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Abstract. We present a unified theoretical framework for the cuprate superconduc-
tors, rooted in a fractionalized Fermi liquid (FL*) description of the intermediate-
temperature pseudogap phase at low doping. In this approach, the FL* state hosts
small Fermi surfaces of electron-like quasiparticles that violate the conventional Lut-
tinger count, which requires the presence of additional fractionalized excitations char-
acteristic of a quantum spin liquid. Building on the proposal by Christos et al.
(arXiv:2302.07885), we consider a critical spin liquid lacking quasiparticle excitations,
one of whose low energy descriptions is an SU(2) gauge theory with Ny = 2 flavors of
massless Dirac fermions.

This FL* theory predicted hole pockets each of fractional area p/8 at hole doping
p, in contrast to the area p/4 in a spin density wave state or its thermal fluctuation.
A recent magnetotransport observation of the Yamaji angle is in good agreement
with area p/8. We review a systematic method, based on the square lattice Hubbard
model supplemented by ancilla qubits, to describe thermal fluctuations of the SU(2)
gauge theory in the pseudogap, and explore multiple routes to confinement of the
fractionalized excitations upon lowering temperature. A Monte Carlo study of the
thermal SU(2) gauge theory models the Fermi arc spectra observed in photoemission
and scanning tunneling microscopy. One route to confinement yields a d-wave
superconductor via a Kosterlitz-Thouless transition of h/(2e) vortices, with nodal
Bogoliubov quasiparticles featuring anisotropic velocities and vortices surrounded by
charge order halos. An alternative route produces a charge-ordered metallic state that
exhibits quantum oscillations in agreement with experimental data.

Increasing doping from the FL* phase drives a transition to a conventional Fermi
liquid at large doping, passing through an intermediate quantum-critical regime. We
formulate a theory of this quantum-critical metal using a critical quantum ‘charge’
liquid of mobile electrons, developed via an extension of the Sachdev-Ye-Kitaev (SYK)
model.

This comprehensive perspective connects the pseudogap, superconducting, charge-
ordered, and strange metal phases within a single theoretical landscape.
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Figure 1. Cuprate phase diagram from Ref. [1]. Annotations in blue have been added.
We use a theory of a fractionalized Fermi liquid (FL*) of the pseudogap to connect to
the other phases in the sections noted.

1. Introduction

This article presents a theoretical framework for the complex and rich phase diagram
of the cuprate materials, see Fig. 1. Complex many-electron entanglement, which can
give rise to quantum states of matter that lack any well-defined particle-like excitations,
will play a central role. Omne such critical state is a particular quantum spin liquid,
described in Section 2, in which the charge of some electrons is localized, while their spins
remain entangled in a scale-invariant manner; it leads to a description of the pseudogap
region of Fig. 1 and its low temperature instabilities. Another distinct critical state is
associated with the collective dynamics of electron charge, a critical quantum ‘charge’
liquid, characteristic of the strange metal regime of Fig. 1; its theoretical description
builds on concepts from the Sachdev-Ye-Kitaev (SYK) model, introduced in Section 6.

At large doping, p, where the T, is relatively low, it is reasonable to apply the
theory of spin-fluctuation mediated pairing of Fermi liquids (FL), leading to Cooper
pairs around the Fermi surface, and the formation of a BCS-type superconductor. It
is known that the spin fluctuations are antiferromagnetic, and antiferromagnetic spin
fluctuations indeed lead to the observed d-wave pairing [2].

But this powerful paradigm runs into difficulty at lower p, and especially in the
regime of the pseudogap, where there is no complete Fermi surface above T, upon which
the Cooper pairs can form. Nevertheless, below T, there is no dramatic change in the
nature of the superconductivity with varying p, and so it is clear that the superconductor
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itself is always adiabatically connected to a d-wave BCS state.

We shall address the low p phases here using a ‘fractionalized Fermi liquid’ [3, 4, 5, 6]
(FL*) theory of the pseudogap metal. The FL* is a state with Fermi surfaces which
do not enclose the Luttinger area, and this is possible if there is a ‘background’ spin
liquid, as is reviewed in Section 4. With the remarkable progress in understanding
and classifying spin liquids in recent decades, it is now legitimate to ask ‘which spin
liquid?’. Following the proposal by Christos et al. [7], we employ the FL* state with
the critical square lattice spin liquid, without quasiparticle excitations, which has dual
[8] formulations in terms of a U(1) gauge theory of bosonic spinons [9, 10, 11, 12]
(see Eq. (2.27)), or as a SU(2) gauge theory of fermionic spinons in the 7-flux phase
[13, 14, 15] (see Eq. (2.43)). We review the properties of this critical spin liquid in
Section 2.

Sections 3 and 5 show that this critical spin liquid satisfies a key constraint: as
the temperature is lowered, the emergent gauge fields are confined by a transition to
a d-wave superconductor which is adiabatically connected to the BCS state [7]. The
onset of superconductivity at low p is not a BCS-type Cooper-pairing transition, but a
confinement /Higgs transition of a gauge theory. This is a specific realization of an early
suggestion by Anderson [16], that cuprate superconductivity appears by exploiting the
pre-existing pairing of electrons in a resonating valence bond state.

There were several earlier proposals [17, 18, 19, 20, 21] for a transition from a
spin liquid to a d-wave superconductor. In these theories, gapless fermionic spinons
of the spin liquid directly transmute into the Bogoliubov quasiparticles of the d-wave
superconductor with a massless Dirac dispersion. However, these proposals had a
significant problem as they predict a nearly isotropic velocity dispersion, with the
velocities along the Brillouin zone diagonals (vg, see Fig. 17B) and the orthogonal
direction (va) being nearly equal to each other. Experimentally, we have vg/va ~ 14 to
19 [22]. Section 5.1 shows how this problem is resolved [23, 24] by instead considering the
transition from a FL* state to a d-wave superconductor. In such a theory, the spinons
do not transmute into Bogoliubov quasiparticles; instead, they mutually annihilate with
extraneous Bogoliubov quasiparticles from the ‘backside’ of the hole pockets.

Sections 4 and 5 also review how the critical spin liquid FL* theory is connected to
a number of other experiments on the underdoped cuprates:

e Recent observations [25] of the Yamayji effect in the pseudogap state above T, show
hole pockets of area close to the FL* predicted value of p/8 [3, 4, 26], and not the
value p/4 expected in a theory of spin density wave fluctuations [27, 28, 29, 30].
This observation is therefore direct evidence for the presence of fractionalization in
the cuprates.

e Quantum oscillations at low p and low 7" show small electron pockets in the presence
of charge density wave order [31]. This can be explained as arising from the charge
density wave acting on hole pockets only upon including the influence of the spinons
of the FL* state [32].
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e The ‘Fermi arcs’ observed in photoemission [33, 34, 35, 36, 37, 38] and scanning
tunneling microscopy (STM) [39, 40] are realized by thermal fluctuations of the
SU(2) lattice gauge theory describing the FL* state [41].

e The thermal SU(2) gauge theory [41] also describes the onset of superconductivity as
a Kosterlitz-Thouless transition of vortices with flux h/(2e) [42]. As a consequence
of the competing charge order instability of the critical spin liquid [7], each vortex
carries a charge order halo, similar to observations [43].

As indicated in Fig. 1, Sections 6 and 7 address the strange metal phase as a
crossover between the pseudogap metal and the large p Fermi liquid. Here a different
critical quantum liquid plays an important role, one in which the electrons are mobile.
Two solvable zero-dimensional models, the SYK model and the WES-SYK model (also
known as the Yukawa-SYK model), yield much insight and their properties are reviewed
in Section 6.

Section 7 extends the zero-dimensional models of Section 6 to the two-dimensional
case of interest. We begin by the general description of a quantum phase transition in
a two-dimensional metal. For quantum phase transitions without spatial disorder, we
do find the breakdown of well-defined quasiparticles i.e. a non-Fermi liquid. However,
such clean non-Fermi liquids have an emergent continuous translational symmetry which
precludes the observed singular behavior in transport properties (see Section 7.2).

We can imagine a situation, which we do not review here, where the continuous
translational symmetry emerges only at very low temperatures, because of the
dominance of umklapp processes. In this case, we can study zero-dimensional SYK-
type solutions of the dynamic mean-field theory of a ‘Kondo breakdown’ quantum phase
transition [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. However, we do expect
that there is eventually a momentum conserving theory at low energies for clean lattice
models, but it is possible that the crossover to such behavior is strongly suppressed in
Kondo lattice models where the couplings between the Kondo spins are weak.

Instead, Section 7 examines the role of impurities, which are ubiquitous in
experiments, and which will prevent the emergent continuous translational symmetry.
Section 7.3 examines the generic situation where impurities lead to spatial randomness
in the position of the quantum critical point. We describe a self-averaging treatment of
the spatial disorder, inspired by the structure of the solution of the SYK model. This
leads to a set of universal predictions at low temperatures (7') in the quantum-critical
‘fan’, which are largely independent of the particular quantum phase transition under
consideration [58, 59]. These properties include a linear-in-T resistivity, a 7' In(1/7")
specific heat, a ~ 1/w tail in the optical conductivity at frequency w, and marginal
Fermi liquid behavior in the electronic spectrum. These are in good agreement with
observations across a wide range of correlated electron materials.

However, there is a particular feature that is special to the underlying FL* to FL
transition illustrated in Fig. 1. Such transitions have a singular particle-hole asymmetry,
and this leads to singular behavior in the thermopower [60]. This is also consistent with
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observations on the cuprates [61, 62] and heavy-fermion compounds [63].

Finally, we note that at sufficiently low 7', the self-averaging treatment of disorder
described above breaks down, and the contributions of regions where collective bosonic
modes localize become important. This is addressed in other works [64, 65], has been
reviewed elsewhere [66], and will not be discussed further here. These rare region effects
lead to Griffiths phases [67], and the ‘foot’ in the strange metal region, observed in
transport [68, 69] and neutron scattering [70].

2. Critical spin liquid on the square lattice

Hy=> JijSi-S;. (2.1)
i<j
We consider the general case of S; being spin .S quantum spin operators on the sites, ¢,
of a square lattice. The J;; are short-ranged antiferromagnetic exchange interactions.
We will mainly consider here the square lattice with nearest neighbor interactions, but
the methods generalize to a wide class of lattices and interaction ranges.

We will begin in Section 2.1 by employing a method which fractionalizes the
spin operator into bosonic partons. This leads to the low energy U(1) gauge theory
with complex scalars in Eq. (2.27), and to the phase diagram in Fig. 3. Section 2.2
fractionalizes the spin operator into fermionic partons. This leads ultimately to a
seemingly different low energy theory: a SU(2) gauge theory with massless Dirac
fermions in Eq. (2.43). But we will argue, folllowing Wang et al. [8], that the bosonic
and fermionic theories are equivalent. This equivalence is powerful, as it yields a toolbox
of different approaches to study spin liquids.

2.1. Bosonic partons

A careful examination of the non-magnetic ‘spin-liquid’ phases requires an approach
which is designed explicitly to be valid in a region well separated from Néel long range
order, and preserves SU(2) symmetry at all stages. It should also be designed to
naturally allow for neutral S = 1/2 excitations. To this end, we introduce the Schwinger
boson description [71], in terms of elementary S = 1/2 bosons. For the group SU(2) the
complete set of (25 + 1) states on site ¢ are represented as follows

1
S,m) = bL)SH™(b],)57™0), 2.2
8.m) = — e () 01)° 10 22)
where m = —S,...5 is the z component of the spin (2m is an integer). We have

introduced two flavors of Schwinger bosons on each site, created by the canonical

operator bla, with a =7,], and |0) is the vacuum with no Schwinger bosons. The

total number of Schwinger bosons, ny, is the same for all the states; therefore

bl bie = 1 (2:3)
with

ny =2S5. (2.4)
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The above representation of the states is completely equivalent to the operator identity
between the spin and Schwinger boson operators

1
S; = —b]L 0w biﬁ (25)

2 2 T
where ¢ = z,y, z and the o are the usual 2 x 2 Pauli matrices.
The spin-states on two sites 2, 3 can combine to form a singlet in a unique manner -
the wavefunction of the (unnormalized) singlet state is particularly simple in the boson
formulation:

A
<5aﬁbiabj5) 0) (2.6)
Also, using the constraint in Eq. (2.3), the following Fierz-type identity can be

established
(ﬁaﬁbiab;ﬁ) (48binbis) = —28i - S + /2 + dijn (2.7)

where ¢ is the totally antisymmetric 2 x 2 tensor

(%) 28)

This implies that H; can be rewritten in the form (apart from an additive constant)

1
Hi==5D Ji (é‘aﬁblab;ﬁ) (€46birbis) (2.9)
1<J

This form makes it clear that H counts the number of singlet bonds.

2.1.1.  Mean-field theory We begin by the coherent state path integral of H; in
imaginary time 7 at a temperature § = 1/T

B
Z; = /DQDbD)\eXp (—/ £Jd7'), (2.10)
0

where

d ,
EJ = Z |:b1a (E + l)\z) bia - Minb}

%

TolQisl? T
+ Z |: J 5 R 32 Jgagbiabj5+H.C. . (2.11)

<ig>
Here the \; fix the boson number of n; at each site; 7-dependence of all fields is implicit;
Q was introduced by a Hubbard-Stratonovich decoupling of H.
This procedure is similar to that employed in deriving the Landau-Ginzburg theory
of superconductivity from electron pairing, with the crucial difference that now the
Lagrangian £ has a U(1) gauge invariance under which

by — bl exp (ipi(7))
Qij — Qijexp (—ipi(T) —ipi(7))

Ipi
/\,’ — )\z + E(T) . (2.12)
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The functional integral over L; faithfully represents the partition function, but does
require gauge fixing. This gauge invariance leads to emergent gauge field degrees of
freedom, as we will see below.

We begin with mean-field saddle point of Z; over the path integrals of Q and .
The saddle-point approximation is valid in the limit of a large number of spin flavors,
but we do not explore this here. With the saddle point values Q;; = Qij, i = \; we
obtain a mean-field Hamiltonian for the b;,

Jii| Qa2 Jij Qs
Honr = Z( 9l 2 Jeagb?berH.c.)

— 2 2
<%,7>

+ ) Xl bia — ) - (2.13)

This Hamiltonian is quadratic in the boson operators and all its eigenvalues can be
determined by a Bogoluibov transformation. This leads in general to an expression of
the form

Hinr = Ejur[Q, N + Zwu[Q, E\]ﬁm’yﬂa (2.14)
m

The index p extends over 1...number of sites in the system, F;p is the ground state
energy and is a functional of Q, A, w,, is the eigenspectrum of excitation energies which is
also a function of 9, \, and the 7, represent the bosonic eigenoperators. The excitation
spectrum thus consists of non-interacting spinor bosons. The ground state is determined
by minimizing E;r with respect to the Q;; subject to the constraints

OEnr
— =0 2.15
N (2.15)
The saddle-point value of the Q satisfies
Qi; = (capbiabjp) (2.16)

Note that Qij = _Q]‘i indicating that Qij is a directed field - an orientation has to be
chosen on every link.

These saddle-point equations have been solved for the square lattice with nearest
neighbor exchange J, and they lead to stable and translationally invariant solutions for
\; and Q- The only saddle-point quantity which does not have the full symmetry of
the lattice is the orientation of the Q” Note that although it appears that such a choice
of orientation appears to break inversion or reflection symmetries, such symmetries are
actually preserved: the Q;; are not gauge-invariant, and all gauge-invariant observables
do preserve all symmetries of the underlying Hamiltonian. For the square lattice, we
have A; = A, Q; 15 = Qiivg = 9.

We can also compute the dispersion wy of the 7, excitations. These are bosonic
particles which carry spin S = 1/2 (‘spinons’). Their dispersion is

wp = (N2 = J2Q%(sin ke, + sin k,)?)"* . (2.17)

We plot the dispersion in Fig. 2. Note the minima at k = +(7/2, 7/2) with an energy
gap of (A2 —4.7202)"*.
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Figure 2. Dispersion of bosonic spinons in a square lattice spin liquid, from Eq. (2.17).

2.1.2. Low energy U(1) gauge theory We now examine the low energy theory in the
regime where the energy gap of the spinon excitations is small. Here, we can take a
continuum limit for the spinons, and also account for the fluctuations of Q and A. For
the spinons, we introduce the wavevector at the minimum spinon gap ko = (7/2,7/2)
and parameterize on the checkerboard A and B sublattices (with 2, + 2, even and odd)

baia = Y1a(r;)e™om

bBia = — i5a6¢26(ri>eik0'ri . (2.18)
For Q and A, we anticipate that the fluctuations will be un-important unless associate
with the gauge symmetry in Eq. (2.12). So we focus only on the phases of the Q;; and
parameterize

Qiive = Qexp (i0;,)

Qiity = Qexp (i9y) (2.19)
and express the phases in terms of continuum field (a,, a,, a,) via

®zx(T> = 771'%(7’7 T)

Oiy (1) = niay(r,7)

i = —i\ — nza.(r, ) (2.20)
where

i = (=1) (2.21)
identifies the checkerboard sublattices. Next, we insert these parameterizations into the

spinon action, perform a gradient expansion, and transform the Lagrangian £; into (a
is the lattice spacing)

d?r . d . . d )
Ez = /@ {%a <% + ZCLT) wla + ¢2a (E - ZGT) w2a
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+ 5\ (’wlaP + ‘wZa‘z) - 2*]Q (wlaw2a + ¢Taw;a)
+ (J/2)Qa* [(V +ia) Y14 (V —ia) P

+ (V —ida) Y7, (V +ia)v3,]| - (2.22)

We now introduce the fields

Ra = (¢1a + ¢§a)/\/§
To = (1o — ¥3,)/V2,

to map Eq. (2.22) to

L, = /& * i + 1 _ i —q *
27 ) gz |Ta gy T ) Fa T Ml gy 77 ) Fa
+ A (|Za|2 + |7Ta|2) - 2J0 (|Za|2 — |7Ta|2)

+(J/2)0a2 [|(V +ia) za|* — |(V + ia) mﬂ . (2.23)

From Eq. (2.23), it is clear that the the 7 fields have ‘mass’ A\ + 2JQ, while the z
fields have a mass A — 2JQ which vanishes at a quantum phase transition where the z,
condense, leading to Néel order. The 7 fields can therefore be safely integrated out, and
L, yields the following effective action, valid at distances much larger than the lattice
spacing [9, 10]:

d*r . A%
SeH:/4\/§a/d7{|(8u—mu)za|2+?|z |2} (2.24)

Here p extends over z,y,7, ¢ = v/2JQa is the spin-wave velocity, we have rescaled
7 — 7/c, and A = (A2 — 4J%2Q?)'/? is the gap towards spinon excitations. Thus the
long-wavelength theory describes a spin liquid with of a massive, spin-1/2, relativistic,

boson z, (spinon) excitation coupled to a U(1) gauge field a,.

The continuum theory also makes it easy to determine the fate of the
antiferromagnet when the spin energy gap vanishes. We expect that z, will bose
condense, and this will break the spin rotation symmetry; a term quartic in z, will
be needed to stabilize the condensate. But z, carries a U(1) gauge charge, and so is not
directly observable. Following the definitions of the underlying spin operators, it is not
difficult to show that the gauge-invariant composite

N = 20,525 ~ 1:iS; (2.25)

is just the Néel order parameter.

However, there is an important ingredient that our low energy theory has not yet
considered. These are non-perturbative fluctuations of a, which are Dirac monopoles
in 241 dimensional spacetime. We will not carry out a full analysis here, and merely
summarize some important consequences. An important result is that the spin liquid
noted above is ultimately not a spin liquid. It is unstable to proliferation of monopoles,
and ultimately confines a valence bond solid. But monopoles do not have a significant
effect on the Néel state.
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Figure 3. Phase diagram of the U(1) gauge theory with bosonic spinons, Eq. (2.27.
The Néel order appears in a Higgs phase where the bosonic spinons are condensed.
The VBS order appears in the confining phase, and is induced by the Berry phases
of the confining monopoles. The same phase diagram applies to the fermionic spinon
theory in Eq. (2.50), and the SO(5) o-model with the WZW term in Eq. (2.57).

2.1.8. Quantum criticality On general symmetry grounds, we extend Eq. (2.24) to a
theory for the vicinity of the quantum critical point at which the spinon gap vanishes

[72]:
SU(l) = /d3l’ (ﬁz + Emonopole) + SB

L. = [(9, — mu)za|2 + gl2al* +u (|Za|2)2 + K(EWA&/G)\)Z
Emonopole = -y (Mtl + M(Tz)

The theory L. is also known as the CP' model. We have included monopoles M, in
the gauge field a,, and also the Berry phase of the spinons in the ground state. As we
tune the coupling g in Eq. (2.26), we can expect the 2 phases shown in Fig. 3:
(i) Néel phase, g < g.: the spinon z, condenses in a Higgs phase with (z,) # 0. The a,
gauge field is Higgsed, and spin rotation symmetry is broken by opposite polarization
of the spins on the two sublattices.
(7)) Valence bond solid (VBS), g > g.: the spinons are gapped. For half-integer spin
S, there is broken translational symmetry by the crystallization of valence bonds in the
pattern shown in Fig. 3.

We now obtain a potential gapless spin liquid if there is a continuous quantum phase
transition at ¢ = g.. For half-integer spin S, the single monopole terms in Eq. (2.26)
average to zero at long wavelengths from the Berry phases, and only quadrupoled
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monopole terms survive. So we can simplify the continuum theory for the vicinity
of the quantum critical point to [11, 12]

L. = |(au_iau)za|2+g|za|2+u (|Za|2>2+K(€;w>\8Va>\)2 —Ys (Mﬁ + M3;4) ) (2-27)

where y, is the quadrupoled monopole fugacity. There is ample numerical evidence that
14 is irrelevant near a possible critical point, and so the question reduces to whether the
theory L. at y4 = 0 exhibits a critical point which realizes a conformal field theory in
2+1 dimensions. This is a question that has been studied extensively in numerics, and
it is clear that a ‘deconfined critical’ description is suitable over a substantial length
scale: with fractionalized spinons interacting with a U(1) gauge field in the absence of
monopoles.

2.2. Fermionic partons

We now present an alternative analysis of the square lattice antiferromagnet in Eq. (2.1),
replacing the bosonic partons in Eq. (2.5) by fermionic partons. This will ultimately
lead to the same phase diagram as in Fig. 3, but with a dual description of the phases
and the criticality. This dual fermionic description turns out to be the most efficient way
to describe the connection between the critical spin liquid and d-wave superconductivity
in the doped antiferromagnet, as we will see in Section 3.

The following Schwinger fermion representation applies only for S = 1/2

1
S; = §f§a Oas fip (2.28)
where f;, are canonical fermions obeying the constraint
S fifia=1, foralli. (2.29)

While the bosonic parton representation led to the U(l) gauge symmetry in
Eq. (2.12), it turns out the Eqs. (2.28) and (2.29) have a larger SU(2) gauge invariance,
and this will be crucial to our results. The analysis is clearest upon introducing a matrix
notation for the fermions

Fi= ( T —Ju ) (2.30)

it
This matrix obeys the ‘reality’ condition
Fi=o"Flo". (2.31)

Now we can write Eq. (2.28) as
1
Si = - Tn(F,; ool o* Fl). (2.32)

The SU(2) gauge symmetry is now associated with a SU(2) matrix V; under which
Fi— Vi, (2:33)
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which is easily seen to leave the spin operator in Eq. (2.32) invariant. The global spin
rotation symmetry is however

Fi = Fio°Ql o™ (2.34)
where  is the S = 1/2 spin rotation matrix defined by

fir fir
( A ) Lo ( Ao ) | (2.35)

Next we insert Eq. (2.32) into Eq. (2.1), and perform Hubbard-Stratonovich
transformation to obtain an effective Hamiltonian for the spinons, following the same
procedure as for bosonic spinons. We skip the intermediate steps, and focus directly on
the fermion bilinear Hamiltonian on symmetry grounds. From the gauge transformations
in Eq. (2.33), and the global spin rotation in Eq. (2.34), we anticipate a spinon hopping
term of the form

Tr (fg U, .]-".) (2.36)

- J

which is invariant under both transformations. Here we have introduced a SU(2) gauge
field U;; = U ;z on each lattice link upon which the SU(2) gauge transformation acts as

However, the identity
Tr (fjfj) - Ty (]—"}]—"i> (2.38)

implies that we need a pure-imaginary hopping in a hermitian Hamiltonian in the mean-
field with U;; = 1. So we have the mean-field nearest-neighbor spin liquid Hamiltonian
for the spinons of the w-flux phase [13]:

Hsrr = %] Zeij [Tr <.7:;r./73> —Tr (f';r]:zﬂ
(i5)

—iI Y ey (W05 - i) W= ( ;"TT ) , (2.39)
il

(29)
where e;; = =£1 represents m-flux on the fermions as shown in Fig. 4. We choose
€ij = —€44 and
Ciite = 1, €iitg = (—1)", (2.40)

where ¢ = (z,y), € = (1,0), y = (0, 1).

If we had not used the pure imaginary hopping in Eq. (2.39), then the mean-field
Hamiltonian would break (‘Higgs’) the SU(2) gauge symmetry to a smaller symmetry.
A ‘staggered flux’ ansatz which breaks the SU(2) down to U(1) has commonly been
used in the literature [21]. However, it is now known that this U(1) spin liquid allows
single monopole perturbations [73, 74] (unlike the quadrupole monopole perturbations
in Eq. (2.27)), and such single monopole terms are expected to drive a strong instability
to confinement. So we don’t consider this U(1) spin liquid here.
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Figure 4. Background = flux acting on the spinons f, and also on the chargons B.

Figure 5. Dispersion of fermionic spinons in Eq. (2.41).

We can now easily diagonalize the Hamiltonion in Eq. (2.39), and obtain the
fermionic dispersion spectrum analogous to Eq. (2.17)

w = +2J (sin® k, +sin® k) "* . (2.41)

We show a plot of this analogous to Fig. 2 in Fig. 5. Unlike the bosonic spinons,
the energy of the fermionic spinons is allowed to be negative, and the negative energy
fermion states are occupied in the ground state. The constraint in Eq. (2.29) is then
automatically satisfied. Notice the two independent nodal Dirac points at k,, v = 1,2
with

kl == (O, O) y k?g = (O, 7T) . (242)
The index v is the ‘valley’.

2.2.1. Low energy SU(2) gauge theory. Going beyond mean field theory, while still
remaining on the lattice, we extend the mean field Hamiltonian in Eq. (2.39) by adding
the gauge field U;; as in Eq. (2.36). Then, by gauge invariance, we extend Eq. (2.39) to

Hons = %] 3 e [Tr (fj Uij]-"j) Ty (F; Ujifi)}
(@)
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i Jj-gi f]Li
1

The first form in terms of F makes both the SU(2) gauge invariance and the SU(2)
spin rotation invariance explicit, while in the second form in terms of ¥ only the gauge

=iJS ey (qﬁ.U..\pj . MU%); U, = ( far ) , (2.43)
)

(ig

invariance is explicit.

The continuum formulation of this theory can be obtained by following the same
procedure as in Section 2.1.2, but we have to carefully account for the SU(2) gauge
symmetry. First, neglecting gauge fluctuations of U;; for now, let us write Eq. (2.39) in
momentum space, in terms of the fermions Fy(k), where s = A, B is a sublattice index.
Now the sublattices refer to sites with 2, even and odd, which are the two sites in the
unit cell. We obtain

MHorp = —J Y Tr (Fi(k) [p"sin(k,) + p sin(k,)] F(k)) , (2.44)

where pf, with ¢ = x,y, z, are Pauli matrices in sublattice space. Next, analogous to
Eq. (2.18), we take the continuum limit near the valley momenta in terms of X, (r, 7)

Fui = ZXAU(T,T)eik“'Ti
.FB@' = Z XBU(T‘, T)eikv'ri (245)

for 2 on the A and B sublattices respectively. This yields the imaginary time Lagrangian
density

1
Lx=3Te (X1 [0, + 2Jip" 0, + 2Jip* 10, X) (2.46)

where ji¢ are the Pauli matrices in valley space. We recall that the fermion X, has four-
components, and each component is a 2 X 2 matrix which obeys the reality condition in
Eq. (2.31). We can write this in a relativistic Dirac form

Ly= %Tr (Xy"0,X) | (2.47)
with the definitions

X ==X | A =ph = =", (2.48)
where we have absorbed factor of ¢ = 2J for the velocity of light. Finally, it is a simple
matter to include the SU(2) gauge field by taking the continuum limit by writing

Usj = exp (—iAj0") (2.49)

(where of are the Pauli matrices in SU(2) gauge space) and expanding the exponential.
We then obtain

Lo = ST (R4 [0, — iALo"] X) (2.50)

The theory in Eq. (2.50) is the analog of the £, in Eq. (2.26) for bosonic spinons.
The latter theory was a U(1) gauge theory with two relativistic complex scalars z,. In
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the present case, we have a SU(2) gauge theory with Ny = 2 massless Dirac fermions,
associated with valley index v. The global symmetry of z, was just spin rotations
z — Qz. In contrast, here we have emergent global symmetry which combines spin and
valley rotations. A first guess is a SU(4) symmetry generalizing Eq. (2.34)

X — XL, (2.51)

where L acts on spin and valley space with LTL = 1. However, imposition of the reality
condition Eq. (2.31) shows that we also need

LT =oYLioY, (2.52)

and so the symmetry is only Sp(4)=SO(5)/Zy [75, 8]. In terms of the Hermitian Lie
algebra elements M, with L = ¢*™ the reality condition is

MT = —oYMoY. (2.53)

Requiring that M commute with the v, we can now write down the 10 elements of the
Lie algebra of Sp(4)=SO(5)/Z,
M ={0", 0", 0% wo”, wo¥, p*o*, p* ¥, p" ", p*uo?, p o’} . (2.54)

The remaining 5 SU(4) generators which commute with the 4* are (t =1...5)

U= {p, p"u®, p* i a®, p*p¥a?, p* o} . (2.55)
The T all anti-commute with each other, and transform as a SO(5) vector under the
generators in Eq. (2.54). It is now straightforward to check by working back to the
lattice operators from the information above that the vector ¢Tr (/'? rx ) corresponds
precisely to the 5 components of the orders parameters shown in Fig. 3: the first two
components are the VBS order, and the last 3 components are the Néel order N in
Eq. (2.25) [75, 8.

Wang et al. [8] have argued that the likely fate of the SU(2) gauge theory upon
confinement is a state which the SO(5) symmetry is spontaneously broken with (I'*) # 0.
The lattice model does not have exact SO(5) symmetry, and the choice between the Néel
and VBS components of I'* is made by additional 4-fermi terms that can be added to
Eq. (2.50). So the ultimate fate of the theory is essentially identical to the fate of the
bosonic spinon theory in Section 2.1, as illustrated in Fig. 3. This is essentially the

reason for the duality between the theories in Section 2.1.3 and 2.2.1, and Wang et al.
have provided additional topological arguments.

2.3. SO(5) non-linear o-model

There is a third formulation of the theories in Section 2.1.3 and 2.2.1 which is useful for
some purposes. This is obtained most simply by coupling Eq. (2.50) to the SO(5) vector
order parameter, and integrating out the fermions. Introducing the SO(5) fundamental
unit length field n;, nyn, = 1 to Eq. (2.50)

L= ST (X7 [3 — iALo"] X) — inTr (RT'X) (2.56)
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we integrate out the Dirac fermions following the analysis of Ref. [76] and obtain
1
Ln=o (0,m0)” 4 2mil [y (2.57)
g

The last term is the Wess-Zumino-Witten (WZW) term at level 1: it is a Berry phase
associated with spacetime textures of n;, a higher dimensional analog of the Berry phase
of a single spin which is proportional to area enclosed by a spherical path [77, 8]: an
explicit expression of I'[n;] requires 441 dimensions with an emergent spatial direction.
Upon reduction to a O(3) non-linear sigma model for the Néel order parameter N in
Eq. (2.25), the WZW term reduces [78] to the Berry phases of the monopoles noted near
Eq. (2.27).

Also, note that while the SO(5) symmetry is explicit in the fermionic spinon theory
in Eq. (2.50), it is not explicit in the bosonic spinon theory in Eq. (2.27), but expected
to be emergent [79].

The form in Eq. (2.57) has been exploited in recent numerical work on the
fuzzy sphere [80]. Their results, and those of a number of other numerical works
[81, 82, 83, 84, 85, 86, 87| show that the critical spin liquid defined by Eq. (2.27),
Eq. (2.50), or (2.57) is stable over a substantial intermediate energy and length scales,
before ultimately confining into a Néel or VBS state. This intermediate range stability
is not a bug, but a feature ideal for our purposes of defining a FL* state at intermediate
temperatures, which ultimately confines to variety of other states at low temperatures.

3. Confinement to d-wave superconductivity and charge order at half-filling

We have so far considered the square lattice antiferromagnet as an insulator with an
essentially infinite gap to electrically charged excitations. In the follow discussion, we
will build on the low energy theory of such an antiferromagnet as a SU(2) gauge theory
coupled to fermionic spinons in Eq. (2.43). We have argued that the phase diagram of
such a theory is as in Fig. 3 i.e. except possibly in a critical region, the SU(2) gauge
theory confines at low energies, and we obtain either the Néel or VBS states.

We now wish to consider a more general situation in which the gapped to charged
excitations can vanish [88]. In the cuprates, gapless charged excitations appear when
we dope the antiferromagnet. We will consider this important situation in the following
sections. But for now we consider the simpler case where the charge gap vanishes while
the electronic density remains the same as in an insulator; the resulting particle-hole
symmetry simplifies the analysis. We can do this by describing the insulator by an
underlying Hubbard model with on-site repulsion U, and reducing the value of U, or by
adding additional off-site interactions. Such models have been considered in numerical
studies [89, 90]. We will now show that the SU(2) gauge theory of Eq. (2.43) has
other possible fates once charged excitations are included, the most interesting of which
is a d-wave superconductor with gapless nodal quasiparticles. In terms of adiabatic
continuity, this is precisely the superconductor observed in the cuprates. However, the
d-wave superconductor obtained in this section has one significant quantitative difference
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from the observations: it has a Lorentz-invariant form of its dispersion, with the two
velocities only the square lattice diagonals, vr and va, being equal to each other (see
Fig. 17B). The cuprates instead have vgp > va. We will resolve this problem in an
interesting manner in Section 5.1 when we consider the transition from FL* to a d-wave
superconductor in the doped case.

The only matter field in Section 2.2 is the fermion F, which has electrical charge 0,
spin 1/2, and is a gauge SU(2) fundamental. As we are allowing for charged fluctuations,
we need to define an electron operator, which has charge —e, spin 1/2, and is a gauge
SU(2) singlet. This directly leads us to introducing a boson B which has charge +e,
spin 0, and is a gauge SU(2) fundamental, so that a composite of F and B will have the
same quantum numbers as the electron. We now show that this information is basically
sufficient to deduce an effective action for B, and to reach our main conclusions. We will
give a more microscopic definition of the field B in the doped case later near Eq. (5.3).

Similar to Eq. (2.30), we introduce a matrix notation for the electron C and the

boson B:
[ e —cy [ Bu _ [ Bu —B5
Ci: ) B'L: ) BZ: 3.1
<ca U (%) (3% >< |

Then the generalization of the SU(2) gauge transformation in Eq. (2.33) is

Ci — C; , Fi—=ViF;

Bi = ViB; , Uy—ViUyV}, (3.2)
while the generalization of the global SU(2) spin rotation in Eq. (2.34) is

Ci— Cio*Qlo® | Fi— Fio°Qlo?

B; — B; , Uiy = Usj. (3.3)
Finally, the U(1) charge conservation symmetry acts as

G—0c , F—F

B; = B;©" | Uy — Uy, (3.4)

where

e? 0
(5 ) -

By matching these gauge, spin rotation, and charge conservation symmetries we deduce
that the operator correspondence between the electrons, the Higgs boson B, and the
fermionic spinons must be

C,~BlF,. (3.6)
In terms of the matrix components, we can write Eq. (3.6) as
ey ~ Byl + Byieaplis (3.7)

where €454 is the unit antisymmetric tensor for spin SU(2).
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Symmetry fa B,
T, (—=1)¥f, (—=1)B,
Ty fa Ba
P, (=1)" fa (=1)*B,
Py (_]_)yfa <_1)yBa
Py (=)™ fa (=1)™B,
T (=1)"eapfs | (=1)""B,

Table 1. Projective transformations of the f spinons and B chargons on lattice sites
t = (x,y) under the symmetries T, : (z,y) = (z + 1,y); T, : (z,y) — (z,y + 1);
Py : (z,y) = (—z,y); Py : (z,y) = (z,—y); Puy : (x,y) = (y,2); and time-reversal
T. The indices a, 8 refer to global SU(2) spin, while the index a = 1, 2 refers to gauge
SU(2).

We now obtain an energy functional for B in a Landau-type expansion [7]. Such
a functional must also involve the gauge field U to maintain gauge invariance. The
fermion f experiences a 7 flux with pure imaginary hopping, while the electron ¢ has
purely real hopping with zero flux (in the absence of an applied physical magnetic field).
From these facts and Eq. (3.6) we reach the important conclusion that the boson B must
also have purely imaginary hopping with 7-flux (the iw term in Eq. (3.9) below). So
the relation

T,T, = —T,T, (3.8)

realizing the w-flux applies both to the spinons and to B. We can also reach these
conclusions, and obtain other constraints, by examining the action of all symmetry
operators of f, and use Eq. (3.6) to deduce the action of symmetry operations on B:
the results are summarized in Table 1. These considerations lead to the energy functional
&E[B, U] + &4 B, U] with terms quadratic and quartic in B respenctively:

gQ[B, U] =T Z B:Bz + qw Z €ij (BIU”BJ - B;UJzBZ>
i (id)
1
+ HZ {1 - §ReTr H U’LJ}
O 15l

u
&B, U] =5 DA HVIY  pilpiva +pivg) +9 Y 18517+ 1Y Q
i i ) )

+ Ky Z J5+ Vi Z i (Pivarg + Pive—g)
(i5) i

K2

+ Voo Y pi(Pivonrag + pivas—g) (3.9)

(2
The quartic terms are expressed as products of bilinears of B which are associated with
various gauge-invariant observables as identified below

site charge density: <CT c; > ~ pi = BgBi

ot
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Figure 6. Mean field phase diagram obtained by minimized the Higgs potential of B,
&y + &4 (from Ref. [7]).
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bond density: <cm Cjo T CJQCW> ~ Qij = Q4 = Im (BzeijUiij>

bond current: z’<cT c. —ck e > ~ Jij = —Jji = Re (Bge,-jUiij>

o ja ja i

Pairing: (a5¢iaCjg) ~ Dij = Nji = €apBai€ijUij By; - (3.10)

We have retained terms involving nearest neighbor sites, and a few terms with longer-
range density-density interactions.

Fig. 6 shows a phase diagram obtained by minimizing the energy functional with
nearest-neighbor interactions only (Vj; = Vi = 0). Three phases are found, also
illustrated in Fig. 6:

A. This state A charge stripe order with period 2, centered on the sites.
B. A d-wave superconductor, with A; ;15 = —A;;14.

C. A “d-density wave” state which has a staggered pattern of spontaneous current.

Our primary interest for now is phase B. The remarkable fact is that it is the
structure of the m-flux spin liquid, and consequent w-flux on B which has led to the
d-wave pairing, and not s-wave pairing. Also, once B is condensed, we can identify
¢ ~ f via Eq. (3.6), and so the electron spectral function will inherit nodal Bogoliubov
quasiparticles from the massless Dirac spinons. The main phenomenological difficulty,
as noted earlier, is that the Bogoliubov quasiparticles will have isotropic dispersion, as
in Eq. (2.41) and Fig. 5. However, other features of the d-wave state obtained from the
energy functional in Eq. (3.9) do match observations, including vortices with flux h/(2e)
(despite the boson B having charge €), and competing charge order halos of vortex cores.
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Massless Dirac
X

' fermion spinons

Bosonic chargons

Figure 7. Common dispersion of the fermionic spinons f, and the bosonic chargons
B. The continuum fermionic fields X are defined at zero energy, while the continuum
bosonic fields B are defined at the minimum energy.

As these features apply also to the doped case, we defer their discussion to Section 5,
where we will also fix the difficulty with the anisotropic velocities in Section 5.1.

We now discuss more global aspects of the phase diagram shown in Fig. 6, as a
function of the tuning parameter r, which is the ‘mass’ of B.

e When r is large and positive, then we can ignore the B sector, and revert to the
spinon only theory of Section 2.2. The low energy theory is Eq. (2.50), and we
expect a confining insulator with either Néel or VBS order as the ground state.

e When r is negative, B condenses, and this has the salutary effect of making the
gauge field A massive, as in the Higgs phenomenon. So a mean-field treatment is
qualitatively valid, and we obtain one of three states A,B,C listed above.

It is also interesting to consider the nature of the low energy theory when we approach
the Higgs condensation transition [88]. The dispersion of the B bosons is the same as
that of the f fermions, apart from an overall constant - see Fig. 7. And while the low
energy fermions are near the middle of the band, the low energy bosons are near the
bottom of the band. In this manner, we identify two valleys v = 1,2, and we introduce
a continuum field By, for the low energy theory, where a = 1,2 is a SU(2) gauge space
index (this is similar to Section 2.1.2). From the lattice transformations in Table 1, we
can also relate the order parameters A,B,C to gauge-invariant bilinears of B

d-wave superconductor : €481 B = A

x-CDW : B:iBai — BZ@BaQ = BB
y-CDW : BB, +B,B.=Byu"B
d-density wave Do (Bziéag - E’;QBGJ = _BfwWB . (3.11)

Here p* are the Pauli matrices acting in the boson valley space of Fig. 7.
We now assume that the quartic couplings of B are such that the ground state in
the Higgs phase is a d-wave superconductor. Then, we can sketch the phase diagram in
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Figure 8. Proposed phase diagram of £, 5.

Fig. 8 with the 3 important phases - Néel, VBS, and d-wave superconductivity. Near
the onset of the B condensate, we extend the spinon continuum theory of Eq. (2.50) to
also include phases A B,C by adding a continuum Lagrangian for B:

~ ]2 ~ ~
Lop=Lx+ ‘(au —iAlo") B‘ +7|B* + u|B|*
2

. N2 . N2 . A\ 2 ..
+ 0 (BTMZB> + vy (BM“B) + vy (BTuyB> + v3 |€ap Ba1 Bra| - (3.12)

We have added only a relativistic time derivative term for B, which is the allowed term
at half-filling with particle-hole symmetry.

4. Fractionalized Fermi liquids

We now turn our discussion to metallic systems. Almost all metals are well described
at low temperatures by the principles of Fermi liquid theory. This is a theory of nearly
free fermionic quasiparticle excitations with the same spin and charge as an electron.
The energy of these quasiparticles vanishes on a d — 1 dimensional surface in momentum
space (d is the spatial dimension) known as the Fermi surface. A crucial feature for our
purposes is the Luttinger constraint on the volume enclosed by the Fermi surface in
momentum space. Luttinger established by a perturbative diagrammatic analysis that
the enclosed volume is independent of the strength of the interactions and is determined
only by the electron density p [91]. A more precise statement is that the volume enclosed
by the Fermi surface is the same as that of a free electron system with the same symmetry
and the same density.
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An important step forward was Oshikawa’s proof of the Luttinger constraint using
a 't Hooft anomaly matching argument [92]. Oshikawa identified a mixed anomaly
between translations and global U(1) symmetry of charge conservation. The value of
the anomaly can be computed exactly from a knowledge of the density of electrons in the
lattice Hamiltonian. Matching this anomaly with that of the low energy Fermi liquid
theory, Oshikawa established the Luttinger constraint in a non-perturbative manner
(6, 93, 94].

Soon after, the idea of a ‘fractionalized Fermi liquid’ (FL*) was introduced [3, 4],
as a metallic state in which the Fermi surface did not obey the Luttinger constraint. In
the simplest case, the volume enclosed by the Fermi surface in FL* was the same as free
electrons with density p — 1 (we are assuming a spin S = 1/2 degeneracy). The central
point was that it was possible to satisfy Oshikawa’s anomaly by combining the anomaly
of a Fermi surface (which contributes an amount equivalent to a density p — 1) with
that of a fractionalized spin liquid of the type studied in Section 2 (which contributes
an amount equivalent to a density 1).

We will illustrate these ideas by explicit constructions of FL*, first in a two-band
Kondo lattice model in Section 4.1, and then a single band Hubbard-like model in
Section 4.2.

4.1. Kondo lattice

The Kondo lattice is illustrated in Fig. 9. A Kondo exchange interaction couples the

Figure 9. A Kondo lattice of conduction electrons ¢ coupled to S = 1/2 spins S;. All
lattices are two-dimensional, although only one-dimensional projections are shown.

spin model of Section 2 in Eq. (2.1) with a Fermi surface of free electrons ¢, of density
p in a second band:

Hyr, = Z J1,i5 815 - S5 — Ztijczacja + Z JTKSU . C;[aUagCig (4.1)
1<j 2,) 4

We have now written the spins as Sy;, rather than S;, in anticipation of a second set of

spins, Ss;, to be introduced in the next subsection. While Hkp, can have a wide variety

of phases, we focus on two phases which have no broken symmetries. We proceed with

the fermionic parton method of Section 2.2, replacing Eq. (2.28) by

1
Sii=1 FiaTastfris- (4.2)
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Fermi-volume-changing QPT in the Kondo lattice
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Figure 10. Phase diagram of the Kondo lattice. Neither phase has any symmetry
breaking, but there is nevertheless a quantum phase transition (a Higgs transition in
an emergent gauge theory) associated with Fermi volume change [3, 4].

Then, as in Section 2.2, we decouple both sets of exchange interactions to obtain a
mean-field fermion Hamiltonian [95, 96, 97, 98]

HKLmf = Z [—tijclacja - tl,ijf;riaflja} —Z(@ ey friat® flicia) (4.3)

.3 i

The ® is the decoupling field for the Jg interaction, while the ¢, ;; are the decoupling
fields for the .J; ;; interactions. Unlike Section 2.2, we do not assume any flux in the
t1,i5, and make the simplest possible choice in which the t; ;; have the same symmetry
as the lattice. With these choices, our Kondo lattice theory only has an emergent U(1)

gauge symmetry under which

fria = €9 fria  tigg = trge T

Cioa = Cin ;D Dy (4.4)
This is distinct from the global charge conservation symmetry, under which only maps
Cio — €2¢;,,, while all other fields remain invariant.

We can now identify two distinct phases of the Kondo lattice model, neither with
any symmetry breaking [3, 4], as illustrated in Fig. 10.

e (&) # 0, FL. This is the conventional ‘heavy Fermi liquid’ phase, observed in
numerous heavy fermion compounds. The Fermi surface obeys the Luttinger
constraint. The condensation of the Higgs boson ® quenches the gauge fluctuations
associated with Eq. (4.4). The Fermi surface is described by the simple two-band
model of Eq. (4.3), in which ® hybridizes the two bands. The total density of
electrons is 1 + p, and if all the fermions are in the lower energy band, we obtain a
Fermi surface of size 1 + p, as illustrated in Fig. 10. The heavy quasiparticle mass
arises in cases where there is little direct interactions between the S; spins: then
the J;; and hence the ¢, ;; are very small, and we have a nearly flat band f; band
hybridizing with the conduction band of ¢ near the Fermi level.
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e (®) =0, FL* This is the novel phase, in which the f; and ¢ fermions are decoupled
to leading order in Hgrwme. The fi, form a spin liquid, in this case one with a
spinon Fermi surface. But any other spin liquid with the same anomaly is allowed
i.e. any other spin liquid with unit density of spinons in the ground state. The
conduction electrons now form a ‘small’ Fermi surface of size p, and this is not the
Luttinger value. At higher order, the f; and ¢ fermions will couple with each other,
and in general, because of the absence of particle-hole symmetry in the underlying
electronic model with a large but finite U on the f; sites (often called the lattice
Anderson model), the density of electrons in the f; band will deviate from unity.
Nevertheless, a crucial point is that the size of the Fermi surface will remain pinned
at p, because the anomaly of the spin liquid is pinned at unity.

4.2. Single band model

We now turn to a construction of the FL* phase in a single band model, such as the
square lattice Hubbard model (possibly with longer range interactions) of interest for
the cuprates. Now the situation is more complicated than in the Kondo lattice model,
as there is no natural distinction between electrons that form a spin liquid, and electrons
that form a Fermi surface.

Nevertheless, at the level of cartoon pictures, we can illustrate the structure of
a FL* state in Fig. 11 [99]. This figure describes three distinct metallic phases in a
Hubbard time model with electron density 1 — p. Note that in the absence of a broken
symmetry, the Luttinger constraint on hole Fermi surfaces is that they have a fractional
area of 1 + p, relative to the area of the full square lattice Brillouin zone.

e AF Metal. This is a state with antiferromagnetic long-range order. We can
understand the Fermi surface by considering free electrons moving in a background
with the same symmetry i.e. in a background spin-dependent potential which has
a modulation at the wavevector (m, 7). This leads to the magnetic Brillouin zone
boundary shown by the dashed line, and 4 hole pocket Fermi surfaces. Only two of
these pockets are independent within the magnetic Brillouin zone. After accounting
for a factor of 2 from spin, we conclude that the fractional area of each pocket is
p/4. This Fermi surface area obeys the Luttinger constraint. Thermal fluctuations
do not move Fermi surfaces, only broaden them, and so we expect that a fluctuating
spin density wave state will also have pockets of area p/4 [27, 28, 29, 30].

e Holon metal. This is a state with no broken symmetry, in which the electrons have
paired up in singlet bonds which resonate with each other. The dopants are realized
by spinless mobile vacancies of charge 4+¢, known as holons. The density of holons
is p, and if the holons are fermions, they will form Fermi surfaces corresponding
to spinless free fermions of density p. If there are four distinct Fermi surfaces in
the Brillouin zone (as is the case in many computations), then the fractional area
of each pocket will be p/4. Although this area is the same as that for the AF
metal, the reason is very different. Now there is no broken symmetry, and the
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Figure 11. Cartoon pictures of different states of doped antiferromagnets; adapted
from Ref. [99]. The AF metal has long-range antiferromagnetic order, and the reduced
Brillouin zone is shown with the dashed line. The other phases do not break any
symmetries. The open circles are holons, and these are assumed fermionic in the holon
metal. The green dimers represent bound states of holons and spinons.

fermionic quasiparticles are spinless holons. This Fermi surface area does not obey
the Luttinger constraint, and this is permitted because of the presence of the spin
liquid.

e FL* Finally, we turn to the metallic state of interest. The holon metal state also
has spinon excitations, which can be created out of the ground state. Now imagine
a situation in which each holons gains energy by binding with a spinon, so that
the system can pay the price for creating the spinons. Then the ground state will
change into one in which the mobile charge carriers are holon-spinon bound states
[26, 100, 101, 102, 103, 104, 105, 99, 106, 107, 108, 109, 110]. These are always
fermions with charge +e, spin S = 1/2, just like a hole. Treating these holes as free
fermions, we conclude that the total area of the Fermi surface should be p/2. If
there are 4 distinct pockets (as there in the computation below), then each pocket
will have the distinctive area of p/8. This Fermi surface area also does not obey
the Luttinger constraint.

Recent observations by Chan et al. [25] of the Yamaji effect in HgBayCuOy,s show
a fractional area of ‘approximately 1.3%’ at a doping p = 0.1, close to the value
p/8 = 1.25% predicted for FL* [3, 4, 26, 111].

While much insight can be gained from the methods above, they fall short of
providing a mean-field theory for the FL* phase, which can then be used to study
quantum phase transitions out of it. To this end, we now describe the ancilla method
[112, 113], which is designed to do so, while also easily ensuring consistency with anomaly
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Figure 12. Illustration of the mapping from a single band Hubbard model with
decoupled ancilla qubits, to a single band with free fermions coupled to a bilayer
antiferromagnet. The Schrieffer-Wolff transformation is derived in Ref. [117].

arguments. The ancilla method can also be used to write down variational wavefunctions
for the FL* phase, which can then be studied numerically: such numerical analyses
[114, 115, 116] are in good agreement with cold atom experiments measuring local,
multi-point spin and charge correlations.

The key idea is to “integrate in” anciilla quantum degrees of freedom, similar to a
Hubbard-Stratonovich transformation, see Fig. 12. It is important that the new degrees
of freedom have a trivial ground state with an energy gap, so that its extra excited
states can be eliminated by a canonical transformation, similar to a Schrieffer-Wolff
transformation. For the ancillas, we choose a pair of qubits associated with every site of
the square lattice, which we identify as S = 1/2 spins Sy; and Sy;. There is an exchange
interaction J; between the two spins at each ¢, and so the ancillas form a bilayer
square lattice antiferromagnet. We take .J, to be large enough so that the ground
state of the bilayer is smoothly connected to the rung singlet state. This bilayer has
a triplon excited state, which eventually connects to the paramagnon obtained by the
Hubbard-Stratonovich transformation on the Hubbard model: so the spins Si; and S5;
are S = 1/2 fractionalizations of the S = 1 paramagnon [118]. As illustrated in Fig. 12,
we can perform an inverse Schrieffer-Wolff transformation to map to a model of free
electrons coupled by a Kondo exchange Jx to the Sy; [117]. So the ancilla Hamiltonian
is a simple augmentation of the Kondo lattice Hamiltonian Hgy, in Eq. (4.1) by the So;
spins

Hancila = Hkr + J1 Z Sii - Soi + Z Jij Soi - Soj + ... . (4.5)

i<j
We have also included a direct exchange interaction between the Ss; spins, and that will
be important for our purposes below. The Schrieffer-Wolff transformation eliminates all
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Figure 13. Phases of the ancilla theory. They are distinguished by the condensation
of the boson ®, which hybridizes the conduction electrons in the top layer with the
fermionic spinons in the middle layer.

the excited states of the ancilla spins in powers of 1/.J;, and returns to the single band
Hubbard model for the ¢;,, with the value of U shown in Fig. 12 [117].

We are now ready to discuss the phase diagram of H,,ca shown in Fig. 13.

At small Jg, the ancilla spins decouple into rung singlets, and we are back to a ¢,
state adiabatically connected to free electrons, which is the conventional Fermi liquid
with a large hole pocket of area 1+ p.

At large Jy, we assume that the ¢, electrons and S spins realize the conventional
FL phase of Hkp, in Fig. 10. With the present density ¢, equal to 1+ p, the total density
of the ‘large’ Fermi surface is 2 + p. As a trivial filled band with density 2 can always
be removed, we obtain ‘small’” Fermi surface of size p in the FL phase of Hky,. While
this is the Luttinger value for Hgr,, it is not for Haneina. Indeed, we obtain a FL* phase
for Hancina if the So; layer forms a spin liquid, and the effects of J, in Eq. (4.5) can
be treated perturbatively. This leads the identification in Fig. 13 of the FL* pseudogap
metal with the combination of a Kondo lattice FL state of ¢, and S;, and a spin liquid
of Sj.

In the remaining discussion of the present section, we ignore the S, layer, and
discuss the FL* state of the single band model solely in terms of the Kondo lattice model
Hxkr in Eq. (4.1). The coupling to the Sy is definitely needed for a complete theory,
and we will include it in Section 5. For now, we proceed with parton decomposition of
S) in Eq. (4.2), and obtain the fermion Hamiltonian Eq. (4.3). When considered as a
theory of the Kondo lattice model Hgp,, the FL state corresponds to the condensation
of the decoupling field ®. On the other hand, for Hpcina, the ® condensed phase is the
FL* state, as we just discussed. This interesting inversion is highlighted in Fig. 14: the
single band model has an ‘inverted’ Kondo lattice transition.

Mascot et al. [118] used Hgpms in Eq. (4.3) to model the photoemission spectra in
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Figure 14. Comparison of the phases of the Kondo lattice model in Fig. 10, and the
ancilla theory of the single band Hubbard model in Fig. 13. There is an inversion in

the phase in which ® is condensed.
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Figure 15. Zero energy electronic spectral weight (as would be measured in
photoemission) in the ancilla mean field theory of the FL* phase, from Ref. [118].
The corrections from thermal fluctuations of B are shown later in Fig. 19, where they
lead to Fermi arcs.

the cuprates. The value ® was fixed by the magnitude of the fermion pseudogap near
wavevectors (0,7), (m,0), the values of the ¢;; are known from observations at large
doping, and only the values of the ¢, ;; were fitting parameters. The results provide a
good fit to observations over a wide range of frequency across the Brillouin zone. We
show the theory for the zero energy photoemission spectral weight in Fig. 15. There are
4 hole pockets, each of fractional area p/8, which are obtained from the hybridization of
the ¢, band of density 1+ p and the fi, band of density 1 in Eq. (4.3). (In contrast, in
spin density wave theory, we would hybridize the ¢, band of density 1+ p, with a (7, 7)
momentum-shifted ¢, band also of density 1+ p to obtain pockets of area p/4.) The
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pockets of Fig. 15 do have faint, but visible, ‘backsides’. In contrast, the observations
how only ‘Fermi arcs’ corresponding to the front sides of the pockets (See Fig. 19 later),
with no visible backsides. We will show in Section 5.3 how this issue is resolved by
inclusion of the coupling to the S5 spin liquid.

5. From the pseudogap to d-wave superconductivity and competing orders

This section address the fate of the FL* pseudogap as the temperature is lowered, upon
including the coupling to the Sy spin liquid. We will specifically choose the m-flux
spin liquid of Section 2.2 for the Sy layer. We will show that for this spin liquid there
is a transition to a conventional BCS-type d-wave superconductor, with anisotropic
nodal velocities for the Boboliubov quasiparticles, and h/(2e) vortices. Nevertheless
the transition itself is not of the BCS type with a Cooper-pairing instability of a
Fermi surface. Instead, the transition is driven by the confinement of the fractionalized
excitations of the S spin liquid. We also find nearby instabilities to charge ordering,
consistent with observations.

Our analysis proceeds from the Hamiltonian Hancina in Eq. (4.5). We apply the
parton decoupling to Hiprms in Eq. (4.3) as before. We write the parton decomposition
of S, as

Syi=Lfl

24 = §fiaaaﬁfi6 (5.1)

and decouple the J;; term in Eq. (4.5) to Hsry in Eq. (2.43) realizing a w-flux state
with a SU(2) gauge field.

Finally, we have to decouple the J, term coupling the f; and f spinons. Given
the SU(2) gauge structure of the Sy layer, it pays to decouple the J, term in a manner
which keeps the SU(2) gauge invariance explicit. In fact, the needed decoupling field
is precisely the boson B; introduced in Eq. (3.1). We also introduce a matrix fermion

| har —fa
f“_(ffu Pl ) >

whose transformations under the symmetries in Egs. (3.2,3.3,3.4) are the same as those

operator Fi;

of C;. Then, from the J, term, symmetry considerations are sufficient to constrain the
structure of the Yukawa term between B and the fermions [7], which is illustrated in
Fig. 16:

~ 73 Z [2 Tr (fLBI ) +igTr (CTBT]fi) - H.C.}
- Z [2 (Blif;faflioz - Bzigaﬁfiafli[;) + H.c.

+ig ( fw iy BZigaﬁfiaciﬁ> + H.c.] , (5.3)

We have also included a Yukawa coupling to ¢, from an allowed term ~ S, - clao'agcw.
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Figure 16. The two distinct Higgs fields in the ancilla theory of the single band
Hubbard model. ® hybridizes conduction electrons in the top layer with spinons in
the middle layer. B couples the spinons of the bottom layer to the upper layers.

We can now collect all terms to write down the complete Hamiltonian needed for
our analysis of the pseudogap metal, and its low temperature instabilities.

Hpseudogap = HKme + HSLf + HY + 82[B7 U] + 54[3, U] (54)

specified in Eqs. (4.3), (2.43), (5.3), (3.9). This Hamiltonian has 3 fermions c,, fia, fa
whose transformations under SU(2) gauge, spin rotation, and electromagnetic charge
symmetries are in Eqgs. (3.2), (3.3), (3.4), with f, transforming just like ¢,. The boson
® will be treated as a c-number constant here, although we will consider its quantum
and thermal fluctuations in Section 7. The boson B and the gauge field U will be treated
as classical variables, with thermal fluctuations, analogous to nuclear positions in the
Born-Oppenheimer approximation [41].

There is a remarkable similarity between Eq. (5.4), and the Weinberg-Salam theory
of weak interactions [7]. Although the dispersions of the fermions and bosons have a
lattice structure, the SU(2)x U(1) gauge structure (we treat the electromagnetic U(1)
as global), and the Yukawa couplings between the Higgs and the fermions are similar,
with the spinons mapping to neutrinos, and the electrons mapping to electrons.

The following subsections show how such a Born-Oppenheimer analysis of H pseudogap
connects to a wide range of experimental observations in the underdoped cuprates.

5.1. Anisotropic velocities in the d-wave superconductor

We now show how the problem of isotropic quasiparticle velocities, noted in Section 3,
is resolved by the presence of the pocket Fermi surfaces described by Hgprme. This
discussion below is based on the detailed computations presented in Refs. [23, 24].

Given the pocket Fermi surfaces in Fig. 15, we imagine imposing a BCS type
pairing on the Fermi surface excitations. If the pairing is d-wave, it would lead to
8 nodal Bogoliubov points as shown in Fig. 17A. However this state also has the 4
nodal quasiparticles of the Sy spin liquid, associated with the dispersion in Fig. 5. So
strictly speaking, this state remains fractionalized, and is not a conventional d-wave
superconductor. It would be appropriate to call it d-SC*.

However, if we induce the pairing by the B condensate in Eq. (5.3), the SU(2) gauge
field is higgsed. Morever, the Yukawa coupling allows the nodal quasiparticles of the S,
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(A) FL*>d-SC*| (B) FL*>d-5C |

Figure 17. (A) Cooper pairing the Fermi surface quasiparticles in FL* leads to d-SC*
state, with 8 nodal Bogoliubov quasiparticles (red), and 4 nodal spinons (pink). (B)
Upon condensing B, the spinons mutually annihilate 4 of the Bogoliubov quasiparticles,
leaving 4 Bogoliubov quasiparticles with vgp > va.

spin liquid to hybridize with the Bogoliubov quasiparticles of the pocket Fermi surfaces.
The net result, shown in Fig. 17B, is that the B condensate can enable the nodal points
on the ‘backsides’ of the pocket Fermi surfaces to mutually annihilate with the spinons
of the S5 spin liquid. We are then left with the 4 nodal quasiparticles on front sides of
the pocket Fermi surfaces. The number of nodal points are the same as those obtained
in conventional BCS theory from d-wave pairing of a Fermi liquid. These remaining
nodal points are associated with pairing on the pocket Fermi surfaces, and these is
no reason for their velocity to be isotropic (unlike the spinons). Indeed, computations
which diagonalize Hyrms+Hsrs+Hy with B fixed do indeed yield anisotropic velocities
similar to those observed. Unlike the situation in Section 3, the spinons do not become
the Bogoliubov quasiparticles in the doped case, although the spinons are needed to
annihilate the extraneous Bogoliubov quasiparticles.

5.2. Vortices with flux h/(2e) and charge order halos

We have seen in Section 5.1 that d-wave superconductivity is induced by the
condensation of B, a boson which carries electrical charge e. So we might worry that the
elementary flux quantum of such a superconductor is h/e. However, that is not correct,
and the SU(2) gauge field AY, (introduced in Eq. (2.49)) plays a central in establishing
the presence of vortices with flux h/(2e) [42].

The argument only requires A7 to be non-zero. In terms of the two components of
B = (Bj, By), we can write the following gradient term in the action far from the vortex
core

(V —iA* —ia)B|* + |(V + iA” — ia) B,|? (5.5)
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Figure 18. From Ref. [41]. The bond density (left panel) and the distribution of the
phase of the superconducting order parameter (right panel) on a 192 x 192 lattice at
low temperature in the thermal ensemble defined by Eq. (5.7).

where A7 is the spatial component of A7, and a is the electromagnetic vector potential
(we are using units here with 7 = e = 1). Let us assume that the phases of B; 5 wind
by 2mn, 2 around the vortex core, where n; o are integers. Then, finiteness of the energy
of the vortex requires

/d2r (VXA +V xa) z=2mm

/d% (VxA* -V xa)-2=2mn, (5.6)

By choosing n; = 1, ny = 0, we obtain a vortex with [(V x a) -2 = =, which
corresponds to flux h/(2e).

There is an interesting feature of the vortex solution near its core. Recall from
Egs. (3.10,3.11) that different orientations of the complex vector (Bj, By) correspond to
different local orders. At the vortex core, it is preferential for the orientation of B to
rotate from that preferring d-SC, to one of the other orders [42]. Explicit solutions of
the continuum theory Eq. (3.12) were obtained in Ref. [42] with period 2 charge order.

Recently, Bonetti et al [41] have carried out Monte Carlo simulations of the classical,
thermal, lattice gauge theory for B and U defined by the partition function

Zoo= [ []PB: [ []PUsexp (~(&1B.V) + &(B.U/T) . (57
i (is)

where the energy functionals are defined in Eq. (3.9). They observe a Kosterlitz-
Thouless transition to a d-wave superconductor at low energies. The coupling constants
in &[B, U] were chosen so that the ground state is a d-wave superconductor, while the
next best state had period 4 charge order. Fig. 18 shows a snapshot from the simulation
at low T. Note the vortices with the phase winding of 27 in the superconducting
order parameter (corresponding to h/(2e) vortices), and the period 4 charge order halos
around each vortex. These halos are remarkably similar to those observed by Hoffman
et al. [43].
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Figure 19. The right panel shows the electron spectral function computed in Ref. [41]
from Hxrmt + Hsry + Hy after averaging over the Monte Carlo simulation of B and
U in Eq. (5.7); the spectrum with B = U = 0 was shown in Fig. 15. The left panel is
experimental photoemission data from Ref. [119].

5.83. Fermu arc spectra

Fig. 15 showed the prediction for the photoemission spectrum in the pseudogap phase
without the coupling to the Sy spin liquid. Bonetti et al. [41] included the coupling to
thermal fluctuations of B via the Yukawa coupling in Eq. (5.3). The thermal fluctuations
of B and U were included via the ensemble in Eq. (5.7). Here the Born-Oppenheimer
procedure is to choose random samples of the B; and U;;, diagonalize Hkrme+Hsrr+Hy
for each sample, and average over the spectral functions. The results are shown in
Fig. 19. Note that the back side of the pocket in Fig. 15 is now invisible, and the
resulting spectrum is similar to the ‘Fermi arc’ observed in experiments.

5.4. Magnetotransport and Quantum oscillations

Observations at high magnetic fields provide the most sensitive probes of the Fermi
surface configurations in the cuprates.

At large doping, the observed quantum oscillations are compatible with a ‘large’
Fermi surface of size 1+ p [120]. This is as expected, and well understood, and will not
be discussed further.

At low doping and low temperatures, quantum oscillations show evidence for small
electron pockets [31]. The formation of electron pockets is believed to be associated
with the appearance of charge density wave order at high magnetic fields. Nevertheless,
computations on charge density wave models had difficulty reproducing the observed
spectrum. Zhang and Mei [121] worked with a model of pocket Fermi surfaces (similar
to HkLme) in the presence of charge density wave order: in addition to the observed
electron pocket, their results show an unobserved additional oscillation frequency from
a Fermi surface arising from the backsides of the hole pockets completing the Fermi
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arcs. Bonetti et al. [32] extended their computation to include spinons by working
with Hkrme +Hsrr +Hy, and found that the spinons annihilated the unobserved Fermi
surface. This is rather analogous to the role of the spinons in Section 5.1.

More recently, compelling evidence for hole pockets has emerged at low doping
in the higher temperature pseudogap metal phase [122, 25]. Chan et al [25] have
observed the remarkable Yamaji effect, which allows deduction of pocket area only
from a knowledge of the layer spacing and the value of the Yamaji angle at which there
is peak in the magnetoresistance. At these higher temperatures there is no ordering,
and the Hall effect is positive, indicating the absence of electron pockets. Their results
are consistent with the FL* prediction of hole pockets of area p/8 [3, 4, 26, 111], as we
noted earlier near Fig. 11. This is to be constrasted with pockets of area p/4 in the
fluctuating spin density wave state [27, 28, 29, 30]. The Yamaji angle observation of
Chan et al [25] is therefore the long-sought direct signature of fractionalization in the
cuprates.

But given the role of thermal B fluctuations in removing the pocket backsides in
Fig. 19, it is legitimate to ask if the thermal B fluctuations will also wash out quantum
oscillations. This question was investigated recently by Pandey et al. [41]: they averaged
the quantum oscillations associated with Hirme + Hsry + Hy over gaussian fluctations
of B. They found that the quantum oscillations survived in regimes where the Fermi
arc spectrum in Fig. 19 was well established.

5.5. Direct observation of spinons

The spinons f, in Hgr have played a crucial role the theory of the observed electronic
spectrum in Sections 5.1, 5.3, and 5.4. It would therefore be a nice confirmation of the
theoretical scenario to observe the spinons directly in the spin fluctuation spectrum,
rather than indirectly through the electronic spectrum. It has recently been argued
[32, 66] that RIXS measurements [123, 124] do indeed provide strong support for the
presence of spinons. At filling, there is sharp spin wave excitation extending to high
energy ~ 400meV. This excitation survives upon doping even at high energies, but
becomes much broader. Now the spectrum has similarities to that expected from the
m-flux spin liquid, as computed near the destruction of the Néel order in the insulating
Ji-Jo model by Ref. [125]. See Figs. 8 and 9 in Ref. [66] for a comparison.
More precise computations and observations should help settle this issue.

6. The SYK model

We now turn to a different critical quantum liquid, associated with mobile electrons,
the SYK model. This is a zero-dimensional model for which the absence of quasiparticle
excitations is well established. A direct and extensive application of the zero-dimensional
SYK model has been to the low energy quantum theory of charged black holes, and this
is reviewed elsewhere [126]. There are also connections to experiments on graphene
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Figure 20. The SYK model: fermions undergo the transition (‘collision’) shown with
quantum amplitude Ujj.e.

flakes [127]. But our primary interest here will be extensions to two-dimensional
models relevant to the strange metal state of the cuprates and other correlated electron
materials—we will turn to this in Section 7.

The Hamiltonian of a version of a SYK model is illustrated in Fig. 20. A system
with fermions ¢;, ¢ = 1... N states is assumed. Depending upon physical realizations,
the label 2 could be position or an orbital, and it is best to just think of it as an abstract
label of a fermionic qubit with the two states |0) and ¢} [0). QN fermions are placed in
these states, so that a density Q & 1/2 is occupied, as shown in Fig. 20. The quantum
dynamics is restricted to only have a ‘collision” term between the fermions, analogous
to the right-hand-side of the Boltzmann equation. However, in stark contrast to the
Boltzmann equation, statistically independent collisions are not assumed, and quantum
interference between successive collisions is accounted for: this is the key to building
up a many-body state with non-trivial entanglement. So a collision in which fermions
move from sites ¢ and j to sites k and ¢ is characterized not by a probability, but by a
quantum amplitude Usj.,, which is a complex number.

The model so defined has a Hilbert space of order 2V states, and a Hamiltonian
determined by order N* numbers Uij.ke- Determining the spectrum or dynamics of such
a Hamiltonian for large N seems like an impossibly formidable task. But with the
assumption that the Usj..e are statistically independent random numbers, remarkable
progress is possible. Note that an ensemble of SYK models with different Ujjke is not
being considered, but a single fixed set of Us;.,,. Most physical properties of this model
are self-averaging at large IV, and so as a technical tool, they can be rapidly obtained
by computations on an ensemble of random Ujj.ke. In any case, the analytic results
described below have been checked by numerical computations on a computer for a
fixed set of Usj.re. Recall that, even for the Boltzmann equation, there was an ensemble
average over the initial positions and momenta of the molecules that was implicitly
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Figure 21. Self-energy for the fermions of H in Eq. (6.1) in the limit of large N. The
intermediate Green’s functions are fully renormalized.

performed.
Specifically, the Hamiltonian in a chemical potential y is

N
1

ik, l=1
cicj +cjep =0 CiC;- + C;-Ci = 512_7'
1
Q:NZCIQ; H,Q]=0; 0<Q9<1, (6.1)

and its large N limit is most simply taken graphically, order-by-order in Usj.ze, and
averaging over U;j.x¢ as independent random variables with Usj.xe = 0 and |Ujpe|? = U 2,
This expansion can be used to compute graphically the Green’s function in imaginary
time 7

G(r) =~ ST (a()d)). (6.2)

where 7 is the time-ordering symbol, the angular brackets are a quantum average for any
given Usj..r, and the over-line denotes an average over the ensemble of Usj.ke. (It turns
out that the last average is not needed for large N, because the quantum observable is
self-averaging.) In the large N limit, only the graph for the Dyson self energy, ¥, in
Fig. 21 survives, and the on-site fermion Green’s function is given by the solution of the
following equations

. 1
Gliwn) = iwy, + 1 — X(iwy,)
¥(7) = -U?G?*(1)G(~7)
Gir=0")=29, (6.3)

where w, is a fermionic Matsubara frequency. The first equation in Eq. (6.3) is the
usual Dyson relation between the Green’s function and self energy in quantum field
theory, the second equation in Eq. (6.3) is the Feynman graph in Fig. 21, and the last
determines the chemical potential y from the charge density Q. These equations can
also be obtained as saddle-point equations of the following exact representation of the
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disordered-averaged partition function, expressed as a ‘G —3’ theory [128, 129, 130, 131]:
Z = /DG(Tl,TQ)DZ(Tl,Tg)exp(—NI)
I =1Indet [6(1y — 72)(0r + 1) — X(71, T2)]
+ /dTldTQ [E(Tl,Tg)G(TQ,Tl) + (UQ/Q)GQ(TQ,Tl)GQ(Tl,Tz)] (6.4)
This is a path-integral over bi-local in time functions G(m,7) and (7, 72), whose
saddle point values are the Green’s function G(m; — 7), and the self energy (7 — 7).

This bi-local G can be viewed as a composite quantum operator corresponding to an
on-site fermion bilinear

Glrym) = —% ST (cs(r)el(m)) (6.5)

that is averaged in Eq. (6.2).

For general w and T, the equations in Eq. (6.3) have to be solved numerically. But
an exact analytic solution is possible in the limit w, T < U. At T = 0, the asymptotic
forms can be obtained straightforwardly [132]

G(iw) ~ —isgn(w)|w| ™%, B(iw) — 2(0) ~ —isgn(w)|w|*?, (6.6)

and a more complete analysis of Eq. (6.3) gives the exact form at non-zero T' (h = kg =
1) [133]

1 1w ,
—iCe™" s (4_1 T * 25)
(27T)1/2 r 3w

4 27T

Here, £ is a dimensionless number which characterizes the particle-hole asymmetry

Gw) = lw], T < U. (6.7)

of the spectral function; both £ and the pre-factor C' are determined by an angle
—m/4 <0 <m7/4

e _ sin(7/4 + 6) O s 1/ (6.8)
sin(w/4—0) U2 cos(20) ’ '
and the value of 6 is determined by a Luttinger relation to the density Q [128]
1 6 sin(20)
—_-_Z_ _ 6.9
< 2 m 4 (6.9)

A notable property of Eq. (6.7) at £ = 0 is that it equals the temporal Fourier
transform of the spatially local correlator of a fermionic field of dimension 1/4 in a
conformal field theory in 141 spacetime dimensions. A theory in 0+1 dimensions is
considered here, where conformal transformations map the temporal circle onto itself,
as reviewed in Appendices A and B of Ref. [134]; such transformations allow a non-
zero £. An important consequence of this conformal invariance is that Eq. (6.7) is a
scaling function of fw/(kgT') (after restoring fundamental constants); in other words,
the characteristic frequency scale of Eq. (6.7) is determined solely by kgT'/h, and is
independent of the value of U/h. A careful study of the consequences of this conformal
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Figure 22. (a) Plot of the 65536 many-body eigenvalues of a N = 32 Majorana SYK
Hamiltonian; however, the analytical results quoted here are for the SYK model with
complex fermions which has a similar spectrum. The coarse-grained low-energy and
low-temperature behavior is described by Eq. (6.10) and Eq. (6.12). (b) Schematic of
the lower energy density of states of a supersymmetric generalization of the SYK model
[139, 137]. There is a delta function at E = 0, and the energy gap A is proportional
to the inverse of S(E = 0).

invariance have established the following properties of the SYK model (more complete
references to the literature are given in other reviews [134, 94]):

e There are no quasiparticle excitations, and the SYK model exhibits quantum
dynamics with a Planckian relaxation time of order h/(kgT) at T < U. In
particular, the relaxation time is independent of U, a feature not present in any
ordinary metal with quasiparticles. While the Planckian relaxation in Eq. (6.7)
implies the absence of quasiparticles with the same quantum numbers as the ¢
fermion, it does not rule out the possibility that ¢ has fractionalized into some
emergent quasiparticles; this possibility is ruled out by the exponentially large
number of low energy states, as discussed below.

e At large N, the many-body density of states at fixed Q is [135, 136, 131, 130, 137,
138] (see Fig. 22a)

D(E) ~ %exp(Nso)sinh (VQN’yE) , (6.10)
where the ground state energy has been set to zero. Here sy is a universal number
dependent only on Q (so = 0.4648476991708051... for Q@ = 1/2), v ~ 1/U is
the only parameter dependent upon the strength of the interactions, and the N
dependence of the pre-factor is discussed in Ref. [138]. Given D(E), the partition
function can be computed from

Z(T) = / dED(E)e E/(ksT) | (6.11)
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and hence the low-T dependence of the entropy at fixed @) is given by

S(T) 3 U In N
]{B —N(So—f—’yk’BT) Eln (]{B_T> T+

The thermodynamic limit limy_,o, S(T")/N yields the microcanonical entropy

S(E)/kp = Nsg+ /2NvE, (6.13)
and this connects to the extensive E limit of Eq. (6.10) after using Boltzmann’s
formula D(E) ~ exp (S(E)/kp). The limit limy o limy_ S(T)/(kgN) = so is
non-zero, implying an energy-level spacing exponentially small in N near the ground

(6.12)

state: the density of states Eq. (6.10) implies that any small energy interval near
the ground state contains an exponentially large number of energy eigenstates (see
Fig. 22a). This is very different from systems with quasiparticle excitations, whose
energy level spacing vanishes with a positive power of 1/N near the ground state,
as quasiparticles have order N quantum numbers. The exponentially small level
spacing therefore rules out the existence of quasiparticles in the SYK model.

e However, it important to note that there is no exponentially large degeneracy
of the ground state itself in the SYK model, unlike that in a supersymmetric
generalization of the SYK model (see Fig. 22b) and the ground states in Pauling’s
model of ice [140]. Indeed, the SYK model is the first system to exhibit an
extensive zero temperature entropy without an exponentially large ground state
degeneracy. Obtaining the ground-state degeneracy requires the opposite order
of limits between T" and N, and numerical studies show that the entropy density
does vanish in such a limit for the SYK model. The many-particle wavefunctions
of the low-energy eigenstates in Fock space change chaotically from one state to
the next, providing a realization of maximal many-body quantum chaos [141] in
a precise sense. This structure of eigenstates is very different from systems with
quasiparticles, for which the lowest energy eigenstates differ only by adding and
removing a few quasiparticles.

e The E dependence of the density of states in Eq. (6.10) is associated with a time
reparameterization mode, and Eq. (6.10) shows that its effects are important when
E ~ 1/N. The low energy quantum fluctuations of Eq. (6.4) can be expressed
in terms of a path integral which reparameterizes imaginary time 7 — f(7), in a
manner analogous to the quantum theory of gravity being expressed in terms of
the fluctuations of the spacetime metric. There are also quantum fluctuations of a
phase mode ¢(7), whose time derivative is the charge density, and the path integral
in Eq. (6.4) reduces to the partition function

1 [ (ksT)
Zsyk_rr = €% /DfD¢ exp <_ﬁ/ dr Lsyk—rrlf,¢] | (6.14)
0

The Lagrangian Lgyx_rr is known, and involves a Schwarzian of f(7).
Remarkably, despite its non-quadratic Lagrangian, the path integral in Eq. (6.14)
can be performed exactly [137], and leads to Eq. (6.10).
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Figure 23. Self-energies of the fermions and bosons in the Hamiltonian Hy in
Eq. (6.15). The intermediate Green’s functions are fully renormalized.

6.1. The WES-SYK model

The SYK model defined above is a 0+1 dimensional theory with no spatial structure,
and so cannot be directly applied to transport of strange metals in non-zero spatial
dimensions. A great deal of work has been undertaken on generalizing the SYK
model to non-zero spatial dimensions [134], but this effort has ultimately not been
successful: although ‘bad metal’ states (see Section 7) have been obtained, low 1" strange
metals have not. But another effort based upon a variation of the SYK model, the
0+1 dimensional ‘WES-SYK’ model [139, 142, 143, 144, 145, 146, 147, 148, 149, 150,
151, 152], has been a much better starting point for a non-zero spatial dimensional
theory, as shown in Section 7. Here ‘WES’ stands for Wang-Esterlis-Schmalian from
Refs. [145, 146], the for the simplest realization [146, 150, 151, 152] discussed below.
But the name ‘Yukawa-SYK’ is more commonly used.

In the spirit of Eq. (6.1), a model of fermions ¢; (i = 1...N) and bosons ¢,
(¢ =1...N) with a Yukawa coupling g;j» between them is now considered

Hy = —p Z Cici + Z % (77 +wio?) + % Z gijeczcjﬁbz , (6.15)
i ¢ ije

with g;;¢ independent random numbers with zero mean and r.m.s. value g. The bosons
are oscillators with the same frequency wy, while the fermions have no one-particle
hopping. The large N limit of Eq. (6.15) can be taken just as for the SYK model in
Eq. (6.1). The self-energy graph in Fig. 21 is replaced by those in Fig. 23: the phonon

Green’s function is D, while the phonon self-energy is II.
Continuing the parallel with the SYK model, the disorder-averaged partition
function of the WES-SYK model is a bi-local G-%-D-II theory, analogous to Eq. (6.4):

z :/DGDEDDDHexp(—NSaH)

1
San = —Indet(0, — p+ %) + 5 In det(—02 + wj — 10)
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+ [ar [ ar [—zw;r)a(f, ) + T, 7)D(r, 7"

2
—f-%G(T, ™YG(7',7)D(1,7")| . (6.16)
The large N saddle-point equations replacing Eq. (6.3) are:
1 1
G(1 n) = " . ) Dz n) = .
(iton) iwn + 1 — X(iwy,) (iton) w2 + wg — T(iw,)
3(r) = g°G(1)D(7) , (1) = =¢*G(1)G(~-7) (6.17)

The solution of Eqs. (6.16) and (6.17) leads to a critical state with properties very
similar to that of the SYK model [146, 150, 151, 152]. Only the low-frequency behavior
of the Green’s functions at 7' = 0, is quoted analogous to Eq. (6.6):

1 1

Gliw) ~ —isgn(w)|w|~0722) | D(iw) ~ |w|* ™44 | 1< A< 5(6.18)

Inserting the ansatz Eq. (6.18) into Eq. (6.17) fixes the value of the critical exponent A.
4A -1

=1 , A=0.42037... (6.19)

2(2A — 1)[sec(2mA) — 1]
Although the fermion Green’s function has an exponent which differs from that of the
SYK model, the thermodynamic properties have the same structure as that of the SYK
model, including the presence of the Schwarzian mode and the form of the many-body
density of states.

7. From the SYK model to strange metals

We now turn to the ‘strange metal’ regime of Fig. 1. A similar regime is found in
numerous correlated electron materials, and we will present here a theory [58, 59
which applies to a wide variety of quantum phase transitions, and so can explain the
universality in the observations.

Some of the key properties of strange metals, as observed in recent experiments,
are first summarized [153]:

(i) The resistivity, p(T'), of strange metals has a linear-T' dependence at low
temperatures:

p(T)=po+AT+... , T —0. (7.1)

Importantly, this resistivity is below the Mott-Ioffe-Regel bound [153], so p(T) <
h/e? in d = 2 spatial dimensions. Metals with p(T) > h/e* are bad metals, and are
not discussed here. Bad metals can be described by lattice models of coupled SYK
‘islands’ [154, 155, 156], as reviewed elsewhere [134].

(ii) Ordinary metals have low T specific heat which vanishes linearly with 7', but in a
strange metal the specific heat is enhanced to ~ T'In(1/T") as T'— 0.
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(iii)

Careful analyses of optical data in the cuprates over wide ranges of frequencies and
temperatures [157, 158] has shown that the optical conductivity can be accurately
described by the following form

K 1 hw
_ . ~ lw]®, (22 (72
o(w) 1 C Mians(@) 7 Terans(w) jwl (k’BT) (7:2)

— W
Ttrans (w) m

where K is a constant, and the transport scattering rate 1 /7.5 scales linearly with

the larger of |w| and kgT'/h. The frequency dependence of the effective transport
mass m;.,. is then determined by a Kramers-Kronig connection to that of 1/7ians,
which leads to a logarithmic frequency dependence in mf,, . (w).

Photoemission experiments on the cuprates have measured the electron self-energy

near the nodal point in the Brillouin zone. This was found to obey the scaling form
[159]

1 e
@) = 2Im¥(w) ~ |w|** Py (kBT> (7.3)

with an exponent o &~ 1/2 near optimal doping. The value @ = 1/2 corresponds
to a ‘marginal Fermi liquid’ [160], at least as far as the self energy is concerned.
But an important point is that there is no direct theoretical connection between
the single-particle scattering rate 1/7,(w) in Eq. (7.3), and the value of transport
scattering rate 1/Tians(w) in Eq. (7.2), although they are observed to have the same
exponent. As seen below, the transport and single-particle scattering rates can be
very different in some common models.

In experimental observations [161, 162, 163], the value of the overall constant K in
Eq. (7.2) is often fixed by writing the d.c. conductivity in the Drude form

2

o= (7.4)
where n is the known conduction electron density, and m* is an electronic effective
mass. In some experiments, the transport mass m;, . of Eq. (7.2) is used in
Eq. (7.4), while other experiments use the m* determined from thermodynamic
measurements. In the form Eq. (7.4), the absolute value of Tians can be deduced
from experimental observations. In the strange metal, such a value is found to obey

‘Planckian’ behavior with [161, 162, 163]

1 kgT
L (7.5)
Ttrans h
with « a numerical constant of order unity. Measurements of 1/Tians in

Laj ¢_,Ndg4Sr,CuOy in angle-dependent magnetotransport show a = 1.2 + 0.4 [163]

upon using the thermodynamic m*.

7.1.

Universal model

This subsection will present a simple and universal generalization of the WES-SYK

model of Section 6.1 to spatial dimension d = 2 which reproduces all five of the above
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Figure 24. Cuprate phase diagram from Ref. [1]. Annotations in blue have been
added. In Section 7 we consider the transition from the FL* pseudogap to the Fermi
liquid focusing on the Higgs field ®, while setting B = 0. The transition from the
pseudogap to the d-SC was discussed in Section 5 as a theory of the dynamics of
B, while setting ® to a non-zero constant which determined the magnitude of the
pseudogap.

observed properties [58, 59].

We begin by motivating the model appropriate for the cuprates, and mention
generalizations to other materials later. To this end, we present the phase diagram
of Fig. 1 again in Fig. 24, but now with annotations updated with reference to the
ancilla theory in Fig. 16. In Section 5 we have considered the low temperature fate of
the FL* pseudogap associated with condensation of the Higgs field B. In this analysis,
we treated ® simply as a c-number constant. In this section, & and B will exchange
roles. In considering the transition from FL* to FL in Fig. 13 and Fig. 24, we consider
the dynamics of the ® field, and the fermions in the top two layers in Fig. 16. In FL*,
we can safely set B = 0 (apart for some thermal fluctuations which were needed in
Section 5.3). In the FL phase of Fig. 13, we see that the f; fermions of the middle
layer form a trivial rung-singlet state with the f fermions in the bottom layer: this
confinement of f; and f is not associated with B, but by the confinement of another
gauge field [112, 113, 117]. Consequently, it is safe to ignore B in the quantum criticality
of the FL* to FL transition [112, 113]. So we will only consider the ® boson here, along
with the ¢, and f; fermions in the top two layers. This is the approximation in which
the inversion mapping to the Kondo lattice in Fig. 14 becomes exact.

We therefore consider the T' > 0 quantum criticality of the FL* to FL transition
sketched in Fig. 25, associated with the Higgs transition in ®. We could study this using
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Figure 25. Schematic phase diagram of a metal with a fermion volume changing
transition without a broken symmetry on either side of the transition. When spatial
disorder is included, Griffiths effects lead to a quantum critical ‘foot’ on the FL side,
which is reviewed elsewhere [66].

the ‘Kondo breakdown’ dynamic mean field theories [44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57|, which map the transition to SYK-type Green’s functions studied in
Section 6. However, here we will instead treat the spatial dimensionality seriously, and
focus on the low energy, long-wavelength structure. Spatially random couplings play
a crucial role in such an analysis, and lead to new Griffiths effects associated with the
‘foot” of strange metal behavior [64, 65, 66]. But, we do not discuss such Griffiths effects
here, and focus on the disorder-average theory.

At the mean-field level the FL* to FL transition is described by Hgpms in Eq. (4.3).
We now include spatial dependence in all fields, allow for quenched spatial disorder, and
obtain the (universal) Lagrangian

Lo = Z cjm (% + E(k:)) Cha + fo,m (% + El(k)> fika
+ /dzr{s 1D(r)> + [g+ ¢ ()] el (7) fia(r) ®(r) + H.c.

+ K|V ()] + u|@(r)|* + 7)(?“)02("“)%(7“)} : (7.6)

We are using the convention that quenched random variables (with no dynamics and a
fixed, random dependence on ) are colored in red. There should also be a gauge field
associated with Eq. (4.4) in Eq. (7.6), but we have dropped it as is does not significantly
modify the critical behavior [164, 148]. The dispersions (k) and ¢;(k) arise from the
ti; and t1;5 in Eq. (4.3), s is the tuning parameter in Fig. 25, and we have added various
in an effective action for ®.

The most common form of spatial disorder in studies of metallic transport is a
random potential from impurities, and this realized by v(r). This spatial disorder is
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averaged over after assuming it is uncorrelated at different points in space

o(r)=0 , v =o*r —1r). (7.7)
One of the main new points made in Refs. [164, 58], as we will see in Section 7.2, is
that random potential disorder is also not sufficient to produce a strange metal, and the
effects of spatial randomness in the interactions [148] must also be considered. Spatial
disorder in the Kondo exchange interaction Jx in Eq. (4.1) translates into the spatially
random Yukawa coupling ¢'(r) which we take to obey the disorder average

gr)=0 , g(r)g()=g?(r—7). (7.8)
In the underlying electronic model, the exchange Jx ~ t2/U, where t is some hopping—so
randomness in ¢ (which is a form of random potential disorder) translates to randomness
in Jg, and hence in the Yukawa coupling. We can also see that upon integrating out
the fermions, the coupling ¢'(7) generates spatial randomness in s. The latter is usually
identified as ‘Harris disorder’, associated with spatial randomness in the position of the
phase transition. But as long as we are in a self-averaging regime, the lesson from the
WES-SYK model is that it is more convenient to keep the randomness in the Yukawa
coupling. Moreover, we can transfer random mass disorder to random Yukawa coupling
disorder simply by rescaling ®: so keeping it in ¢'(r) is equivalent to working in the
boson eigenstates of the random mass term. At very low energies, the random mass
does eventually lead to boson localization and the new physics [64, 65, 66] of the ‘foot’,
but we do not discuss that further here.

The properties of this strange metal theory will be determined by directly extending
the methods used to solve the WES-SYK model. This extension can be viewed as simply
solving the equations in Fig. 23, while using the propagators in L. Alternatively, a
fictitious flavor index on all fields ranging over N values can be introduced and the large
N limit taken, assuming couplings are random in this flavor space. This method yields
a G-X-D-II theory which is a direct generalization of Eq. (6.16) to Green’s functions
that are bilocal in both space and time

- / DG DY DD DIl exp(—NSa)
San = —Indet(0; +e(k) —p+ %) + —lndet(—af +q* +mj — 1)

/de2 /dT &' [-S(7, )G, e T )+

2
§H(T r';7,r)D(r, ;7 r') + %G(T,’I’;T/,T,)G(T,,TI;T,’I")D(T,T‘;T/,T',)

1’2

+5 —G(r,r; 7, 7G(T', ' 7, 7)0(r — 1)
/2
+ %G(m; 7 )G, ) D(r e ) (r — )| (7.9)

For compactness of notation and analysis, we have assumed that the ¢ and f; fermions
Green’s functions are both equal to G, but it is not difficult to treat the more general
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Figure 26. Diagrams for the conductivity for the theory L. + L, + L.

case. Note that the spatially random couplings lead to an additional §(r — 7’) in their
contributions arising from the disorder averages in Eqs. (7.7) and (7.8). The saddle
point of Eq. (7.9) leads to equations for the Green’s functions which can also be derived
from Fig. 23:

X(7,7) = ¢*D(1,7)G(7,7) + ’IJZ]G(T,‘T‘)(?('I‘) + g/QG(T, r)D(1,7)5*(7),
(7, 7) = —g*G(—1, —)G(r,7) — ¢ G(—7,7)G(1,7)8(r),

. 1
Gliw, k) = iw—e(k) + p— S(iw, k)’
Dita) - 1 (7.10)

M @2 +mi - 1(iQ,q)
We also need an equation to determine the boson mass my: this is determined by the
Hartree contribution from the u term in Eq. (7.6) [165].

This is a good point to note the importance of the elastic scattering term v (7). This
broadens the Fermi surfaces, and so effects from Fermi surface nesting or ‘hotspots’ are
quenched. This is a key reason for the universality of Lg, which applies to symmetry
breaking transitions too, along with the non-symmetry breaking FL*-FL transition we
are considering. This is also the reason the difference in dispersion between ¢ and
f1 is mostly not important, and has been neglected above. However, the particle-hole
asymmetry of the FL*-FL transition is important for the thermopower, and we comment
on this near Eq. (7.14).

Before discussing the solution of Eq. (7.10), the computation of response functions
of fermion bilinears, such as the conductivity, is described. These can be obtained by
inserting external sources into Eq. (7.9) and then taking the variational derivatives with
respect to them. This leads to the graphs shown in Fig. 26, which have to evaluated
with fully renormalized Green’s functions.

The following subsections discuss the solutions of the equations in Eq. (7.10) and
Fig. 26 for the cases without and with spatial randomness.
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7.2. No spatial randomness

The solution of Eq. (7.10) with g # 0, but ¢ = 0 and v = 0, is considered. This
corresponds to the quantum phase transition without disorder, and has been much
studied in the literature. At the quantum critical point, Eq. (7.10) yields a non-Fermi
liquid form for the fermion Green’s function, and a Landau-damped form for the boson
Green’s function [166, 165]

1

S (iw, k) ~ —isgn(w)|w|*?,  Gliw, k) = i — (k) = S k)

1
P+ +/q
The fermion Green’s function has a sharp Fermi surface in momentum space, and k in

D(iQ, q) (7.11)

Eq. (7.11) is assumed to be close to the Fermi surface. But G is diffusive in frequency
space, indicating the absence of well-defined fermionic quasiparticles.

However, an important point is that essentially none of this non-Fermi liquid
structure feeds into the conductivity, which remains very similar to that of a Fermi
liquid [167, 168, 169, 164, 170, 171] with the form:

1
o(w) ~ —=+ lw|” + -+ (w3 term has vanishing co-efficient) (7.12)

There has been a claim [172] of a w™2/3 contribution to the conductivity, but its co-
efficient vanishes after evaluation of all the graphs in Fig. 26 [170, 164]. This cancellation
can be understood as a consequence of Kohn’s theorem [173], which states that in a
Galilean-invariant system only the first term of the right-hand-side of Eq. (7.12) is non-
zero. A Galilean-invariant system is not considered here, but all contributions to the

~2/3 term arise from long-wavelength processes in the vicinity of patches of

possible w
the Fermi surface, and these patches can be embedded in a system which is Galilean-

invariant also at higher energies.

7.3. With spatial randomness

~2/3 term in Eq. (7.12) is a strong indication that the resolution

The absence of the w
of the strange metal problem cannot come from a clean system. There can be umklapp
processes which dissipate momentum, but these require special features of the Fermi
surface to survive at low momentum. A theory with only potential scattering disorder
as in Eq. (7.7), i.e. ¢ # 0, v # 0, but ¢’ = 0, is also not sufficient [164, 174]: it leads to
marginal Fermi-liquid behavior in the electron self energy, but no strange metal behavior
in transport. So for a generic and universal theory of strange metals, the influence of
disorder with g, ¢/, and v all non-zero should be considered. The solution of Eq. (7.10)
yields a boson Green’s function which has a diffusive form at the critical point [175]
1

a +7I9
This is a good point to mention, in passing, a special feature of the FL*-FL

D(iQ, q) ~ (7.13)

transition, not shared by phase transitions of two-dimensional metals with symmetry
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breaking order parameters. The ® propagator of the FL*-FL transition is sensitive
to particle-hole asymmetry, as it also carries electrical charge (for Lg, the asymmetry
requires (k) # €1(k)). This allows a more general form for the boson propagator than
Eq. (7.13) [148, 60]

1
PR TIEATR
The 4 term is responsible for the singular thermopower response, as discussed in

D(if, q) ~

(7.14)

Ref. [60], and this connects to observations on Fermi volume changing transitions in
cuprates [61, 62] and heavy-fermion compounds [63].

Inserting Eq. (7.13) or (7.14) into the fermion Green’s function gives a marginal
Fermi liquid form [175, 58]

1
G(w) ~— ™) 1 1 (7.15)
W= e(k)+1 —+ - ™) sgn(w)
1 2 . 1 92 12 . m*(w) 2 92 12
Te ! ’ 7_in(W) (@'2 + g |W| ’ m T \ 02 + g IH(A/(A)) ’

The expressions in the second line are schematic, and show only the dependence upon
g, ¢ and v without numerical constants. This result matches the photoemission
observations in Eq. (7.3) for @« = 1/2. Note that there are two distinct contributions
to the singular |w| electron inelastic scattering rate 1/7,: one from the combination of
impurity scattering v with the spatially uniform interaction g [175], and the other from
the spatially random interaction ¢' [148, 58].

Inserting these solutions for the Green’s functions into the action in Eq. (7.9), gives
a T'ln(1/T) specific heat [165].

Turning to the evaluation of the conductivity graphs in Fig. 26, the key property
of the strange metal, the conductivity, is given by [148, 58]

1
7) YT @ (719
— W
7-trams(w) m
1 2 2 my (W) 2(]/2
~ . rans ~ —Z—In(A 7.17
g VUl e T (A ) (717)

This expression shows that the residual resistivity py at 7' = 0 is determined by the
elastic scattering rate 1/7. ~ v?, as in a disordered Fermi liquid. The inelastic processes
lead to a frequency and temperature dependence which matches precisely with the
observational form in Eq. (7.2). An important feature is that of the two processes
contributing to the electron inelastic scattering rate 1/, in Eq. (7.15), only one
contributes to the inelastic transport rate 1/7ians. The processes involving the spatially
uniform interaction g and the impurity potential v cancel out in the computation of the
conductivity from Fig. 26, and only those involving the spatially random interaction
¢' survive [58]. A consequence of this cancellation is that the constant a in Eq. (7.5)
approaches o = /2 for the quasiparticle m* in the limit ¢’ > ¢ [165], and decreases
from this value as ¢ is increased [58].
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To summarize, the conductivity of the theory L¢ yields the strange metal
conductivity in Eq. (7.1), with py ~ v* and A ~ ¢"*. Note that the value of g does not
make a direct difference to the value of the linear-T" resistivity, although it does affect the
marginal Fermi liquid behavior of the electron self energy, as noted in Eq. (7.15). It is
also notable that the residual resistivity and linear-T" resistivity slope are determined by
different sources of disorder: those in Egs. (7.7) and (7.8) respectively. This distinction
should be important in understanding trends in observations [176, 177].

We note that a full numerical solution of Eq. (7.10) at g = 0 has been presented by
Li et al. [59], including results for the conductivity and the onset of superconductivity.

The key role of spatial randomness in the Yukawa coupling in this theory implies
a prediction: correlated electron systems will not exhibit low 7" strange metal behavior
in sufficiently clean samples. Evidence in support of this prediction has appeared in
recent experiments on graphene: while twisted bilayer graphene has a strange metal
phase [178], the much cleaner system of rhombohedral trilayer graphene does not [179].

Finally, note that a recent computation [180] of shot noise in the ¢’-v model yields
results in agreement with observations [181]. The ¢’-v model has also been used to
study non-linear optical response [182], and there are interesting connections to recent
observations [183]
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