Electron transport in Fermi liquids and beyond

Dmitrii L. Maslov and Joshua Covey
Department of Physics, University of Florida
(Dated: September 28, 2025)



Electron Transport in Fermi liquids and beyond D. L. Maslov and J. Covey

CONTENTS

I. Classical memory effects in application to resistive anomalies near second-order phase

transitions 3
A. Basics of electron-impurity scattering 3
1. What is the correct form of the Boltzmann equation for elastic scattering? 3

2. An example of how wrong the relaxation-time approximation can be for anisotropic

systems 9

3. Kubo formula 10

4. What the Boltzmann equation can and cannot do for you? 17

B. Electron-phonon interaction 19
1. The main rule about phonons: They are always there. 20

2. Phonons are needed to maintain the linear response regime. 20

3. Resistivity controlled by electron-phonon interaction 21

4. Equipartition regime is quasi-elastic regime 23

5. How do phonons get rid of extra momentum? 24

C. Classical memory effect: Resistive anomaly near a classical second-order phase

transition 25

1. History and model 25

2. Revisiting the Fermi Golden Rule 28

3. Resistive anomaly from diagrams 30

4. Resistive anomaly from the stochastic Liouville equation 32

II. Homework problems for Section I 33
III. Transport in normal and “strange” Fermi liquids 35
A. Introduction 35

B. Conservation of current in Galilean-invariant Fermi liquids 36

C. Non-Galilean—invariant Fermi liquids without disorder 38

1. Momentum-conserving scattering in non-Galilean—invariant Fermi liquids 38

2. Umklapp scattering 42

D. What about the experiment? 45

E. Non-Galilean—invariant Fermi liquids with disorder 47



Electron Transport in Fermi liquids and beyond D. L. Maslov and J. Covey

1. Generic case 47

2. Special cases 54

IV. Homework problems for Section III 57
A. Green’s function of the Boltzmann equation 58
B. Diffuson ladder 59
References 60

I. CLASSICAL MEMORY EFFECTS IN APPLICATION TO RESISTIVE ANOMALIES NEAR
SECOND-ORDER PHASE TRANSITIONS

The Boltzmann equation (BE) in the presence of a time-independent and spatially non-uniform
electric and magnetic field reads

Ofi(r,1)
ot

Ofi(r,1)
ok

+ Vi Vifi(r, 1) — e [E(r, 1) + vic X B(r, 0)] - = Lee [fid + Lpnl fid + Li [A], (1.1

where v = Odgg/0k is the group velocity, I, I,., and I,; are the collision integrals, describing

electron-electron, electron-phonon, and electron-impurity interactions, respectively.

A. Basics of electron-impurity scattering
1. What is the correct form of the Boltzmann equation for elastic scattering?

Contrary to the popular opinion, the most general form of the the electron-impurity collision
integral is [1-3]
Lil il = —f (Wi fic = Wie x fie) 6(ex — &x0), (1.2)
k/
where f, = fp(r,1), fp = f d?p/(2r)? and wy y is proportional to the probability of scattering from

k’ to k. The delta function expresses energy conservation: Electron-impurity collisions are elastic.

! Equation (1.2) is valid both for fermions and bosons.

! This is not really true, as impurities are not infinitely heavy, and scattering at them can emit a phonon. This is a

triple scattering event though (electron-impurity-phonon), and the corresponding probability is small.
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In general, wy x # wk,k/.2 Indeed, if the system is invariant on time-reversal, then
Wk = Wk k- (1.3)
If, in addition, the system has spatial inversion symmetry, then
Wk = W_k,—K- (L.4)
Applying both (1.3) and (1.4), one arrives at what is known as the microreversibility property
Wk k = Wkk'- (1.5)

But if either one or both symmetries are broken, (1.5) is not satisfied.

Why is this important? Note that (1.2) is different from an often quoted form

Lilfl = —f Wik fil(1 F fir) = wiex fie (1 F fi)] 6(ex — &x), (1.6)
”

where F applies to fermions/bosons. ® If (1.5) is satisfied, the bilinear terms in (1.6) cancel out, and
it reduces back to (1.2). However, what if (1.5) is not satisfied? Well, then we have a non-linear
integral equation to solve. The consequences of non-linearity is that, sooner or later, the system
will run into an instability. But wait, we are talking about impurity scattering here—hence, there
is just an electron moving in a given potential. One can solve the Schrodinger equation for this
system, and the result will be (in the semiclassical limit) an absolutely unambiguous prediction
about the state of the system at later time ¢, given its state at = 0. This is why the most general
form of the collision integral is (a simpler) (1.2), rather than (a more complicated) (1.6): The
former is valid even if (1.5) is not satisfied.

In the simplest case of point-like impurities, when scattering is isotropic, wy x = const. Re-
calling that fk o(ex — &) = v(eg), where v(¢) is the density of states (per flavor), and defining the
mean free time via 1/7(gx) = wv(ek), we simplify (1.2) to

Lelfil = —f";f, (1.7)

where f is the angular average of the distribution function at a given energy.

2 In the first Born approximation, this relation is valid regardless of the symmetries of the system. However, it is not

valid beyond the first Born approximation [3].

3 The mere fact that (1.6) distinguishes between fermions and bosons should raise an alarm. We have a single particle
bouncing off potential scatterers. There is no way to tell if the particle is a fermion or boson, unless other particles

are present.
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Let’s compare (1.7) with another popular form of the collision integral, known as the “relax-

ation time approximation” (RTA):

Irralfx]l = — (1.8)

™
where f is the equilibrium distribution function. Despite an obvious similarity, (1.7) and (1.8)
describe very different physics. Indeed, (1.7) describes relaxation towards an isotropic but not
equilibrium state. Elastic scattering conserves energy, so the best it can do is to completely ran-
domize directions of electron velocities. A full equilibrium can be reached only via inelastic
processes. In contrast, RTA implies full equilibration. The problem with RTA is that it violates
several conservation laws.

In the BE framework, conservation laws are reflected as follows. Suppose that a certain
property—g(k)—is conserved. For example, g(k) = 1 is the particle number, g(k) = k is the mo-
mentum, g(k) = g is the energy, etc. Multiplying BE by ¢g(k), we obtain

g _d

i ELCI(k)fk = fk61(k)1[fk]- (1.9)

If Q is conserved, then [ g(K)fi = [ q()I[fi] = 0.

For the case of elastic scattering, there are two conserved quantities: the number of particles
at given energy, equal to f, and total energy, equal to fk exfx. It is easy to see that the collision
integral in (1.7) does satisfy both these properties while the RTA collision integral does not. This
is a serious drawback, as in the long-time limit (1.8) cannot describe diffusion. Namely, we should

expect the Fourier transform f(k, q, w) to exhibit a diffusion pole for wr < 1 and qurtT < 1:

1
J(k,q,w) D —iw (1.10)

where D = vit/d is the diffusion coefficient. As shown in Appendix A, collision integral (1.7)
satisfies this property but collision integral (1.8) does not. Using the RTA approximation gives
incorrect results, e.g., for ultrasound absorption by free electrons, which is proportional to the
conductivity at finite wavenumber, o(q, w).*

However, the Boltzmann equation with the “correct” form of the collision integral, Eq. (1.7),
has a problem on its own. Namely, if the electric field is weak, we tend to expand the force term,
—eE - 0k fx around equilibrium, i.e., replacing it with —eE - di fox = —€E - v, 0, fox. However, since

there is no notion of the equilibrium distribution for elastic scattering, we need to expand the force

4 For correct treatment, see Ref. [4].
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term around the angular average of fy, rather than around fy,. Doing so, we obtain the following

equation
oF 7
—e(E - vk)—f _ AT (1.11)
0&x T
It can be readily see that this equation is solved by
_ of
fi= Tt e® oL (1.12)
€k

which leaves f undetermined. Therefore, (1.11) does not have a unique solution.

To make a solution unique, we need to introduce inelastic processes that do equilibrate electrons
with the thermostat [S]. For this purpose, RTA collision integral (1.8) can be used as a toy model.
Once we invoked the equilibrium distribution via RTA, the LHS can be linearized around fyy, and

we obtain the following equation (with fj, = d;, fo:

et By =L Tfk fou~ i .

T

which yields

f fo

1
fk = T €(Vk E)f()k + ; + — (114)

1
T T

Averaging the last expression over angles, we find that f = fy,. Now f; is determined uniquely

1
Sk = fox + T, 1L e(Vk E) fok- (1.15)

If the equilibrating time is much longer than than the momentum relaxation time, 7* > 7, we can
safely set 1/7* =0
Je = fox + Te(Vic- E) foy. (1.16)

From now on, we will be using the following form of the Boltzmann equation for elastic scattering

f -k
T

—e(vi - E)f) = (1.17)

with the understanding that inelastic processes were implicitly taken into account when the LHS
was linearized around fy.

The electric current is found as

Jj= —2ekafk = 2¢* frvk(vk “E)(—fo0)- (1.18)
k k
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For T < &p, we the corresponding conductivity is given by >

2
o= —62VFU%~TF, (1.19)

d

where vy is the density of states at the Fermi energy per spin and 7 is evaluated at & = g7.°

Note that had we used (1.8) with 7* = 7 from the very beginning, we would have obtained the
same result for the conductivity. Equations (1.7) and (1.8) lead to same result because both fy, and
f depend only on the energy, and thus drop out from the current.

What if scattering is anisotropic while the electron spectrum is still isotropic (this would be the
case for free electrons being scattered by impurities of finite size). Because there is no preferred
direction in the scattering process, the scattering probability can only depend on the angle between
k and k": wyg = w(bx). In linear response to the electric field, the non-equilibrium part of fy
must be linearly proportional to E. But E is a vector, while fi is a scalar, so E must be dotted
into some other vector. Since the system is isotropic, the only such vector is k or v, as they are

parallel to each other. Then we can write

Sk = filew) — e(vi - E)g(ex), (1.20)

where fi(gg) is an arbitrary function of energy only (which one — does not matter, as it cancels on

substituting (1.20) into (1.2)). Substituting (1.20) into the linearized BE,

—e(vi - E) fg, = - f Ww(bae ) (fi — fw)o(ex — &), (1.21)

k/

and solving for g, we obtain the conductivity
o= zezv 2 1.22
y FUpTuF, (1.22)

where 7(¢) is the transport scattering time, defined by

1 dQ
© =v(¢e) f Q—dw(H)(l — cos 6). (1.23)

T

where dQQ is the element of the solid angle and Q; = 27 in 2D and 4 in 3D. The factor 1 —cos 6 =
q*/2k%, where ¢ = |k — Kk’|, is known as a “transport factor”. Its role is to discriminate against

small-angle scattering events which are inefficient in relaxing the current. For comparison, the

3 Note that this result is valid for an isotropic but otherwise arbitrary electron spectrum.
% Note that 7(£)v(g) = const for point-like impurities.
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single-particle lifetime, which determines the width of the spectral function, is given by a similar

integral but without the transport factor:

! —v(s)fgw(é’). (1.24)

Tole)

If w(6) is strongly peaked at small 6, one can expand 1 —cos 8 ~ 6*/2, in which case 1 /7, < 1/ Top-

In the opposite case of isotropic scattering, w(6) = const, cos 8 drops out and 7, = 7y, = 7, where
7 is the same as in (1.7).

Long-range disorder (with correlation length & > 1/kr) brings about several effects which are
not captured by the conventional Boltzmann equation in Eq. (1.1), in particular, magnetoresistance
due to classical memory effects [6] and resistive anomalies near second-order phase transitions [7]
(cf. Sec.). Also, if ¢ is much longer than electron-electron mean free path, the system enters into
a hydrodynamic regime, when the electron flow can be described by the Navier-Stokes equation
[8]. Therefore, it is important what kind of disorder (long- or short-range) is present in a given
system. Experimentally, one typically extracts 7, from mobility and 7y, from the amplitude of de
Haas-van Alphen or Shubnikov-de Haas oscillations. The ratio of the two allows one to estimate
the product kp€.

Despite its simple appearance, (1.23) reflects the gauge symmetry. Indeed, if disorder is in-
finitely long-ranged, it does not scatter at all, which implies that w(6) o« §(8). The factor 1 — cos 6
guarantees that in this case o o 7, = o0, as infinitely long-range disorder is just a constant shift of
the chemical potential, which should have no effect on transport.

As a rule, if 7, # 7, it is the former that enters all transport quantities. The reason can
be understood from classical mechanics. Indeed, our BE should be applicable to a completely
classical case, when both statistics and dynamics of particles are governed by classical laws. In this
case, 1/7, 1s proportional to the total scattering cross-section, Ay = f dQdA(Q)/dC), while 1/t
is proportional to the transport cross-section, Ay = f dQ(1 — cos 8)dA(Q)/dQ, where dA(Q)/dQ
is the differential cross-section. But if the interaction potential extends to all distances from the
center, the total cross-section is infinite, no matter how rapidly the potential decreases with r,’
while A is finite for potentials decreasing faster than 1/r. Therefore, transport quantities, which
can be observed both in classical and quantum systems, can contain only a finite cross-section, i.e.,
Ay In contrast, quantum effects—such as the spectral function and quantum magnetooscillations—

may contain A, which is finite in quantum mechanics for sufficiently rapidly decaying potentials.

7 Indeed, dA = 2mbdb, where b is the impact parameter [9]. If the potential is not artificially cut off at some distance,

the total cross-section Ay = 27 fom bdb = oo.
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What if we have a lattice system, but impurities are point-like, i.e, wx = w = const? In this

case, (1.2) gives

d
Lilfil = -w f (e — &) i — fio) = f dex 56 ﬂé(sk — &) - fio)
k/

@ny
_ W daw . i
= (2ﬂ)d9§ (fk = fir) e -7 (1.25)
where
1w day,
= G K (1.26)
o
f=— % (1.27)

where day, is the surface (line) element. As we see, we are back to (1.7).

Finally, what if we are on a lattice and scattering is anisotropic? Then we are out of luck. We
can only say that (up to an arbitrary function of energy) fx = ux - E, where uy is an odd function of
k, but it is not equal to either k or vy, as there are many directions on the lattice where vector vy
can point. In this case, there is no way of avoiding solving an integral equation numerically [10].

In the literature, the situation described above-lattice+anisotropic scattering—is often fixed by
employing a version of RTA with

Jfo— K

Tk

(1.28)

IRTA ==

where 7 depends on kK, i.e, on the point on the Fermi surface. In contrast to an isotropic case, this
approximation is never consistent with the original BE: there is no magic trick that reduces an inte-
gral equation to an algebraic one. Using RTA in this case leads to results which differ significantly
from the correct ones, especially for more complicated properties than just a dc conductivity, e.g.,

thermoelectric power and Nersnt effect [11], see Fig. ??.

2. An example of how wrong the relaxation-time approximation can be for anisotropic systems

Consider a simple toy model: the Fermi surface is circular but the scattering probability varies

along the Fermi surface. Applying RTA to this model, we obtain

—evpEf] cos¢ = _fo= /@) (1.29)

7(¢)
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or

(@) = fo+ evrEfg cos ¢1(¢) (1.30)

The corresponding conductivity is proportional to an average of 7:

orra < (OS> BT(P)), (1.31)

which is the basis of common wisdom stating that “colder” parts of the Fermi surface control the
transport. Now let’s solve the same problem, using the correct collision integral with the scattering
probability w(¢)

&

T

d ¢’
> 7 V(¢ (1.32)

2 2
—evrEf]cos ¢ = fo W@ f &) - f(9) fo

or
evpEf] cos ¢ + fOZF Lw(@)f(¢)
b 5w

We do not know what the second term in the numerator is, but we do not need it as it drops out

fl¢) = (1.33)

from the current anyway. As a result, the conductivity is proportional to one over the scattering
rate averaged over the Fermi surface
1
& 21 dgy '
b Sew@)

Now the conclusion is just the opposite to that of RTA: the conductivity is controlled by “hot”

(1.34)

parts of the Fermi surface. To make it more clear, suppose that the scattering rate equals 1/7; on

one half of the FS and 1/7, on the other half. Then (1.34) gives

T

) 1.35
T+ T2 ( )

while (1.31) predicts that

ORTA X T1 + T2. (136)

3. Kubo formula

The same results can be obtained from the Kubo formula. Suppose that the disorder potential is
Gaussian-distributed with (U) = 0 and (U(r)U(0)) = W(r). Let’s pick one realization of disorder,
U(r). The corresponding exact Green’s function (in Matsubara representation) is G, (r, r’, 7), with

I CLASSICAL MEMORY EFFECTS IN APPLICATION TO RESISTIVE ANOMALIES 10
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w, = n(2n + 1)T. Now we apply a weak uniform, time-dependent electric field Eq, = —Q,,Aq,,

m

where A is the vector-potential and Q,, = 272mT. Assuming for simplicity a parabolic electron

spectrum with effective mass m*, the charge current to linear order in E is given by [12]:

Neé?

m* AQm ’

Ja,(r) =

e’ ,
wid E (Ve —Vy) fddf”lenmm(l‘, r)(Ag, - Vi) Gy, (r,r)| -
m r'=r

(1.37)

where N is the electron number density. For the dc case, we need only the first (“gradient”) part
of the current (upon expanding in external frequency, the zeroth order term cancels the last term,
satisfying conservation of charge). Carrying out analytic continuation iQ,, — Q + i0*, taking the
limit Q — 0, and averaging over disorder, we obtain the averaged conductivity (shouldn’t d,, be
inside spatial averaging?)

262 d(i) ’ ’ , ’
Top = — f7 (—fo(w)) fddr 0,a8,/;<ImGﬁ(r, r)ImGR (r', 1))

1\2* (dw, |, ,
L [ o

x [(GE@,X)GE(X, 1)) + (G, ¥)GAO, 1) = (GR(r, ¥)GA(X 1)) = (G(r, ¥)GE (1))

(1.38)

where Gﬁ(r, r’) is the retarded Green’s function, (...) stands for averaging over disorder, and

where we used a relation ImG® = (G® — G*)/2i at the last step. Equation (1.38) is exact with

respect to disorder. Diagrammatically, o4 is expressed by the sum of closed bubbles in Fig. (1).
Now we develop a perturbation theory in disorder. The Greens function is obtained by summing

the series, depicted in Fig. (2)
GRr,r')=Gf (r-r')+ f d‘riGE (r —r)U@)GE (r; — 1)
+ f dr f d'r,GR (r,r))Ur)GE (r; —r)U@)GE (ra =) +... (1.39)

where Ggw(r) is the free Green’s function. On substituting series (1.39) into (1.38), we obtain
averages of two types. In the first type, shown in Fig. 3a, points ry,r; ... belong to the same side
of the bubble; in the second type, they belong to opposite sides. A dashed line connecting two
points r; and r; represents the disorder correlator, W(|r; — r;|).

Summing up only the averages of the first type, we obtain a bubble, formed by two averaged

9 . R . . . . . R
Green’s functions, (G, (r,r’)). Since averaging restores translational invariance, (G, (r,r")) de-
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R A
- F’ > -7
r r Tr
+
R A
R
7 7
— — (R<+=>4)
A
FIG. 1: Closed-bubble diagrams contributing to o .
U(r1) U(h) UR)
> ) S — i By = i Y > hy Y +
7 r 7 7 7 BB T

FIG. 2: Diagrammatic representation of series (1.39).

pends only on r — r’, and we can introduce the momentum:
1

R _ d_. ikr ~R —_
(GRK)) = f ARGl = s

where 2F (K) is the self-energy, obtained by re-summing the series shown in Fig. 4.

(1.40)

The corresponding contribution to the conductivity is given by
2¢% (dw dk 2
m_ 2 | & e ) R
= s f —(=fo(@) f Gmyikeks |[Im(GE k)| (1.41)
Although we initially assumed parabolic spectrum, it is obvious that for a general spectrum the

last expression is replaced by
dw d'k 2
M _ 2 , R
ol =2e f —(Jfy@) f Byttt [ImGE k)] (1.42)
The second type of averaging produces vertex corrections.® In each of the four terms, we push

the vertex corrections to one side of the bubble (does not matter which one) and call their sum the

8 Let not the word “correction” confuse you. These “corrections” may not be small.
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- - -
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FIG. 3: Two types of disorder averages. (indices ok?)
ok kK r_T o
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]_(’r E! Eu Er E! e k—k + k"

FIG. 4: Electron self-energy for scattering by disorder.

renormalized current vertex, VZ;b, where a,b = A, R. After Fourier transform, the corresponding

contribution to the conductivity reads

N\ (do 'k
0'5313:262 (_Z)f7(—fo(w))fka,a

x{[<GRan] VARt + [GAmN] Va0
G RNGAINVEA)) (1.43)

Let’s now focus on the case of isotropic (but not necessarily parabolic) electron spectrum. In
what follows, we will be interested in rather weak disorder, such that er7y, > 1. Then we are

interested only in a narrow interval of energies of with 1/7y, near &, and the integral over the
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momentum can be simplified as

dk dQ
2 — = dé‘kV(é‘k)f u f dekV(€k+8F)f—

exact exact

Q
= V,,f dekfd k (1.44)

appr0x1mate

where €, = & — €. A major simplification arises from noting that the terms of the type GRG®
(or GAG*) and GRG* behave very differently on integrating over €. Indeed, the self-energy in
(1.40) can be taken on the Fermi surface. Its real part can be absorbed into the chemical potential,
while the imaginary part is a constant as well, which—by definition—is equal to (-1/2) of the inverse
single-particle lifetime. Then

! —. (1.45)

- +
w—€&=* 27

GR*Ak) =

Now we see that the integrals of the type f de[GR(k)]?G® and f de[GA(K)]? vanish, because the
poles of the integrands lie in the same half-plane of €. Furthermore, for 7 <« &p, we replace
—fy = 6(w). Also, an isotropic system has only one component of the conductivity tensor, equal

to o = (1/d) )., 0ae- After these simplifications, Egs. (1.41) and (1.43) are reduced to

d'k
M - e o v2 |GR(k )| (1.46a)
@ e A%k | g2 RA

=3 Gy G| vk - V§ (k). (1.46b)

For weak disorder, we can approximate the self-energy by the first diagram in Fig. 4. Let’s look

at this diagram in more detail, setting w = 0, as this is what we need in (1.46a) and (1.46b):

d,,
R _ R,/ Y
2y (k) = ) Gy (k)W (k - K'|), (1.47)
where
GR(k) = ! = ! (1.48)

w—¢e+ep+i0T w-— g +i0F

and W(q) is the Fourier transform of W(r). As we are interested only in the imaginary part,

dy,,

(27)?

ImZ§(k) = -7 (e )W(k - K'|), (1.49)

The delta function projects k" onto the Fermi surface. Since we expect only k =~ kr to be relevant

as well, we replace |k — K’| = 2kz sin(6/2). Adopting approximation (1.44), we obtain

Im2§ = —nvpWy = —

= 7y = 1/2nve W, (1.50)
Tsp

I CLASSICAL MEMORY EFFECTS IN APPLICATION TO RESISTIVE ANOMALIES 14
NEAR SECOND-ORDER PHASE TRANSITIONS



Electron Transport in Fermi liquids and beyond D. L. Maslov and J. Covey

- E’ — ’;’—:\
k k” . l/ kl kll\‘ . . .
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o k k—k' +k"
@ (b)
- I_C), -
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k—k' +k o

(©

FIG. 5: Non-crossed (a) and crossed (b-d) diagrams for the conductivity.

where

40 0
WO—fQ—dW(ZszmE). (1.51)

The next simplification comes from noting that diagrams for o® with crossed dashed lines are
smaller than the ladder diagrams, under the condition that momenta of all fermions are near k.
Indeed, consider diagrams a)-c) in Fig. 5. Diagram a) is of the ladder type. Each of the three
momenta—k, k’, k”—can be chosen to be near kr independently of each other. Diagrams b) and c)
contain four momenta k, k’, k”, and k — k” + k”. If we choose the first three momenta to be equal
to kg, the fourth momentum will be equal to kr only certain relations between the first three are
satisfied: For example, k’ = k or k’ ~ k”, etc. This means that integration phase space is reduced
compared to diagram a). The only small parameter in the game is 1/&r7y, < 1, and thus diagrams
b) and c) are smaller than a) by this parameter.

Although diagram c) is small compared to a), it turns out that for 1 < d < 2 the next-order
diagram of the same type—diagram d)- is equal to diagram b); and the same is true for all other

maximally crossed diagrams. This means that the series of maximally crossed diagrams diverges.

I CLASSICAL MEMORY EFFECTS IN APPLICATION TO RESISTIVE ANOMALIES 15
NEAR SECOND-ORDER PHASE TRANSITIONS



Electron Transport in Fermi liquids and beyond D. L. Maslov and J. Covey

This is known as weak localization, which is a perturbative manifestation of Anderson localization.
We will come back to this point later, but for now let’s focus on the infinite sum of ladder diagram,

shown in Fig. 6a.
@ + - + ‘ + B

(a) Ladder series

k

=

&

(b) Integral equation for the current vertex

FIG. 6: (a) Ladder series (b) Integral equation for the current vertex, Eq. (1.53).

In the ladder approximation, we add up Eqgs.(1.46a) and (1.46b), to obtain the total conductivity

as

2 d
e d’k
c=0V+5%="—

7 | B [GR0 v Vo), (1.52)

where the renormalized current vertex satisfies an integral equation, shown graphically in Fig. 6b:
ddk/ R, |2 ’ ’
V) =i+ | o |GEX)|” W(k - K'DVEK). (1.53)

In an isotropic system, V(k) can be directed only along k or, which is the same, along v,. Without

loss of generality, we can choose
V() = vil'(ex), (1.54)
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where V(&) is a function of energy only. Dotting (1.53) into v, we obtain an equation of I':

Vi * Vi

2
Uk

di,r
I'lep) =1+ d’k Gg(k')Gé(k’)Wﬂk -K')) I'(ew). (1.55)
m)d

2
There is no reason to expect I'(gx) to vary rapidly near the Fermi energy. If so, we can put gx = &f
in I'(gg), upon which it becomes a constant, I' = I'(er). In the integral part, we project the momenta
onto the Fermi surface as per (1.44). The solution of the ensuing algebraic equation is

1

= 1.
T RW, (1.56)
where, using (1.44),
R=v foode IGREK)]> = v fmde ;—27“/‘[' _ (1.57)
=VFr . k 0 — VF . k El%, +(1/27'sp)2 - Flsp — WO .
and
dQ 0
W, = fQ—dcos ew(sz sini). (1.58)
Therefore,
0%
r=_"19 (1.59)
Wo — W,

Substituting the last equation into (1.52) and using (1.57) for the integral of |G§(k)|2, we obtain

2 2
o= %U%VFTU, (1.60)

where
1 40 9
- = 27rf—(1 — cos H)W(ZkF sin —). (1.61)
Ttr Qd 2

This result coincides with (1.22), obtained from the Boltzmann equation.

4. What the Boltzmann equation can and cannot do for you?

In the previous section we established that the Boltzmann equation gives the same results as
the ladder approximation for the Kubo formula. Now it would be easier to understand what the
Boltzmann equation is missing.

We already touched on one class of phenomena: weak localization, which arises from quantum
interference between electron waves scattered by different impurities. This is a well-researched

subject, and I refer you to a number of books and reviews for further study [13—15].
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Given the Boltzmann equation is semi-classical by construction, it is not surprising that it can-
not capture quantum-mechanical effects. What’s more surprising though is that it misses some
entirely classical effects which go beyond the usual assumption about the Markovian nature of
scattering processes, i.e., that the memory of previous scattering events is erased by the time the
next one occurs. This becomes especially important when scatterers are finite-size, rather than
point-like, objects. This will be our main subject in Sec. I C but, just to wet your appetite, I give

two examples here.

The first one is the Lorentz-gas model, in which scatterers are finite-size spheres or disks dis-
tributed randomly over space (without overlaps). Suppose that a point particle starts its motion
with some velocity v(0). Pretty soon the direction of the velocity will be completely random
(while its magnitude is still equal to v(0)). The degree of randomization can be quantified by the
velocity-velocity correlation function, (v(z) - v(0)). ° The Boltzmann equation predicts that at long
times the velocity-velocity correlator decays exponentially with time: (v(¢) - v(0)) oc ™"/, where
Ty 18 the corresponding transport time for spheres or disks. However, an exact solution shows that,
in fact, the behavior at long times is power law, rather than exponential: (v(¢) - v(0)) oc ¢~(1+4/2)
[16, 17]. This immediately implies that the optical conductivity should behave in a non-analytic
way at small Q: Rec(Q) oc |Q|%? [6, 7, 18]. This discrepancy occurs because, for finite-size scat-

terers, the probability for a particle to return to the same scatterer is also finite, as shown by a red

arrow in Fig. 7. The conventional BE cannot capture this effect.

The effect of (classical!) self-returns is amplified in the presence of the magnetic field, which
curves electron orbits, thus sending electrons to the same scatterers time and again. In 2D, a strong
enough magnetic field leads to complete localization of electrons which move around scatterers

on rosette-like trajectories [19, 20], see Fig. 8.

But even in weaker fields, there are pronounced discrepancies betweeen predictions of Boltz-
mann theory and more sophisticated theories/experiment. You may recall that a simple Drude
model [21] predicts that while the conductivity is affected by the magnetic field, the resistivity
remains equal to its zero field value. I leave it to you to show that the Boltzmann equation for

parabolic electron spectrum but anisotropic scattering probability gives the same result, namely

° For charged particles, the Fourier transform f dte™ (v(t) - v(0)) is proportional to the conductivity at frequency Q.
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—
\

FIG. 7: Lorentz-gas model.

(for simplicity, in 2D with B being along the normal to the plane and E being in-plane)

g
Tvr =0y = —m——
* > 1 + ((J‘)c‘rtr)2
W Ty
Oy = —Oyx (1.62)

T (@)
where w. = eB/m and o is the zero-field conductivity, given by (1.22). Calculating p = 6!, you
will find that p,, = 1/0, which means that magnetoresistance is absent. With a little more effort,
one can show that the same is true not only for parabolic but any isotropic spectrum. Nevertheless,
many real materials with almost isotropic spectrum do show strong magnetoresistance. Theo-
retically, one obtains this effect by going beyond the conventional Boltzmann equation scheme

[4, 6,22, 23].

B. Electron-phonon interaction
Before turning to the subject of resistive anomalies, let me first make a few straightforward

observations about the electron—phonon interaction.
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FIG. 8: Classical localization of 2D electrons by a magnetic field.

1. The main rule about phonons: They are always there.

Rule # 1. Phonons are always there.

Rule # 2. If you think that phonons are not there, see Rule #1.

2. Phonons are needed to maintain the linear response regime.

As far as charge transport is concerned, phonons play two roles. First, even if the temperature
is so low that electron-phonon scattering is much weaker than electron-impurity one, phonons
are ultimately responsible for dissipation. In the previous section, we analyzed electron-impurity
scattering in detail. Regardless of the model, we arrived at the conclusion that, at low enough
temperatures and, formally, even at 7T = 0, the conductivity is finite and controlled solely by
impurities. Well, Maxwell’s law are blind to microscopic mechanisms of conduction. All they say
is that, as long as the conductivity is finite, there must be Joule heat, in the amount of Q0 = oE?
Joules released per unit volume per unit time. But wait a second, electron-impurity scattering is
elastic, thus no energy is transferred from electrons to the lattice. How come the sample is getting
warmer? The answer is that it is still phonons that dissipate energy. Although phonons don’t

enter the linear response formula j = o E directly, they define the condition on the electric field
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up to which this formula is valid. If not for phonons, electric field would do work on electrons,
which leads to increase of their energy and this heating, when electron and lattice are at different
temperatures: T, and T ,.

The energy balance can be expressed as [24]
n? 2 2 2
<V (T8 = T5) = temo B2, (1.63)

where 7., is energy relaxation time of electrons due to e-ph interaction. The condition for the

absence of heating of electrons is
AT =T, =Ty, < Tpp. (1.64)

Re-writing T; — T2, ~ 2ATT , (1.64) implies that

3 Tepno E?

-2 2
T VFTph

AT [T, < 1. (1.65)

For acoustic phonons at low 7" and in 3D, 7¢pp o T3, and thus (1.65) implies that

2/5
E <« ATph , (1.66)

where A = const. That is, at given T the electric field has to be weak enough to satisfy (1.66).

3. Resistivity controlled by electron-phonon interaction

The second role of phonons is to control the resistivity directly, via electron-phonon scattering.
There are two temperature regimes for electron-phonon scattering: equipartition, for 7 > T,
and inelastic, for T <« T,,. The meaning of T is different for scattering by acoustic and optical
phonons. For acoustic phonons, the maximum phonon momentum equals to 2k, thus the fre-
quency of such a phonon equals to 2krs, where s is the speed of sound. The Bloch-Grueneisen
temperature is defined as such frequency (in appropriate units): Tpg = 2kps. ' For T > Ty, the
phonon mode is in the equipartition regime, when its occupation number scales linearly with 7
1/(e®/T — 1) ~ T/w. The corresponding contribution to the resistivity is also linear in T: p o T.
For T <« Tpg, the number of phonons with w ~ Tps is exponentially small, and electrons scat-
ter primarily at thermal phonons with momenta g7 ~ T/s < kr. Therefore, scattering is of the

forward-scattering type. For deformation-potential scattering by acoustic phonons, the 7" scaling

10 The factor of 2 is superficial, but I keep it for historical reasons.
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FIG. 9: Electron-phonon interaction in monolayer graphene. Reproduced from Ref. [25].
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of the single-particle scattering rate tracks the spatial dimensionality; in 3D, 1/7, o< T°. However,
the transport scattering rate acquires a small factor 1 —cos 6 ~ 6%/2 ~ g3./k% o< T*. As aresult, the
transport scattering rate scales as 1/7 oc T°.

Note that Tp; coincides (in order fo magnitude) with the Debye temperature, Tp = s/a, where
a is the lattice constant, only in good metals with high number density, where kr ~ 1/a. In
low-carrier density systems (semiconductors, semimetals), kr < 1/a and Tgs < Tp. Depending
on the number density, at can be as low as few tens of or even few Kelvin. Even in high-density
metals, the real crossover between the equipartition and inelastic regimes is lower than the nominal

T'p; due to numerical factors. A rule of thumb is the linear scaling of the p extends down to 7' /4.

4. Equipartition regime is quasi-elastic regime

One feature of the equipartition regime (7' > T'pg) needs to be stressed: although the scattering
time depends on temperature, electron-phonon scattering in this regime is almost elastic (quasi-
elastic). Consider a typical electron with energy within the interval 7" around the Fermi energy.
Because there are many phonons with g ~ kr, the electron momentum is relaxed quickly. However,
the energy of a typical phonon ~ Tp; < T, and thus energy relaxation is slow. The rate of
energy relaxation can be estimated in the diffusion model. Because scattering is almost isotropic,
Ty ~ Ty o 1/T. At each scattering event, the electron energy changes by T, which means that
the electron energy diffuses with the diffusion coefficient D, ~ Ta./7s. The energy relaxation

time is estimated as [24, 26, 27]

VDsTs ~T — Te ~ Tsp(T/TBG)2 & T, (167)

while the ratio 7./7, ~ (T/ Tsc)? > 1, which implies that scattering is elastic.

To summarize, electron-phonon scattering in the equipartition regime is isotropic and (quasi)
elastic. This means that phonons in this regime play a role of point-like impurities, with the
scattering cross-section proportional to 7. This is easy to understand on physical grounds. An
electron moving through the lattice at speed vy < s is “seeing” a snapshot of ions displaced from
the equilibrium positions. The rms displacement of an ion (6°r) « T, which explains the linear
scaling of p.

Quasieleastic electron-phonon scattering has one more interesting consequence. According to

the Wiedemann-Franz law (WFL), the charge and thermal conductivities of a metal are related to
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each other as /o = LoT, where Ly = (n%/3)(kg/e)* is the Lorentz ratio for degenerate electrons.
Sometimes you can hear that WFL manifests the Fermi-liquid nature of a system. In fact, WFL
applies strictly only to elastic scattering [10], win which can it can be derived without any limita-
tions on the type of scattering (isotropic vs anisotropic) and band structure. In the low-7 regime,
when electron-impurity scattering is the dominant one, WFL is obviously applicable. But now we
also see that it should applicable for T > Ty, as phonons act as impurities in this regime. Now
you would not find it surprising to notice Gustav Wiedemann and Rudolph Franz discovered their
law experimentally in 1853—well before any cryogenic techniques were available. In fact, they
measured « and o only at two temperatures: room and ice. But both temperatures are high enough
for copper and aluminum to be in the equipartition regime.

Following the same lines, a curious reader might recall that weak localization (and related
phenomena) becomes observable at sufficiently low temperatures, such that the impurity mean
free time, 7;, is much shorter than the phase-breaking time, t,. The latter comes from inelastic
processes (electron-electron and electron-phonon) and becomes longer at 7 decreases. But, by
the same token, 7, > 7, in the equipartition regime, and thus one should expect phase-coherent
phenomena to occur in this regime as well [26]. To date, an experimental confirmation of this idea

is still lacking.

5. How do phonons get rid of extra momentum?

And the last observation about phonons. In order to control the charge transport, phonons
need a mechanism to relax the extra momentum they receive from electrons. In the absence of
such mechanism, the electron and phonon subsystems will be accelerated by the electric field
and steady-state transport would be impossible. This phenomenon is known as “phonon drag”.
Phonon-phonon scattering can relax the momentum but only if it involves umklapp, such that the
phonon quasimomenta satisfy the condition q; + ¢, = q} + q; + nb, where b is the reciprocal
lattice vector. In good metals with kr ~ a~!, umklapp scattering is allowed for T 2 Tp; ~ T,
but not for T < Tps, when typical phonon momenta ~ g7 ~ T/s < kr ~ a™'. In a disorder-
free metal, that would imply that the resistivity becomes exponentially small, in proportion to
exp(—Tgg/T). However, such a reduction of the resistivity is observed only in ultra-pure samples.
In a typical sample, there is enough disorder to take away the extra momentum from phonons. All

one needs is to guarantee that the rate at which the momentum flows from electrons to phonons

I CLASSICAL MEMORY EFFECTS IN APPLICATION TO RESISTIVE ANOMALIES 24
NEAR SECOND-ORDER PHASE TRANSITIONS



Electron Transport in Fermi liquids and beyond D. L. Maslov and J. Covey

is slower that the rate at which the momentum flows from phonons to disorder. This condition is
satisfied even if phonons are scattered by small defects, of dimensions smaller than the phonon
wavelength, Ay ~ 1/gr ~ s/T. In this case, the phonon-impurity scattering rate obeys Rayleigh’s
law: 1/7py; o T*, while the electron-phonon scattering rate scales as T2, i. e., slower. In addition,
the exponent in the Rayleigh’s law depends on the dimensionality of the scattering object, D, and
decreases as one moves from point defects (D = 0) to line defects (D = 1), when 1/7yp o< T 3. In
short, enough junk in a sample make the problem of phonon relaxation go away. Again, as it was
the case with “hidden phonons” in the linear-response formula, the junk that scatters phonons does

now show up in the results explicitly, but you have to have enough of it in order to forget about it.

C. Classical memory effect: Resistive anomaly near a classical second-order phase transition
1. History and model

Finally, we cam to the subject of resistive anomalies near classical second-order phase tran-
sitions, of which I will focus on the ferromagnetic ones. For the first time, such a anomaly was
observed in Ni by Walther Gerlach (same Gerlach as in the Gerlach-Stern experiment), back in
1932—see Fig. 10. More examples are shown in Fig. 11.

Theoretically, the resistive anomaly was first addressed by de Gennes and Friedel (dGF) in
1958 [30], who formulated a model which we are also going to use. Namely, 7. is assumed to
be higher than 7'g¢, such that electron-phonon interaction is in the equipartition regime, when—as
we now know—phonons play a role of point-like elastic scatterers with 7T-dependent cross-section.
Because we will be interested only in the narrow vicinity of 7., all non-critical quantities can be
evaluated right at 7., in which case the 7-dependence of the phonon contribution to the resistivity
does not play any role. In addition to phonons, there are also real impurities, which are also
assumed to be point-like. These two kinds of disorder—real and thermal— are lumped together into
one short-range disorder (SRD), characterized by a mean free time 7, = 7 = 7,. Scattering
of electrons at localized magnetic moments is also assumed to be elastic—this is a reasonable
assumption as the ordering degree of freedom (magnetization) exhibits critical slowing down near
T.. Therefore, spin-flip scattering can also be viewed as another kind of disorder. However, in
contrast to impurities and phonons, the magnetic disorder is of a very long range near 7., because

its correlation length, &, diverges at T.. This will be modeled as long-range disorder (LRD) with
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FIG. 10: dp/dT in Ni. Reproduced from Ref. [28].

known correlation function, W(g), which we will eventually borrow from the theory of classical
phase transitions. We will also assume that LRD is weaker than SRD, and thus treat the former as
a correction to the latter.

So, we have two kinds of disorder, what’s the total resistivity of the metal? dGF believed
into the conventional Boltzmann equation, which would describe this situation by the sum of two
collision integrals: due to SRD and LRD. The ensuing Matthiessen rule then says that the total

resistivity is proportional to the sum of scattering rates:

m (1 +l), (1.68)

p= —
eN\t, 7

where 7, is the transport scattering time due to LRD. dGF then invoked the Fermi Golden Rule

(FRG), according to which (in 3D)

1 wdag® 4
—=2 W(g)~= At(g), 1.69
L= fo 20y (q)zk% (@) (1.69)

where I just took a liberty to denote the angular average of the energy-conserving delta function as
At(q) = f dQq0(ek — Ekiq)- (1.70)
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FIG. 11: p(T) in Ni and Co, along with some non-magnetic metals. Reproduced from Ref. [29].

with dQ4 being the element of solid angle subtended by q. Note, however, that A7(g) does have
units of time, and we will clarify its meaning later. Applying (1.70) for ¢ <« kr, we obtain
Ar(g) ~ 1/vrg.

At the mean-field level,

W(g) « (1.71)

g +EF

where & oc |9]7"/? and § = (T — T,)/T. < 1. Power-counting the integrand, we see that integral is

controlled by g ~ kp, i.e., by short-range physics. Subtracting off this contribution, dGF obtained
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the universal part, coming from g ~ £7':

1 2k dgg 1
—xC- -Zf =C—10|1n —. (1.72)
T ¢ e |6

This is now known as “de Gennes-Friedel” scaling.

Ten years later, Fisher and Langer (FL) [31] re-visited the same problem and pointed out several
issues with dGF solution. First-and obvious—issue was the dGF theory contradicted the experi-
mental results, at least those that had been know prior to 1968. Indeed, (1.72) predicts that the p
itself has an upward cusp, while dp/dT diverges as In |6]~!. However, p of Ni and Co [cf. Fig. (11)]
increases monotonically with 7', exhibiting a knee, rather than a cusp, at 7., while dp/dT exhibits
a cusp. Second, FL argued that Matthiessen’s rule is not applicable if the mean free path due to
SRD, €, = vpTy, is shorter than &, which is guaranteed to be the case close enough to 7,.. They
did not fix this problem, however, but merely pointed out that “smearing” of electron states by
SRD should weaken the dGF singularity, and the issue had remained unresolved until recently. Fi-
nally, they rolled yet another counter-argument, beautiful in its simplicity. This argument is about
short-range contribution—the C term in (1.72)-which was discarded by dGF as “uninteresting”.
However, FL argued that this term is, in fact, very interesting as it does encode a singular depen-

dence on 6. Indeed, in a metallic FM, such as Ni or Co, kr ~ a!

= ay;, where ay is the distance
between localized magnetic moments. This means that the upper-limit contribution to the integral

in (1.69) is coming from the same region as the magnetic internal energy,
1/a
U(T) = ~J ) (S0S,) o< - f dgq’W(g), (1.73)
- 0

for a short-range Heisenberg exchange interaction. The temperature derivative of U(T) is the
magnetic part of the specific heat, which, beyond the mean-field level, is a non-analytic function
of 8: C(T) o |6]7*. Here comes the relation, now known as “Fisher-Langer scaling”

dp dU .
T * I =C(T) < |67, (1.74)

or p o« sgnf|f|'~®. A cusp in dp/dT is consistent with the behavior observed in Ni and Co.

2. Revisiting the Fermi Golden Rule

Although the FL contribution is always there, it turns out there is still a universal contribution,
missed by dGF. This contribution becomes larger than the FL sufficiently close to 7. [7]. To find

this contribution, we need to get back to Eq. (1.69) and clarify the meaning of A#(g).
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In the current version of (1.69), there is no mentioning of SRD, which presumes that two
kinds of disorder act independently of each other. When is this valid? Let’s look at the relation
At(g) = 1/vrq and understand its meaning. By uncertainty principle, momentum transfer g occurs
in the region of size 1/q. Then 1/vpq is the time it takes to accomplish the momentum transfer—let
dub it as the “interaction time”. SRD is irrelevant if momentum transfer occurs in the region which
is much smaller than the mean free path due to SRD. For the universal contribution, ¢ ~ 1/¢ and
thus the condition is ¢ < £,. This is the ballistic regime, where the dGF scaling is valid. In the
opposite, diffusive regime, when & > ¢, two effects occur. First-as FL pointed out—scattering
by SRD smears out electron states. This means that the delta function in (1.70) must be replaced
by a Lorentzian of width 7;. Accordingly, At(q) ~ 74, = const, which adds an extra factor of
q to the integrand of the second term in (1.72). This, indeed, weakens the singularity, as FL.
conjectured. More important, however, is the second effect of diffusion: now the time to traverse
a region of size 1/q is At(q) ~ 1/D,q*, where D, = (1/ 3)012;73 is the diffusion coefficient due to
SRD. The diffusive A#(g) is more singular than the ballistic one, which removes a factor of g from
the integrand in (1.72). Extracting the FL singularity from the first (C) term in this equation, we

obtain the resistive anomaly as

Sp = asgn(0)|6]'™" + blg|'/? (1.75)
or
dp _ a'lo™® + b'sgn(6)|6] /> (1.76)
dT ' '

If @ < 1/2, the second, “diffusive” term is larger than the FL one.
Of course, such a comparison is not really correct, as @ = 0 at the mean-field level. To see what
replaces the mean-field exponent of 1/2 in the diffusive term, one can invoke the asymptotic form

of the exact correlation function [32, 33]

o\ 0
W(g) = ¢ > A+B+sgn0( id ) +C+i+...l (1.77)

q'” q'"
with A > 0, and B,, C. being generally different above and below 7. For a general form of W(q),

the critical part of p in the diffusive limit becomes

5p = asgn(6)l6]'~ + f dgq*W(g) (1.78)

Substituting (1.77) into the second term in (1.78), and integrating over the interval £&~! < g < 1/€,,

we obtain

Sp = asgn(0)|6]'~" + blO]* (1.79)
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Universality class v n a 2 0% 4
0Q3),d =3 [35] 0.71 0.038 -0.13 0.738 1.40 0.39
0(2),d = 3[36] 0.67 0.038 -0.015 0.698 1.32 0.31
Ising, d = 3 [37, 38] 0.63 0.037 0.11 0.652 1.24 0.24
Ising, d = 2 [34] 1 1/4 0 1/4 7/4 3/4

TABLE I: Critical exponents for common universality classes. v governs the correlation length, n
is defined in Eq. (1.77), a is the specific heat exponent, 8 describes the order parameter (28
governs Bragg peak intensity), vy is the susceptibility exponent, and { = v(2 — 1) — 1. For the
d =2 Ising model, @ = 0 implies a logarithmic divergence. Exponents for d = 3 are rounded to

two significant digits.

where S is the order-parameter exponent, defined by (M) < ®(—)(—6)® and related to other expo-
nents via 2 = (d — 2 + n)v. Using the hyperscaling relation, vd = 2 — « [34] , 23 can be re-written

as
2B=1-a-{, (1.80)

where { = (2-n)v— 1. Aslong as { > 0, 28 < 1 — a, the second term in (1.79) is more singular
than the first one. The critical exponents for most common universality classes are listed in Table I.
Form the last column, we see that, indeed, £ > O for all cases.

Hand-waving arguments of given above can be made rigorous in two ways: by straightforward

analysis of Feynman diagrams and via the stochastic Liouville equation.

3. Resistive anomaly from diagrams

Relevant diagrams are shown in Fig. 12. The solid lines are the Green’s functions averaged
over SRD:

(GPw)) = ——r, (1.81)

i
(,L)—Ekiz

where €, = ek — €r. The dashed line is the LRD correlation function, W(g), while the dotted
line is (momentum-independent) SRD correlation function. The shaded box is the infinite sum of

ladder diagrams, known as “diffuson”, A®(g, Q), derived in Appendix B. As the name suggests,

I CLASSICAL MEMORY EFFECTS IN APPLICATION TO RESISTIVE ANOMALIES30
NEAR SECOND-ORDER PHASE TRANSITIONS



Electron Transport in Fermi liquids and beyond D. L. Maslov and J. Covey

FIG. 12: Lowest-order corrections to the conductivity due to long-range disorder. Solid lines:
Green’s functions averaged over realizations of short-range disorder; wiggly lines: current
vertices; dashed line: correlation function of long-range disorder; dotted line: correlation

function of short-range disorder; shaded box: diffuson ladder, satisfying the equation shown

graphically by diagram 4.

I CLASSICAL MEMORY EFFECTS IN APPLICATION TO RESISTIVE ANOMALIES31
NEAR SECOND-ORDER PHASE TRANSITIONS



Electron Transport in Fermi liquids and beyond D. L. Maslov and J. Covey

the diffuson exhibits a diffusion pole for wr, and g, < 1:

AR (g, Q) (1.82)

Dyg? - iQ’

In the ballistic limit ¢ < £, diagrams a)-c) reproduce the Fermi Golden Rule in (1.69), and the
corresponding singular contribution coincides with that predicted by dGF, modulo replacing the
mean-field critical exponent 1/2 by an exact one, v. In the diffusive limit (¢ > ¢;), diagrams a)-c)
become subleading, while the leading ones are diagrams d)-g) with diffuson insertions. For the dc
conductivity, the diffuson enters the result as A(g,0) « 1/D,q*, which is precisely the diffusive
limit of the interaction time, At(g). The sum of diagrams d)-g) reproduces the diffusion resistive
anomaly, the second term in (1.79). Calculations are rather straightforward, and I refer the reader
to Ref. [7] for details.

The interpretation of the resistive anomaly in the diffusive regime as a classical memory effect
is confirmed by calculating the optical conductivity. For Q < D,/&?, the optical conductivity
exhibits an non-analytic scaling: Reo(Q) o |Q|*/2, which corresponds to the power-law tail in the

velocity-velocity correlation function: (v(z) - v(0)) oc t~1+4/2_cf. the discussion in Sec. I A 4.

4. Resistive anomaly from the stochastic Liouville equation

We saw that the approach based on the conventional Boltzmann equation fails to describe the
most interesting (diffusive) regime of the resistive anomaly: according to this equation, the scat-
tering rates due to SRD and LRD simply add, as in (1.68). Why does it fail and can it still be made
to work?

Why it fails: The conventional Boltzmann equation assumes a memory loss between conse-
quitive collisions. But for a LRD the very notion of “collision” does not make sense: the collision
never ends. As to how it can still work, we need to return to the exact Liouville equation, de-
scribing the motion of a particle in a given realization of LRD, U(r). LRD is now modeled by the
random force on the RHS: —vy - VU(r) - Ok fi. Because the LRD force is non-uniform, we must
also to keep the gradient term, v - V, fi, even though the external electric field is still assumed
to be uniform and weak, such that the corresponding force term can be linearized. For general-
ity though, I will keep the time-dependence of E. Scattering by SRD can be still described by a
collision integral-which means that our distribution function is already averaged over SRD and

exact with respect to LRD. However, it is imperative now to use the correct form of the collision

I CLASSICAL MEMORY EFFECTS IN APPLICATION TO RESISTIVE ANOMALIES 32
NEAR SECOND-ORDER PHASE TRANSITIONS



Electron Transport in Fermi liquids and beyond D. L. Maslov and J. Covey

integral, as in (1.7), rather than its RTA version. Finally, we need to recall that the system is still
non-uniform even in the absence of the electric field, which means that the equilibrium distribution

is fo(e + U(r)). Collecting everything together, we obtain a stochastic Liouville equation

LN A AU
ot Ts

If the Green’s function of (1.83) is known, the distribution function averaged over LRD is found

= e(vi- E@ fg(ex + U(r)) = Sk(r),  (1.83)

as

(f(r, 1) = f dk f dr f dt (G, 1, 1K, v, )S (X', 1)). (1.84)

Note that both G and S depend on U(r), and thus it is their product that needs to be averaged.
From Eq. (1.84), we find the average current at point r. But since averaging restores translational

invariance, the current must be same at all points, and we can choose r = 0:

dk
Gyt WO 0)

d
f (jﬂ];d f d'x f a'r f dr'(G(K,0, 1K', ¥, )8 (1, 1))V (1.85)

The perturbation theory is developed by expanding G and S to second order in U(r), and

J@®) = -2e

collecting all terms. The diagrammatic technique can be formulated directly for the conductivity
in terms of the Green’s function of (1.83) without U(r), which is derived in Appendix A. Thanks
to using the correct form of the collision integral, this Green’s function has a diffusion pole, and
thus captures the right physics.

The leading order diagrams for the conductivity are shown in Fig. 13. Evaluating these dia-

grams, one again reproduces the second term in (1.79) [39]

II. HOMEWORK PROBLEMS FOR SECTION I

1. Consider a Boltzmann equation for 2D electrons in the presence of an in-plane electric field
and out-of-plane magnetic fields. The electric field is weak enough for the left-hand side to
be linearized, but the magnetic field is arbitrarily strong (in the classical sense, i.e., W Ty 1S
arbitrary). Assume that the electron spectrum is parabolic, while the probability of elastic
scattering is an arbitrary function of the scattering angle, w(fy ). With these assumptions,

the Boltzmann equation reads

0 d*k’
-— (k B)- ﬁ - —(k E)f; = _IWW(Hkk’)(fk - f)dlex —ew).  (2.1)
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FIG. 13: Diagrams for the conductivity to second order in LRD. Solid line: the Green’s function
of (??) in the absence of LRD, g(q, w; Kk, K’), cf. Egs. (A5a)-(A5c). Blank circles: Cartesian
components of vy; filled circles: vertices of scattering by LRD, VU - 0/0K; dashed line: the

correlation function of LRD. The first (unlabeled) term on the RHS is the Drude conductivity in

the presence of SRD only. Diagrams a)-c) are corrections due to LRD. Diagram a) comes from
expanding G to O(U?), while neglecting U in S. Diagram b) comes from expanding S to order

O(U?), while neglecting U in G. Diagram c) comes from expanding both G and S to O(U) and

keeping the cross-term.

Derive Egs. 1.62. Hint: In transverse geometry (E - B=0) and to linear order in E, one
can form only two scalars out of vectors k, E, and B, namely, k - E and k - (E X B). This
means that the non-equilibrium part of fx can be represented by the sum of two terms:
Jfx = filex) + C1(B)k - E + C,(B)k - (E X B), where fi(&x) is an arbitrary function of electron

energy and C; ,(B) are arbitrary functions of the magnitude B.

2. Consider a Boltzmann equation with an arbitrarily strong electric field and elastic scattering

by point impurities

Oh _ Jx— f
Bt = T (2.2)

Show that, if i) the electron spectrum is parabolic and ii) 7 is independent of energy, the

electric current is strictly linear in E, regardless of how strong the electric field is. Hint:
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multiply both sides of (2.2) by vi and integrate over k, using the fact that jl; Jfx = N, where

N is the number density.

3. Following the energy diffusion model of Sec. I B 4, derive the phase breaking time under
the conditions of quasielastic scattering. Hint: assume that the phase of an electron wave
function is related to electron energy via ¢(t) = fot dt' 6&(t’), where 0&(t) is the average gain

or a loss of energy acquired by time z.

4. Derive a 2D analog of de Gennes-Friedel scaling in Eq. (1.72).

III. TRANSPORT IN NORMAL AND “STRANGE” FERMI LIQUIDS

A. Introduction

The Pauli principle dictates that the scattering rate of two electrons in a Fermi gas scales as
1/7e o T?. This observation is a foundation, rather than a consequence, of the Landau Fermi-
liquid theory, which, in its original formulation, takes 7. to infinity [40]. The Landau Fermi liquid
is a Fermi gas of non-interacting quasi-particles with renormalized parameters: m*, g*, etc. The
original Landau Fermi-liquid theory is based on the Boltzmann (kinetic) equation without any

collision integrals on the RHS:

0
g Vi Vit (Fou = Vo) fi = 0, 3.1)

where ¥y is the external force, and Jy is a change in the quasiparticle energy due a change in the

distribution function

oek(r,t) = f F(k,K')d fi(r, 1), (3.2)
K

and F(k,Kk’) is the Landau interaction function. The interactions that renormalize quasi-particle
parameters are accounted for via a self-consistent force on the LHS of the BE. These interactions
need not to be weak, the only condition is that the system has to be away of quantum phase tran-
sitions towards broken-symmetry states. The Landau theory describes the low-temperature ther-
modynamics and collective modes (zero-sound, Silin, plasmon, etc.) in the absence of damping.
However, it cannot describe transport properties: for that, one needs to include residual interaction
between quasi-particles among themselves, as well as with impurities and lattice. This requires

adding the corresponding collision integrals to the RHS of (3.2). Therefore, there is no “general”
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Fermi-liquid theory of transport: what we have is a number perturbative approaches, which do
require the interaction between quasi-particles to be weak, and numerical simulations of various

complexity.

B. Conservation of current in Galilean-invariant Fermi liquids

Although common wisdom often relates the resistivity of a (charged) Fermi liquid to the Pauli
scattering rate as p oc 1/7.. oc T2, this relation is tenuous at the best. An obvious counter example is
a Galilean-invariant Fermi liquid, i.e., an electron system with parabolic spectrum. Quasi-particles
in such a system do have finite lifetime, and the thermal diffusivity and viscosity are also finite and
do scale as 7., o« 1/T%. However, the dc conductivity of such a system is infinite, which follows

simply from Newton’s Second Law. Indeed, the equation of motion for an electron number i reads

dp;
E =—cE + ; F,’j, (33)

where F;; is the Coulomb force between electrons i and j. On summing (3.4) over all particles, the

internal forces cancel each other, and the total momentum is changing only due to the action the

total electric force:
dP al dp;
— = Z —- =—¢NE=P = —¢NEr. (3.4)
i=1

Accordingly, the center-of-mass velocity also varies linearly with time

P
u= — = -—FE, (3.5)
Nm m
and so does the current density

2
eN

= —eNu=""E; (3.6)
m

where N is the number density. Even for infinitesimaly weak electric field, j — oo at t — oo,
which means that teh conductivity is infinite.

if the electric field oscillates in time, the conductivity is finite but purely imaginary

e2N
Q) = 3.7
@)= —=. (3.7)
Adding an infinitesimally weak dissipation via Q — Q — i0* gives
g 2
o(Q) = N(S(Q) N (3.8)
miQ’
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At the quantum level, the Hamiltonian of a system with density-density interaction is given by
(the spin indices are omitted for brevity)

1
H = Ho+ Hiy = ) sty + 3 > Ugitgitg (3.9)
k kpq

where 71q = X al_qai‘; is the number density. The corresponding current operator is deduced from

the continuity equation
—edfiq = iq - jq. (3.10)
and the Heisenberg equation of motion for the number density
Oiq = ilng, H] = i[g, Hol + i[fiq, Hiy]. (3.11)

Since iy commutes with H,,, we only need the first commutator. Straightforward commutation

algebra yields

Ja = =€ > Wtl_ypliciap2- (3.12)
ko
Next, we calculate the time derivative of the uniform (q = 0) current (this is left as a homework

exercise #1 in Sec. IV)

R A I
s _ AT At A A
djo = iljo, H] = —e E Uq (Vk—q/z + Vpiq/2 — Vkiq/2 = Vp—q/Z)ak_q/zap+q/zak+q/zap—q/2-
k

(3.13)

For a Galilean-invariant system, v = k/m and thus the combination of the velocities cancel due to
momentum conservation.

Note that the non-uniform current, jq.0, is not conserved, which means that the conductivity at
finite g is finite, rather than infinite. For example, for a 2D system with parabolic dispersion and

Coulomb interaction, we have [41]

Reo(q,Q) =

e K’ (1 47r2T2) kr

R In =, (3.14)

w K

where « is the inverse screening radius and g < Q/vp.
In a disordered system, the total electric field, which is the sum of the applied field and the
fields of impurities, is non-uniform. This means that in the presence of disorder electron-electron

interaction does affect the current—we will be exploring consequences of this observation.
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C. Non-Galilean-invariant Fermi liquids without disorder

Now let’s move on to lattice systems, which are not Galilean-invariant. Two things change.
First, the electron spectrum is now non-parabolic and, generally speaking, anisotropic, and mo-
mentum conservation does not imply conservation of the group velocity vy = dkxex. Second,

umklapp scattering, which does not conserve the momentum.

1.  Momentum-conserving scattering in non-Galilean—invariant Fermi liquids

In this section we will show if the momentum is conserved, electron-electron interaction cannot
render the dc conductivity finite, no matter how anisotropic the spectrum is. To this end, we need
to invoke the Boltzmann equation with the electron-electron collision integral

L, = - Wicp—icp | fifo (1= fi) (1= fir) = fiefor (1= ) (1= £p)]

k’,p,p’
X6 (e + & — e — 8y ) S (k+p—K — ), (3.15)

If the external electric field is weak, the deviations of the equilibrium are small, and the collision

integral can be linearized. It is convenient to parametrize the distribution function as [42]

fe = fox + fox (1 = fou) &k = fox — T fo8k (3.16)

a. dc conductivity. We start with the dc case. Linearizing the LHS of the Boltzmann equa-

tion with respect to E and the RHS with respect to gk, we arrive at

e(vi - E)fy = Wi pok'pr (gk +8p— 8k — gp') Jorfop (1 = fox) (1 - fOp')

Kk’ pp/

xo(k+p—Kk —p)o(a+ 8 —aw —&p). (3.17)

Mathematically speaking, (3.17) does not have a unique solution. Indeed, observe that, because of

momentum conservation, the collision integral is nullified by the combination
g =A -k =-C(cE - k), (3.18)

where A is k-independent but otherwise arbitrary vector, which are free to choose in a form spec-
ified above with C being an arbitrary constant [10]. In mathematical terms, g is the zero mode
of the integral operator in (3.17). Therefore, if we found a partial solution of the inhomogeneous

problem, gx, we can always obtain another solution by adding this combination
gk = &k — C(eE - k). (3.19)
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Accordingly, the current will change by the amount

5j = &C fk V(E - K) for (1 = fon), (3.20)

Notice that C can be arbitrarily large and its sign can correspond to the current flowing in the
direction opposite to that of the electric field, which means Joule cooling of the sample. and the

conductivity by
00 op = echvakﬁfOk(l = Jfok)- (3.21)
K

Because we are free to choose C positive and infinitely large, the conductivity can be made infinite.
Note that 60,5 = 0 only if S5 = f dOxv,kg = 0 for any a and B, where dOy is the solid angle
element. It is easy to see that at least the diagonal components, S ., are finite. Indeed, assume that
opposite is true: Sy, = f dOxv.k, = 0,8, = f dOxvyk, = 0 ... Adding these relations together, we
obtain f dOx (vk - k) = 0, but this cannot happen because v - k is even on k — —k. Therefore,
momentum-conserving electron-electron interaction alone cannot control the dc conductivity.

b. Compensated metals. There is one but important exception from this rule: a metal
with closed Fermi pockets that contain equal numbers of electron and hole, which is known
as a“compensated metal”. However, a compensated metal is an exception of this rule, because

solution (3.18) corresponds to zero current [10]. Indeed, re-write (3.20) for the extra current as
2 2 0f0k
0j=eCT (E K)v k e“CT (E k) (3.22)

Now we introduce the distribution function for holes f;, " = 1 — fox and split the integral into two

parts, going over the electron and hole pockets of the Fermi surface, respectively:

dfox f fro
E k)— — E. . 3.23
fkeer( ok s 0k G2

Integrating by parts and discarding the boundary terms, which are zero because a closed Fermi

8j = &*CT

surface does not cross the boundaries of the Brillouin zone, we obtain

8j = ¢*CTE [— f + f fgh)] = CTEN; — N,), (3.24)
keeFS kehFS

where N, and N, are the number densities of electrons and holes. For a compensated metal,
N, = N, and thus ¢j = 0. As we see, this condition does not depend on the actual shapes of

pockets.
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For the model case of two spherical electron and hole pockets with masses m.., the linearized
Boltzmann equation can be solved exactly, generalizing the method of Refs. [43—45], developed
originally for *He. The result is the expected FL behavior [46, 47]
_ v 1

N Tee

o (3.25)

where 1/1.. = AT?/er and A depends on the details of the scattering probability. 72 scaling of
teh resistivity resulting from electron-hole scattering in a compensated metal is known as Baber
mechanism [48].

The proof above works for systems with electron and hole pockets located in different regions
of the Brillouin zone, which is the case, e.g., in Bi. However, it can be also modified to apply a
zero-gap semiconductor at charge neutrality as well. As an example, consider a single Dirac cone

with linear spectrum €. = +vpk. Re-write the extra current as

5j = &CT f E-k[v.(K)fy, +v-(K)f; ] (3.26)
k

where

1
_‘fgi = 2 +l)Dk—8F (3.27)
4T cosh _T

and v.(K) = +upk. Substituting the last two equations into (3.26) yields

1

2 U[)k—é‘]: - 2 UDk+8F :
cosh L+ cosh T

5j = %&@D fk (E - k)f([ (3.28)

At the charge neutrality point (CNP), where & = 0, the integral vanishes. Therefore, the conduc-
tivity of a Dirac system at CNP can be controlled by electron-hole interaction alone [49-51].

c. Optical conductivity. Now let’s look at the oscillatory driving field, E = Ege ™. Accord-
ingly, (3.17) is replaced by

iQfox(1 — fo)gk + (Vi - Eo) foy = Wi poi'p (gk +8p— &k — 8p') Jorfop (1 = fox) (1 - fOp’)
k/pp/

x6(k+p-kK —p’)d(sk +&p — &k —sp/), (3.29)

or, recalling that for (1 — fox) = —T fy, and canceling the common factors,

. e 1= fie
€8k — T(Vk ‘Eo) = - Wk p-x'pr (gk +8p — 8w ~ gp’) 1_—];:(](01) (1 - fOp’)
x6(k+p—k = p)o(ax+ 8 — e — &) (3.30)
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Now the freedom of adding the zero mode (3.18) is gone, and (3.30) should have a unique solution.
The units of the RHS is the scattering rate. Let’s denote the order-of-magnitude of this rate as 1/7;,
which may or may not coincide with the Pauli rate, 1/7... When Qr; > 1, one can iterate in the

collision integral. The zeroth order iteration yields

( o7 (3.31)

The corresponding contribution to the conductivity is purely imaginary-the second term in (3.8).

Substituting this back into (3.30) and iterating one more time, we obtain

a1 _ 4 1 - fow
& = "Tp - Wip-xp (Vk +Vp — Vir — Vp’) : Eol_—f()kap (1 - fOp')
xo(k+p—k —p)o(ax+8 —aw — &) (3.32)

In a Galilean-invariant system, the combination of velocities in in the first line of the last equation
vanishes, and the same will be true to all orders 1/Q7;. As long as vy # k/m, however, this
combination is, in general, finite, and thus g{(l) will contribute to Reo(€2). Therefore, the optical
conductivity can be controlled by electron-electron interactions alone, as long as the system is not

Galilean-invariant. The corresponding contribution to the conductivity behaves as

Reo(Q) o

3.33
1, (3.33)
Power-counting yields that, generically, 1/7; o T?, although, as we will see later, additional
conservation laws may reduce it to 1/7; oc T4

Equation (3.33) looks like a high-frequency limit of the Drude formula

Reop(Q) o« (3.34)

j
which does a finite dc limit ReX(0) o 7;. Nevertheless, we showed in Sec. IIIC 1a that e-e
interactions cannot control the dc conductivity, unless the metal is compensated. The resolution
of this contradiction is that the conductivity of a non-Galilean Fermi liquid with momentum-

conserving e-e scattering and in the absence of disorder contains two terms, singular and regular

[52]:
Reo(Q) = DO(Q) + 0o (Q, T), (3.35)

where D denotes the Drude weight, while the Q — 0 Q — oo limits 0, (€2, T) coincide with

the corresponding limits of the Drude conductivity in (3.34). Therefore, the conductivity is finite
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at any Q # 0 but infinite at Q = 0. Momentum-non-conserving scattering due to impurities,
umklapps, phonons, etc. smears the delta function, such that the conductivity becomes finite
at Q = 0 as well. For a compensated metal, D = 0 [52], and the regular part determines the
conductivity at any Q.

On general grounds, one would expect 1/7; to depend on T and Q in a symmetric way, e.g.,
1/7(T, Q) o« max{T? Q. However, since the RHS of (3.42) does not contain €, the ensuing
1/7; may depend only on 7. This is a drawback of the semiclassical Boltzmann equation, which
is valid only for Q <« T'. To restore duality between Q and T one has to use either the quantum

Boltzmann equation or Kubo formula.

2. Umklapp scattering

In the presence of lattice, momentum is conserved only up to an integer number of reciprocal

lattice vectors:
k+p=K +p’ +nb. (3.36)

n = 0 corresponds to momentum-conserving or “normal” scattering, considered in the previous
section. n # 0 corresponds to umklapp scattering. For umklapp scattering, (3.18) is no longer a
solution of (3.17). Power-counting the collision integral, one obtains the expected Fermi-liquid
scaling p o T2, which is known as Landau-Pomeranchuk mechanism [40, 53].

Umklapp scattering requires two conditions. First is that the Fermi surface must be large
enough to accommodate the condition |k + p — K" — p’| > b or kpnmax = b/4, where kppax 1
the longest radius of the Fermi surface. In a multi-valley system, the valleys have to be separated
by reciprocal lattice vector. This is the case, for example, in Ge, where the distance between the
electron valleys, located at the L points of the Brillouin zone, is bgy; /2 (cf. Fig. 14. Therefore,
a simultaneous transfer of two electrons from one valley to another satisfies the umklapp condi-
tion. If the umklapp condition is not satisfied, the corresponding contribution to the resistivity is
exponentially small, p oc exp(—Ak/T), where Ak is the momentum deficit.

In the case of honeycomb lattice, shown in Fig. 15, the centers of the K and K’ valleys are
separated by b/3, which is not enough to allow for umklapp scattering at low filling. Then the
Fermi surfaces has to be also larger enough to accommodate for missing momentum. If the Fermi

contours are modeled by circles of radii kg, then the largest change in momentum is achieved in
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Fig. 7.9. The (110) cross section of the BZ of germanium (cf. fig. 1.1).

FIG. 14: Reproduced from Ref. [54].

a process, in which two electrons are taken from lowest point of the first valley and transferred to

the highest point of the second valley. Umklapp becomes possible if [55]
4kp +2b/3 > b = kp > b/12. (3.37)

This condition can be readily satisfied in twisted bilayer graphene [56], where b is related to
the spacing of superlattice, which is significantly larger than the atomic spacing in monolayer
graphene. (To determine the umklapp threshold more accurately one certainly needs to take into
account anisotropy of the Fermi surface, which is significant at high filling.)

The second condition is that, even if the Fermi surface is sufficiently large, the interaction
should allow large (~ kg ~ b) momentum transfers. Suppose that the opposite is true, i.e., that e-e
scattering is of the forward type. Consider an umklapp process on a 2D Fermi surface shown in
Fig. (16). Since momentum transfers are small, we have either k ~ k’ or p = p’. Accordingly,
umklapp condition (3.36) needs to be satisfied at the expense of the other two momenta, e.g.,

Ip — p’| = b, which pins p and p’ to small spots near the boundaries of the Brillouin zone. In this
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FIG. 15: Left: If the Fermi surface is too small, umklapps are forbidden. Right: An example of

inter-valley umklapp process on honeycomb lattice [55].

FIG. 16: Umklapp process for forward scattering [57].

case, umklapp contribution to the resistivity is suppressed in proportion to §*/k2, where § is the
typical momentum transfer [57]. This condition becomes relevant near the quantum critical points,
separating the high-symmetry phase and a phase with spatially uniform order, e.g., a ferromagnet

or nematic. '!

1" Accidentally, two umklapp hot spots can happen to be close to each other. This case is considered in Ref. [58].
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D. What about the experiment?

Armed with understanding acquired in previous sections, we now look at several examples of

T? scaling observed in real systems.

Figure 17 illustrates T2 scaling of the resistivity in aluminum (left) and a heavy-fermion metal
CeAl;. In both cases, the Fermi surfaces are large and there is no reason to assume that the
interaction is of the forward-scattering type. Therefore, we can safely attribute the T2 behavior to

umklapps, as in the Landau-Pomeranchu mechanism.

Figure 18 shows the temperature dependence of electron and hole mobilities in bismuth. Both
mobilities behave as 1/72, which means that the scattering rate scales as T2. Bismuth is an
archetypic compensated semi-metal, with small and equal number densities of electrons and holes:
N, = N, = 4x10" cm~3, located in different regions of the BZ. Baber mechanism is fully expected

to work here, as well as in other compensated semi-metals.

The two examples above fit squarely into the conventional Fermi-liquid behavior. Now, we
come to a family “strange” Fermi liquids. The first example is doped quantum paraelectric (an
insulator very close to ferroelectricity but never making it) SrTiO; (STO). T2 scaling behavior in
its resistivity had been observed since 1950s, but it did not cause any surprise until a seminal paper
[59] pointed out that, for most of the doping range, the Fermi surface is too small to accommo-
date umklapp processes. And STO is not a compensated semi-metal. Yet, the resistivity exhibits
a strongly pronounced 72 behavior over a wide temperature range, which is much wider that in
canonical “umklapp” materials in Fig. 17. In fact, the temperature range of the 72 behavior is
too wide, as it goes through a number of apparently relevant energy scales. At low doping, the
T? behavior is observed both below and above the Fermi energy, indicated by an arrow in the top
panel of Fig. 19. Since a Fermi-liquid behavior is supposed to strictly bounded to 7" below (in
fact, well below) the Fermi energy, theorists (including this author) started to search for another
source of T2 scaling, not related to e-e interaction. In fact, STO is a highly unusual material. Its
proximity to ferroelectricity gives rise to two unusual but related properties: 1) the lattice dielectric
constant is very high, reaching 25, 000 at liquid helium and ii) the transverse optical phonon mode
is very soft, with frequency wy ~ 10K, also at helium. The first property effective eliminates
the Coulomb interaction between free charge carriers. The second property makes the temper-
ature separating equipartition and inelastic ranges of electron-phonon interaction, discussed in

Sec. I B4, to be abnormally low. An additional quirk is that electrons do not couple directly to
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polarization produced by a transverse optical mode: such a coupling should be of the form V - P,
which is zero for transverse polarization P. This means that single-phonon scattering is forbidden,
but two-phonon scattering (described by diagrams in the lower panel of Fig. 20) is allowed. For
the same reason as single-phonon scattering in the equipartition regime gives p « 7', two-phonon
scattering gives p o< T2 [60]. As a bonus, this model explains why E is not a relevant energy
scale: the dependence of two-phonon scattering rate on electron momentum cancel out between
the electron-phonon vertex and electron density of states, making the rate to be the same for de-
generate and non-degenerate electrons. The two-phonon model describes the data in the interval
T > wy reasonably well (at higher 7', one needs to add scattering by LO phonons). In fact—and this
is a problem—it describes the data even below wy, where scattering is inelastic rather than quasi-
elastic. In fact, the same model should predict p o< exp(—wy/T) for T < wy due an exponential
freeze-out of the optical phonons.

The two-phonon model comes with two falsifiable predictions. First, as discussed 1B 4, one
should observe the universal Lorentz ratio in the quasi-elastic regime. Instead, one observes that
both the charge resistivity and thermal resistivity, W = CT/«, scale as T? [61], which indicates
the common origin and charge and heat transport. However, the Lorentz ratio is only about 1/3
of the universal value, which is typical for small-angle scattering but not expected within the
two-phonon mechanism. To be precise, the measurements in Ref. [61] were performed on much
heavier doped samples N ~ 10%° cm™, when all three d-bands are occupied, whereas the data in
Fig. 20 corresponds to much lower doping (4 x 10'7 cm~3), when only the lowest band is occupied.
As will see in the next section, a FL-like 7% term is expected in a disordered multi-band system.

Second, the two-phonon mechanism predicts that the energy relaxation rate is independent of
T. Indeed, substituting 7y, o 1/ T? into (1.67), we obtain 7, = const. Instead, recent experi-
ment observed that 1/7. increases with 7" [62]. Again, the experiment was performed on highly-
doped samples, where the two-phonon model is not applicable. Indeed, the Bloch-Grueneisen

temperature for scattering at a dispersive optical phonon is T = wo(g = 2kr), which for STO

translates into Tpg = \/wg(q = 0) + (2kp)?s2, where s ~ 6.6 x 10° cm/s from neutron scattering.
Atn ~ 10®°cm™, Tps ~ 250K which means that the data in [62] was collected in the inelastic
regime. It would be fair to say the two experiments described above neither confirmed no ruled out
the two-phonon mechanism, and thus a T2 behavior in STO still remains somewhat mysterious.
As we have just seen, STO is a rather exotic material. What about something simpler, such

is a plain vanilla doped semiconductor? Figure 21 shows the resistivity of just that: a doped
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semiconductor Bi,O,Se [63]. There is nothing exotic about this material, in particular, it does not
have soft optical modes. Nevertheless, it does exhibit p oc T2 also over a wide temperature range.
However, the Fermi energy in Bi,O,Se is much higher than in STO, and T scaling does not extend
into a non-degenerate range.

One more recent addition to the family of strange liquids is illustrated in Fig. 22: it’s a two-
dimensional electron gas (2DEG) in HgTe quantum well [64]. Again, no umklapps, no compen-
sation, yet a T2 behavior is still pronounced.

Finally, Fig. 23 shows unpublished data from Denis Bandurin’s group at the National University
of Singapore on TBG away from the magic angle [56]. Here, the story is more complicated,
because, as discussed in Sec. IIIC 2, TBG can be gated into the regime, where umklapps are
allowed. Figure 24 shows the number-density dependence of the coeflicient A, in the relation
p = ApT?. The blue curve is obtained by subtracting the T term arising from the impurity part
of the resistivity at finite T. '> The vertical lines indicate umklapp thresholds calculated by Joshua
Covey using a realistic band structure model. It is clear that A,, behaves differently above and
below the threshold. Therefore, the T2 behavior above the threshold can be attributed to inter-
valley umklapp scattering. An additional confirmation of the e-¢ origin of the T2 term is the data
obtained under THz radiation, while the lattice was kept at the lowest temperature. As shown
in panel B, THz radiation increase the resistivity. Given THz is absorbed mostly by electrons,
it means that in a situation when 7, # T, the resistivity follows the electron rather than lattice
temperature. This rules out phonons as the source of the 7-dependence.

However, there is also a range of densities below the umklapp threshold, where p o T2, al-
though umklapps are not allowed. Along with STO, Bi,0,Se, and HgTe, this range belongs to the

category of strange Fermi liquids.

E. Non-Galilean-invariant Fermi liquids with disorder
1. Generic case

There is one more aspect of the story that we have discussed yet: what happens if one takes

disorder, which is always present in real materials. Naively speaking, can one have a situation

12 For elastic scattering, the conductivity at finite 7 is related to that at finite energy of an electron via o(T) =
f de(—f3)oi(e). Oniits turn, o(¢) is obtained from the residual resistivity as a function of n as oi(er) = 1/p; (r(n))
with gr(n) calculated from a band structure model.
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when the corresponding scattering rates just add up, such that

1 1
+ — = const + AT?? (3.38)

Timp Tee

pOC

The answer is yes and no. Yes, in a sense that if the system is non-Galilean—invariant, e-e in-
teraction can add a T-dependent correction to the resistivity, which scales, generically, 72, but
can be reduced down to 7¢. No, in a sense that (3.38) works only at low enough T, when as
1/Tee < 1/Timp. For 1/7¢e > 1/7inp, the resistivity saturates—in the absence of phonons—at another
T-independent value, which is controlled only by disorder and which may or may not coincide
with the residual resistivity.

Now let’s go back to (3.29), put Q = 0, but add the e-i collision integral instead. As we
have shown that the RTA form is good enough for weak and uniform electric fields, I choose the

simplest form, applicable for point-like impurities

_ Jio = Ji _fok(1 — Jox)8x

L; = (3.39)
Timp Timp
Instead of (3.30) we then obtain
g e 1 — fox
—=(v-E)= Wip—K'p’ + 8y — 8w — &) ——— 1 - fow
-~ 7 (Vi E) ey P (8k 8p — 8k gp) = for fOp( Jop )
x6(k+p-kK —p’)é(sk +&p — &k —spf). (3.40)

As for the optical conductivity, we can iterate in I,, if 1/7.. < 1/7jnp. The zeroth and first order

iterations are given by

‘E
gff):nmp—e(v"T ) (3.41)
and
et? 1-f
) imp 0k’
= Wicooww (Vi + Vo = Vie = Vo) - Eo—2% £ (1 = £,
gk T Kop’ k,p—k’'p (Vk Vp Vk Vp) 0 1 _ﬁ)k fOp( fOp)
x6(k+p-K —p)o(ec+ e — o — &) (3.42)

Substituting the last result into the current, we obtain the correction to the o,z component of

the conductivity

2.2
2e Timp

T

XUk, (Uk,,g + Ups — Uk — Upl,ﬁ) 0 (k +p - k' — p,) o) (8k + Ep — & — Spf) . (343)

00 a5 = — f Wi p—kep JoxSop(1 = for )(1 = fopr)
kpKk’p’
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FIG. 3. Electrical resistivity of CeAl; below 100 mK,
plotted against T2,
FIG. 17: Top: Resistivity of Al. Reproduced from Ref. [65]. Bottom: Resistivity of a heavy
fermion metal CeAl; below 0.1 K. Reproduced from Ref. [66].

In the presence of time-reversal and inversion symmetries, the scattering kernel is symmetric with
respect two permutations of the fermionic momenta. Using these symmetries, one can re-write the

last equation in a more symmetric form [5, 57, 68]

e*r?

50—0,3 - _ mp f Wk,Pﬂk’,p’fOkap(l - fOk’)(l - fOp’)
kp.k.p’

2T
X (Uk,a + Upoe — Uk'o — Upr’(y) (Uk’ﬁ + Uppg — kg — Up/ﬂ)

x6(k+p-kK —p’)5(8k +&p — &k —8pf). (3.44)

Let’s power-count the last result. The integrals over three independent energies, e.g., &, &p, and

&w, give a factor of 73.'3 With an additional 1/T factor, we obtain 6o,z o< T2. The corresponding

13 This is true for a generic case. Additional cancellations, arising in special cases, are discussed in Sec. III E 2.
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FIG. 18: Mobilities of electrons (1) and holes (v;) in a compensated semi-metal Bi. The straight

lines indicate 72 fits. Reproduced from Ref. [67].
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FIG. 19: Resistivity of a doped quantum paraelectric SrTiO;. Reproduced from Ref. [59].
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FIG. 20: Top panel.Red curve: resistivity of STO at n = 4.0 x 10" cm™. Black curve:
two-phonon model with an additional contribution due to scattering by LO phonons. Bottom:

two-phonon diagrams for the electron self-energy. Reproduced from [60].

correction to the conductivity can be written as,

T
60 = ~Timp—b (3.45)
Tj
where 1/7; o T2. Accordingly
1 Timp d 1
= X 0j 1+ —| =p; + —-— . 3.46
p O-imp - O-imp(Timp/Tj) P P ( Tj ) plmp 620%1/1: Tj ( )

Note that the last result does look like the Matthiessen rule: the e-i and e-e resistivities add up.
However, this is only the first term in the expansion in 7jy,,/7;. What happens in the opposite
limit, when 17; > 1/7i,,? In this regime, e-e collisions are much more frequent than e-i ones.
Consequently, e-e collision establish quasi equilibrium in the electronic system, however, they
cannot fix the center-of-mass velocity. In the isotropic case, the result is especially simple. The

distribution function is a Fermi function of a system moving as a whole with velocity u:

fx = folex +u-K), (3.47)
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FIG. 21: Resistivity of a doped “trivial” semiconductor Bi,O,Se. Reproduced from Ref. [63].

where u is independent of k. This function nullifies the e-e collision integral due the identity

known as “detailed balance”,

JoxJop(1 = for )1 = fopr) = fo fopr (1 = for)(1 = fop),

(3.48)

which is valid if kK + p = K’ + p’. In equilibrium, i.e., foru = 0, (3.48) works because &g + &, =

e + &y. However, it works also for u # 0 due to momentum conservation kK + p = K’ + p’.

Expanding (3.47) to linear order in u, we obtain

S = fox + fo(u-K),

(3.49)

which, according to (3.16), means that gx = —u - k/7T. On substituting gi into (3.40), the RHS
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FIG. 22: Resistivity of a 2DEG in HgTe quantum well. Reproduced from Ref. [64].

vanishes, and we obtain an equation for u [69]:
u-k= —e(Vk . E)Timp~ (350)

This means that u is determined entirely by disorder, as if e-e interaction were absent, and the
corresponding conductivity is the same as T = 0.

To summarize, p initially increases with T until 7; becomes comparable to Tiy,, but then de-
creases back to its residual value.

For anisotropic dispersion, the analysis is more complicated. Nevertheless, using the spectral
decomposition of the (non-self-adjoint) operator /.., one can show that the conductivity saturates at
higher T at a value which is controlled solely by disorder [68]. The high-T limit if the conductivity

is given by
(v

o)
@)

Taplr oo = 26 Timpve ) |~y ), (3.51)
Y

where (... ) stands for averaging over the Fermi surface. For comparison, the residual conductivity
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FIG. 23: Resistivity of twisted bilayer graphene. (A) Longitudinal resistivity p of 2° TBG as a
function of temperature and carrier density n. Inset: p(n) at representative temperatures. Arrows
indicate scaling regimes with p ~ T%, where @ = 1 (orange) and a = 2 (green). Thermometers
indicate that both electron and lattice temperatures are varied simultaneously. (B) p(n) measured
in the dark and under continuous-wave illumination at 0.14 THz. Inset: schematic showing
THz-driven electron heating. Thermometers indicate that THz radiation increases the electron

temperature while the lattice remains intact. Reproduced from Ref. [56]

at T = O is given by

TaplT—0 = 2€* TimpVF{Valp)- (3.52)

It is easy to check that, for an isotropic dispersion, o uglr -0 = Teplr—0-
The temperature dependence of the resistivity is sketched in Fig. 25. The work on exact solution

of the Boltzmann equation for the isotropic case is currently in progress [70].

2. Special cases

There is a number of special cases when, instead of an expected T? correction to the residual

resistivity, one obtains 7% In T (in 2D) or T* in 3D. These special cases are 1) isotropic (but non-
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FIG. 24: Number-density dependence of the coefficient A,, obtained by fitting the 72 part of the
resistivity into p = A,,T?. Positive/negative n corresponds to electron/hole doping. Red: raw
data. Blue: data after subtracting the T contribution to the residual resistivity due to smearing of
the Fermi function of at finite 7. The vertical lines indicate umklapp thresholds, calculated using

the realistic band structure model. Reproduced from [56].
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FIG. 25: Temperature dependence of the resistivity of a non-Galilean—invariant Fermi liquid with
disorder. The currently available theory describes the initial increase of the resistance and its

saturation at higher T'. The full curves needs to be understood as a sketch.
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parabolic) electron spectrum, both in 2D and 3D, and 2) a convex Fermi surface in 2D.
a. Isotropic Fermi liquid. In an isotropic case, there are only diagonal components of the

conductivity, which are equal to each other. with 6o = (1/d) )., 604, Eq. (3.44) becomes

e*r?
o0 = — szP jl;p’k,’p, Wk,p—>k’,p’f0kf0p(1 — f()k')(l _ fOp’)
2
X(Vi+ Vp—Vie = Vp) S(k+p-K —p)é(ec+ep—ew—gp)..  (3.53)

If the electron dispersion is isotropic, & = &(k),

k

e (3.54)

Vi = Ok =

where m(k) = k/&’(k). If all four fermions are projected onto the Fermi surface, i..e,k = p =k’ =

p’ = kr, their masses become the same and

(Vk +Vp — Vi — Vp/)2 k+p-K -p)=0 (3.55)

~ m(kr)
by momentum conservation. To get a final result, one needs to expand the dispersions near the
Fermi surface. In 3D, this gives an additional factor of T2, and 60 « T*. In 2D, there is an extra
log factor, arising from the 2D kinematic singularity: o~ «c T*InT [71]. The T* correction is
likely to be masked either by eph scattering or by weak localization. For example, in a monolayer
graphene 1/t o T for T < Tpg, see Fig. 9. Restoring the units and setting the eph coupling
constant to 1, 1/7epn ~ T4/ T;G. On the hand, the ee momentum relaxation rate can be written as
1/7; ~ (T*/ 8;’;) In(A/T), where A is a UV cutoff, which depends on the details of the ee interaction.
As long as the speed of sound is much smaller than vz, we have T < &, and thus 1/7.p, < 1/7;.

On the other hand, the ee contribution wins over the eph one in the optical conductivity, mea-
sured at Q > T [71, 72]. In this case, the scaling 1/7; « Q*In(A/Q) (in 2D) continues up
to Q ~ A, whereas the eph one saturates at a frequency-independent value for Q > Tps;. The
corresponding real part of the optical conductivity behaves as

Reo(Q) « 1/Q27j o« Q?In(A/Q). Figure 26 shows the real part of the optical conductivity
of monolayer graphene at different gate voltages (the number density increases from the green to
dark-blue curve). The vertical arrows indicate the Pauli threshold in a non-interacting graphene,
equal to 2ex. In the absence of any interactions, the optical conductivity would be strictly zero for
Q < 2¢&p and attain a universal value of me?/2h for Q > 2&r (shown by the horizontal dotted line).
In reality, there is a substantial spectral weight below 2¢r. Part of this weight is just a Drude tail,

arising from ei and eph scatterings. However, when the Drude tail becomes small, the conductivity
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FIG. 26: The real part of the optical conductivity of monolayer graphene for different gate
voltages. The vertical arrows indicate the Pauli threshold in the non-interacting system, equal to

2er. Reproduced from Ref. [73]

starts to increase, presumably due to ee interactions, as explained above. A detailed theory of

absorption in this range, which includes not only the electron-electron but also the electron-hole

interactions can be found in Ref. [72].

IV. HOMEWORK PROBLEMS FOR SECTION III

1. Derive Eq. (3.13).

2. Derive Eq. (3.17). Hint: when linearizing the collision integral, take an advantage of the

following identity

JoxJop(1 = fo )(1 = fopr) = fow fop (1 = for)(1 — fop).

3. Consider two spherical pockets, containing equal numbers of electrons and holes with

parabolic spectra . = k?/2m.. The pockets are assumed to be sufficiently far away from
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each other to neglect inter-pocket transfer. Electron-electron and hole-hole interactions drop
out from the equations of motion, but electron-hole interaction remains. In addition, elec-
trons and holes are scattered by impurities with mean free times 7.. Phenomenologically,

dc transport in such a system can be described by coupled equations of motion

m+ U+

0=—eE -

- Ny, —v-)

Ty

0= +eE - = _ Ny —v,).
T_

The last terms in these equations describe electron-hole interactions as frictional forces,
parametrized by the coeflicient y. In a Fermi liquid, y oc T2. Find the dc conductivity and

show that it remains finite in the limit 7, — oo.

Appendix A: Green’s function of the Boltzmann equation

The Green’s function of the Boltzmann equation for elastic scattering by point-like impurities

with collision integral given by (1.7) satisfies the following equation

0 > 1
— + V- Vi +—
T

1 .-
ot g(k’ r, tlk/a r/7 t,) - _g(ka r, tlk/a r/9 t) = 6(k - k,)é(r - r,)é(t - t,)’ (Al)
T

where Gk, 1, tlk, ¥/, 1) = fk gk, r,tk,r’, ¢') is the Green’s function averaged over the directions of
k’. In a translational- and time-reversal-invariant system, Gk, r, {|k’,r’,¢') = G(r — ', t — t'; k, K').

Switching to the Fourier space via

G(q, w;k,K) = f d'r f dte"“"M"G(r, t;k, k), (A2)
we obtain
1 -
i@V - w)G(q. 0k K) + - [6(q 0k K - G(q. w1k K)| = ok - K). (A3)

First, we solve Eq. (A3) at fixed G to obtain
1(e)o(k — k') + G(q, w; k,K)

;w; kK = . : A4
g@.o ) iTe)(v-q-w)+1 (A9

and then average Eq. (A4) over the directions of k to exclude G. This way, we arrive at
g(q’ w5 k’ k/) = gl(q’ w; k’ k/) + QZ(q’ w3 k’ k’) (Asa)

7(e)o(k —K)
cw kK K) = — ASb
Gk k) = T o - (A5b)
, T(e)o(e — & 1

Ga(q ik k) = & ) D634 ). (AS0)

Cmdv(e) [1 +it(e)v-q—-w)][l +it(e)V - q - w)]
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where

1
Dy(e; q,w) =

(A6)
~ (et

with (. ..); standing for averaging over the directions of k.
The first term in Eq. (AS5a) describes fast, over time 7, relaxation of the initial perturbation.
This would have been the only term, had we use used the RTA collision integral from Eq. (1.8).The
second term describes slow relaxation due to diffusion, which sets for gupT < 1 and wt < 1. In
this regime, function D, displays a diffusion pole:
1
(e) [D(e)g* — iw]’

where D(e) = v*(g)1(e)/d is the diffusion coefficient of an electron with energy &. Note that for

Dy(g;q,w) = (AT)

short-range disorder v(e)x7(e) = vpT wWith 7 = 7(gp).

Appendix B: Diffuson ladder

A dotted line in Fig. 12(h) can be related to 1/7 by calculating the imaginary part of the self-
energy. To lowest order, we need to consider only the first diagram in Fig. 4 (with the dashed line
replaced with the dotted one). The dotted line is the Fourier transform of the correlation function

upo(r — r’), which just equals u,. Then

ImZ*(w = 0,k) = ug f ImGR (0) = —mug f olex) = —ﬂung (B1)

Comparing Egs. (1.40) and (1.45), we see that ImXX = -1/ 27, or, for delta-correlated disorder,
ImX® = —1/27,. Therefore, uy = 1/2nvp7,. The — Jo(w) = 6(w) factor projects the electrons onto
the Fermi surface, which means that we need to the diffuson only at w = 0. The diffuson ladder is

obtained be summing the geometric series

AR(q, Q) = 2R(q, Q) + 2R3 (q, 2 S N— B2
(. Q) = up + uyR(q, Q) + ugR*(q, Q) + - - T~ RGO’ (B2)
where R(q w) is the “rung ~of the ladder,
do do i
R(q,Q) = —2L | de,GR, (Q)GA(0) =2 f £
(CI ) VFf Od f p+q( ) p( ) TVE Od Q—Vp'q+i/Ts
i/ VQ+i/19)? = (vpq)?, d =2
= 27TVF /\/.( / )Q+l) ;+5Tq> (B3)
(i/2vrq) In 5~ qu+1/7¥ d=3
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For d = 2, the branch of the square roo function is defined by the condition Im /(Q + i/7,)? — (vrq)* >
0. We then obtain

1 Vet

AR©0) = = Ds(qty), B4
O e e St T e L (B4)
R 1 1
A% (g,Q) = . ,d=12 (BS)
2ANpTy | — ——=x
V@Qr,+i2-g202
and
AR, Q) = ! ! d=3 (B6)
q’ - 27TVFTS 1 _ i 1 QTS+q€S+l: ’ - ’
2q¢ Qro—qls+i
where €, = vpT;.
a+1
Dr(a) = —. (B7)
Va?+1-1
For |Q|r, < 1 and gf; < 1, both (B5) and (B6) exhibit the diffusion pole
1
A%(q,Q) = , B8
(¢.£) 2nvet2 Dyq? — iQ (B8)
where D; = v3.7,/d. The static limits are given by
® 1 Vgl + 1
A(g,0) = , d=12 (B9)
2aNFTs \[(gl)? +1 -1
and
A%(q,0) = ! ! d=3 (B10)
5= 2aNpTs | — tan‘lf(q&)’ o
qls
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