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I. INTRODUCTION

In these lectures, we will study quantum phases and phase transitions of equilibrium matter. We

will begin with a general survey of the landscape and will then move on to discussing aspects of

particular phases/phase transitions.

By a ‘quantum phase of matter’, we will mean the ground state of a quantum Hamiltonian

which we will usually take to be a sum of local terms1 (such as, eg, H = J
∑

ij Si ·Sj , the Hubbard

model, etc). There are many questions one could discuss in this topic. What kinds of quantum

phases of matter can exist? What are their universal low energy properties? What mechanisms

can stabilize them in physical realizations? What is the nature of the quantum phase transition

between distinct phases? Can we develop good computational methods to explore the phase diagram

in realistic microscopic settings? What experimental probes are the most revealing to identify any

given quantum phase of matter?

In these notes, we will focus on a subset of these questions.

II. THE LANDCAPE

Let us orient ourselves by surveying the distinct kinds of quantum phases that can exist, and

providing some rough organizing principles to characterize them.

A. Landau ordered phases of matter

These are characterized by the concepts of spontaneously broken symmetry and long range

order. Examples include crystalline long range in a solid, various forms of magnetic ordering

(ferromagnetism, antiferromagnetism,....), superfluids, and so on. Some of these states (such as the

solid and the ferromagnet) have of course been known for milllenia. Such broken symmetry states

were first discussed systematically by Landau, and are described through an order parameter that

measures the extent of the broken symmetry. They are hence known as Landau ordered states.

1 For some phenomena it will be important to include the long range Coulomb interaction. Also it is some times

useful to consider toy models with all-to-all interactions that may be solvable.
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B. Non-Landau order I: Topological Quantum Matter

These have been studied since the 1980s. We define these to be ground states of many body

quantum systems with a gap to all excitations.

It is useful to distinguish two categories of topological quantum matter. First, we have Sym-

metry Protected Topological (SPT) phases2. These have no exotic excitations (such as, eg, ones

with fractional quantum numbers or statistics) but yet can exist as distinct phases that cannot

be smoothy connected within the space of symmetry preserving gapped Hamiltonians. Examples

include topological insulators and the d = 1 Haldane spin-1 chain. Novel phenomena occur at the

interface between two distinct SPT phases, or at a spatial boundary (regarding the vacuum as a

trivial SPT). A review of SPT physics is in Ref. [1].

Second, we have matter with ‘topological order”[2]. Examples include fractional quantum Hall

phases, and gapped quantum spin liquids. These have emergent sharp quasiparticle excitations with

anyonic statistics (an infinitely long ranged ‘statistical’ interaction) and the possibility of fractional

quantum numbers.

For both SPT and for topological ordered matter, the low energy effective theory is what is

known as a Topological Quantum Field Theory.

These states are of course not captured by the concepts of broken symmetry3 and a Landau order

parameter. As a side note, just like multiple broken symmetries can coexist in the same system, we

can also have co-existence of different non-Landau orders or of Landau and non-Landau order.

2 A slight generalization includes gapped phases with no exotic excitations, and which are protected even in the

absence of any symmetry. An example is the Kitaev Majorana chain in d = 1. This general class is known as

“invertible topological phases”. Any phase in this class has an “inverse” phase such that the combination of it and

its inverse is a completely trivial phase.
3 Actually it has become popular in some circles to say that some such phases can be captured by the Landau

paradigm if one generalizes the notion of symmetry. For a review, see, eg, Ref. [3]. For instance topologically

ordered states of matter are considered to spontaneously break ‘higher-form’ symmetries rather than ordinary

(0-form) symmetries. Though interesting and useful, in applying this point of view to the systems typically of

interest in condensed matter physics, we must recognize that these higher form (or other generalized) symmetries

are not present in the microscopic system. Thus the full package of phenomena involves the emergence of the

higher form symmetries in the first place and their spontaneous breakdown. This is different from the conventional

Landau paradigm. Indeed a power of the Landau viewpoint is that we focus on microscopic symmetries - which

are assumed to be known - and ask how we can classify different ground states according to whether these

symmetries are preserved or spontaneously broken in the ground state. Incorporating topological ordered or other

“non-Landau” phases into the Landau paradigm requires not only generalizing the notion of symmetry but also

generalizing what is meant by the Landau paradigm itself, and I will hence not use this terminology.
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C. Non-Landau order II: Beyond topological matter

Finally we can have gapless quantum phases of matter where there are gapless excitations that

cannot be understood as Goldstone modes of a broken continuous symmetry. The most familiar

example is the Landau Fermi liquid. This ground state has no broken symmetry/order parameter.

Nevertheless, there is structure in the ground state wave function that protects gapless excitations

(a large number of them!). Interesting (and simpler) variants include the Dirac/Weyl materials[4]

that have been studied extensively in the last two decades. In these examples, the gapless excitation

spectrum can be given a quasiparticle interpretation, famously and subtly so for the Landau fermi

liquid (and more straightforwardlly for Dirac/Weyl materials).

The most difficult examples of gapless phases are those where the low energy excitation spectrum

does not admit a quasiparticle description at all. Examples include models of non-fermi liquid

metals, the composite Fermi liquid in the half-filled Landau level, some gapless quantum spin

liquids, etc. There has been slow but steady progress in our understanding of such quantum phases

of matter without quasiparticles, and there will probably be many surprises in the future.

D. Critical quantum matter

These refer to quantum matter tuned to a continuous T = 0 phase transition. The textbook

example[5] is the phase transition between a Landau-ordered phase with a broken symmetry and

a trivial gapped phase that preserves all symmetries. In this case, the phase transition is usually4

described by a quantum version of the Landau-Ginzburg-Wilson-Fisher (LGWF) theory of a fluc-

tuating order parameter field, In other words, in this case, the critical singularities are determined

by long wavelength low frequency fluctuations of the Landau order parameter.

In all other cases, the LGWF paradigm fails. Obviously if one of the two phase itself has

non-Landau order, then the phase transition involving it will not be captured through a theory

of a fluctuating order parameter field. Examples of this kind include (a). Quantum Hall plateau

transitions (b) Magnetically ordered phase - quantum spin liquid transitions (c) A paramagnetic

Fermi liquid - magnetically ordered fermi liquid, and many others. The last example - that of the

onset of broken symmetry in a Fermi liquid - must at the very least involve coupling of the order

4 Surprisingly, even in this situation, there is an example[6] where the phase transition can happen through a route

not described by LGWF theory.
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FIG. 1: Varieties of quantum critical points. (a) The only case where the traditional LGWF paradigm is

usually applicable. (b) Unless the unbroken symmetry group of one phase is a subgroup of the unbroken

symmetry of the other phase, the transition is Landau-forbidden (c) Non-Landau order, if present in at

least one of the two phases guarantees a transition beyond the LGWF paradigm.

parameter fluctuations to the gapless excitations of the Fermi liquid (known as the Hertz theory).

For a review, see Ref. [7]. This minimal modification of LGWF theory in a metallic system is

not only a hard problem in itself but may also be fundamentally inadequate to capture the physics

of the quantum critical point in several experimental realizations, particularly in heavy fermion

systems.

A different kind of example is provided by Landau-forbidden continuous phase transitions be-

tween phases that themselves are Landau allowed[8, 9]. In these examples, the critical theory can be

expressed in terms of emergent gauge fields coupled to gapless matter fields with fractional quantum
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numbers though these are not excitations of either phase. These are known as Deconfined Quantum

Critical Points, and are best established for the Neel to Valence Bond Solid phase transition in 2d

square lattice SU(N) magnets for large enough N . See Ref. [10] for a review.

A crucial point that has emerged in the last few decades is that there are intimate intellectual

connections between the theories that describe these diverse phases and phase transitions. Thus the

study of topological quantum matter provides important insights into the study of gapless quantum

matter and vice versa. So it makes sense to have a good understanding of all of these distinct

ground states. In the next sections, we will provide some vignettes of this landscape through a few

illustrative examples. We will revisit familiar non-Landau phases of matter from possibly unfamiliar

(to some, if not all, readers) points of view so as to deepen our understanding of them.

III. ILLUSTRATIVE EXAMPLES

A. Topological insulators revisited

Consider a time reversal invariant system of charged particles in 3d. We assume charge conser-

vation so that there are global U(1) and time reversal T symmetries. Further, as usual, we assume

that the electric charge is even under time reversal. We are interested in gapped insulating phases

of such a system such that the only excitations are electrons or their composites (thus there are no

excitations with fractional charge/braiding statistics).

Let us start with some simple but powerful observations. All excited states can be labeled by an

integer charge ne (n ∈ Z where e is the electron charge. Excitations with odd n will be fermions

while those with even n will be bosons. Consider a ‘gedanken’ experiment where we probe the

system by placing a magnetic monopole M (of basic strength qm = h/e ≡ 2π/e) inside the medium.

Note that the monopole is an external probe and not an excitation of the system. We know that

electric fields are even under T while magnetic fields are odd. Thus, while the electric charge is

even under T , the magnetic charge qm is odd.

Now suppose that the probe monopole M nucleates some electric charge qe. Its time reversed

partner TM will have the opposite magnetic charge −qm but must have the same electric charge

qe. Imagine bringing together M and TM to get rid of all the magnetic charge but have a total

electric charge 2qe. But once the magnetic charge is gone, the result must be an excitation of the
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insulator we are probing. Thus we must have

2qe = ne (1)

where n is an integer. This equation has two distinct classes solutions. We may have qe = 0, e, 2e, · · ·

or we may have qe = ±e/2,±3e/2, · · · . In either class of solution, we can go between different

options by adding or removing electrons. However it is impossible to go from one class to the other

by binding electrons.

Thus we conclude that time-reversal invariant 3d insulators with no exotic excitations come in

(at least) two distinct varieties: those in which a probe monopole has integer electric charge and

those in which it has a charge 1/2 (+integer) of e. We take a conventional insulator to be one in

which the probe monopole has charge (in units of e) 0 mod 1. We see that it is possible to have a

distinct T -protected topological insulator where the probe monopole has charge 1/2 mod 1.

Note the following important points. (i) If T is broken, then M and TM need not have the

same electric charge and we cannot conclude anything about the charge of M . Thus T protects the

quantization of the electric charge of a probe monopole. (ii) The monopole is not an excitation, and

hence can have a fractional electric charge, even though (by decree) dynamical excitations do not.

(iii) Quantization of the electric charge of the monopole guarantees stability of the putative topolog-

ical insulator to all perturbations (interactions, disorder etc) that preserve the charge conservation

and time reversal symmetries.

So what kind of insulator supports fractional charge on probe monopoles? To understand this, let

us consider in greater detail, the bound state of M and TM when both have fractional charge qe =

e/2. The classical angular momentum of the associated electromagnetic field is readily computed

and is seen to be L = ℏ
2
R (where R is the relative vector separating M and TM). We can also

solve the two-particle quantum mechanics problem of M and TM . The solution shows that the

bound state has an orbital angular momentum ℏ
2
suggesting that it is has a “spin” 1/2. This may

be understood by considering the Berry phase seen when M moves through a closed loop C. This

phase is 1
2
1
2
(2)Ω where Ω is the solid angle subtended by the loop C. One factor of 1/2 comes

from the usual Berry phase of a charge e moving around a monopole, another factor 1/2 takes into

account the charge e/2 of M , and there is a factor of 2 ue to the fact that the magnetic charge

of M also sees the electric charge of TM . This Berry phase is the same as that of a unit electric

charge moving around a neutral 2π magnetic monopole where the bound state is well known to

have internal angular momentum 1/2 in the ground state.
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Under T , M ↔ TM , and thus the relative vector R → −R. In the ground states, when

we project to the spin-1/2 doublet subspace, PRP = J (the spin-1/2 operator). Thus under T ,

J → −J which implies that the bound states is a Kramer’s doublet[11, 12] under T . Finally the

half-integer spin suggests that this bound state is a fermion, and this can be shown explicitly[13].

Thus we conclude that the possibility that a probe 2π monopole have quantized electric charge

e/2 in a T - symmetric 3d insulator requires that the basic charged particles are charge-e fermions

which are Kramers doublets (and not for insulators of, say, bosons or Kramers singlet fermions).

Can these fermions have a conserved SU(2) spin-S = 1/2? The answer is no. We know that

the fermion is a bound state of M and TM both of which must have the same S. Therefore their

bound state cannot have SU(2) spin-1/2.

It follows that we need an electronic insulator where the electrons are spin-orbit coupled (so that

electron spin is not conserved).

There is a lot more that one can understand from this point of view. For instance we could discuss

the surface of the topological insulator (or equivalently an interface with the trivial insulator). In

the vacuum, a probe monopole will have qe = 0. Thus when a monopole passes through the interface

into the bulk of the topological insulator, it must pick up an electric charge ±e/2. Thus the surface

cannot be completely trivial. Rather there must be a surface state such that a 2π flux passing

through it sucks in a charge-±e/2.

A formal characterization of the surface is that it realizes the U(1) and T symmetries with an

“’t Hooft anomaly”. If we couple in a probe U(1) gauge field, the surface theory alone will not be

T -invariant, but the combined theory of the surface and the bulk will be T -invariant.

It is a good exercise for the reader to check that the familiar free fermion topological insulator

fits the considerations above.

B. Fractional quantum Hall revisited

A 2d system of charged particles showing a Fractional Quantum Hall (FQH) effect has a con-

ductivity tensor (at T = 0)

σij =
σH

2π

0 −1

1 0


ij

. (2)

with σH = p/q where p, q are co-prime integers with q > 1. (We are working in units with e = ℏ = 1).

The FQH is usually seen in 2d electron gases in a uniform magnetic field (in platforms like GaAs
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or graphene). Very recently it has been seen in systems (twisted MoTe2, multilayer rhombohedral

graphene) which are microscopically time-reversal invariant. T is then spontaneously broken thereby

enabling an FQH state. In this context these are known as Fractional Quantum Anomalous Hall

(FQAH) states. These are a special case of a larger class of FQH states known as Fractional Chern

Insulators (FCI) which refer to any lattice 2d system (with or without a B-field) that shows an

FQH. Examples at non-zero B include bilayer graphene aligned with a hexagonal Boron-Nitride

substrate and twisted bilayer graphene.

While there is a well-developed microscopic theory for the FQH state in Landau levels, it is far

less developed in lattice systems. Ths it is interesting to ask what measuring a fractional σH implies

about the low energy theory. We will describe a small portion of recent results, described in Ref.

[14], on this question. Ref. [14] also has extensive references to the original literature.

We begin with an argument, due originally to Laughlin, that shows that fractional σH implies

the existence of fractionally charged excitations. We put the FQH system on an annulus and

thread 2π flux adiabatically at a rate dΦ/dt. This induces a circulating emf at a radius r given by

Eθ(2πr) = −dΦ/dt. Correspondingly there is a radial Hall current density jr = σxyEθ = σH

2πr
dΦ
dt
.

The total charge transferred as Φ ramps up from 0 to 2π is

Q = 2πr

∫
dtjr = σH (3)

Thus fractional σH implies that we can pump a fractional charge from the outer to the inner edge,

and thus that a fractionally charged excitation (the ‘vison’ v ) is nucleated at the inner edge.

A later refinement showed that the vison must have fractional statistics θ = πσH . To see this,

note that though the 2π flux cannot be detected by electrons, it will lead to a non-trivial braiding

phase on fractionally charged anyons. Consider a single bulk anyon a localized far away from the

edge, and drag it around the inner hole. With 2π flux, there is an Aharanov-Bohm phase 2πQa.

Hence a and v have a braiding phase

B(a, v) = B(v, a) = Qa mod 1 (4)

Thus v detects the fractional charge of any other anyon. In particular B(v.v) = Qv = p/q mod 1.

This implies that 2θv = 2πp/q mod 2π. We can actually show a stronger result that θv = πp/q

mod 2π. Finally it can be shown that the vison is an abelian anyon (see Ref. [14] for a discussion

of these statements). Thus we conclude that fractional σH implies the existence of a vison v with

(a) fractional charge Q(v) = σH (b) fractional self-statistics θv = πp/q, and (c) braiding statistics

with any other anyon given by a braiding phase B(a, v) = Qa mod 1.
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So the IR theory has fractionally charged anyons and hence is topologically ordered. What is

the “minimal” theory consistent with the above? For concreteness, we define minimal as the theory

with the smallest number of anyons.

Let us start with some simple observations. From v we can get v2 by fusing v with itself. This

has charge Q(v2) = 2p/q and statistics θ(v2) = 4πp/q. Clearly v2 is also abelian. In general we

can consider vn with Q(vn) = np/q and θ(vn) = πn2p/q. Note that in an electronic system we can

identify (Q(a), θ(a)) ∼ (Q(a) + 1, θ(a) + π) by binding an electron to the anyon.

Let us restrict to odd q to begin with. Clearly we have q distinct anyons (1, v, v2, ......, vq−1).

Consider vq. It has (Q(vq), θ(vq)) = (p, πpq) which can be identified with (0, 0) by binding powers

of electrons (irrespective of whether p is odd or even. Thus we get a minimal theory by identifying

vq with a local particle. The minimal theory - which we denote Vq,p - is an abelian topological order

with q distinct anyons.

Note that most of the observed quantum Hall states (on the order of about a 100 states) have

odd q. Interestingly essentially all these states, save a few exceptions (< 5), are described by these

minimal states!

For even q, the analysis is a bit more involved. Now vq is a boson with odd integer electric charge.

It thus cannot be a local excitation in an electronic system even though it braids trivially with all

other vn. There must therefore be anyons not contained in (1, v, v2, .....) that vq braids non-trivially

with. (HW: Show that this implies there must be anyons with charge 1
2q

in the theory.) Thus we

must have vlq be a local excitation with l an even integer bigger than 1. It is possible to show

that the miminal choice is l = 2, and that there are four distinct minimal theories which are all

non-abelian, and each have 3q distinct anyons.

C. Fermi liquids revisited

We will focus on some general properties of Landau Fermi liquids that follow from their symme-

tries and their realization in the low energy theory. Our discussion will follow Ref. [15].

Let us start with some general observations on global symmetry in quantum many body physics.

Suppose the microscopic (the “UV theory”) system may have a global symmetry group GUV . We

will be interested in situations where the GUV is not spontaneously broken in the ground state. The

low energy theory will have a (possibly different) global symmetry group GIR. There will be an

image of GUV that embeds into GIR. Note that GIR may be bigger than GUV , i.e the IR theory may
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have an emergent symmetry. In addition, GIR may have an ’t Hooft anomaly. Such anomalies are

‘topological’ properties of how symmetries are realized; they are robust to deformations within the

same phase of matter. We already encountered them before in the context of surfaces of SPT matter.

A concrete example is the chiral anomaly of massless Dirac fermions in d = 1 or d = 3 dimensions

which have been of interest in condensed matter physics in recent years. The characterization of

anomalies and their consequences is an important source of connection between topological and

other kinds of quantum matter.

In this subsection, we are concerned with a microscopic system of electrons (which, for simplicity,

we take to be spinless) on a lattice at some filling ν. For concreteness we restrict to d = 2. The

microscopic global symmetries are charge conservation and discrete lattice translations (so that

GUV = U(1)× Z2).

We assume that the ground state is a Landau Fermi liquid. The IR theory then has sharp

quasiparticles near a well-defined Fermi surface. What is the symmetry of the low energy theory?

Colloquially, we have separate conservation of quasiparticles at each point of the Fermi surface, and

hence we might expect a very large amount of symmetry. Let us make this precise. For each point θ

(a periodic coordinate that parametrizes the Fermi surface, which we assume is just a single closed

oriented curve), there is a conserved nθ such that nθdθ is the number of quasiparticles between θ

and θ+ dθ. These are the conserved generators of the IR symmetry. A general symmetry element5

can be taken to be

ei
∫
dθf(θ)nθ , (5)

for smooth functions f(θ).

Let us now ask about how the microscopic symmetries (GUV ) embed into this low energy sym-

metry group. The total charge n ∼
∫
dθnθ. Unit lattice translations along direction α = x, y embed

as

Tα ∼ e−iaα
∫
dθKFα(θ)nθ (6)

where aα is the lattice spacing in the α direction. We can take this action fo translations as the

definition of the Fermi momentum KFα(θ). Thus both the U(1) and translation symmetries of the

microscopic theory map to elements of the low energy LU(1) symmetry.

The IR symmetry has an anomaly. One definition of the anomaly is that when we couple the

5 These define smooth maps from the circle described by θ to U(1), and form a group known as the loop group of

U(1), and is denoted LU(1).
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system to gauge fields, the symmetry and hence the associated conservation laws are lost. In the

present context, we can see that there must be an anomaly by asking about the effect of an external

electromagnetic field on the Fermi surface. Then we lose separate conservation of the nθ (though

of course the total charge is conserved). This is clear with either an electric or a magnetic field. In

the latter case, semiclassicaly, the quasiparticle moves around in one direction on the Fermi surface

due to the Lorentz force, thereby destroying separate conservation of nθ.

A useful physical picture of the anomaly is as follows: the Fermi surface is the boundary in

k-space of the rigidly occupied Fermi sea. In a B-field, the interior of the Fermi surface stays rigid

but there is a ‘chiral’ edge state at the k-space boundary which is the Fermi surface.

It can actually be shown that in a B-field, the Fermi sea can be thought of as showing an integer

quantum Hall effect in momentum space, and the one-way quasiparticle motion at the Fermi surface

is the corresponding chiral edge state.

A more formal manifestation of the same physics is obtained by turning on a 2π magnetic flux

of the external vector potentials Ax,y. For the chiral k-space edge state at the Fermi surface, the nθ

now satisfy the chiral commutation algebra

[nθ, nθ′ ] = − i

2π

d

dθ
δ(θ − θ′) (7)

familiar from usual IQH edge states.

The emergent symmetry and anomaly of the Fermi liquid by themselves determine many (but

not all) universal properties. These ‘kinematic’ universal physics should be distinguished from

other universal properties that depend on the dynamics of the theory (as captured by the low

energy Hamiltonian). As an application, let us show how the celebrated Luttinger’s theorem follows

from the emergent symmetry/anomaly. This theorem relates the area of the Fermi surface to

the lattice filling. It was shown within perturbation theory by Luttinger in the 1960s. A non-

perturbative topological argument was given by Oshikawa[16] much later in 2000. This argument

involves adiabaticaly threading 2π flux through a cycle of a torus the system is placed in, and

calculating the (crystal) momentum transferred in both the UV and IR theories. Here we will

obtain it as a universal kinematic property as an explicit consequence of the more fundamental

statements on the emergent symmetry and its anomaly.

Consider the UV theory in the presence of a spatially uniform 2π flux. Then Tx,y do not commute.

Rather we have

TxTyT
−1
x T−1

y = e2πiν (8)
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In the IR theory, we should use Eqn. 6, and the commutation algebra in Eqn. 7. Then we find

(HW: show this using the Baker-Campbell-Hausdorff formula)

TxTyT
−1
x T−1

y = ei
VF axay

2π (9)

where VF is the volume of the Fermi surface. Matching Eqn. 9 to Eqn. 8, we obtain Luttinger’s

theorem.

We emphasize that the emergent symmetry and its anomaly are the fundamental kinematic

properties. They imply a number of other universal phenomena (response to electric fields, quantum

oscillations, etc) in addition to Luttinger’s theorem.

We will stop here though there are a number of other questions one could discuss. Can the IR

theory with its anomaly be regarded as the boundary of a bulk theory with the same symmetry?

The answer is yes but the bulk theory lives in 4 + 1 dimensions though we are discussing Fermi

liquids in 2 + 1 dimensions. A useful physical point of view is that the ‘bulk’ theory should really

be thought of as a theory in phase space. The bulk direction can then be interpreted as going into

the interior of the occupied Fermi sea.

These considerations on ordinary Fermi liquids might give us a possible angle through which to

make progress on the much more difficult problem of compressible non-Fermi liquid metals. Perhaps

they have universal kinematic properties that are easier to understand than their full dynamics.
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