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Today’s outline

1. Phonons overview

2. Kinetic transport theory

3. Phonon transport at the nanoscale
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1D atomic chain a

N atoms of mass m

Lattice constanta = 1

U, is displacement of atom n

Periodic boundary conditions u,, = u,, 4y
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1D atomic chain a

= N atoms of mass m

= Lattice constanta =1

" u, is displacement of atomn

" Periodic boundary conditions u,, = U,y

m
H = ?Z ’Ll,% + w(%(un — un—l)2
n

ﬁn — w% (un+1 + Up—1 — Zun)
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1D atomic chain a

= N atoms of mass m L~ plkx—iwkt

= Lattice constanta = 1 "

" u, is displacement of atomn 2T

» Periodic boundary conditions u,, = U,y ™ k = —(0 +1,+2...)

— ?Z Uy + w(%(un — Up_1)°
n

ﬁn — w% (un+1 + Up—1 — Zun)
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1D atomic chain
= N atoms of mass m
m |attice constanta = 1

" u, is displacement of atomn

a

Uy~ elkx—la)kt

27
» Periodic boundary conditions u,, = U,y ™ k = —(0 +1,+2...)

— ?Z Uy + w(%(un — Up_1)°
n

.e _ 2
un - wO (un+1 + un—l

— 2uy,)

Wi = 2wy sin|z|




Quantum mechanical approach

=23 ox(n+;)
2 L, T

= Superposition of harmonic oscillators
" n;, “phonons” in mode k
= For N atoms in 3D have 3N modes

Phonons correspond to eigenstates of the harmonic Hamiltonian.
Real crystals are not harmonic and so phonons will have finite

lifetimes
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Phonons in real crystals
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Phonons in real crystals
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I' Acoustic X K r
Phonon wavevector

Phys. Rev. B 80, 125203 (2009)

Acoustic phonons (sound) — long
wavelength, linear dispersion (kHz-GHz)

Optical phonons — very high frequency, low
group velocity

Thermal phonons — heat carriers (THz)

Mean free path: A = vt
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Macroscopic thermal transport

q = —kVT Fourier’s law
oT |
— = aV4T Heat equation
dt

67 Heat flux

VT Temperature gradient

K,Q Thermal conductivity, diffusivity
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Macroscopic thermal transport

q = —kVT Fourier’s law
T |
— = aV4T Heat equation
dt
67 Heat flux
VT Temperature gradient
K,Q Thermal conductivity, diffusivity

How to relate macroscopic variables to microscopic quantities like
Uk,Tk,(l)k,Ak?
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Today’s outline

1. Phonons overview

2. Kinetic transport theory

3. Phonon transport at the nanoscale
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Distribution functions

= Treat phonons as particles (¥~1nm wavelengths at RT)
= Energy is conserved, but not much else

* n,(x,t): number of phonons in mode k at location x at time t

1
= In equilibrium, n) = [e"@k/k8T — 1] ~ (phonons are bosons)
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Momentum conservation

= Phonons have zero average “real” momentum (the atoms in a crystal
experience no net displacement as a phonon propagates)

" |nstead they have crystal momentum nk
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Momentum conservation

= Phonons have zero average “real” momentum (the atoms in a crystal
experience no net displacement as a phonon propagates)

" |nstead they have crystal momentum nk

= Crystal momentum is only conserved up to a
reciprocal lattice vector R
» Normal collisions k + k' = k'
= Resistive (Umklapp) collisions k+k' =k"+R
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Momentum conservation

= Phonons have zero average “real” momentum (the atoms in a crystal
experience no net displacement as a phonon propagates)

" |nstead they have crystal momentum nk

= Crystal momentum is only conserved up to a
reciprocal lattice vector R
» Normal collisions k + k' = k'
= Resistive (Umklapp) collisions k+k' =k"+R
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Boltzmann transport equation

oy (x, 1) + Uy - Vg (x, t) = Clng (x, t)]
/

Jat | o
Y Y

Drift Collisions

C is the collision operator representing all the possible scattering events
which can alter the distribution function. In general it is very difficult to

calculate

Clng(x, )]~f dk'dk" Mk, k', k") |?0w0' 0" §(w + ©' — »')(n + 1)(n’ + 1)n"

P
K

kl
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Energy and heat flux

u(x,t) = V-1 z hwy, ng(x,t) Energy density
K

glx,t) =Vt z hw; vy n(x, t) Heat flux density
k

These are very fundamental expressions — no assumptions yet
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Boltzmann to Fourier

on,(x,t R
ka(t ) + vp - Vg (x, t) = Clng(x, t)]
= Relaxation time approximation
= Local equilibrium approximation
= Steady state
C? = — (z vaka) VT
k Can calculate vy, Ay, ¢ from first principles

\

|
thermal conductivity
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Bulk thermal conductivity calculations

Intrinsic lattice thermal conductivity of semiconductors
from first principles

D. A. Broido®
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA

M. Malorny and G. Bimer
Department of Physics, University of Regensburg, D-93040 Regensburg, Germany

Natalio Mingo
CEA-Grenoble, 17 Rue des Martyrs, Grenoble 38054, France
and Department of Electrical Engineering, University of California, Santa Cruz, California 95064, USA

D. A. Stewart
Cornell Nanoscale Facility, Cornell University, Ithaca, New York, 14853, USA

(Received 30 October 2007; accepted 19 November 2007; published online 7 December 2007)

We present an ab initio theoretical approach to accurately describe phonon thermal transport in
semiconductors and insulators free of adjustable parameters. This technique combines a Boltzmann
formalism with density functional calculations of harmonic and anharmonic interatomic force
constants. Without any fitting parameters, we obtain excellent agreement (<<5% difference at room
temperature) between the calculated and measured intrinsic lattice thermal conductivities of silicon
and germanium. As such, this method may provide predictive theoretical guidance to experimental
thermal transport studies of bulk and nanomaterials as well as facilitating the design of new
materials. © 2007 American Institute of Physics. [DOI: 10.1063/1.2822891]
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FIG. 1. (Color online) Lattice thermal conductivity «'/ as a function of
temperature. The red line and solid squares are the calculated and measured
thermal conductivities of silicon, respectively. while the blue line and the
solid circles are the corresponding quantities for germanium.

This works for bulk materials with dimensions > mean free paths (100s
of nm at room temperature). What about at the nanoscale?
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Today’s outline

1. Phonons overview

2. Kinetic transport theory

3. Phonon transport at the nanoscale

Length scales on the order of phonon mean free paths, time scales on
the order of phonon lifetimes
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Example: second sound

ne = f(wg, T) Arbitrary initial distribution function (ex. from ultrafast
laser excitation)
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Example: second sound

ne = f(wg, T) Arbitrary initial distribution function (ex. from ultrafast
laser excitation)

Fast
timescale

Ny = [e(h“’k‘hk'ﬁ)/kBT — 1] Suitable intermediate distribution function
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Example: second sound

ne = f(wg, T) Arbitrary initial distribution function (ex. from ultrafast
laser excitation)

Fast
timescale

R —1
ny = [e(h‘“k‘hk'”)/"BT — 1] Suitable intermediate distribution function

Slow
timescale

n,g = [ehwk/kBT — 1]_1 Equilibrium distribution function .



Example: second sound

ng = f(wk' T)

Fast
timescale

o= emc o [ oy o, = GV

Damped wave equation for temperature!
Slow
timescale

aT
-1 _ o2 :
nf = [ehwk/kBT _ 1] ﬁ or = aVT Heat equation .



Example: second sound

PLLSE HEIGHT (DIFFERENT GAINS)

NaF,

13K (1971)
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Phys. Rev. B 3 1428 (1971)
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Example: second sound

: Ge, 300K (2021
NaF, 13K (1971) Graphite, 100K (2019) ,Ge (2021)
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Example: confinement

| Differential ] A : ] . -
T:: Cumulsive — T = Phonon mean free paths in bulk silicon are 10s of
- ) I | | W | e nm to microns

0 10 20 30 40 50 1 10 100 1000 10000
Wavelength (Ang) MFP (nm)

FIG. 6. (Color online) Cumulative contributions of phonons to
the thermal conductivity at 277 K from the 18 x 18 x 18 k-point
mesh data. Left plot is according to the wavelengths, and right
plot is according to the MFPs. Both differential and cumulative
thermal conductivities are shown in blue and red, respectively.
For comparison, the extrapolated (to infinite k-point mesh) and
experimental « are also shown with horizontal lines at 166 and
174 W /mK, respectively.

Phys. Rev B 84, 085204 (2011) 31



Example: confinement

200 b Differential 1 & ]
Cumulative .
LN e e S Experiment . )
Extrapolated to o
150 . S ik e 1

0 10 20 30 40 50 1 10 100 1000 10000
Wavelength (Ang) MFP (nm)

FIG. 6. (Color online) Cumulative contributions of phonons to
the thermal conductivity at 277 K from the 18 x 18 x 18 k-point
mesh data. Left plot is according to the wavelengths, and right
plot is according to the MFPs. Both differential and cumulative
thermal conductivities are shown in blue and red, respectively.
For comparison, the extrapolated (to infinite k-point mesh) and
experimental x are also shown with horizontal lines at 166 and
174 W /mK, respectively.

Phys. Rev B 84, 085204 (2011)
Nature 530, 144-147 (2016)

Phonon mean free paths in bulk silicon are 10s of

nm to microns

Dimensions in nanoelectronics are much smaller

1010
’
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. .
) -e
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1960 1974 1988 2002 2016
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Example: confinement

Naive approach
“ballistic” model

Heat flow across a film of similar
thickness to the phonon mean free path

K= Z VN Cp —
k

_

[_\k=Ak|fAk<D
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Example: confinement

Heat flow across a film of similar
thickness to the phonon mean free path

Atomistic temperature profiles from molecular dynamics simulations

L=22nm L=44nmV <0 L=8.8nm L=17.4nm T(K)
;:,_;‘,f« > £ 304
E | M
= | 208
Sophisticated but (very) '
. . . Diffusive temperature profiles from finite element simulations
computationally intensive -‘70 -
£ < ““..'7"
approach :. - ' o |-

PNAS 118 2109056118 (2021) ~~ 4™ F=8&nmm LEazam) Hesaden



Example: confinement

And what if your system
looks like this?

Nano Letters 23 2129 (2023)

Search for mesoscale theories: emergent phonon hydrodynamics
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Phonon hydrodynamics

= Same process as before Not Confined

Bulk diffusion

= Thermodynamically-motivated distribution function at HHmmmmm””m

intermediate timescales ?
_ = = Confined (2¢ < L,)
fi=f"+p4-d+G,:Vvq Soundary Dfision. Boudary
| o TN
= Pluginto the Boltzmann equation, arrive at an g e
equation which looks like the Navier-Stokes Equation - -
— = "’2 -— Highly Confined (L, < 2¢)
q —_— _KGK VT _I_ ‘€2V q i yPoiseuilleprofile
N ISl
viscous term i :

npj Comp. Mat. 11 172 (2025) 36



Phonon hydrodynamics (vs. other models)

Heat flux magnitude |g|
Low High

Diffusion Hydrodynamics Ballistic Molecular Dynamics

u u
How can we develop
experimental tools to
differentiate between these
models?

37
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Example: EUV scatterometry

Phys. Rev. Applied 11, 024042 Diffraction on CCD Camera

30-nm EUV
Probe

Intensity

780-nm IR
Pump

]

Pixel on camera

L P NiNanolines ~——
Substrate

Nopump O ~20 ps

1. Heat Ni nanowires on a silicon substrate with an
infrared laser

2. Measure dynamic diffraction pattern (thermal
expansion and contraction) using ultrafast EUV light

38



Example: EUV scatterometry

Phys. Rev. Applied 11, 024042 Diffraction on CCD Camera

[y

o
o0

30-nm EUV
Probe

o
o

Intensity

Change in diffraction (arb. units)
o
=y

\ 780-nm IR 4 ,

Pump itk 0.2
Pixel on camera 0
i - -0.2

- Laser 5
Ni Nanolines S pump "

Substrate /\
: }—> Time 08

Nopump O ~20 ps

o
o

1. Heat Ni nanowires on a silicon substrate with an
infrared laser

2. Measure dynamic diffraction pattern (thermal
expansion and contraction) using ultrafast EUV light

Change in diffraction (arb. units)
o o
N =

I
©
[N

o

1 L=20nm, P=80nm

0 200 400 600 800 1000
Delay time (ps)

L=26nm,P=l400nm :

0 200 400 600 800 1000
Delay time (ps)



Example: EUV scatterometry

Closely packed
nanostructures cool faster
than more isolated
nanostructures under the
same initial heat injection
per unit volume!

Clhange in diffraction (arb. units)

Clhange in diffraction (arb. units)

[u=y
T

o
o0

1 £=20nm, P=80nm mﬁ

o
o

©
>

o
¥

0 200 400 600 800 1000
Delay time (ps)

o

©
[N

: L=26nm,P=:'100an

08r
06F
04rF

0.2

o
T

0 200 400 600 800 1000
Delay time (ps)



1.

Phonons appear everywhere in condensed matter
physics and their behavior is highly material/system
dependent

Our knowledge of phonon transport is decades behind
electron transport because phonons cannot be as
easily manipulated

Phonon transport is critical for semiconductors, energy
efficiency, qguantum technologies and much more
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Thank you!



