states ψ†i1|0〉, ψ
†
i2|0〉 form a SU(2) doublet.

- Project into SU(2)-singlet subspace on each site:
|Ψuij

phy〉 = PSU(2)|Ψ
uij
mean〉

|Ψuij
phy〉 is a trial wave function with variational parameter uij .

• What is the low energy effective theory that describes the low
energy excitations above the many-body state |Ψphy〉?
Lattice partons ψi couple to lattice SU(2) gauge field aµ(x):

Heff =
∑
〈ij〉 ψ

†
i uij e

iaijψj +
∑

i ψ
†
i a0(i)ψi
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Z2 topological order

• Choose Read-Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91)

ui,i+x = ui,i+y = −χσ3, a0 = cσ1,

ui,i+x+y = ησ1 + λσ2, ui,i+x+y = ησ1 − λσ2

Heff =
∑
〈ij〉 ψ

†
i uijψj +

∑
i ψ
†
i a0ψi will be fully gapped.

→ The fermions are all gapped. The potential gapless excitations
may come from the SU(2) gauge fluctuations.

• a0 and SU(2) flux Φi = uijujkuki behave like Higgs fields.

a0 → Ua0U†, Φi → UΦiU
†, U ∈ SU(2).

- If they are invariant under the SU(2) transformation → The SU(2)
is unbroken → gapless gluon.

- If they are not invariant under the SU(2) transformation → Break
SU(2) to smaller gauge group.

• In our case, a0 and Φi break the SU(2) down to Z2

→ Z2 gauge theory which is gapped → Z2 topological order.
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Quasiparticle excitations in the Z2 topological order

ia

ia

e    = −1

e    = 1

ij

ij

e

m

• The pure Z2 gauge theory:
- Z2 charge e: boson.
- Z2 vortex m: boson.

e and m have mutual π statistics.
- e-m bound state ε: fermion.

• Our Z2 topological order = dressed Z2 gauge theory, which also
has spin rotation, time reversal and all the lattice symmetry:

- Z2 charge e: spin- 1
2 fermion.

- Z2 vortex m: spin-0 boson (fermion).
- e-m bound state ε: spin- 1

2 boson (fermion).

• We have two possibilities: (2 bosons 1 fermion) or (3 fermions).

The above is the history before 2000

(3 fermions) has a time reversal anomaly, and is not possible.
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Examples of topological orders (after 2000)

To make topological order, we need to sum over many different
product states, but we should not sum over everything.∑

all spin config. | ↑↓ ..〉 = | →→ ..〉

• sum over a subset of spin config.:

|ΦZ2
loops〉 =

∑∣∣∣ 〉
|ΦDS

loops〉 =
∑

(−)# of loops
∣∣∣ 〉

|Φθ
loops〉 =

∑
(e iθ)# of loops

∣∣∣ 〉
• Can the above wavefunction

be the ground states of
local Hamiltonians?
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Sum over a subset: local rule → global wave function

2D 3D

• Local rules of a string liquid:
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
, Φstr

( )
= Φstr

( )
→ Global wave function Φstr

( )
= 1

• Local rules of another string liquid:
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
, Φstr

( )
= −Φstr

( )
→ Global wave function Φstr

( )
= (−)# of loops

• Two topo. orders: Z2 topo. order Read-Sachdev PRL 66, 1773 (91), Wen

PRB 44, 2664 (91), Moessner-Sondhi PRL 86 1881 (01) and double-semion
topo. order. Freedman etal cond-mat/0307511, Levin-Wen cond-mat/0404617
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Toric-code model – Z2 topological order, Z2 gauge theory

• Toric code model: Kitaev quant-ph/9707021

H = −U
∑

I QI − g
∑

p Fp

QI =
∏

legs of I σ
z
i ,

Fp =
∏

edges of p σ
x
i

• Topological excitations:
e-type: QI = 1→ QI = −1
m-type: Fp = 1→ Fp = −1

edge

leg

I

i

p

Z

Z
Z

X

X

X

X

X

X

σ

σ
σ

σ
x

x

xσ
z

z

z
σ i

p

I

• Type-e string operator We =
∏

str σ
x
i

→ e-type. e × e = 1

• Type-m string operator Wm =
∏

str* σ
z
i

→ m-type. m ×m = 1

• Type-ε string op. Wε =
∏

str σ
x
i

∏
legs σ

z
i

→ ε-type = e ×m

• [H,W clsd
e ] = [H,W clsd

m ] = 0. → Closed strings cost no energy
• [QI,W

open
e ] 6= 0 flip QI → −QI, [Fp,W

open
m ] 6= 0 flip Fp → −Fp

→ open-string create a pair of topo. excitations at their ends.

• Fusion algebra of string operators → fusion of topo. excitations:
W 2

e = W 2
m = W 2

ε = WeWmWε = 1 when strings are parallel
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Topological ground state degeneracy

• The −U
∑

I QI enforce closed-string ground state.
• Fp adds a small loop and generates a permutation among the loop

states
∣∣∣ 〉

→ Ground states on torus |Ψα
grnd〉 =

∑
loops

∣∣∣ 〉
• There are four degenerate ground states α = ee, eo, oe, oo

e o

e e

e

o o

o

D
tor

=4

- The four sectors do not mix.
- The states in the four sectors are locally indistinguishable.

• On genus g surface, ground state degeneracy Dg = 4g
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Double-semion model

Local rules: Levin-Wen cond-mat/0404617

Φstr

( )
= Φstr

( )
, Φstr

( )
= −Φstr

( )
• The Hamiltonian to enforce the local rules:

edge

leg

legI

i

pZ
Z

Z

Z Z

Z

ZZ

Z
X

X

X
X

X X

H = −U
∑

I QI − g
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• Ground state wave function Φ(X ) = (−)Xc , where Xc is the
number of loops in the string configuration X .
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Emergence of fractional spin/statistics

• Why electron carry spin-1/2 and Fermi statistics?
• Ends of strings are point-like excitations,

which can carry spin-1/2 and Fermi statistics?
Fidkowski-Freedman-Nayak-Walker-Wang cond-mat/0610583

• Φstr

( )
= 1 string liquid Φstr

( )
= Φstr

( )
360◦ rotation: → and = → : R360◦ =

(
0 1
1 0

)
+ ≡ e spin 0 mod 1. − ≡ em spin 1/2 mod 1.

• Φstr

( )
= (−)# of loops string liquid Φstr

( )
= −Φstr

( )
360◦ rotation: → and = − → − : R360◦ =

(
0 −1
1 0

)
+ i ≡ s− spin −1

4 mod 1. − i ≡ s+ spin 1
4 mod 1.
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Spin-statistics theorem

(a) (b) (c) (d) (e)

• (a) → (b) = exchange two string-ends.

• (d) → (e) = 360◦ rotation of a string-end.

• Amplitude (a) = Amplitude (e)

• Exchange two string-ends plus a 360◦ rotation of one of the
string-end generate no phase.

→ Spin-statistics theorem
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Statistics of ends of strings

• The statistics is determined by particle hopping operators
Levin-Wen cond-mat/0302460:

1
2

3

4
c

d

a
b

b

c

a d

a d

b

a d

c

b

c

tbd tcb tba

tcbtba tbd

tcb

tba

tbd

• An open string operator is a hopping operator of the ‘ends’.
The algebra of the open string operator determine the statistics.
• For type-e string: tba = σx1 , tcb = σx3 , tbd = σx2

We find tbd tcbtba = tbatcbtbd
The ends of type-e string are bosons
• For type-ε strings: tba = σx1 , tcb = σx3σ

z
4 , tbd = σx2σ

z
3

We find tbd tcbtba = −tbatcbtbd
The ends of type-ε strings are fermions
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Systematic theory of topo. orders from topo. invariants

Topological order describes the order in gapped quantum liquds.
We conjectured that 2+1D topological order can be
completely defined via only two topological properties:

Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen IJMPB 7, 4227 (93)

• (1) Ψgrnd = space of locally indistinguishable (LI) states
- Given Ψ1(zi ), ∃ other LI Ψ2(zi ), · · ·.
- Topo. degeneracy Dg ≡ dimΨgrnd,

depends on topology of space

g=1

Deg.=D1Deg.=1

g=0

Wen PRB 40, 7387 (89), Wen-Niu PRB 41, 9377 (90)

• The notion of LI states is defined respect to the notion of local
operators: symmetric function Oξ(z1, z2, · · · ) which is non-zero
only when |ξ − zi | < l∫ ∏

i

d2zi Ψ∗1OξΨ1 =

∫ ∏
i

d2zi Ψ∗2OξΨ2, ∀Oξ

- Also known as topological degeneracy
The degeneracy is robust against any local purtabations
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Topological invariants that define LRE and topo. orders

• (2) Vector bundle on the moduli space
i. Consider a torus Σ1 w/ metrics gij . ii. Different metrics gij form
the moduli space M = {gij}. iii. The LI states depend on spacial
metrics: Ψα(gij) → a vector bundle over M with fiber Ψα(gij).

- Local curvature detects grav. Chern-Simons term e i
2πc
24

∫
M2×S1 ω3

- Loops π1(M) = SL(2,Z): 90◦ rotation |Ψα〉 → |Ψ′α〉 = Sαβ|Ψβ〉
Dehn twist: |Ψα〉 → |Ψ′α〉 = Tαβ|Ψβ〉

S ,T generate a rep. of modular group: S2 = (ST )3 = C ,C 2 = 1
Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen IJMPB 7, 4227 (93)

Conjecture: The vector bundles from all genus-g Σg (ie the
data (S ,T , c), ...) completely characterize the topo. orders

Conjecture: The vector bundle for genus-1 Σ1 (ie the data
(S ,T , c)) completely characterize the topo. orders
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Measure topo. order: Universal wavefunction overlap

Moradi-Wen 13, He-Moradi-Wen 14

• Ground states |Ψα〉 on torus T 2 under Ŝ and T̂ .
The non-Abelian geometric phases S ,T via overlap

Sαβe−fSL
2+o(L−1) = 〈Ψα|Ŝ |Ψβ〉

Tαβe−fTL
2+o(L−1) = 〈Ψα|T̂ |Ψβ〉

TS

• For Z2 topo. order:
Ψ1( ) = g string-length

Ψ2( ) = (−)Wx g str-len

Ψ3( ) = (−)Wy g str-len

Ψ4( ) = (−)Wx+Wy g str-len

• g < 0.8 small-loop phase
|Ψα〉 are the same state

• g > 0.8 large-loop phase
|Ψα〉 are four diff. states

g
g=0.802

(a) (b)

(c)

• For double-semion topo. order:
Ψ( ) = (−)# of loop

S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 − 1

 ,T =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 .
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Classify 2+1D topo. orders (ie patterns of entanglement)

via the topological invariants (S ,T , c)

• A 2+1D topological order → a (S ,T , c)
• An arbitary (S ,T , c) 6→ a 2+1D topological order

• (S ,T , c)’s satisfying a set of conditions ↔ 2+1D topo. orders

assuming each (S ,T , c) → one topological order, otherwise
(S ,T , c)’s satisfying a set of conditions ↔ several topo. orders

• How to find the conditions,
beyond S2 = (ST )3,S4 = 1?
Study topological excitations above the ground states.
ie consider vector bundle from the degenerate ground states on Σg

with punctures (quasiparticles).

- In particular, the vector bundles from the degenerate ground states
on Σ0 = S2 with punctures (quasiparticles)
→ unitary modular tensor category theory (UMTC)
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Category theory – a theory of relations (morphism)

• A category C is a set {α, β, · · · } of objects, with morphism
(relation) α→ β:

- Morphism α→ α exists.
- If morphisms α→ β and β → γ exist, → morphism α→ γ exists.
• α is a simple object if, ∀β, α→ β implies β → α.

• Example I A category of set S :
- An object = a subset: α ⊂ S
- Morphism →=⊃: α→ β means α include β: α ⊃ β
- A simple object = one-element set.

if α ⊃ β implies β ⊃ α → α is an one-element set.

We obtain the notion of a single element (the building block) via
the relations (the morphism).
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How to measure the symmetry group of a quantum
system, if all your probes respect the symmetry?

• Example II a symmetric quantum system:
- An object = the ground subspace of a symmetric H
- Morphism α→ β if Ôα ⊃ β.

βα

α the ground subspace a symmetric H.
β the ground subspace a symmetric H + δH.
Ô the time evolution operator.

- A simple object = an irreducible representation.
the ground subspace (the degeneracy) is robust against
all symmetric perturbations δH.

- Composite object = reducible rep., accidental degeneracy.
• From the dimension of simple α, we get the dimension of

irreducible representation. Not quit the symmetry group yet.

• For SO(3) symmetry:
No morphism between (spin-1) and (spin-2) ground space.
A morphism from (spin-1⊕spin-2) to (spin-2) ground spaces.
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Add stacking → Tensor (fusion) category theory

Add another probe: composition (ie stacking) of two systems
H ⊗ H ′ → Tensor category: a category with fusion α⊗ β.

In general simple-object ⊗ simple-object = composite object.
For example: (spin-1)⊗ (spin-2) = (spin-1⊕ spin-2⊕ spin-3)

• Fusion ring (Grothendieck ring): Fusion of simple objects

α⊗ β = γ1 ⊕ γ2 ⊕ · · · = ⊕γNαβ
γ γ

- The fusion ring (ie Nαβ
γ ) determine the symmetry group G , if G is

simple or abelian.
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Local and topological quasiparticle excitations

In a system: H =
∑

x Hx

• a particle-like excitation |Ψexc(ξ)〉:
gapped ground state of H + δHtrap

ξ

ground state
excitation

engergy density
engergy density  

ξ

ε −> 0

∆

subspace
ground−state −>finite gap  

• Local quasiparticle excitation:
|Ψexc〉 = Ôξ|Ψgrnd〉 created by local operator Oξ

• Topological quasiparticle excitation:
|Ψexc〉 6= Ôξ|Ψgrnd〉 cannot be created by local operators Oξ

• Topological types: equivalent classes defined by local op. Oξ

- if |Ψ′exc〉 = Ôξ|Ψexc〉, then |Ψ′exc〉 |Ψexc〉 belong to the same type.

- if |Ψ′exc〉 and |Ψexc〉 can deform into each other without closing the
gap, then |Ψ′exc〉 |Ψexc〉 belong to the same type.

• With symmetry → Oξ, δHtrap
ξ to be symmetric local operators.

• But there may be ground state degeneracy. |Ψ〉 and |Ψexc〉 should
be ground subspaces, and they may have different dimensions.
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Theory of topological excitations = category theory

• Local excitations: 1) Ψexc and Ψgrnd are LI except near points ξI .
2) Ψexc(ξ1, ξ2) = ground subspace of Htrap = H + δHξ1 + δHξ2 .

- Trivial excitation: can be created by local operators
O(ξ)Ψ ⊃ Ψexc : Ψ→ Ψexc and O ′(ξ)Ψexc ⊃ Ψ : Ψexc → Ψ.
“→” (include) = morphism in category. Ψtrivial exc ↔ Ψgrnd

- Topological excitation if cannot be created by local operators
(or Ψtopo. exc(ξ1, ξ2) 6→ Ψgrnd, Ψgrnd 6→ Ψtopo. exc(ξ1, ξ2) )

• Topological type i = equivalence class of Ψexc: Ψexc ∼ Ψ′exc iff
Ψexc → Ψ′exc and Ψ′exc → Ψexc isomorphic in category

- simple type: Ψsimple
exc → Ψexc implies Ψexc → Ψsimple

exc

The subspace Ψsimple
exc (ξ) is robust against local perturbation near ξ.

- composite type: k = i ⊕ j , i → k , j → k.
The subspace Ψexc(ξ) (degeneracy) can be splitted by local
perturbation near ξ, ie contain accidental degeneracy.

Fusion space = Ψexc(ξ1, ξ2, · · · ) = Vfus(i , j , · · · )
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The subspace Ψsimple
exc (ξ) is robust against local perturbation near ξ.

- composite type: k = i ⊕ j , i → k , j → k.
The subspace Ψexc(ξ) (degeneracy) can be splitted by local
perturbation near ξ, ie contain accidental degeneracy.

Fusion space = Ψexc(ξ1, ξ2, · · · ) = Vfus(i , j , · · · )

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and topological excitations
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Fusion ring of (non-Abelian) topological excitations

• For simple i , j , if we view (i , j) as one particle,
it may correspond to a composite particle:

1

2

(i,j,...)

(k  , ..) 
(k  , ..) 

Vfus(i , j , l1, l2, · · · ) = ⊕nVfus(kn, l1, l2, · · · )
i ⊗ j = k1 ⊕ k2 ⊕ · · · = ⊕kN ij

k k
→ the fusion ring (Grothendieck ring).

• Associativity:
(i ⊗ j)⊗ k = i ⊗ (j ⊗ k) = ⊕lN

ijk
l l , N ijk

l =
∑

m N ij
mNmk

l =
∑

n N jk
n N in

l

• Topologically protected non-local degrees of freedom:
For simple quasiparticles, i , j , · · ·, we cannot view their fusion space
Vfus(i , j , k , · · · ) as V(i)⊗ V(j)⊗ V(k)⊗ · · ·, where the space V(i)
describes the local degrees of freedom of the quasiparticle-i .
If so, we can add local perturbations near i to split the degeneracy.

For simple quasiparticles, the degrees of freedom described
by their fusion space Vfus(i , j , k, · · · ) are non-local and
topologically protected.
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Quantum dimension and “fractional” degree of freedom

Vector space fractionalization:
• In general, dim[Vfus(i , i , i , · · · )] 6= (integer)n.

Quasiparticle i may carry fractional degree freedom.
dim[Vfus(i , i , · · · , i)] =

∑
mi

N ii
m1

Nm1i
m2
· · ·Nmn−2i

1 = (Ni )n−1
i1 ∼ dn

i

where the matrix (Ni )jk = N ji
k , and di the largest eigenvalue of Ni :

dim[Vfus(i , i)] = N ii
1 , dim[Vfus(i , i , i)] = N ii

m1
Nm1i

1 ,

dim[Vfus(i , i , i , i)] = N ii
m1

Nm1i
m2

Nm2i
1 .

...i i i i

...
1

m

1

• di is called the quantum dimension of the quasiparticle i .
Abelian particle → di = 1. Non-Abelian particle → di 6= 1.
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Theory of topological excitations = braided fusion category

• Above 1D, particles can braid → unitary braided fusion category

• Braiding requires that
N ij
k = N ji

k .

k

i j

j i

• Braiding → mutual statistics e iθ
(k)
ij

and non-trivial fractional spin si

R

i

kk k

j

γ β α

j i ij

R

2π rotation of (i , j) = 2π rotation of k
2π rotation of (i , j) = 2π rotation
of i and j and exchange i , j twice

e i2πsi e i2πsj e iθ
(k)
ij = e i2πsk

A unitary braided fusion category (UBFC) is a set of topological
types with fusion and braiding, which is described by data (N ij

k , si )

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and topological excitations



Theory of topological excitations = braided fusion category

• Above 1D, particles can braid → unitary braided fusion category

• Braiding requires that
N ij
k = N ji

k .

k

i j

j i

• Braiding → mutual statistics e iθ
(k)
ij

and non-trivial fractional spin si

R

i

kk k

j

γ β α

j i ij

R

2π rotation of (i , j) = 2π rotation of k
2π rotation of (i , j) = 2π rotation
of i and j and exchange i , j twice

e i2πsi e i2πsj e iθ
(k)
ij = e i2πsk

A unitary braided fusion category (UBFC) is a set of topological
types with fusion and braiding, which is described by data (N ij

k , si )

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and topological excitations



Relation between (S ,T , c) and (N ij
k , si , c)

Conjecture: A bosonic topological order [ie a non-degenerate
UBFC ≡ an unitary modular tensor category (UMTC)] is
fully characterized by data (S ,T , c) or by data (N ij

k , si , c) .

• From (S ,T , c) to (N ij
k , si , c): E. Verlinde NPB 300 360 (88)

N ij
k =

∑
l
SliSlj (Slk )∗

S1l
, e i2πsi e− i2π c

24 = Tii .

• From (N ij
k , si , c) to (S ,T , c):

Sij = 1√∑
i d

2
i

∑
k N ij

k e
2π i (si+sj−sk )dk , Tii . = e i2πsi e− i2π c

24

Conditions on (N ij
k , si , c) ↔ Conditions on (S ,T , c)

→ A theory of unitary modular tensor category (UMTC)

simplified theory of UMTC Rowell-Stong-Wang arXiv:0712.1377

• The standard point of view:
UMTC’s are fully characterized by (N ij

k ,F
ijm;αβ
kln;γλ ,R

ij ;α
k;β ) (but not

one-to-one). Conditions on those data + the equivalent relations
→ a theory of UMTC. hard to work with
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The relations between (N ij
k , si , c) and (S ,T , c)

• Number of particle types (dimensions of N ij
k , si )

= ground state degeneracy on torus (dimensions of S ,T ).
Type-i particle is created as the end of type-i string operator,
which also describe particle-anti-particle tunneling process.

- A particular ground state |W1〉 on torus is obtained via the time
evolution on space-time of a solid torus. Other ground state |Wi 〉
is obtained by inserting a loop of type-i string operator Wi .

|W1〉 |Wi 〉

y

x

(a) (b)

i

• S-matrix and link loops:

Sij = 〈Wi |Ŝ |Wj〉 = Z

 S 3

i

j

 = Sji
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Verlinde formula – The relations between N ij
k and S

Witten CMP 121 351 (89); Wang-Wen-Yau arXiv:1602.05951

• A surjery formula 〈MU |MD〉〈NU |ND〉 = 〈MU |ND〉〈NU |MD〉

Z


M

U

D

B
M

Z

 B

ND

NU

 = Z

 B
MU

ND

Z


M

U

D

B
N


provided that the ground state degeneracy on the space-B is one.
• → 〈Wi |Ŝ |1〉〈Wi |Ŝ |Wj ⊗ k〉 = 〈Wi |Ŝ |Wj〉〈Wi |Ŝ |Wk〉

Z

 S
3

i

Z

 S 3

i

k

j

 = Z

 S 3

i j

Z

 S
3

i

k


where we have used the string operator algebra

W str
j W str

k =
∑
i

N jk
i W str

i → |WjWk〉 =
∑
l

N jk
l |Wl〉.

• Verlinde formula:
∑

l Si1SilN
jk
l = SijSik
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The relation between quantum dimension di and S

• Z

 S
3

i

 = S1i = 〈Wi→ī |Wi→ī 〉 > 0

• Let vector vi = (Si1,Si2, · · · ). Verlinde formula can be rewritten as

Nkvi = Sikvi , λki =
Sik

Si1

Since v1 has positive components, λk1 is the largest eigenvalue of
Nk → S1k

S11
= di . Using

∑
i S2

1i = 1, we find

S1i = Si1 = di/D, D2 =
∑
i

d2
i .

• We also find

Z

 S
3

i

 = S1i =
S1i

S11
Z (S3) = diZ (S3);

j i
=

Sij

S11
= SijD
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• Let vector vi = (Si1,Si2, · · · ). Verlinde formula can be rewritten as

Nkvi = Sikvi , λki =
Sik

Si1

Since v1 has positive components, λk1 is the largest eigenvalue of
Nk → S1k

S11
= di . Using

∑
i S2

1i = 1, we find

S1i = Si1 = di/D, D2 =
∑
i

d2
i .

• We also find

Z

 S
3

i

 = S1i =
S1i

S11
Z (S3) = diZ (S3);

j i
=

Sij

S11
= SijD

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and topological excitations



The relation between fractional spin si and T

ii

ei 2πsi

i

ia

ia

e    = −1

e    = 1

ij

ij

e

m

• A particle is not an ideal point.
It has internal structure. We
can use the framing to represent
the internal structure.

(a) (b)

• (a) e i2πsi

(b) e− i2πsi

y

x

y

x

i

i

• T̂ is a 2π twist of the
particle world line:

T̂ |Wi 〉 = e i2πsi |Wi 〉
• But T̂ also change the metrics of the solid tours → i independent

phase from the gravitational CS term e i
2πc
24

∫
M2×S1 ω3

T̂ |Wi 〉 = e i2πsi e− i2πc/24|Wi 〉

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and topological excitations



The relation between fractional spin si and T

ii

ei 2πsi

i

ia

ia

e    = −1

e    = 1

ij

ij

e

m

• A particle is not an ideal point.
It has internal structure. We
can use the framing to represent
the internal structure.

(a) (b)

• (a) e i2πsi

(b) e− i2πsi

y

x

y

x

i

i

• T̂ is a 2π twist of the
particle world line:

T̂ |Wi 〉 = e i2πsi |Wi 〉
• But T̂ also change the metrics of the solid tours → i independent

phase from the gravitational CS term e i
2πc
24

∫
M2×S1 ω3

T̂ |Wi 〉 = e i2πsi e− i2πc/24|Wi 〉

Xiao-Gang Wen, Boulder summer school Lectures on topological order: Long range entanglement and topological excitations



From (N ij
k , si , c) to (S ,T , c) – Graphic calculus

• d iei 2πsi ei 2πsi

i

i

•
j i

=
Sij
S11

= SijD

•
j

i

j
i N

ij

k

j
i k

e i2π(si+sj )SijD =
∑

k N ij
k e

i2πsk dk

The above can be rewritten as

Sij =
1

D

∑
k

N ij
k e

2π i (si+sj−sk )dk ,
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A relation between N ij
k and si

Anderson-Moore CMP 117 441 (88); Vafa PLB 206, 421 (88)

i l

k j

i,ji,k

i,jk

WW

W

det(Wi ,jk) = det(Wi ,j) det(Wi ,k)

det(Wi ,j) =
∏
r

( e i2πsr

e i2πsi e i2πsj

)N ij
r N

rk
l̄
,

det(Wi ,k) =
∏
r

( e i2πsr

e i2πsi e i2πsk

)N ik
r Nrj

l̄
,

det(Wi ,jk) =
∏
r

( e i2πs̄l

e i2πsi e i2πsr

)N jk
r Nri

l̄
.

Wi ,j , Wi ,k , Wi ,jk are diagonal with the dimension of the fusion

space Vfus(i , j , k , l):
∑

r N ij
r N rk

l̄
=
∑

r N ik
r N rj

l̄
=
∑

r N jk
r N ri

l̄

→
∑
r

V r
ijklsr = 0 mod 1

V r
ijkl = N ij

r Nkl
r̄ + N il

r N jk
r̄ + N ik

r N jl
r̄ − (δir + δjr + δkr + δlr )

∑
m

N ij
mNkl

m̄
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A simplified theory of UMTC based on (N ij
k , si , c)

Wen arXiv:1506.05768

• Fusion ring: N ij
k are non-negative integers that satisfy

N ij
k = N ji

k , N1i
j = δij ,

N∑
k=1

N ik
1 Nkj

1 = δij ,

N∑
m=1

N ij
mNmk

l =
N∑

m=1

N im
l N jk

m or NiNk = NkNi

where i , j , · · · = 1, 2, · · · ,N, and the matrix Nj is given by
(Nj)ik = N ij

k . N ij
1 defines a charge conjugation i → ī :

N ij
1 = δī j . We refer N as the rank.

There are only finite numbers of solutions for each fixed N,D.

• N ij
k and si satisfy

∑
r V r

ijklsr = 0 mod 1

V r
ijkl = N ij

r Nkl
r̄ + N il

r N jk
r̄ + N ik

r N jl
r̄ − (δir + δjr + δkr + δlr )

∑
m

N ij
mNkl

m̄

This determines si to be a rational number. There are only finite
sets of solutions.
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A simplified theory of UMTC based on (N ij
k , si , c)

From (N ij
k , si , c) → (S ,T )

• Let di be the largest eigenvalue of the matrix Ni . Let

Sij =
1

D

∑
k

N ij
k e

2π i (si+sj−sk )dk , D2 =
∑
i

d2
i .

Then, S satisfies

S11 > 0,
∑
k

SklN
ij
k =

SliSlj

S1l
, S = S†C , Cij ≡ N ij

1 .

• Let Tij . = e i2πsi e− i2π c
24 δij then (SL(2,Z) modular representation)

S2 = (ST )3 = C .

• Let νi = 1
D2

∑
jk N jk

i djdk e
4π i (sj−sk ). Then νi = 0 if i 6= ī , and

νi = ±1 if i = ī . Rowell-Stong-Wang arXiv:0712.1377
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2+1D bosonic topo. orders (up to E8-states) via (N ij
k , si , c)

.
ζmn = sin(π(m+1)/(n+2)

sin(π/(n+2)
Rowell-Stong-Wang arXiv:0712.1377; Wen arXiv:1506.05768

NB
c d1, d2, · · · s1, s2, · · · wave func. NB

c d1, d2, · · · s1, s2, · · · wave func.

1B1 1 0

2B1 1, 1 0, 1
4

∏
(zi − zj )

2 2B−1 1, 1 0,− 1
4

∏
(z∗i − z∗j )2

2B14/5 1, ζ1
3 0, 2

5
Fibonacci TO 2B−14/5 1, ζ1

3 0,− 2
5

3B2 1, 1, 1 0, 1
3
, 1

3
(221) double-layer 3B−2 1, 1, 1 0,− 1

3
,− 1

3
3B8/7 1, ζ1

5 , ζ
2
5 0,− 1

7
, 2

7
3B−8/7 1, ζ1

5 , ζ
2
5 0, 1

7
,− 2

7

3B1/2 1, 1, ζ1
2 0, 1

2
, 1

16
Ising TO 3B−1/2 1, 1, ζ1

2 0, 1
2
,− 1

16

3B3/2 1, 1, ζ1
2 0, 1

2
, 3

16
S(220),ΨPfaffian 3B−3/2 1, 1, ζ1

2 0, 1
2
,− 3

16

3B5/2 1, 1, ζ1
2 0, 1

2
, 5

16
Ψ2
ν=2 SU(2)f2 3B−5/2 1, 1, ζ1

2 0, 1
2
,− 5

16

3B7/2 1, 1, ζ1
2 0, 1

2
, 7

16
3B−7/2 1, 1, ζ1

2 0, 1
2
,− 7

16

4
B,a
0 1, 1, 1, 1 0, 0, 0, 1

2
(1, e,m, ε) Z2-gauge 4B4 1, 1, 1, 1 0, 1

2
, 1

2
, 1

2
4B1 1, 1, 1, 1 0, 1

8
, 1

8
, 1

2

∏
(zi − zj )

4 4B−1 1, 1, 1, 1 0,− 1
8
,− 1

8
, 1

2
4B2 1, 1, 1, 1 0, 1

4
, 1

4
, 1

2
(220) double-layer 4B−2 1, 1, 1, 1 0,− 1

4
,− 1

4
, 1

2
4B3 1, 1, 1, 1 0, 3

8
, 3

8
, 1

2
4B−3 1, 1, 1, 1 0,− 3

8
,− 3

8
, 1

2

4
B,b
0 1, 1, 1, 1 0, 0, 1

4
,− 1

4
double semion 4B9/5 1, 1, ζ1

3 , ζ
1
3 0,− 1

4
, 3

20
, 2

5

4B−9/5 1, 1, ζ1
3 , ζ

1
3 0, 1

4
,− 3

20
,− 2

5
4B19/5 1, 1, ζ1

3 , ζ
1
3 0, 1

4
,− 7

20
, 2

5

4B−19/5 1, 1, ζ1
3 , ζ

1
3 0,− 1

4
, 7

20
,− 2

5
Ψ2
ν=3 SU(2)f3 4

B,c
0 1, ζ1

3 , ζ
1
3 , ζ

1
3ζ

1
3 0, 2

5
,− 2

5
, 0 Fibonacci2

4B12/5 1, ζ1
3 , ζ

1
3 , ζ

1
3ζ

1
3 0,− 2

5
,− 2

5
, 1

5
4B−12/5 1, ζ1

3 , ζ
1
3 , ζ

1
3ζ

1
3 0, 2

5
, 2

5
,− 1

5

4B10/3 1, ζ1
7 , ζ

2
7 , ζ

3
7 0, 1

3
, 2

9
,− 1

3
4B−10/3 1, ζ1

7 , ζ
2
7 , ζ

3
7 0,− 1

3
,− 2

9
, 1

3

5B0 1, 1, 1, 1, 1 0, 1
5
, 1

5
,− 1

5
,− 1

5
(223) DL 5B4 1, 1, 1, 1, 1 0, 2

5
, 2

5
,− 2

5
,− 2

5

5
B,a
2 1, 1, ζ1

4 , ζ
1
4 , 2 0, 0, 1

8
,− 3

8
, 1

3
5
B,b
2 1, 1, ζ1

4 , ζ
1
4 , 2 0, 0,− 1

8
, 3

8
, 1

3

5
B,b
−2 1, 1, ζ1

4 , ζ
1
4 , 2 0, 0, 1

8
,− 3

8
,− 1

3
5
B,a
−2 1, 1, ζ1

4 , ζ
1
4 , 2 0, 0,− 1

8
, 3

8
,− 1

3

5B16/11 1, ζ1
9 , ζ

2
9 , ζ

3
9 , ζ

4
9 0,− 2

11
, 2

11
, 1

11
,− 5

11
5B−16/11 1, ζ1

9 , ζ
2
9 , ζ

3
9 , ζ

4
9 0, 2

11
,− 2

11
,− 1

11
, 5

11

5B18/7 1, ζ2
5 , ζ

2
5 , ζ

2
12, ζ

4
12 0,− 1

7
,− 1

7
, 1

7
, 3

7
5B−18/7 1, ζ2

5 , ζ
2
5 , ζ

2
12, ζ

4
12 0, 1

7
, 1

7
,− 1

7
,− 3

7
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Remote detectability: why those (N ij
k , si , c) are realizable

• The list cover all the 2+1D bosonic topological orders.
But the list might contain fake entries that are not
realizable.

Schoutens-Wen arXiv:1508.01111 used
simple current algebra to construct many-body wave
functions for all the entries in the list.
All the topological order in the table can
be realized in multilayer FQH systems

Levin arXiv:1301.7355, Kong-Wen arXiv:1405.5858

• Remote detectable = Realizable (anomaly-free):
Every non-trivial topo. excitation i can be remotely detected by at
least one other topo. excitation j via the non-zero mutual braiding

θ
(k)
ij 6= 0 → Sij = 1

D

∑
k N ij

k e
− iθ

(k)
ij dk is unitary (one of conditions)

→ the topological order is realizable in the same dimension.

• The centralizer of BFC C = the set of particles with trivial mutual

statistics respecting to all others: Ccen
C ≡ {i | θ(k)

ij = 0, ∀j , k}.
Remote detectable ↔ Ccen

C = {1} ↔ Realizable (anomaly-free)
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Bosonic/fermionic topo. orders with/without symmetry

• “Topological” excitations with symmetry: Two particles are
equivalent iff they are connected by symmetric local operators.
Equivalent classes = topological types with symmetry

• Example: for G = SO(3):
- Trivial “topogical” types: spin-0. (centralizer=SFC)
- Non-trivial “topogical” types: spin-1, spin-2, · · · ∼ irreducible reps.

(Cannot be created by local symmetric operators, but can be
created by local asymmetric operators.)

- Really non-trivial “topogical” types. (Other types)
(Cannot created by local symmetric operators, nor by local
asymmetric operators.)

• How to classify topological orders with symmetry?
How to classify fermionic topo. orders with/without symmetry?
Consider braided fusion category whose centralizer is non-trivial.
centralizer = symmetric fusion catgeory (SFC) = symmetry
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SFC = Exc. in bosonic/fermionic product states
with symmetry = a categorical description of symmetry

Symmetric fusion catgeories (SFC):

• For bosonic product states, 1) Particle are bosonic with trivial
mutual statistics (not remotely detectable);
2) Particles are labeled by irrep. Ri .
Topological types = irreducible representation Ri ∈ Rep(G )
The fusion and the trivial braiding of Ri define a spectial UBFC,
called symmetric fusion category (SFC) and denoted as Rep(G )

• For fermionic product states, 1) Some particles are bosonic, and
others are fermionic, and all have trivial mutual statistics
2) Particles are labeled by irrep. Ri . The full symm. group G f

contain fermion-number-parity f̂ = (−)N̂f ∈ G f .
- Topological types = irreducible representation Ri (ex. spin-s)

The particle Ri has a Fermi statistics if f̂ 6= 1 in Ri (ex. spin-1)
The particle Ri has a Bose statistics if f̂ = 1 in Ri (ex. spin- 1

2 )

- The fusion and bosonic/fermionic braiding of Ri → SFC = sRep(G f )
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Classifcation of bosonic/fermionic topo. orders with symm.

Classify 2+1D topological orders using unitary braided fusion (BF)
categories (particles with fusion and braiding) that contain a SFC:

• Bosonic topo. orders: trivial particle 1 is the only particle
that has trivial mutual statistics with all other particles.

• Fermionic topo. orders: (1, f ) = sRep(Z f
2 ) are the only

particles that have trivial mutual statistics with all others

→ All abelian fermionic topogical orders
= bosonic topogical orders � fermion product state

• Bosonic topo. orders with symm. G : Rep(G ) are the only
particles that has trivial mutual statistics with all particles.

• Fermionic topo. orders with symm.: sRep(G f ) are the only
particles that have trivial mutual statistics with all particles.
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UMTC/E and topological phases with symmetry/fermion

• To describe topological phases with symmetry/fermion, we need
- a unitary BFC C
- that contains a SFC E ,
- such that the particles (objects) in E are transparent
- and there is no other transparent particles (objects).
→ Unitary non-degenerate braided fusion category over a
SFC (UMTC/E).
Using the notion of centralizer: Ccen

C = E , Ecen
C = C.

Can UMTC/E ’s classify topological phases with symmetry/fermion?

Answer: No.
We also require the symmetry to be gaugable: the UMTC/E must
have modular extension.
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Why do we require modular extensions?

• The symmetry G in a physical system is always twistable (on-site)
ie we can always put the physical
system on any 2D manifold with
any flat G -connection, still with
consistent braiding and fusion.

• We can add extra particles that braid non-trivially with the
particles in SFC E , and make the UMTC/E C into a unitary
non-degenerate braided fusion category (ie an UMTC) M.
M is called the modular extension of C:

E ↪→ C ↪→M, D2
ED2
C = D2

M
In M, the set of particles that have trivial double-braiding with the
particles in E is given by C. Using centralizer: Ccen

M = E , Ecen
M = C.

• Only UMTC/E ’s C that have modular extensions are
realizable by physical 2D bulk systems (maybe with
symmetry and/or fermion).
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2+1D fermionic topo. orders (up to p + ip) via (N ij
k , si , c)

Classified by UMTC/E ’s with E = {1, f }.
Lan-Kong-Wen arXiv:1507.04673

NF
c (

|Θ2|
∠Θ2/2π

) D2 d1, d2, · · · s1, s2, · · · comments/K -matrix

2F0 (
ζ1

2
0

) 2 1, 1 0, 1
2

F0 = sRep(Z f
2 ) fermion product state

4F0 ( 0
0

) 4 1, 1, 1, 1 0, 1
2
, 1

4
,− 1

4
F0 � 2B1 ( 0

0
) K =

(
2 2
2 1

)
4F1/5(

ζ1
2ζ

1
3

3/20
) 7.2360 1, 1, ζ1

3 , ζ
1
3 0, 1

2
, 1

10
,− 2

5
F0 � 2B−14/5(

ζ1
3

3/20
)

4F−1/5(
ζ1

2ζ
1
3

−3/20
) 7.2360 1, 1, ζ1

3 , ζ
1
3 0, 1

2
,− 1

10
, 2

5
F0 � 2B14/5(

ζ1
3

−3/20
)

4F1/4(
ζ3

6
1/2

) 13.656 1, 1, ζ2
6 , ζ

2
6 = 1 +

√
2 0, 1

2
, 1

4
,− 1

4
F(A1,6)

6F0 (
ζ1

2
1/4

) 6 1, 1, 1, 1, 1, 1 0, 1
2
, 1

6
,− 1

3
, 1

6
,− 1

3
F0 � 3B−2( 1

1/4
) K = (3), Ψ1/3(zi )

6F0 (
ζ1

2
−1/4

) 6 1, 1, 1, 1, 1, 1 0, 1
2
,− 1

6
, 1

3
,− 1

6
, 1

3
F0 � 3B2 ( 1

−1/4
) K = (−3), Ψ∗1/3(zi )

6F0 (
ζ3

6
1/16

) 8 1, 1, 1, 1, ζ1
2 , ζ

1
2 =
√

2 0, 1
2
, 0, 1

2
, 1

16
,− 7

16
F0 � 3B1/2(

ζ1
6

1/16
), FU(1)2/Z2

6F0 (
ζ3

6
−1/16

) 8 1, 1, 1, 1, ζ1
2 , ζ

1
2 0, 1

2
, 0, 1

2
,− 1

16
, 7

16
F0 � 3B−1/2(

ζ1
6

−1/16
)

6F0 ( 1.0823
3/16

) 8 1, 1, 1, 1, ζ1
2 , ζ

1
2 0, 1

2
, 0, 1

2
, 3

16
,− 5

16
F0 � 3B3/2( 0.7653

3/16
)

6F0 ( 1.0823
−3/16

) 8 1, 1, 1, 1, ζ1
2 , ζ

1
2 0, 1

2
, 0, 1

2
,− 3

16
, 5

16
F0 � 3B−3/2( 0.7653

−3/16
)

6F1/7(
ζ1

2ζ
2
5

−5/14
) 18.591 1, 1, ζ1

5 , ζ
1
5 , ζ

2
5 , ζ

2
5 0, 1

2
, 5

14
,− 1

7
,− 3

14
, 2

7
F0 � 3B8/7(

ζ2
5

−5/14
)

6F−1/7(
ζ1

2ζ
2
5

5/14
) 18.591 1, 1, ζ1

5 , ζ
1
5 , ζ

2
5 , ζ

2
5 0, 1

2
,− 5

14
, 1

7
, 3

14
,− 2

7
F0 � 3B−8/7(

ζ2
5

5/14
)

6F0 (
2ζ1

10
−1/12

) 44.784 1, 1, ζ2
10, ζ

2
10, ζ

4
10, ζ

4
10 0, 1

2
, 1

3
,− 1

6
, 0, 1

2
F(A1,−10)

6F0 (
2ζ1

10
1/12

) 44.784 1, 1, ζ2
10, ζ

2
10, ζ

4
10, ζ

4
10 0, 1

2
,− 1

3
, 1

6
, 0, 1

2
F(A1,10)
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2+1D bosonic topo. orders with Z2 symmetry

Classified by UMTC/E ’s with centralizer E = Rep(Z2).

N
|Θ|
c D2 d1, d2, · · · s1, s2, · · · comment

2
ζ1

2
0 2 1, 1 0, 0 E = Rep(Z2)

3
ζ1

2
2 6 1, 1, 2 0, 0, 1

3
K =

(
2 1
1 2

)
3
ζ1

2
−2 6 1, 1, 2 0, 0, 2

3
K =

(
−2 −1
−1 −2

)
4
ζ1

2
1 4 1, 1, 1, 1 0, 0, 1

4
, 1

4
Ψneutral
ν=1/2

� Rep(Z2)

4
ζ1

2
1 4 1, 1, 1, 1 0, 0, 1

4
, 1

4
Ψcharged
ν=1/2

� Rep(Z2)

4
ζ1

2
−1 4 1, 1, 1, 1 0, 0, 3

4
, 3

4
Ψneutral
ν=−1/2

� Rep(Z2)

4
ζ1

2
−1 4 1, 1, 1, 1 0, 0, 3

4
, 3

4
Ψcharged
ν=−1/2

� Rep(Z2)

4
ζ1

2
14/5

7.2360 1, 1, ζ1
3 , ζ

1
3 0, 0, 2

5
, 2

5
2B

14/5
� Rep(Z2)

4
ζ1

2
−14/5

7.2360 1, 1, ζ1
3 , ζ

1
3 0, 0, 3

5
, 3

5
2B−14/5

� Rep(Z2)

4
ζ1

2
0 10 1, 1, 2, 2 0, 0, 1

5
, 4

5
K =

(
2 3
3 2

)

4
ζ1

2
4 10 1, 1, 2, 2 0, 0, 2

5
, 3

5
K =


2 1 0 0
1 2 0 1
0 0 2 1
0 1 1 2


Lan-Kong-Wen arXiv:1602.05946
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2+1D bosonic topo. orders with Z2 symmetry (conitnue)

N
|Θ|
c D2 d1, d2, · · · s1, s2, · · · comment

2
ζ1

2
0 2 1, 1 0, 0 E = Rep(Z2)

5
ζ1

2
0 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 0 SB:4B0 F:Z2 × Z2

5
ζ1

2
1 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 1

8
SB:4B1 F:Z2 × Z2

5
ζ1

2
2 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 1

4
SB:4B2 F:Z2 × Z2

5
ζ1

2
3 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 3

8
SB:4B3 F:Z2 × Z2

5
ζ1

2
4 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 1

2
SB:4B4


2 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2


5
ζ1

2
−3 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 5

8
SB:4B−3 F:Z2 × Z2

5
ζ1

2
−2 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 3

4
SB:4B−2 F:Z2 × Z2

5
ζ1

2
−1 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 7

8
SB:4B−1 F:Z2 × Z2

5
ζ1

2
2 14 1, 1, 2, 2, 2 0, 0, 1

7
, 2

7
, 4

7
SB:7B2

5
ζ1

2
−2 14 1, 1, 2, 2, 2 0, 0, 3

7
, 5

7
, 6

7
SB:7B−2

5
ζ1

2
12/5

26.180 1, 1, ζ2
8 , ζ

2
8 , ζ

4
8 0, 0, 1

5
, 1

5
, 3

5
SB:4B

12/5

5
ζ1

2
−12/5

26.180 1, 1, ζ2
8 , ζ

2
8 , ζ

4
8 0, 0, 4

5
, 4

5
, 2

5
SB:4B−12/5

SB: 4B0 → topo. order after symmetry breaking is Z2-gauge theory.
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2+1D bosonic topo. orders with Z2 symmetry (conitnue)

The Z2 symmetry is anomalous, since the following BF categories
have no modular extensions:

N
|Θ|
c D2 d1, d2, · · · s1, s2, · · · comment

2
ζ1

2
0 2 1, 1 0, 0 E = Rep(Z2)

5
ζ1

2
0 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 0 SB:4B0 F:Z4 anom.

5
ζ1

2
1 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 1

8
SB:4B1 F:Z4 anom.

5
ζ1

2
2 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 1

4
SB:4B2 F:Z4 anom.

5
ζ1

2
3 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 3

8
SB:4B3 F:Z4 anom.

5
ζ1

2
4 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 1

2
SB:4B4 F:Z4 anom.

5
ζ1

2
−3 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 5

8
SB:4B−3 F:Z4 anom.

5
ζ1

2
−2 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 3

4
SB:4B−2 F:Z4 anom.

5
ζ1

2
−1 8 1, 1, 1, 1, 2 0, 0, 1

2
, 1

2
, 7

8
SB:4B−1 F:Z4 anom.
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Z2-gauge theory with Z2 symmetry

The first rows of last two tables are identical.
They have identical di but different N ij

k

They are Z2-gauge theory 1, e,m, ε, with Z2 symmetry: e ↔ m

Fusion rules: Z2 × Z2 Z4
10 11 ε0 ε1 e ⊕m

si 0 0 1
2

1
2

0
di 1 1 1 1 2

5
ζ1

2
0 1 2 3 4 5
1 1 2 3 4 5
2 2 1 4 3 5
3 3 4 1 2 5
4 4 3 2 1 5
5 5 5 5 5 1⊕ 2⊕ 3⊕ 4

10 11 ε1/2 ε3/2 e ⊕m

si 0 0 1
2

1
2

0
di 1 1 1 1 2

5
ζ1

2
0 1 2 3 4 5
1 1 2 3 4 5
2 2 1 4 3 5
3 3 4 2 1 5
4 4 3 1 2 5
5 5 5 5 5 1⊕ 2⊕ 3⊕ 4

Anomaly-free Anomalous

- F: Z2 × Z2 means that the four di = 1 particles
have a fusion described by Z2 × Z2.

- F: Z4 means that the four di = 1 particles
have a fusion described by Z4:
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Fermionic topo. orders with mod-4 fermion number
conservation: symmetry G f = Z f

4

Classified by UMTC/E ’s with centralizer E = sRep(Z f
4 ):

N
|Θ|
c D2 d1, d2, · · · s1, s2, · · · comment

40
0 4 1, 1, 1, 1 0, 0, 1

2
, 1

2
E = sRep(Z f

4 )

60
0 12 1, 1, 1, 1, 2, 2 0, 0, 1

2
, 1

2
, 1

6
, 2

3
K = −

(
1 2
2 1

)
60

0 12 1, 1, 1, 1, 2, 2 0, 0, 1
2
, 1

2
, 1

3
, 5

6
K =

(
1 2
2 1

)
80

0 8 1, 1, 1, 1, 1, 1, 1, 1 0, 0, 1
2
, 1

2
, 1

4
, 1

4
, 3

4
, 3

4
2B−1 � sRep(Z f

4 )

80
0 8 1, 1, 1, 1, 1, 1, 1, 1 0, 0, 1

2
, 1

2
, 1

4
, 1

4
, 3

4
, 3

4
2B1 � sRep(Z f

4 )

80
−14/5 14.472 1, 1, 1, 1, ζ1

3 , ζ
1
3 , ζ

1
3 , ζ

1
3 0, 0, 1

2
, 1

2
, 1

10
, 1

10
, 3

5
, 3

5
2B−14/5 � sRep(Z f

4 )

80
14/5 14.472 1, 1, 1, 1, ζ1

3 , ζ
1
3 , ζ

1
3 , ζ

1
3 0, 0, 1

2
, 1

2
, 2

5
, 2

5
, 9

10
, 9

10
2B14/5 � sRep(Z f

4 )

80
0 20 1, 1, 1, 1, 2, 2, 2, 2 0, 0, 1

2
, 1

2
, 1

10
, 2

5
, 3

5
, 9

10
SB:10F0 (

ζ1
2

0
)

80
0 20 1, 1, 1, 1, 2, 2, 2, 2 0, 0, 1

2
, 1

2
, 1

5
, 3

10
, 7

10
, 4

5
SB:10F0 (

ζ1
2

1/2
)

100
0( 4

0
) 16 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 0, 0, 1

2
, 1

2
, 0, 0, 1

2
, 1

2
, 0, 1

2
SB:8F0 (

√
8

0
)

100
0( 4

0
) 16 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 0, 0, 1

2
, 1

2
, 0, 0, 1

2
, 1

2
, 0, 1

2
SB:8F0 (

√
8

0
)

100
0(
√

8
1/8

) 16 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 0, 0, 1
2
, 1

2
, 0, 0, 1

2
, 1

2
, 1

8
, 5

8
SB:8F0 ( 2

1/8
)

100
0(
√

8
1/8

) 16 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 0, 0, 1
2
, 1

2
, 0, 0, 1

2
, 1

2
, 1

8
, 5

8
SB:8F0 ( 2

1/8
)

100
0( 0

0
) 16 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 0, 0, 1

2
, 1

2
, 0, 0, 1

2
, 1

2
, 1

4
, 3

4
SB:8F0 ( 0

0
)

100
0( 0

0
) 16 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 0, 0, 1

2
, 1

2
, 0, 0, 1

2
, 1

2
, 1

4
, 3

4
SB:8F0 ( 0

0
)

100
0(
√

8
−1/8

) 16 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 0, 0, 1
2
, 1

2
, 0, 0, 1

2
, 1

2
, 3

8
, 7

8
SB:8F0 ( 2

−1/8
)

100
0(
√

8
−1/8

) 16 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 0, 0, 1
2
, 1

2
, 0, 0, 1

2
, 1

2
, 3

8
, 7

8
SB:8F0 ( 2

−1/8
)
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Distinct topo. phases with identical set of bulk excitations

In the presence of symmetry/fermion, there are distinct topological
phases, such as SPT phases with the same symmetry, that have
identical bulk excitations. But they have different edge structures.

2
g

1
g

2
g

SY−SRE 1

SB−SRE 1

SB−LRE 2

SY−LRE 2

SB−LRE 1

SY−LRE 1

g
1

SRE

SB−SRE 2

SY−SRE 2

symmetry breaking

(group theory)

(group cohomology

  theory)

LRE 1 LRE 2

SET orders

SPT orderes

(UBF category
  over SFC)

No symmetry With symmetry

intrinsic topo. order

topological  order
(non−deg. UBF category)

• A UMTC/E C only describes the bulk excitations. But it can have
several different modular extensions. → Distinct topological phases
with identical set of bulk excitations, but different edge structures.

The main conjecture: Lan-Kong-Wen arXiv:1602.05946

- The triple (Rep(G ) ↪→ C ↪→M) classifies 2+1D bosonic
topological phase with symmetry G .

- The triple (sRep(G f ) ↪→ C ↪→M) classifies 2+1D fermionic
topological phase with symmetry G f .
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From physical picture to mathematical theorem

• Stacking two topological phases a, b with symmetry G give rise to
a third topological phase
c = a �stack b with
symmetry G

c−TO
a−TO

b−TO

- For a fixed SFC E, there exists a “tensor product” �E , under
which the triple (E ↪→ C ↪→M) form a commutative monoid

(E ↪→ C1 ↪→M1) �E (E ↪→ C2 ↪→M2) ≡ (E ↪→ C3 ↪→M3)

- �E is different from the Deligne tensor product �:

(E ↪→ C1 ↪→M1) � (E ↪→ C2 ↪→M2)

≡ (E � E ↪→ C1 � C2 ↪→M1 �M2)

which has a symmetry G × G . Need to be reduced to G (or E).

- Lan-Kong-Wen arXiv:1602.05936 has constructed �E using
condensable algebra LE = ⊕a∈Ea � ā :
E = (E � E)0

LE
, C3 = (C1 � C2)0

LE
, M3 = (M1 �M2)0

LE
eg, M3 is the category of local LE-modules in M1 �M2
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From physical picture to mathematical theorem

• {(E ↪→ C ↪→M)} describes topological phases with symmetry E .
Its subset {(E ↪→ E ↪→M)} describes symmetry protected trivial
(SPT) phases, which forms an abelian group under the stacking.

- For a fixed SFC E, the modular extensions of E form an
abelian group. �E is the group product, the Drinfeld center Z (E)
is the identity, and the “complex conjugate” is the inverse.

- A special case: {(Rep(G ) ↪→M)} = H3(G ,R/Z)

- The modular extensions of Rep(G ), (Rep(G ) ↪→M), classifies
2+1D bosonic SPT phases with symmetry G .

- The c = 0 modular extensions of sRep(G f ), (sRep(G f ) ↪→M),
classifies 2+1D fermionic SPT phases with symmetry G f .

• There can be several topological phases that have identical bulk
excitations. They are related by stacking SPT phases.

- All the modular extensions of a UMTC/E C are generated by
�E ing with the modular extensions of E:

(E ↪→ C ↪→M) = (E ↪→ C ↪→M0) �E (E ↪→ E ↪→M′)
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From physical picture to mathematical theorem

• {(E ↪→ C ↪→M)} describes topological phases with symmetry E .
Its subset {(E ↪→ E ↪→M)} describes symmetry protected trivial
(SPT) phases, which forms an abelian group under the stacking.

- For a fixed SFC E, the modular extensions of E form an
abelian group. �E is the group product, the Drinfeld center Z (E)
is the identity, and the “complex conjugate” is the inverse.

- A special case: {(Rep(G ) ↪→M)} = H3(G ,R/Z)
- The modular extensions of Rep(G ), (Rep(G ) ↪→M), classifies

2+1D bosonic SPT phases with symmetry G .
- The c = 0 modular extensions of sRep(G f ), (sRep(G f ) ↪→M),

classifies 2+1D fermionic SPT phases with symmetry G f .

• There can be several topological phases that have identical bulk
excitations. They are related by stacking SPT phases.

- All the modular extensions of a UMTC/E C are generated by
�E ing with the modular extensions of E:

(E ↪→ C ↪→M) = (E ↪→ C ↪→M0) �E (E ↪→ E ↪→M′)
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Bosonic 2+1D SPT phases from modular extensions

• Z2-SPT phases:
N
|Θ|
c D2 d1, d2, · · · s1, s2, · · · comment

2
ζ1

2
0 2 1, 1 0, 0 Rep(Z2)

4B0 4 1, 1, 1, 1 0, 0, 0, 1
2

Z2 gauge

4B0 4 1, 1, 1, 1 0, 0, 1
4
, 3

4
double semion

• S3-SPT phases:
N
|Θ|
c D2 d1, d2, · · · s1, s2, · · · comment

3
√

6
0 6 1, 1, 2 0, 0, 0 Rep(S3)

8B0 36 1, 1, 2, 2, 2, 2, 3, 3 0, 0, 0, 0, 1
3
, 2

3
, 0, 1

2
S3 gauge

8B0 36 1, 1, 2, 2, 2, 2, 3, 3 0, 0, 0, 0, 1
3
, 2

3
, 1

4
, 3

4
8B0 36 1, 1, 2, 2, 2, 2, 3, 3 0, 0, 0, 1

9
, 4

9
, 7

9
, 0, 1

2
(B4, 2)

8B0 36 1, 1, 2, 2, 2, 2, 3, 3 0, 0, 0, 1
9
, 4

9
, 7

9
, 1

4
, 3

4
8B0 36 1, 1, 2, 2, 2, 2, 3, 3 0, 0, 0, 2

9
, 5

9
, 8

9
, 0, 1

2
(B4,−2)

8B0 36 1, 1, 2, 2, 2, 2, 3, 3 0, 0, 0, 2
9
, 5

9
, 8

9
, 1

4
, 3

4
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Fermionic 2+1D SPT phases from modular extensions

• Z f
2 -SPT phases (16 modular extensions, 1 with c = 0):

N
|Θ|
c D2 d1, d2, · · · s1, s2, · · · comment

20
0 2 1, 1 0, 1

2
sRep(Z f

2 )

4B0 4 1, 1, 1, 1 0, 1
2
, 0, 0 Z2 gauge

4B1 4 1, 1, 1, 1 0, 1
2
, 1

8
, 1

8
F:Z4

4B2 4 1, 1, 1, 1 0, 1
2
, 1

4
, 1

4
F:Z2 × Z2

4B3 4 1, 1, 1, 1 0, 1
2
, 3

8
, 3

8
F:Z4

4B4 4 1, 1, 1, 1 0, 1
2
, 1

2
, 1

2
F:Z2 × Z2

4B−3 4 1, 1, 1, 1 0, 1
2
, 5

8
, 5

8
F:Z4

4B−2 4 1, 1, 1, 1 0, 1
2
, 3

4
, 3

4
F:Z2 × Z2

4B−1 4 1, 1, 1, 1 0, 1
2
, 7

8
, 7

8
F:Z4

3B
1/2

4 1, 1, ζ1
2 0, 1

2
, 1

16
p + ip SC

3B
3/2

4 1, 1, ζ1
2 0, 1

2
, 3

16

3B
5/2

4 1, 1, ζ1
2 0, 1

2
, 5

16

3B
7/2

4 1, 1, ζ1
2 0, 1

2
, 7

16

3B−7/2
4 1, 1, ζ1

2 0, 1
2
, 9

16

3B−5/2
4 1, 1, ζ1

2 0, 1
2
, 11

16

3B−3/2
4 1, 1, ζ1

2 0, 1
2
, 13

16

3B−1/2
4 1, 1, ζ1

2 0, 1
2
, 15

16
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Fermionic 2+1D SPT phases from modular extensions

• Z f
4 -SPT phases (only 8 modular extensions, 1 with c = 0):
N
|Θ|
c D2 d1, d2, · · · s1, s2, · · · comment

40
0 4 1, 1, 1, 1 0, 0, 1

2
, 1

2
sRep(Z f

4 )

16B0 16 1× 16 0, 0, 1
2
, 1

2
, 0, 0, 0, 0, 0, 0, 1

4
, 1

4
, 1

2
, 1

2
, 3

4
, 3

4
16B1 16 1× 16 0, 0, 1

2
, 1

2
, 1

32
, 1

32
, 1

8
, 1

8
, 1

8
, 1

8
, 9

32
, 9

32
, 17

32
, 17

32
, 25

32
, 25

32
16B2 16 1× 16 0, 0, 1

2
, 1

2
, 1

16
, 1

16
, 1

4
, 1

4
, 1

4
, 1

4
, 5

16
, 5

16
, 9

16
, 9

16
, 13

16
, 13

16
8B1 � 2B1

16B3 16 1× 16 0, 0, 1
2
, 1

2
, 3

32
, 3

32
, 11

32
, 11

32
, 3

8
, 3

8
, 3

8
, 3

8
, 19

32
, 19

32
, 27

32
, 27

32
16B4 16 1× 16 0, 0, 1

2
, 1

2
, 1

8
, 1

8
, 3

8
, 3

8
, 1

2
, 1

2
, 1

2
, 1

2
, 5

8
, 5

8
, 7

8
, 7

8
4B3 � 4B1

16B−3 16 1× 16 0, 0, 1
2
, 1

2
, 5

32
, 5

32
, 13

32
, 13

32
, 5

8
, 5

8
, 5

8
, 5

8
, 21

32
, 21

32
, 29

32
, 29

32
16B−2 16 1× 16 0, 0, 1

2
, 1

2
, 3

16
, 3

16
, 7

16
, 7

16
, 11

16
, 11

16
, 3

4
, 3

4
, 3

4
, 3

4
, 15

16
, 15

16
8B−1 � 2B−1

16B−1 16 1× 16 0, 0, 1
2
, 1

2
, 7

32
, 7

32
, 15

32
, 15

32
, 23

32
, 23

32
, 7

8
, 7

8
, 7

8
, 7

8
, 31

32
, 31

32

• Z f
8 -SPT phases: Z2 class

N
|Θ|
c D2 d1, d2, · · · s1, s2, · · ·
80

0 8 1× 8 0, 1
2
, 0, 1

2
, 0, 1

2
, 0, 1

2

64B0 64 1× 64 0, 1
2
, 0, 1

2
, 0, 1

2
, 0, 1

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

8
, 1

8
, 1

8
, 1

8
,

1
4
, 1

4
, 1

4
, 1

4
, 1

4
, 1

4
, 1

4
, 1

4
, 3

8
, 3

8
, 3

8
, 3

8
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 5

8
, 5

8
, 5

8
, 5

8
,

3
4
, 3

4
, 3

4
, 3

4
, 3

4
, 3

4
, 3

4
, 3

4
, 7

8
, 7

8
, 7

8
, 7

8
64B0 64 1× 64 0, 1

2
, 0, 1

2
, 0, 1

2
, 0, 1

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

16
, 1

16
, 1

16
, 1

16
,

3
16
, 3

16
, 3

16
, 3

16
, 1

4
, 1

4
, 1

4
, 1

4
, 5

16
, 5

16
, 5

16
, 5

16
, 7

16
, 7

16
, 7

16
, 7

16
, 1

2
, 1

2
, 1

2
, 1

2
,

9
16
, 9

16
, 9

16
, 9

16
, 11

16
, 11

16
, 11

16
, 11

16
, 3

4
, 3

4
, 3

4
, 3

4
, 13

16
, 13

16
, 13

16
, 13

16
, 15

16
, 15

16
, 15

16
, 15

16
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Fermionic 2+1D SPT phases from modular extensions

• Z f
2 × Z2-SPT phases (128 modular extensions, 8 with c = 0):

N
|Θ|
c D2 d1, d2, · · · s1, s2, · · · comment

40
0 4 1, 1, 1, 1 0, 0, 1

2
, 1

2
sRep(Z2 × Z f

2 )

9B0 16 1× 4, ζ1
2 , ζ

1
2 , ζ

1
2 , ζ

1
2 , 2 0, 0, 1

2
, 1

2
, 1

16
, 7

16
, 9

16
, 15

16
, 0 3B−1/2

� 3B
1/2

9B0 16 1× 4, ζ1
2 , ζ

1
2 , ζ

1
2 , ζ

1
2 , 2 0, 0, 1

2
, 1

2
, 1

16
, 7

16
, 9

16
, 15

16
, 0 3B−1/2

� 3B
1/2

9B0 16 1× 4, ζ1
2 , ζ

1
2 , ζ

1
2 , ζ

1
2 , 2 0, 0, 1

2
, 1

2
, 3

16
, 5

16
, 11

16
, 13

16
, 0 3B−3/2

� 3B
3/2

9B0 16 1× 4, ζ1
2 , ζ

1
2 , ζ

1
2 , ζ

1
2 , 2 0, 0, 1

2
, 1

2
, 3

16
, 5

16
, 11

16
, 13

16
, 0 3B−3/2

� 3B
3/2

16B0 16 1× 16 0, 0, 1
2
, 1

2
, 0, 0, 0, 0, 0, 0, 0, 0, 1

2
, 1

2
, 1

2
, 1

2
4B0 � 4B0

16B0 16 1× 16 0, 0, 1
2
, 1

2
, 0, 0, 0, 0, 1

8
, 1

8
, 3

8
, 3

8
, 5

8
, 5

8
, 7

8
, 7

8
4B−1 � 4B1

16B0 16 1× 16 0, 0, 1
2
, 1

2
, 0, 0, 0, 0, 1

8
, 1

8
, 3

8
, 3

8
, 5

8
, 5

8
, 7

8
, 7

8
4B−1 � 4B1

16B0 16 1× 16 0, 0, 1
2
, 1

2
, 0, 0, 0, 0, 1

4
, 1

4
, 1

4
, 1

4
, 3

4
, 3

4
, 3

4
, 3

4
8B−1 � 2B1
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Bosonic 2+1D Z2-SET phases from modular extensions

• Z2-SET phases (Z2-gauge with Z2 symmetry e ↔ m)
4 modular extensions, 2 distinct phases:

N
|Θ|
c D2 d1, d2, · · · s1, s2, · · · comment

5
ζ1

2
0 8 1× 4, 2 0, 0, 1

2
, 1

2
, 0

9B0 16 1× 4, 2, ζ1
2 × 4 0, 0, 1

2
, 1

2
, 0, 15

16
, 1

16
, 7

16
, 9

16
3B−1/2

� 3B
1/2

9B0 16 1× 4, 2, ζ1
2 × 4 0, 0, 1

2
, 1

2
, 0, 3

16
, 13

16
, 11

16
, 5

16
3B

3/2
� 3B−3/2

9B0 16 1× 4, 2, ζ1
2 × 4 0, 0, 1

2
, 1

2
, 0, 1

16
, 15

16
, 9

16
, 7

16
3B

1/2
� 3B−1/2

9B0 16 1× 4, 2, ζ1
2 × 4 0, 0, 1

2
, 1

2
, 0, 13

16
, 3

16
, 5

16
, 11

16
3B−3/2

� 3B
3/2

• Z2-SET phases (Z2-gauge with Z2 symmetry e ↔ m,
plus fermion condensation to ν = 1 IQH state)

4 modular extensions, 3 distinct phases:
N
|Θ|
c D2 d1, d2, · · · s1, s2, · · · comment

5
ζ1

2
1 8 1× 4, 2 0, 0, 1

2
, 1

2
, 1

8
9B1 16 1× 4, 2, ζ1

2 × 4 0, 0, 1
2
, 1

2
, 1

8
, 1

16
, 1

16
, 9

16
, 9

16
3B

1/2
� 3B

1/2

9B1 16 1× 4, 2, ζ1
2 × 4 0, 0, 1

2
, 1

2
, 1

8
, 13

16
, 13

16
, 5

16
, 5

16
3B−3/2

� 3B
5/2

9B1 16 1× 4, 2, ζ1
2 × 4 0, 0, 1

2
, 1

2
, 1

8
, 15

16
, 3

16
, 7

16
, 11

16
3B−1/2

� 3B
3/2

9B1 16 1× 4, 2, ζ1
2 × 4 0, 0, 1

2
, 1

2
, 1

8
, 3

16
, 15

16
, 11

16
, 7

16
3B

3/2
� 3B−1/2
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Zoo of quantum phases of matter

• 230 crystals from group theory

• Infinity many topological orders in 2+1D from category theory
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