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Outline
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• Lecture 1 – Brief intro to the physics of High 
Harmonics (Nobel 2023) and coherent imaging

• Lecture 2 – Nanoscale phonon transport (with Dr. 
Brendan McBennett, NIST)

• Lecture 3 – Understanding spin and many-body 
electron-phonon dynamics via EUV MOKE and 
ARPES



Today’s outline
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1. Phonons overview

2. Kinetic transport theory

3. Phonon transport at the nanoscale
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1D atomic chain
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1D atomic chain
§ 𝑁 atoms of mass 𝑚
§ Lattice constant 𝑎 = 1
§ 𝑢! is displacement of atom 𝑛
§ Periodic boundary conditions 𝑢! = 𝑢!"#
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Phonons
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Quantum mechanical approach

𝐻 =
𝑚
2
*
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𝜔) 𝑛) +
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§ Superposition of harmonic oscillators
§ 𝑛)  “phonons” in mode 𝑘
§ For N atoms in 3D have 3N modes

Phonons correspond to eigenstates of the harmonic Hamiltonian. 
Real crystals are not harmonic and so phonons will have finite 
lifetimes



Phonons in real crystals

11Phys. Rev. B 80, 125203 (2009)



Phonons in real crystals

12Phys. Rev. B 80, 125203 (2009)

Acoustic phonons (sound) – long 
wavelength, linear dispersion (kHz-GHz)

Optical phonons – very high frequency, low 
group velocity

Thermal phonons – heat carriers (THz)

Mean free path: Λ = 𝑣𝜏 



Macroscopic thermal transport
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Fourier’s law𝑞⃑ = −𝜅∇𝑇

Heat flux

Thermal conductivity, diffusivity
Temperature gradient

𝑞⃑
∇𝑇
𝜅, 𝛼

𝜕𝑇
𝜕𝑡

= 𝛼∇!𝑇 Heat equation



Macroscopic thermal transport
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Fourier’s law𝑞⃑ = −𝜅∇𝑇

Heat flux

Thermal conductivity, diffusivity
Temperature gradient

𝑞⃑
∇𝑇
𝜅, 𝛼

How to relate macroscopic variables to microscopic quantities like 
𝑣) , 𝜏) , 𝜔) , Λ-?

𝜕𝑇
𝜕𝑡

= 𝛼∇!𝑇 Heat equation
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1. Phonons overview

2. Kinetic transport theory

3. Phonon transport at the nanoscale



Distribution functions
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§ Treat phonons as particles (~1nm wavelengths at RT)

§ Energy is conserved, but not much else

§ 𝑛) 𝒙, 𝑡 : number of phonons in mode 𝑘 at location 𝒙 at time 𝑡

§ In equilibrium, 𝑛)% = 𝑒ℏ+!/)"0 − 1
&'

 (phonons are bosons)



Momentum conservation
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§ Phonons have zero average “real” momentum (the atoms in a crystal 
experience no net displacement as a phonon propagates)

§ Instead they have crystal momentum ℏ𝑘



Momentum conservation
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§ Phonons have zero average “real” momentum (the atoms in a crystal 
experience no net displacement as a phonon propagates)

§ Instead they have crystal momentum ℏ𝑘

§ Crystal momentum is only conserved up to a 
reciprocal lattice vector 𝑅
§ Normal collisions 𝑘 + 𝑘1 = 𝑘′′ 
§ Resistive (Umklapp) collisions 𝑘 + 𝑘1 = 𝑘11 + 𝑅



Momentum conservation
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§ Phonons have zero average “real” momentum (the atoms in a crystal 
experience no net displacement as a phonon propagates)

§ Instead they have crystal momentum ℏ𝑘

§ Crystal momentum is only conserved up to a 
reciprocal lattice vector 𝑅
§ Normal collisions 𝑘 + 𝑘1 = 𝑘′′ 
§ Resistive (Umklapp) collisions 𝑘 + 𝑘1 = 𝑘11 + 𝑅

Image: Jacopo Bertolotti



Boltzmann transport equation
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𝜕𝑛) 𝒙, 𝑡
𝜕𝑡

+ 𝑣⃑) ⋅ ∇𝑛) 𝒙, 𝑡 = C[𝑛) 𝒙, 𝑡 ]

Drift Collisions

C is the collision operator representing all the possible scattering events 
which can alter the distribution function. In general it is very difficult to 
calculate

C 𝑛! 𝒙, 𝑡 ~∫ 𝑑𝑘"𝑑𝑘"" 𝑀 𝑘, 𝑘", 𝑘"" #𝜔𝜔"𝜔""𝛿(𝜔 + 𝜔" − 𝜔"")(n + 1)(n" + 1)n""

𝑘

𝑘′
𝑘′′



Energy and heat flux
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𝑢 𝒙, 𝑡 = 𝑉&'*
)
ℏ𝜔) 𝑛) 𝒙, 𝑡

𝑞⃑ 𝒙, 𝑡 = 𝑉&'*
)
ℏ𝜔)𝑣⃑) 𝑛) 𝒙, 𝑡

Energy density

Heat flux density

These are very fundamental expressions – no assumptions yet



Boltzmann to Fourier
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𝜕𝑛4 𝒙, 𝑡
𝜕𝑡

+ 𝑣⃑4 ⋅ ∇𝑛4 𝒙, 𝑡 = C[𝑛4 𝒙, 𝑡 ]

𝑞⃑ = − 1
4
𝑣4Λ4𝑐4 ∇𝑇

thermal conductivity

§ Relaxation time approximation
§ Local equilibrium approximation
§ Steady state

Can calculate 𝑣) , Λ) , 𝑐)  from first principles



Bulk thermal conductivity calculations
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Si

Ge

This works for bulk materials with dimensions ≫ mean free paths (100s 
of nm at room temperature). What about at the nanoscale?
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1. Phonons overview

2. Kinetic transport theory

3. Phonon transport at the nanoscale

Length scales on the order of phonon mean free paths, time scales on 
the order of phonon lifetimes



Example: second sound
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𝑛4 = 𝑓(𝜔4 , 𝑇) Arbitrary initial distribution function (ex. from ultrafast 
laser excitation)



Example: second sound

26

𝑛4 = 𝑓(𝜔4 , 𝑇) Arbitrary initial distribution function (ex. from ultrafast 
laser excitation)

𝑛4 = 𝑒(ℏ6!7ℏ4⋅9)/4"; − 1
7<

Fast 
timescale

Suitable intermediate distribution function



Example: second sound
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𝑛4 = 𝑓(𝜔4 , 𝑇) Arbitrary initial distribution function (ex. from ultrafast 
laser excitation)

Equilibrium distribution function𝑛4= = 𝑒ℏ6!/4"; − 1
7<

𝑛4 = 𝑒(ℏ6!7ℏ4⋅9)/4"; − 1
7<

Fast 
timescale

Slow 
timescale

Suitable intermediate distribution function



Example: second sound
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𝑛4 = 𝑓(𝜔4 , 𝑇)

𝜏""
𝜕𝑇
𝜕𝑡
+
𝜕𝑇
𝜕𝑡

= 𝛼∇!𝑇

𝑛4= = 𝑒ℏ6!/4"; − 1
7<

𝑛4 = 𝑒(ℏ6!7ℏ4⋅9)/4"; − 1
7<

Fast 
timescale

Slow 
timescale

Damped wave equation for temperature!

𝜕𝑇
𝜕𝑡 = 𝛼∇#𝑇 Heat equation



Example: second sound
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NaF, 13K (1971)

Phys. Rev. B 3 1428 (1971)



Example: second sound
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Phys. Rev. B 3 1428 (1971)
Science 364, 375–379 (2019)
Sci. Adv 7 eabg4677 (2021)

Graphite, 100K (2019) Ge, 300K (2021)NaF, 13K (1971)

1970s: exotic
2010s: 2D materials,
higher temperatures
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§ Phonon mean free paths in bulk silicon are 10s of 
nm to microns

Phys. Rev B 84, 085204 (2011)



Example: confinement
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§ Phonon mean free paths in bulk silicon are 10s of 
nm to microns

§ Dimensions in nanoelectronics are much smaller

Phys. Rev B 84, 085204 (2011)
Nature 530, 144–147 (2016)

Thermal limit

Moore’s law



Example: confinement
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𝜅 =#
#
𝑣#%Λ#𝑐#

%Λ# = 𝐷 if Λ# > 𝐷

%Λ# = Λ# if Λ# < 𝐷
Naïve approach
“ballistic” model

Heat flow across a film of similar 
thickness to the phonon mean free path



Example: confinement
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Heat flow across a film of similar 
thickness to the phonon mean free path

Sophisticated but (very) 
computationally intensive 
approach

PNAS 118 e2109056118 (2021)



Example: confinement
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And what if your system 
looks like this?

Search for mesoscale theories: emergent phonon hydrodynamics

Nano Letters 23 2129 (2023)



Phonon hydrodynamics
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§ Same process as before

§ Thermodynamically-motivated distribution function at 
intermediate timescales

§ Plug into the Boltzmann equation, arrive at an 
equation which looks like the Navier-Stokes Equation

viscous term
npj Comp. Mat. 11 172 (2025)



Phonon hydrodynamics (vs. other models)
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How can we develop 
experimental tools to 
differentiate between these 
models? 

npj Comp. Mat. 11 172 (2025)



Example: EUV scatterometry

38

1. Heat Ni nanowires on a silicon substrate with an 
infrared laser

2. Measure dynamic diffraction pattern (thermal 
expansion and contraction) using ultrafast EUV light

Phys. Rev. Applied 11, 024042
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1. Heat Ni nanowires on a silicon substrate with an 
infrared laser

2. Measure dynamic diffraction pattern (thermal 
expansion and contraction) using ultrafast EUV light

Phys. Rev. Applied 11, 024042



Phys. Rev. Applied 11, 024042

Example: EUV scatterometry
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1. Heat Ni nanowires on a silicon substrate with an 
infrared laser

2. Measure dynamic diffraction pattern (thermal 
expansion and contraction) using ultrafast EUV light

Closely packed 
nanostructures cool faster 
than more isolated 
nanostructures under the 
same initial heat injection 
per unit volume!
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1. Phonons appear everywhere in condensed matter 
physics and their behavior is highly material/system 
dependent

2. Our knowledge of phonon transport is decades behind 
electron transport because phonons cannot be as 
easily manipulated

3. Phonon transport is critical for semiconductors, energy 
efficiency, quantum technologies and much more



42

Thank you!


