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I. CLASSICAL MEMORY EFFECTS IN APPLICATION TO RESISTIVE ANOMALIES NEAR

SECOND-ORDER PHASE TRANSITIONS

The Boltzmann equation (BE) in the presence of a time-independent and spatially non-uniform

electric and magnetic field reads

∂ fk(r, t)
∂t

+ vk ·∇r fk(r, t) − e [E(r, t) + vk × B(r, t)] ·
∂ fk(r, t)
∂k

= Iee
[
fk
]
+ Ieph[ fk] + Iei

[
fk
]
, (1.1)

where vk = ∂εk/∂k is the group velocity, Iee, Iee, and Iei are the collision integrals, describing

electron-electron, electron-phonon, and electron-impurity interactions, respectively.

A. Basics of electron-impurity scattering

1. What is the correct form of the Boltzmann equation for elastic scattering?

Contrary to the popular opinion, the most general form of the the electron-impurity collision

integral is [1–3]

Iei[ fk] = −
∫

k′

(
wk,k′ fk − wk′,k fk′

)
δ(εk − εk′), (1.2)

where fp ≡ fp(r, t),
∫

p ≡
∫

dd p/(2π)d and wk′,k is proportional to the probability of scattering from

k′ to k. The delta function expresses energy conservation: Electron-impurity collisions are elastic.
1 Equation (1.2) is valid both for fermions and bosons.

1 This is not really true, as impurities are not infinitely heavy, and scattering at them can emit a phonon. This is a

triple scattering event though (electron-impurity-phonon), and the corresponding probability is small.
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In general, wk′,k , wk,k′ .2 Indeed, if the system is invariant on time-reversal, then

wk,k′ = w−k′,−k. (1.3)

If, in addition, the system has spatial inversion symmetry, then

wk,k′ = w−k,−k′ . (1.4)

Applying both (1.3) and (1.4), one arrives at what is known as the microreversibility property

wk′,k = wk,k′ . (1.5)

But if either one or both symmetries are broken, (1.5) is not satisfied.

Why is this important? Note that (1.2) is different from an often quoted form

Ĩei[ fk] = −
∫

k′

[
wk,k′ fk(1 ∓ fk′) − wk′,k fk′(1 ∓ fk)

]
δ(εk − εk′), (1.6)

where ∓ applies to fermions/bosons. 3 If (1.5) is satisfied, the bilinear terms in (1.6) cancel out, and

it reduces back to (1.2). However, what if (1.5) is not satisfied? Well, then we have a non-linear

integral equation to solve. The consequences of non-linearity is that, sooner or later, the system

will run into an instability. But wait, we are talking about impurity scattering here–hence, there

is just an electron moving in a given potential. One can solve the Schrodinger equation for this

system, and the result will be (in the semiclassical limit) an absolutely unambiguous prediction

about the state of the system at later time t, given its state at t = 0. This is why the most general

form of the collision integral is (a simpler) (1.2), rather than (a more complicated) (1.6): The

former is valid even if (1.5) is not satisfied.

In the simplest case of point-like impurities, when scattering is isotropic, wk′,k = const. Re-

calling that
∫

k′ δ(εk′ − εk) = ν(εk), where ν(ε) is the density of states (per flavor), and defining the

mean free time via 1/τ(εk) = wν(εk), we simplify (1.2) to

Iee[ fk] = −
fk − f̄
τ
, (1.7)

where f̄ is the angular average of the distribution function at a given energy.

2 In the first Born approximation, this relation is valid regardless of the symmetries of the system. However, it is not

valid beyond the first Born approximation [3].
3 The mere fact that (1.6) distinguishes between fermions and bosons should raise an alarm. We have a single particle

bouncing off potential scatterers. There is no way to tell if the particle is a fermion or boson, unless other particles

are present.
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Let’s compare (1.7) with another popular form of the collision integral, known as the “relax-

ation time approximation” (RTA):

IRT A[ fk] = −
fk − f0

τ∗
, (1.8)

where f0 is the equilibrium distribution function. Despite an obvious similarity, (1.7) and (1.8)

describe very different physics. Indeed, (1.7) describes relaxation towards an isotropic but not

equilibrium state. Elastic scattering conserves energy, so the best it can do is to completely ran-

domize directions of electron velocities. A full equilibrium can be reached only via inelastic

processes. In contrast, RTA implies full equilibration. The problem with RTA is that it violates

several conservation laws.

In the BE framework, conservation laws are reflected as follows. Suppose that a certain

property–q(k)–is conserved. For example, q(k) = 1 is the particle number, q(k) = k is the mo-

mentum, q(k) = εk is the energy, etc. Multiplying BE by q(k), we obtain

dQ
dt
=

d
dt

∫
k

q(k) fk =

∫
k

q(k)I[ fk]. (1.9)

If Q is conserved, then
∫

k q(k) fk =
∫

k q(k)I[ fk] = 0.

For the case of elastic scattering, there are two conserved quantities: the number of particles

at given energy, equal to f̄ , and total energy, equal to
∫

k εk fk. It is easy to see that the collision

integral in (1.7) does satisfy both these properties while the RTA collision integral does not. This

is a serious drawback, as in the long-time limit (1.8) cannot describe diffusion. Namely, we should

expect the Fourier transform f (k,q, ω) to exhibit a diffusion pole for ωτ ≪ 1 and q3Fτ ≪ 1:

f (k,q, ω) ∝
1

Dq2 − iω
, (1.10)

where D = 32Fτ/d is the diffusion coefficient. As shown in Appendix A, collision integral (1.7)

satisfies this property but collision integral (1.8) does not. Using the RTA approximation gives

incorrect results, e.g., for ultrasound absorption by free electrons, which is proportional to the

conductivity at finite wavenumber, σ(q, ω).4

However, the Boltzmann equation with the “correct” form of the collision integral, Eq. (1.7),

has a problem on its own. Namely, if the electric field is weak, we tend to expand the force term,

−eE · ∂k fk around equilibrium, i.e., replacing it with −eE · ∂k f0k = −eE · vk∂ε f0k. However, since

there is no notion of the equilibrium distribution for elastic scattering, we need to expand the force

4 For correct treatment, see Ref. [4].
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term around the angular average of fk, rather than around f0k. Doing so, we obtain the following

equation

−e(E · vk)
∂ f̄
∂εk
= −

fk − f̄
τ
. (1.11)

It can be readily see that this equation is solved by

fk = f̄ + e(E · vk)
∂ f̄
∂εk
, (1.12)

which leaves f̄ undetermined. Therefore, (1.11) does not have a unique solution.

To make a solution unique, we need to introduce inelastic processes that do equilibrate electrons

with the thermostat [5]. For this purpose, RTA collision integral (1.8) can be used as a toy model.

Once we invoked the equilibrium distribution via RTA, the LHS can be linearized around f0k, and

we obtain the following equation (with f ′0k ≡ ∂εk f0k:

−e(vk · E) f ′0k =
f̄ − fk

τ
+

f0k − fk

τ∗
, (1.13)

which yields

fk =
1

1
τ
+ 1
τ∗

[
e(vk · E) f ′0k +

f̄
τ
+

f0

τ∗

]
. (1.14)

Averaging the last expression over angles, we find that f̄ = f0k. Now fk is determined uniquely

fk = f0k +
1

1
τ
+ 1
τ∗

e(vk · E) f ′0k. (1.15)

If the equilibrating time is much longer than than the momentum relaxation time, τ∗ ≫ τ, we can

safely set 1/τ∗ = 0:

fk = f0k + τe(vk · E) f ′0k. (1.16)

From now on, we will be using the following form of the Boltzmann equation for elastic scattering

−e(vk · E) f ′0k =
f̄ − fk

τ
, (1.17)

with the understanding that inelastic processes were implicitly taken into account when the LHS

was linearized around f0k.

The electric current is found as

j = −2e
∫

k
vk fk = 2e2

∫
k
τvk(vk · E)(− f ′0k). (1.18)
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For T ≪ εF , we the corresponding conductivity is given by 5

σ =
2
d

e2νF3
2
FτF , (1.19)

where νF is the density of states at the Fermi energy per spin and τF is evaluated at ε = εF .6

Note that had we used (1.8) with τ∗ = τ from the very beginning, we would have obtained the

same result for the conductivity. Equations (1.7) and (1.8) lead to same result because both f0k and

f̄ depend only on the energy, and thus drop out from the current.

What if scattering is anisotropic while the electron spectrum is still isotropic (this would be the

case for free electrons being scattered by impurities of finite size). Because there is no preferred

direction in the scattering process, the scattering probability can only depend on the angle between

k and k′: wk,k′ = w(θkk′). In linear response to the electric field, the non-equilibrium part of fk

must be linearly proportional to E. But E is a vector, while fk is a scalar, so E must be dotted

into some other vector. Since the system is isotropic, the only such vector is k or vk, as they are

parallel to each other. Then we can write

fk = f1(εk) − e(vk · E)g(εk), (1.20)

where f1(εk) is an arbitrary function of energy only (which one – does not matter, as it cancels on

substituting (1.20) into (1.2)). Substituting (1.20) into the linearized BE,

−e(vk · E) f ′0k = −

∫
k′

w(θkk′)( fk − fk′)δ(εk − εk′), (1.21)

and solving for g, we obtain the conductivity

σ =
2
d

e2νF3
2
Fτtr,F , (1.22)

where τtr(ε) is the transport scattering time, defined by

1
τtr(ε)

= ν(ε)
∫

dΩ
Ωd

w(θ)(1 − cos θ). (1.23)

where dΩ is the element of the solid angle and Ωd = 2π in 2D and 4π in 3D. The factor 1− cos θ =

q2/2k2
F , where q = |k − k′|, is known as a “transport factor”. Its role is to discriminate against

small-angle scattering events which are inefficient in relaxing the current. For comparison, the

5 Note that this result is valid for an isotropic but otherwise arbitrary electron spectrum.
6 Note that τ(ε)ν(ε) = const for point-like impurities.
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single-particle lifetime, which determines the width of the spectral function, is given by a similar

integral but without the transport factor:
1
τsp(ε)

= ν(ε)
∫

dΩ
Ωd

w(θ). (1.24)

If w(θ) is strongly peaked at small θ, one can expand 1−cos θ ≈ θ2/2, in which case 1/τtr ≪ 1/τsp.

In the opposite case of isotropic scattering, w(θ) = const, cos θ drops out and τtr = τsp = τ, where

τ is the same as in (1.7).

Long-range disorder (with correlation length ξ ≫ 1/kF) brings about several effects which are

not captured by the conventional Boltzmann equation in Eq. (1.1), in particular, magnetoresistance

due to classical memory effects [6] and resistive anomalies near second-order phase transitions [7]

(cf. Sec. ). Also, if ξ is much longer than electron-electron mean free path, the system enters into

a hydrodynamic regime, when the electron flow can be described by the Navier-Stokes equation

[8]. Therefore, it is important what kind of disorder (long- or short-range) is present in a given

system. Experimentally, one typically extracts τtr from mobility and τsp from the amplitude of de

Haas-van Alphen or Shubnikov-de Haas oscillations. The ratio of the two allows one to estimate

the product kFξ.

Despite its simple appearance, (1.23) reflects the gauge symmetry. Indeed, if disorder is in-

finitely long-ranged, it does not scatter at all, which implies that w(θ) ∝ δ(θ). The factor 1 − cos θ

guarantees that in this case σ ∝ τtr = ∞, as infinitely long-range disorder is just a constant shift of

the chemical potential, which should have no effect on transport.

As a rule, if τtr , τsp, it is the former that enters all transport quantities. The reason can

be understood from classical mechanics. Indeed, our BE should be applicable to a completely

classical case, when both statistics and dynamics of particles are governed by classical laws. In this

case, 1/τsp is proportional to the total scattering cross-section, Atot =
∫

dΩdA(Ω)/dΩ, while 1/τsp

is proportional to the transport cross-section, Atr =
∫

dΩ(1 − cos θ)dA(Ω)/dΩ, where dA(Ω)/dΩ

is the differential cross-section. But if the interaction potential extends to all distances from the

center, the total cross-section is infinite, no matter how rapidly the potential decreases with r,7

while Atr is finite for potentials decreasing faster than 1/r. Therefore, transport quantities, which

can be observed both in classical and quantum systems, can contain only a finite cross-section, i.e.,

Atr. In contrast, quantum effects–such as the spectral function and quantum magnetooscillations–

may contain Atot, which is finite in quantum mechanics for sufficiently rapidly decaying potentials.
7 Indeed, dA = 2πbdb, where b is the impact parameter [9]. If the potential is not artificially cut off at some distance,

the total cross-section Atot = 2π
∫ ∞

0 bdb = ∞.
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What if we have a lattice system, but impurities are point-like, i.e, wk′,k = w = const? In this

case, (1.2) gives

Iei[ fk] = −w
∫

k′
δ(εk − εk′)( fk − fk′) = −

w
(2π)d

∫
dεk′

∮
dak′

3k′
δ(εk − εk′)( fk − fk′)

= −
w

(2π)d

∮
dak′

3k′
( fk − fk′)

∣∣∣∣
εk′=εk

= −
fk − f̄
τ
, (1.25)

where

1
τ
≡

w
(2π)d

∮
dap

3p
(1.26)

f̄ ≡

∫
dak′

3k′
fk′

∣∣∣∣
εk′=εk∮ dap

3p

∣∣∣∣
εp=εk

(1.27)

where dap is the surface (line) element. As we see, we are back to (1.7).

Finally, what if we are on a lattice and scattering is anisotropic? Then we are out of luck. We

can only say that (up to an arbitrary function of energy) fk = uk ·E, where uk is an odd function of

k, but it is not equal to either k or vk, as there are many directions on the lattice where vector vk

can point. In this case, there is no way of avoiding solving an integral equation numerically [10].

In the literature, the situation described above–lattice+anisotropic scattering–is often fixed by

employing a version of RTA with

IRT A = −
f0 − fk

τk
, (1.28)

where τk depends on k, i.e, on the point on the Fermi surface. In contrast to an isotropic case, this

approximation is never consistent with the original BE: there is no magic trick that reduces an inte-

gral equation to an algebraic one. Using RTA in this case leads to results which differ significantly

from the correct ones, especially for more complicated properties than just a dc conductivity, e.g.,

thermoelectric power and Nersnt effect [11], see Fig. ??.

2. An example of how wrong the relaxation-time approximation can be for anisotropic systems

Consider a simple toy model: the Fermi surface is circular but the scattering probability varies

along the Fermi surface. Applying RTA to this model, we obtain

−e3F E f ′0 cos ϕ = −
f0 − f (ϕ)
τ(ϕ)

(1.29)

I CLASSICAL MEMORY EFFECTS IN APPLICATION TO RESISTIVE ANOMALIES
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or

f (ϕ) = f0 + e3F E f ′0 cos ϕτ(ϕ) (1.30)

The corresponding conductivity is proportional to an average of τ:

σRT A ∝ ⟨cos2 ϕτ(ϕ)⟩, (1.31)

which is the basis of common wisdom stating that “colder” parts of the Fermi surface control the

transport. Now let’s solve the same problem, using the correct collision integral with the scattering

probability w(ϕ)

−e3F E f ′0 cos ϕ =
∫ 2π

0

dϕ′

2π
w(ϕ′) f (ϕ′) − f (ϕ)

∫ 2π

0

dϕ′

2π
w(ϕ′) (1.32)

or

f (ϕ) =
e3F E f ′0 cos ϕ +

∫ 2π

0
dϕ′

2π w(ϕ′) f (ϕ′)∫ 2π

0
dϕ′

2π w(ϕ′)
(1.33)

We do not know what the second term in the numerator is, but we do not need it as it drops out

from the current anyway. As a result, the conductivity is proportional to one over the scattering

rate averaged over the Fermi surface

σ ∝
1∫ 2π

0
dϕ′

2π w(ϕ′)
. (1.34)

Now the conclusion is just the opposite to that of RTA: the conductivity is controlled by “hot”

parts of the Fermi surface. To make it more clear, suppose that the scattering rate equals 1/τ1 on

one half of the FS and 1/τ2 on the other half. Then (1.34) gives

σ ∝
τ1τ2

τ1 + τ2
, (1.35)

while (1.31) predicts that

σRT A ∝ τ1 + τ2. (1.36)

3. Kubo formula

The same results can be obtained from the Kubo formula. Suppose that the disorder potential is

Gaussian-distributed with ⟨U⟩ = 0 and ⟨U(r)U(0)⟩ = W(r). Let’s pick one realization of disorder,

U(r). The corresponding exact Green’s function (in Matsubara representation) is Gωn(r, r′, τ), with

I CLASSICAL MEMORY EFFECTS IN APPLICATION TO RESISTIVE ANOMALIES
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ωn = π(2n + 1)T . Now we apply a weak uniform, time-dependent electric field EΩm = −ΩmAΩm ,

where A is the vector-potential and Ωm = 2πmT . Assuming for simplicity a parabolic electron

spectrum with effective mass m∗, the charge current to linear order in E is given by [12]:

jΩm(r) =
e2

m∗2
T

∑
ωn

(∇r −∇r′)
∫

ddr1Gωn+Ωm(r, r1)
(
AΩm ·∇r1

)
Gωn(r1, r′)

∣∣∣∣
r′=r
−
Ne2

m∗
AΩm ,

(1.37)

where N is the electron number density. For the dc case, we need only the first (“gradient”) part

of the current (upon expanding in external frequency, the zeroth order term cancels the last term,

satisfying conservation of charge). Carrying out analytic continuation iΩm → Ω + i0+, taking the

limit Ω → 0, and averaging over disorder, we obtain the averaged conductivity (shouldn’t ∂rα be

inside spatial averaging?)

σαβ =
2e2

m∗2

∫
dω
π

(
− f ′0(ω)

) ∫
ddr′∂rα∂r′β⟨ImGR

ω(r, r′)ImGR
ω(r′, r)⟩

=

(
−

1
4

)
2e2

m∗2

∫
dω
π

(
− f ′0(ω)

) ∫
ddr′∂rα∂r′β

×
[
⟨GR
ω(r, r′)GR

ω(r′, r)⟩ + ⟨GA
ω(r, r′)GA

ω(r′, r)⟩ − ⟨GR
ω(r, r′)GA

ω(r′, r)⟩ − ⟨GA
ω(r, r′)GR

ω(r′, r)⟩
]

(1.38)

where GR
ω(r, r′) is the retarded Green’s function, ⟨. . . ⟩ stands for averaging over disorder, and

where we used a relation ImGR = (GR − GA)/2i at the last step. Equation (1.38) is exact with

respect to disorder. Diagrammatically, σαβ is expressed by the sum of closed bubbles in Fig. (1).

Now we develop a perturbation theory in disorder. The Greens function is obtained by summing

the series, depicted in Fig. (2)

GR
ω(r, r′) = GR

0ω(r − r′) +
∫

ddr1GR
0ω(r − r1)U(r1)GR

0ω(r1 − r′)

+

∫
ddr1

∫
ddr2GR

0ω(r, r1)U(r1)GR
0ω(r1 − r2)U(r2)GR

0ω(r2 − r′) + . . . (1.39)

where GR
0ω(r) is the free Green’s function. On substituting series (1.39) into (1.38), we obtain

averages of two types. In the first type, shown in Fig. 3a, points r1, r2 . . . belong to the same side

of the bubble; in the second type, they belong to opposite sides. A dashed line connecting two

points ri and r j represents the disorder correlator, W(|ri − r j|).

Summing up only the averages of the first type, we obtain a bubble, formed by two averaged

Green’s functions, ⟨GR
ω(r, r′)⟩. Since averaging restores translational invariance, ⟨GR

ω(r, r′)⟩ de-

I CLASSICAL MEMORY EFFECTS IN APPLICATION TO RESISTIVE ANOMALIES
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FIG. 1: Closed-bubble diagrams contributing to σαβ.

FIG. 2: Diagrammatic representation of series (1.39).

pends only on r − r′, and we can introduce the momentum:

⟨GR
ω(k)⟩ =

∫
ddreik·rGR

ω(r) =
1

ω − εk − ΣR
ω(k)
, (1.40)

where ΣR
ω(k) is the self-energy, obtained by re-summing the series shown in Fig. 4.

The corresponding contribution to the conductivity is given by

σ(1)
αβ =

2e2

m∗2

∫
dω
π

(− f ′0(ω))
∫

ddk
(2π)d kαkβ

[
Im⟨GR

ω(k)⟩
]2
. (1.41)

Although we initially assumed parabolic spectrum, it is obvious that for a general spectrum the

last expression is replaced by

σ(1)
αβ = 2e2

∫
dω
π

(− f ′0(ω))
∫

ddk
(2π)d 3k,α3k,β

[
ImGR

ω(k)
]2
. (1.42)

The second type of averaging produces vertex corrections.8 In each of the four terms, we push

the vertex corrections to one side of the bubble (does not matter which one) and call their sum the

8 Let not the word “correction” confuse you. These “corrections” may not be small.
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(a)

(b)

FIG. 3: Two types of disorder averages. (indices ok?)

FIG. 4: Electron self-energy for scattering by disorder.

renormalized current vertex, Va,b
ω , where a, b = A,R. After Fourier transform, the corresponding

contribution to the conductivity reads

σ(2)
αβ = 2e2

(
−

1
4

) ∫
dω
π

(− f ′0(ω))
∫

ddk
(2π)d vk,α

×

{[
⟨GR
ω(k)⟩

]2
VR,R
ω,β (k) +

[
⟨GA
ω(k)⟩

]2
VA,A
ω,β (k)

−2⟨GR
ω(k)⟩⟨GA

ω(k)⟩VR,A
ω,β (k)

}
. (1.43)

Let’s now focus on the case of isotropic (but not necessarily parabolic) electron spectrum. In

what follows, we will be interested in rather weak disorder, such that εFτsp ≫ 1. Then we are

interested only in a narrow interval of energies of with 1/τsp near εF , and the integral over the
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momentum can be simplified as∫
ddk

(2π)2 =︸︷︷︸
exact

∫ ∞

0
dεkν(εk)

∫
dΩk

Ωd
=︸︷︷︸

exact

∫ ∞

−εF

dϵkν(ϵk + εF)
∫

dΩk

Ωd

≈︸︷︷︸
approximate

νF

∫ ∞

−∞

dϵk

∫
dΩk

Ωd
, (1.44)

where ϵk = εk − ϵF . A major simplification arises from noting that the terms of the type GRGR

(or GAGA) and GRGA behave very differently on integrating over ϵk. Indeed, the self-energy in

(1.40) can be taken on the Fermi surface. Its real part can be absorbed into the chemical potential,

while the imaginary part is a constant as well, which–by definition–is equal to (-1/2) of the inverse

single-particle lifetime. Then

GR,A
ω (k) =

1
ω − ϵk ±

i
2τsp

. (1.45)

Now we see that the integrals of the type
∫

dϵk[GR
ω(k)]2GR and

∫
dϵk[GA

ω(k)]2 vanish, because the

poles of the integrands lie in the same half-plane of ϵk. Furthermore, for T ≪ εF , we replace

− f ′0 = δ(ω). Also, an isotropic system has only one component of the conductivity tensor, equal

to σ = (1/d)
∑
α σαα. After these simplifications, Eqs. (1.41) and (1.43) are reduced to

σ(1) =
e2

πd

∫
ddk

(2π)d v2
k

∣∣∣GR
0 (k)

∣∣∣2 . (1.46a)

σ(2) =
e2

πd

∫
ddk

(2π)d

∣∣∣GR
0 (k)

∣∣∣2 vk · VRA
0 (k). (1.46b)

For weak disorder, we can approximate the self-energy by the first diagram in Fig. 4. Let’s look

at this diagram in more detail, setting ω = 0, as this is what we need in (1.46a) and (1.46b):

ΣR
0 (k) =

∫
ddk′

(2π)2 GR
0 (k′)W(|k − k′|), (1.47)

where

GR
ω(k) =

1
ω − εk + εF + i0+

=
1

ω − ϵk + i0+
(1.48)

and W(q) is the Fourier transform of W(r). As we are interested only in the imaginary part,

ImΣR
0 (k) = −π

∫
ddk′

(2π)2 δ(ϵk′)W(|k − k′|), (1.49)

The delta function projects k′ onto the Fermi surface. Since we expect only k ≈ kF to be relevant

as well, we replace |k − k′| = 2kF sin(θ/2). Adopting approximation (1.44), we obtain

ImΣR
0 = −πνFW0 ≡ −

1
2τsp
→ τsp = 1/2πνFW0, (1.50)
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(a)
(b)

(c)

(d)

FIG. 5: Non-crossed (a) and crossed (b-d) diagrams for the conductivity.

where

W0 =

∫
dΩ
Ωd

W
(
2kF sin

θ

2

)
. (1.51)

The next simplification comes from noting that diagrams for σ(2) with crossed dashed lines are

smaller than the ladder diagrams, under the condition that momenta of all fermions are near kF .

Indeed, consider diagrams a)-c) in Fig. 5. Diagram a) is of the ladder type. Each of the three

momenta–k, k′, k′′–can be chosen to be near kF independently of each other. Diagrams b) and c)

contain four momenta k, k′, k′′, and k − k′ + k′′. If we choose the first three momenta to be equal

to kF , the fourth momentum will be equal to kF only certain relations between the first three are

satisfied: For example, k′ ≈ k or k′ ≈ k′′, etc. This means that integration phase space is reduced

compared to diagram a). The only small parameter in the game is 1/εFτsp ≪ 1, and thus diagrams

b) and c) are smaller than a) by this parameter.

Although diagram c) is small compared to a), it turns out that for 1 < d ≤ 2 the next-order

diagram of the same type–diagram d)– is equal to diagram b); and the same is true for all other

maximally crossed diagrams. This means that the series of maximally crossed diagrams diverges.
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This is known as weak localization, which is a perturbative manifestation of Anderson localization.

We will come back to this point later, but for now let’s focus on the infinite sum of ladder diagram,

shown in Fig. 6a.

(a) Ladder series

(b) Integral equation for the current vertex

FIG. 6: (a) Ladder series (b) Integral equation for the current vertex, Eq. (1.53).

In the ladder approximation, we add up Eqs.(1.46a) and (1.46b), to obtain the total conductivity

as

σ = σ(1) + σ(2) =
e2

πd

∫
ddk

(2π)d

∣∣∣GR
0 (k)

∣∣∣2 vk ·V(k), (1.52)

where the renormalized current vertex satisfies an integral equation, shown graphically in Fig. 6b:

V(k) = vk +

∫
ddk′

(2π)d

∣∣∣GR
0 (k′)

∣∣∣2 W(|k − k′|)V(k′). (1.53)

In an isotropic system,V(k) can be directed only along k or, which is the same, along vk. Without

loss of generality, we can choose

V(k) = vkΓ(εk), (1.54)
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whereV(εk) is a function of energy only. Dotting (1.53) into vk, we obtain an equation of Γ:

Γ(εk) = 1 +
∫

ddk′

(2π)d GR
0 (k′)GA

0 (k′)W(|k − k′|)
vk · vk′

32k
Γ(εk′). (1.55)

There is no reason to expect Γ(εk) to vary rapidly near the Fermi energy. If so, we can put εk = εF

in Γ(εk), upon which it becomes a constant, Γ ≡ Γ(εF). In the integral part, we project the momenta

onto the Fermi surface as per (1.44). The solution of the ensuing algebraic equation is

Γ =
1

1 − RW1
, (1.56)

where, using (1.44),

R = νF

∫ ∞

−∞

dϵk′ |GR
0 (k′)|2 = νF

∫ ∞

−∞

dϵk′
1

ϵ2k′ + (1/2τsp)2
= 2πνFτsp =

1
W0

(1.57)

and

W1 =

∫
dΩ
Ωd

cos θW
(
2kF sin

θ

2

)
. (1.58)

Therefore,

Γ =
W0

W0 −W1
(1.59)

Substituting the last equation into (1.52) and using (1.57) for the integral of |GR
0 (k)|2, we obtain

σ =
2e2

d
3

2
FνFτtr, (1.60)

where

1
τtr
= 2π

∫
dΩ
Ωd

(1 − cos θ)W
(
2kF sin

θ

2

)
. (1.61)

This result coincides with (1.22), obtained from the Boltzmann equation.

4. What the Boltzmann equation can and cannot do for you?

In the previous section we established that the Boltzmann equation gives the same results as

the ladder approximation for the Kubo formula. Now it would be easier to understand what the

Boltzmann equation is missing.

We already touched on one class of phenomena: weak localization, which arises from quantum

interference between electron waves scattered by different impurities. This is a well-researched

subject, and I refer you to a number of books and reviews for further study [13–15].
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Given the Boltzmann equation is semi-classical by construction, it is not surprising that it can-

not capture quantum-mechanical effects. What’s more surprising though is that it misses some

entirely classical effects which go beyond the usual assumption about the Markovian nature of

scattering processes, i.e., that the memory of previous scattering events is erased by the time the

next one occurs. This becomes especially important when scatterers are finite-size, rather than

point-like, objects. This will be our main subject in Sec. I C but, just to wet your appetite, I give

two examples here.

The first one is the Lorentz-gas model, in which scatterers are finite-size spheres or disks dis-

tributed randomly over space (without overlaps). Suppose that a point particle starts its motion

with some velocity v(0). Pretty soon the direction of the velocity will be completely random

(while its magnitude is still equal to 3(0)). The degree of randomization can be quantified by the

velocity-velocity correlation function, ⟨v(t) · v(0)⟩. 9 The Boltzmann equation predicts that at long

times the velocity-velocity correlator decays exponentially with time: ⟨v(t) · v(0)⟩ ∝ e−t/τtr , where

τtr is the corresponding transport time for spheres or disks. However, an exact solution shows that,

in fact, the behavior at long times is power law, rather than exponential: ⟨v(t) · v(0)⟩ ∝ t−(1+d/2)

[16, 17]. This immediately implies that the optical conductivity should behave in a non-analytic

way at small Ω: Reσ(Ω) ∝ |Ω|d/2 [6, 7, 18]. This discrepancy occurs because, for finite-size scat-

terers, the probability for a particle to return to the same scatterer is also finite, as shown by a red

arrow in Fig. 7. The conventional BE cannot capture this effect.

The effect of (classical!) self-returns is amplified in the presence of the magnetic field, which

curves electron orbits, thus sending electrons to the same scatterers time and again. In 2D, a strong

enough magnetic field leads to complete localization of electrons which move around scatterers

on rosette-like trajectories [19, 20], see Fig. 8.

But even in weaker fields, there are pronounced discrepancies betweeen predictions of Boltz-

mann theory and more sophisticated theories/experiment. You may recall that a simple Drude

model [21] predicts that while the conductivity is affected by the magnetic field, the resistivity

remains equal to its zero field value. I leave it to you to show that the Boltzmann equation for

parabolic electron spectrum but anisotropic scattering probability gives the same result, namely

9 For charged particles, the Fourier transform
∫

dteiΩt⟨v(t) · v(0)⟩ is proportional to the conductivity at frequency Ω.
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2a

FIG. 7: Lorentz-gas model.

(for simplicity, in 2D with B being along the normal to the plane and E being in-plane)

σxx = σyy =
σ

1 + (ωcτtr)2

σxy = −σyx =
ωcτtrσ

1 + (ωcτtr)2 , (1.62)

where ωc = eB/m and σ is the zero-field conductivity, given by (1.22). Calculating ρ̂ = σ̂−1, you

will find that ρxx = 1/σ, which means that magnetoresistance is absent. With a little more effort,

one can show that the same is true not only for parabolic but any isotropic spectrum. Nevertheless,

many real materials with almost isotropic spectrum do show strong magnetoresistance. Theo-

retically, one obtains this effect by going beyond the conventional Boltzmann equation scheme

[4, 6, 22, 23].

B. Electron-phonon interaction

Before turning to the subject of resistive anomalies, let me first make a few straightforward

observations about the electron–phonon interaction.
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T
L

FIG. 8: Classical localization of 2D electrons by a magnetic field.

1. The main rule about phonons: They are always there.

Rule # 1. Phonons are always there.

Rule # 2. If you think that phonons are not there, see Rule #1.

2. Phonons are needed to maintain the linear response regime.

As far as charge transport is concerned, phonons play two roles. First, even if the temperature

is so low that electron-phonon scattering is much weaker than electron-impurity one, phonons

are ultimately responsible for dissipation. In the previous section, we analyzed electron-impurity

scattering in detail. Regardless of the model, we arrived at the conclusion that, at low enough

temperatures and, formally, even at T = 0, the conductivity is finite and controlled solely by

impurities. Well, Maxwell’s law are blind to microscopic mechanisms of conduction. All they say

is that, as long as the conductivity is finite, there must be Joule heat, in the amount of Q̇ = σE2

Joules released per unit volume per unit time. But wait a second, electron-impurity scattering is

elastic, thus no energy is transferred from electrons to the lattice. How come the sample is getting

warmer? The answer is that it is still phonons that dissipate energy. Although phonons don’t

enter the linear response formula j = σE directly, they define the condition on the electric field
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up to which this formula is valid. If not for phonons, electric field would do work on electrons,

which leads to increase of their energy and this heating, when electron and lattice are at different

temperatures: Te and Tph.

The energy balance can be expressed as [24]

π2

6
νF

(
T 2

e − T 2
ph

)
= τephσE2, (1.63)

where τeph is energy relaxation time of electrons due to e-ph interaction. The condition for the

absence of heating of electrons is

∆T = Te − Tph ≪ Tph. (1.64)

Re-writing T 2
e − T 2

ph ≈ 2∆TTph, (1.64) implies that

∆T/Tph =
3
π2

τephσE2

νFT 2
ph

≪ 1. (1.65)

For acoustic phonons at low T and in 3D, τeph ∝ T−3, and thus (1.65) implies that

E ≪ AT 2/5
ph , (1.66)

where A = const. That is, at given T the electric field has to be weak enough to satisfy (1.66).

3. Resistivity controlled by electron-phonon interaction

The second role of phonons is to control the resistivity directly, via electron-phonon scattering.

There are two temperature regimes for electron-phonon scattering: equipartition, for T ≫ T0,

and inelastic, for T ≪ T0. The meaning of T0 is different for scattering by acoustic and optical

phonons. For acoustic phonons, the maximum phonon momentum equals to 2kF , thus the fre-

quency of such a phonon equals to 2kF s, where s is the speed of sound. The Bloch-Grueneisen

temperature is defined as such frequency (in appropriate units): TBG = 2kF s. 10 For T ≫ TBG, the

phonon mode is in the equipartition regime, when its occupation number scales linearly with T :

1/(eω/T − 1) ≈ T/ω. The corresponding contribution to the resistivity is also linear in T : ρ ∝ T .

For T ≪ TBG, the number of phonons with ω ∼ TBG is exponentially small, and electrons scat-

ter primarily at thermal phonons with momenta qT ∼ T/s ≪ kF . Therefore, scattering is of the

forward-scattering type. For deformation-potential scattering by acoustic phonons, the T scaling

10 The factor of 2 is superficial, but I keep it for historical reasons.
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FIG. 9: Electron-phonon interaction in monolayer graphene. Reproduced from Ref. [25].
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of the single-particle scattering rate tracks the spatial dimensionality; in 3D, 1/τsp ∝ T 3. However,

the transport scattering rate acquires a small factor 1− cos θ ≈ θ2/2 ∼ q2
T/k

2
F ∝ T 2. As a result, the

transport scattering rate scales as 1/τtr ∝ T 5.

Note that TBG coincides (in order fo magnitude) with the Debye temperature, TD = s/a, where

a is the lattice constant, only in good metals with high number density, where kF ∼ 1/a. In

low-carrier density systems (semiconductors, semimetals), kF ≪ 1/a and TBG ≪ TD. Depending

on the number density, at can be as low as few tens of or even few Kelvin. Even in high-density

metals, the real crossover between the equipartition and inelastic regimes is lower than the nominal

TBG due to numerical factors. A rule of thumb is the linear scaling of the ρ extends down to TBG/4.

4. Equipartition regime is quasi-elastic regime

One feature of the equipartition regime (T ≫ TBG) needs to be stressed: although the scattering

time depends on temperature, electron-phonon scattering in this regime is almost elastic (quasi-

elastic). Consider a typical electron with energy within the interval T around the Fermi energy.

Because there are many phonons with q ∼ kF , the electron momentum is relaxed quickly. However,

the energy of a typical phonon ∼ TBG ≪ T , and thus energy relaxation is slow. The rate of

energy relaxation can be estimated in the diffusion model. Because scattering is almost isotropic,

τsp ∼ τtr ∝ 1/T . At each scattering event, the electron energy changes by TBG, which means that

the electron energy diffuses with the diffusion coefficient Dε ∼ T 2
BG/τsp. The energy relaxation

time is estimated as [24, 26, 27]

√
Dετε ∼ T → τε ∼ τsp(T/TBG)2 ∝ T, (1.67)

while the ratio τε/τsp ∼ (T/TBG)2 ≫ 1, which implies that scattering is elastic.

To summarize, electron-phonon scattering in the equipartition regime is isotropic and (quasi)

elastic. This means that phonons in this regime play a role of point-like impurities, with the

scattering cross-section proportional to T . This is easy to understand on physical grounds. An

electron moving through the lattice at speed 3F ≪ s is “seeing” a snapshot of ions displaced from

the equilibrium positions. The rms displacement of an ion ⟨δ2r⟩ ∝ T , which explains the linear

scaling of ρ.

Quasieleastic electron-phonon scattering has one more interesting consequence. According to

the Wiedemann-Franz law (WFL), the charge and thermal conductivities of a metal are related to
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each other as κ/σ = L0T , where L0 = (π2/3)(kB/e)2 is the Lorentz ratio for degenerate electrons.

Sometimes you can hear that WFL manifests the Fermi-liquid nature of a system. In fact, WFL

applies strictly only to elastic scattering [10], win which can it can be derived without any limita-

tions on the type of scattering (isotropic vs anisotropic) and band structure. In the low-T regime,

when electron-impurity scattering is the dominant one, WFL is obviously applicable. But now we

also see that it should applicable for T ≫ TBG, as phonons act as impurities in this regime. Now

you would not find it surprising to notice Gustav Wiedemann and Rudolph Franz discovered their

law experimentally in 1853–well before any cryogenic techniques were available. In fact, they

measured κ and σ only at two temperatures: room and ice. But both temperatures are high enough

for copper and aluminum to be in the equipartition regime.

Following the same lines, a curious reader might recall that weak localization (and related

phenomena) becomes observable at sufficiently low temperatures, such that the impurity mean

free time, τi, is much shorter than the phase-breaking time, τφ. The latter comes from inelastic

processes (electron-electron and electron-phonon) and becomes longer at T decreases. But, by

the same token, τφ ≫ τsp in the equipartition regime, and thus one should expect phase-coherent

phenomena to occur in this regime as well [26]. To date, an experimental confirmation of this idea

is still lacking.

5. How do phonons get rid of extra momentum?

And the last observation about phonons. In order to control the charge transport, phonons

need a mechanism to relax the extra momentum they receive from electrons. In the absence of

such mechanism, the electron and phonon subsystems will be accelerated by the electric field

and steady-state transport would be impossible. This phenomenon is known as “phonon drag”.

Phonon-phonon scattering can relax the momentum but only if it involves umklapp, such that the

phonon quasimomenta satisfy the condition q1 + q2 = q′1 + q′2 + nb, where b is the reciprocal

lattice vector. In good metals with kF ∼ a−1, umklapp scattering is allowed for T ≳ TBG ∼ TD,

but not for T ≲ TBG, when typical phonon momenta ∼ qT ∼ T/s ≪ kF ∼ a−1. In a disorder-

free metal, that would imply that the resistivity becomes exponentially small, in proportion to

exp(−TBG/T ). However, such a reduction of the resistivity is observed only in ultra-pure samples.

In a typical sample, there is enough disorder to take away the extra momentum from phonons. All

one needs is to guarantee that the rate at which the momentum flows from electrons to phonons
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is slower that the rate at which the momentum flows from phonons to disorder. This condition is

satisfied even if phonons are scattered by small defects, of dimensions smaller than the phonon

wavelength, λT ∼ 1/qT ∼ s/T . In this case, the phonon-impurity scattering rate obeys Rayleigh’s

law: 1/τphi ∝ T 4, while the electron-phonon scattering rate scales as T 5, i. e., slower. In addition,

the exponent in the Rayleigh’s law depends on the dimensionality of the scattering object,D, and

decreases as one moves from point defects (D = 0) to line defects (D = 1), when 1/τphi ∝ T 3. In

short, enough junk in a sample make the problem of phonon relaxation go away. Again, as it was

the case with “hidden phonons” in the linear-response formula, the junk that scatters phonons does

now show up in the results explicitly, but you have to have enough of it in order to forget about it.

C. Classical memory effect: Resistive anomaly near a classical second-order phase transition

1. History and model

Finally, we cam to the subject of resistive anomalies near classical second-order phase tran-

sitions, of which I will focus on the ferromagnetic ones. For the first time, such a anomaly was

observed in Ni by Walther Gerlach (same Gerlach as in the Gerlach-Stern experiment), back in

1932–see Fig. 10. More examples are shown in Fig. 11.

Theoretically, the resistive anomaly was first addressed by de Gennes and Friedel (dGF) in

1958 [30], who formulated a model which we are also going to use. Namely, Tc is assumed to

be higher than TBG, such that electron-phonon interaction is in the equipartition regime, when–as

we now know–phonons play a role of point-like elastic scatterers with T -dependent cross-section.

Because we will be interested only in the narrow vicinity of Tc, all non-critical quantities can be

evaluated right at Tc, in which case the T -dependence of the phonon contribution to the resistivity

does not play any role. In addition to phonons, there are also real impurities, which are also

assumed to be point-like. These two kinds of disorder–real and thermal– are lumped together into

one short-range disorder (SRD), characterized by a mean free time τsp = τtr ≡ τs. Scattering

of electrons at localized magnetic moments is also assumed to be elastic–this is a reasonable

assumption as the ordering degree of freedom (magnetization) exhibits critical slowing down near

Tc. Therefore, spin-flip scattering can also be viewed as another kind of disorder. However, in

contrast to impurities and phonons, the magnetic disorder is of a very long range near Tc, because

its correlation length, ξ, diverges at Tc. This will be modeled as long-range disorder (LRD) with
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The divergence of the temperature coefficient of resistivity of nickel at the Curie tern .

perature is emphasized. Application of the modified Ornstein-Zernike spin-pair correla-
tion function is shown to yield results which cannot be made consistent with both resistiv-
ity and susceptibility results.

The decrease in electrical resistance which
is observed upon cooling a ferromagnet through
the Curie temperature T was discussed many
years ago by Mott' and has been reviewed re-
cently. '&' The relationship between critical
fluctuations and resistivity has received occa-
sional theoretical attention, but the experimen-
tal result that the temperature coefficient of
resistivity [o.(T) = dp/dt, whe-re p is the resis-
tivity] is divergent at Tc appears to have been
overlooked. We find o.(T) to be positive both
above and below T~, and to diverge logarith-
mically above T~ with the strength of the di-
vergence increasing within a few degrees of
the transition. This is contrary to the predic-
tions of Kim4 and of de Qennes and Friedel. '
These authors find the resistivity to exhibit
a cusp at the Curie temperature, so that the
temperature coefficient of resistivity chang-
es sign at the transition. Although a logarith-
mic divergence of the resistivity is predicted,
the sign of o;(T) above the transition is nega-
tive, in disagreement with experiment.
The singular behavior of o.(T) was apparent-

ly first noted by von Bohlen-Halbach and Ger-
lach, ' whose results we reproduce in Fig. l
[a(T)/p is plotted]. No critical discussion of
these results seems ever to have been published.
Although the data points are sparse, and the
Curie temperature differs somewhat from pres-
ent-day values, the solid curve is well repre-
sented some distance above the Curie temper-
ature by an expression of the form -A. ln I T-T~ I
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FIG. 1. The temperature coefficient of resistivity of
Ni was measured over three decades ago by a student
of Gerlach. The results, reproduced here, illustrate
qualitative features (the divergence near T~) relevant
to transport theory today.

+B. Experiments illustrating the logarithmic
divergence both above and below T~ have re-
cently been reported by Kraftmakher. ' Diver-
gent behavior is typical of equilibrium thermo-
dynamic quantities such as specific heat near
second-order phase transitions. ' It now appears
that divergences occur in transport quantities
as well.
In order to characterize the critical behav-

ior near T, we have directly measured o.(T)
in five -9's purity ¹,using an ac resistance
bridge' (usually operated at 33 cps) in which
two of the arms contained identical Ni samples

FIG. 10: dρ/dT in Ni. Reproduced from Ref. [28].

known correlation function, W(q), which we will eventually borrow from the theory of classical

phase transitions. We will also assume that LRD is weaker than SRD, and thus treat the former as

a correction to the latter.

So, we have two kinds of disorder, what’s the total resistivity of the metal? dGF believed

into the conventional Boltzmann equation, which would describe this situation by the sum of two

collision integrals: due to SRD and LRD. The ensuing Matthiessen rule then says that the total

resistivity is proportional to the sum of scattering rates:

ρ =
m∗

e2N

(
1
τs
+

1
τl

)
, (1.68)

where τl is the transport scattering time due to LRD. dGF then invoked the Fermi Golden Rule

(FRG), according to which (in 3D)

1
τl
= 2π

∫ 2kF

0

dqq2

(2π)3 W(q)
q2

2k2
F

∆t(q), (1.69)

where I just took a liberty to denote the angular average of the energy-conserving delta function as

∆t(q) =
∫

dΩqδ(εk − εk+q). (1.70)
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2.4. High temperature and critical point behaviour 

It was observed a long time ago that the resistivities of ferromagnetic metals 
changed slope as a function of temperature at the Curie temperature. For Ni this 
was originally interpreted by Mott (1936) as indicating a reduction of the spin T 
resistivity on ordering. Later work (Kasuya 1956, Yoshida 1957, Coles 1958, Weiss 
and Marotta 1959) showed that spin disorder scattering provided a more general 
explanation. When the resistivities of the 3d ferromagnetic metals are compared 
with those of their non-magnetic 4d and 5d counterparts it can be seen clearly that 
there is an extra magnetic scattering contribution which is approximately constant 
above T~ and which decreases gradually below T~ (fig. 10). The simplest disorder 
model shows that the paramagnetic term above T~ is equal to 

kv(mF)2 t t r  
Pm = 4~e2zfi3 ~ + 1), (26) 

where J is the effective local spin and f '  the local spin conduction electron spin 
coupling parameter. De Gennes and Friedel (1958) suggested that the critical 
magnetic scattering near Tc was similar in type to the critical scattering of 
neutrons and that it should lead to a peak in p(T) at To. Later work by Fisher and 
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Fig. 10. Resistivity of several transit ion metals  as a function of T/OD. OD is the Debye  tempera ture .  

FIG. 11: ρ(T ) in Ni and Co, along with some non-magnetic metals. Reproduced from Ref. [29].

with dΩq being the element of solid angle subtended by q. Note, however, that ∆t(q) does have

units of time, and we will clarify its meaning later. Applying (1.70) for q ≪ kF , we obtain

∆t(q) ∼ 1/3Fq.

At the mean-field level,

W(q) ∝
1

q2 + ξ−2 , (1.71)

where ξ ∝ |θ|−1/2 and θ = (T − Tc)/Tc ≪ 1. Power-counting the integrand, we see that integral is

controlled by q ∼ kF , i.e., by short-range physics. Subtracting off this contribution, dGF obtained
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the universal part, coming from q ∼ ξ−1:

1
τl
∝ C − ξ−2

∫ 2kF

0

dqq
q2 + ξ−2 = C − |θ| ln

1
|θ|
. (1.72)

This is now known as “de Gennes-Friedel” scaling.

Ten years later, Fisher and Langer (FL) [31] re-visited the same problem and pointed out several

issues with dGF solution. First–and obvious–issue was the dGF theory contradicted the experi-

mental results, at least those that had been know prior to 1968. Indeed, (1.72) predicts that the ρ

itself has an upward cusp, while dρ/dT diverges as ln |θ|−1. However, ρ of Ni and Co [cf. Fig. (11)]

increases monotonically with T , exhibiting a knee, rather than a cusp, at Tc, while dρ/dT exhibits

a cusp. Second, FL argued that Matthiessen’s rule is not applicable if the mean free path due to

SRD, ℓs = 3Fτs, is shorter than ξ, which is guaranteed to be the case close enough to Tc. They

did not fix this problem, however, but merely pointed out that “smearing” of electron states by

SRD should weaken the dGF singularity, and the issue had remained unresolved until recently. Fi-

nally, they rolled yet another counter-argument, beautiful in its simplicity. This argument is about

short-range contribution–the C term in (1.72)–which was discarded by dGF as ”uninteresting”.

However, FL argued that this term is, in fact, very interesting as it does encode a singular depen-

dence on θ. Indeed, in a metallic FM, such as Ni or Co, kF ∼ a−1 = a−1
M , where aM is the distance

between localized magnetic moments. This means that the upper-limit contribution to the integral

in (1.69) is coming from the same region as the magnetic internal energy,

U(T ) = −J
∑

n

⟨S0Sn⟩ ∝ −

∫ 1/a

0
dqq2W(q), (1.73)

for a short-range Heisenberg exchange interaction. The temperature derivative of U(T ) is the

magnetic part of the specific heat, which, beyond the mean-field level, is a non-analytic function

of θ: C(T ) ∝ |θ|−α. Here comes the relation, now known as “Fisher-Langer scaling”

dρ
dT
∝

dU
dT
= C(T ) ∝ |θ|−α, (1.74)

or ρ ∝ sgnθ|θ|1−α. A cusp in dρ/dT is consistent with the behavior observed in Ni and Co.

2. Revisiting the Fermi Golden Rule

Although the FL contribution is always there, it turns out there is still a universal contribution,

missed by dGF. This contribution becomes larger than the FL sufficiently close to Tc [7]. To find

this contribution, we need to get back to Eq. (1.69) and clarify the meaning of ∆t(q).
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In the current version of (1.69), there is no mentioning of SRD, which presumes that two

kinds of disorder act independently of each other. When is this valid? Let’s look at the relation

∆t(q) = 1/3Fq and understand its meaning. By uncertainty principle, momentum transfer q occurs

in the region of size 1/q. Then 1/3Fq is the time it takes to accomplish the momentum transfer–let

dub it as the “interaction time”. SRD is irrelevant if momentum transfer occurs in the region which

is much smaller than the mean free path due to SRD. For the universal contribution, q ∼ 1/ξ and

thus the condition is ξ ≪ ℓs. This is the ballistic regime, where the dGF scaling is valid. In the

opposite, diffusive regime, when ξ ≫ ℓs, two effects occur. First–as FL pointed out–scattering

by SRD smears out electron states. This means that the delta function in (1.70) must be replaced

by a Lorentzian of width τs. Accordingly, ∆t(q) ∼ τs = const, which adds an extra factor of

q to the integrand of the second term in (1.72). This, indeed, weakens the singularity, as FL

conjectured. More important, however, is the second effect of diffusion: now the time to traverse

a region of size 1/q is ∆t(q) ∼ 1/Dsq2, where Ds = (1/3)32Fτs is the diffusion coefficient due to

SRD. The diffusive ∆t(q) is more singular than the ballistic one, which removes a factor of q from

the integrand in (1.72). Extracting the FL singularity from the first (C) term in this equation, we

obtain the resistive anomaly as

δρ = asgn(θ)|θ|1−α + b|θ|1/2 (1.75)

or
dρ
dT
= a′|θ|−α + b′sgn(θ)|θ|−1/2. (1.76)

If α < 1/2, the second, “diffusive” term is larger than the FL one.

Of course, such a comparison is not really correct, as α = 0 at the mean-field level. To see what

replaces the mean-field exponent of 1/2 in the diffusive term, one can invoke the asymptotic form

of the exact correlation function [32, 33]

W(q) = q−2+η

A + B± sgn θ
(
|θ|

q1/ν

)1−α

+C±
|θ|

q1/ν + . . .

 (1.77)

with A > 0, and B±, C± being generally different above and below Tc. For a general form of W(q),

the critical part of ρ in the diffusive limit becomes

δρ = asgn(θ)|θ|1−α +
∫

dqq2W(q) (1.78)

Substituting (1.77) into the second term in (1.78), and integrating over the interval ξ−1 ≲ q ≲ 1/ℓs,

we obtain

δρ = asgn(θ)|θ|1−α + b|θ|2β (1.79)
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Universality class ν η α 2β γ ζ

O(3), d = 3 [35] 0.71 0.038 -0.13 0.738 1.40 0.39

O(2), d = 3 [36] 0.67 0.038 -0.015 0.698 1.32 0.31

Ising, d = 3 [37, 38] 0.63 0.037 0.11 0.652 1.24 0.24

Ising, d = 2 [34] 1 1/4 0 1/4 7/4 3/4

TABLE I: Critical exponents for common universality classes. ν governs the correlation length, η

is defined in Eq. (1.77), α is the specific heat exponent, β describes the order parameter (2β

governs Bragg peak intensity), γ is the susceptibility exponent, and ζ = ν(2 − η) − 1. For the

d = 2 Ising model, α = 0 implies a logarithmic divergence. Exponents for d = 3 are rounded to

two significant digits.

where β is the order-parameter exponent, defined by ⟨M⟩ ∝ Θ(−θ)(−θ)β and related to other expo-

nents via 2β = (d − 2+ η)ν. Using the hyperscaling relation, νd = 2−α [34] , 2β can be re-written

as

2β = 1 − α − ζ, (1.80)

where ζ = (2 − η)ν − 1. As long as ζ > 0, 2β < 1 − α, the second term in (1.79) is more singular

than the first one. The critical exponents for most common universality classes are listed in Table I.

Form the last column, we see that, indeed, ζ > 0 for all cases.

Hand-waving arguments of given above can be made rigorous in two ways: by straightforward

analysis of Feynman diagrams and via the stochastic Liouville equation.

3. Resistive anomaly from diagrams

Relevant diagrams are shown in Fig. 12. The solid lines are the Green’s functions averaged

over SRD:

⟨GR,A
k (ω)⟩ =

1
ω − ϵk ±

i
2τs

, (1.81)

where ϵk = εk − εF . The dashed line is the LRD correlation function, W(q), while the dotted

line is (momentum-independent) SRD correlation function. The shaded box is the infinite sum of

ladder diagrams, known as “diffuson”, ΛR(q,Ω), derived in Appendix B. As the name suggests,
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a) b) c)

d) e)

f)
g)

= +

h)

FIG. 12: Lowest-order corrections to the conductivity due to long-range disorder. Solid lines:

Green’s functions averaged over realizations of short-range disorder; wiggly lines: current

vertices; dashed line: correlation function of long-range disorder; dotted line: correlation

function of short-range disorder; shaded box: diffuson ladder, satisfying the equation shown

graphically by diagram h.
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the diffuson exhibits a diffusion pole for ωτs and qℓs ≪ 1:

ΛR(q,Ω) ∝
1

Dsq2 − iΩ
. (1.82)

In the ballistic limit ξ ≪ ℓs, diagrams a)-c) reproduce the Fermi Golden Rule in (1.69), and the

corresponding singular contribution coincides with that predicted by dGF, modulo replacing the

mean-field critical exponent 1/2 by an exact one, ν. In the diffusive limit (ξ ≫ ℓs), diagrams a)-c)

become subleading, while the leading ones are diagrams d)-g) with diffuson insertions. For the dc

conductivity, the diffuson enters the result as Λ(q, 0) ∝ 1/Dsq2, which is precisely the diffusive

limit of the interaction time, ∆t(q). The sum of diagrams d)-g) reproduces the diffusion resistive

anomaly, the second term in (1.79). Calculations are rather straightforward, and I refer the reader

to Ref. [7] for details.

The interpretation of the resistive anomaly in the diffusive regime as a classical memory effect

is confirmed by calculating the optical conductivity. For Ω ≪ Ds/ξ
2, the optical conductivity

exhibits an non-analytic scaling: Reσ(Ω) ∝ |Ω|d/2, which corresponds to the power-law tail in the

velocity-velocity correlation function: ⟨v(t) · v(0)⟩ ∝ t−(1+d/2), cf. the discussion in Sec. I A 4.

4. Resistive anomaly from the stochastic Liouville equation

We saw that the approach based on the conventional Boltzmann equation fails to describe the

most interesting (diffusive) regime of the resistive anomaly: according to this equation, the scat-

tering rates due to SRD and LRD simply add, as in (1.68). Why does it fail and can it still be made

to work?

Why it fails: The conventional Boltzmann equation assumes a memory loss between conse-

quitive collisions. But for a LRD the very notion of ”collision” does not make sense: the collision

never ends. As to how it can still work, we need to return to the exact Liouville equation, de-

scribing the motion of a particle in a given realization of LRD, U(r). LRD is now modeled by the

random force on the RHS: −vk ·∇U(r) · ∂k fk. Because the LRD force is non-uniform, we must

also to keep the gradient term, v ·∇r fk, even though the external electric field is still assumed

to be uniform and weak, such that the corresponding force term can be linearized. For general-

ity though, I will keep the time-dependence of E. Scattering by SRD can be still described by a

collision integral–which means that our distribution function is already averaged over SRD and

exact with respect to LRD. However, it is imperative now to use the correct form of the collision
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integral, as in (1.7), rather than its RTA version. Finally, we need to recall that the system is still

non-uniform even in the absence of the electric field, which means that the equilibrium distribution

is f0(ε + U(r)). Collecting everything together, we obtain a stochastic Liouville equation

∂ fk

∂t
+ vk ·∇r fk −∇rU(r) ·

∂ fk

∂k
+

fk − f̄
τs

= e(vk · E(t) f ′0(εk + U(r)) ≡ S k(r), (1.83)

If the Green’s function of (1.83) is known, the distribution function averaged over LRD is found

as

⟨ fk(r, t)⟩ =
∫

ddk′
∫

ddr′
∫

dt′⟨G(k, r, t|k′, r′, t′)S k′(r′, t′)⟩. (1.84)

Note that both G and S k depend on U(r), and thus it is their product that needs to be averaged.

From Eq. (1.84), we find the average current at point r. But since averaging restores translational

invariance, the current must be same at all points, and we can choose r = 0:

⟨j(t)⟩ = −2e
∫

ddk
(2π)d vk⟨ fk(0, t)⟩

= −2e
∫

ddk
(2π)d

∫
ddk′

∫
ddr′

∫
dt′⟨G(k, 0, t|k′, r′, t′)S k′(r′, t′)⟩vk (1.85)

The perturbation theory is developed by expanding G and S k to second order in U(r), and

collecting all terms. The diagrammatic technique can be formulated directly for the conductivity

in terms of the Green’s function of (1.83) without U(r), which is derived in Appendix A. Thanks

to using the correct form of the collision integral, this Green’s function has a diffusion pole, and

thus captures the right physics.

The leading order diagrams for the conductivity are shown in Fig. 13. Evaluating these dia-

grams, one again reproduces the second term in (1.79) [39]

II. HOMEWORK PROBLEMS FOR SECTION I

1. Consider a Boltzmann equation for 2D electrons in the presence of an in-plane electric field

and out-of-plane magnetic fields. The electric field is weak enough for the left-hand side to

be linearized, but the magnetic field is arbitrarily strong (in the classical sense, i.e., ωcτtr is

arbitrary). Assume that the electron spectrum is parabolic, while the probability of elastic

scattering is an arbitrary function of the scattering angle, w(θkk′). With these assumptions,

the Boltzmann equation reads

−
eB
m

(k × B) ·
∂ fk

∂k
−

e
m

(k · E) f ′0 = −
∫

d2k′

(2π)2 w(θkk′)( fk − fk′)δ(εk − εk′). (2.1)
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FIG. 13: Diagrams for the conductivity to second order in LRD. Solid line: the Green’s function

of (??) in the absence of LRD, g(q, ω; k,k′), cf. Eqs. (A5a)-(A5c). Blank circles: Cartesian

components of vk; filled circles: vertices of scattering by LRD, −∇⃗U · ∂/∂k; dashed line: the

correlation function of LRD. The first (unlabeled) term on the RHS is the Drude conductivity in

the presence of SRD only. Diagrams a)-c) are corrections due to LRD. Diagram a) comes from

expanding G to O(U2), while neglecting U in S k. Diagram b) comes from expanding S k to order

O(U2), while neglecting U in G. Diagram c) comes from expanding both G and S k to O(U) and

keeping the cross-term.

Derive Eqs. 1.62. Hint: In transverse geometry (E · B=0) and to linear order in E, one

can form only two scalars out of vectors k, E, and B, namely, k · E and k · (E × B). This

means that the non-equilibrium part of fk can be represented by the sum of two terms:

fk = f1(εk)+C1(B)k ·E+C2(B)k · (E×B), where f1(εk) is an arbitrary function of electron

energy and C1,2(B) are arbitrary functions of the magnitude B.

2. Consider a Boltzmann equation with an arbitrarily strong electric field and elastic scattering

by point impurities

−eE ·
∂ fk

∂k
= −

fk − f̄
τ
. (2.2)

Show that, if i) the electron spectrum is parabolic and ii) τ is independent of energy, the

electric current is strictly linear in E, regardless of how strong the electric field is. Hint:
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multiply both sides of (2.2) by vk and integrate over k, using the fact that
∫

k fk = N , where

N is the number density.

3. Following the energy diffusion model of Sec. I B 4, derive the phase breaking time under

the conditions of quasielastic scattering. Hint: assume that the phase of an electron wave

function is related to electron energy via φ(t) =
∫ t

0
dt′δε(t′), where δε(t) is the average gain

or a loss of energy acquired by time t.

4. Derive a 2D analog of de Gennes-Friedel scaling in Eq. (1.72).

III. TRANSPORT IN NORMAL AND “STRANGE” FERMI LIQUIDS

A. Introduction

The Pauli principle dictates that the scattering rate of two electrons in a Fermi gas scales as

1/τee ∝ T 2. This observation is a foundation, rather than a consequence, of the Landau Fermi-

liquid theory, which, in its original formulation, takes τee to infinity [40]. The Landau Fermi liquid

is a Fermi gas of non-interacting quasi-particles with renormalized parameters: m∗, g∗, etc. The

original Landau Fermi-liquid theory is based on the Boltzmann (kinetic) equation without any

collision integrals on the RHS:

∂ fk

∂t
+ vk ·∇ fk + (Fext −∇δεk) fk = 0, (3.1)

where Fext is the external force, and δk is a change in the quasiparticle energy due a change in the

distribution function

δεk(r, t) =
∫

k′
F(k,k′)δ fk(r, t), (3.2)

and F(k,k′) is the Landau interaction function. The interactions that renormalize quasi-particle

parameters are accounted for via a self-consistent force on the LHS of the BE. These interactions

need not to be weak, the only condition is that the system has to be away of quantum phase tran-

sitions towards broken-symmetry states. The Landau theory describes the low-temperature ther-

modynamics and collective modes (zero-sound, Silin, plasmon, etc.) in the absence of damping.

However, it cannot describe transport properties: for that, one needs to include residual interaction

between quasi-particles among themselves, as well as with impurities and lattice. This requires

adding the corresponding collision integrals to the RHS of (3.2). Therefore, there is no “general”
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Fermi-liquid theory of transport: what we have is a number perturbative approaches, which do

require the interaction between quasi-particles to be weak, and numerical simulations of various

complexity.

B. Conservation of current in Galilean-invariant Fermi liquids

Although common wisdom often relates the resistivity of a (charged) Fermi liquid to the Pauli

scattering rate as ρ ∝ 1/τee ∝ T 2, this relation is tenuous at the best. An obvious counter example is

a Galilean-invariant Fermi liquid, i.e., an electron system with parabolic spectrum. Quasi-particles

in such a system do have finite lifetime, and the thermal diffusivity and viscosity are also finite and

do scale as τee ∝ 1/T 2. However, the dc conductivity of such a system is infinite, which follows

simply from Newton’s Second Law. Indeed, the equation of motion for an electron number i reads

dpi

dt
= −eE +

∑
j,i

Fi j, (3.3)

where Fi j is the Coulomb force between electrons i and j. On summing (3.4) over all particles, the

internal forces cancel each other, and the total momentum is changing only due to the action the

total electric force:

dP
dt
=

N∑
i=1

dpi

dt
= −eNE⇒ P = −eNEt. (3.4)

Accordingly, the center-of-mass velocity also varies linearly with time

u =
P

Nm
= −

e
m

Et, (3.5)

and so does the current density

j = −eNu =
e2N

m
Et (3.6)

where N is the number density. Even for infinitesimaly weak electric field, j → ∞ at t → ∞,

which means that teh conductivity is infinite.

if the electric field oscillates in time, the conductivity is finite but purely imaginary

σ(Ω) =
e2N
miΩ
. (3.7)

Adding an infinitesimally weak dissipation via Ω→ Ω − i0+ gives

σ(Ω) =
πe2N

m
δ(Ω) +

e2N

miΩ
. (3.8)

III TRANSPORT IN NORMAL AND “STRANGE” FERMI LIQUIDS 36



Electron Transport in Fermi liquids and beyond D. L. Maslov and J. Covey

At the quantum level, the Hamiltonian of a system with density-density interaction is given by

(the spin indices are omitted for brevity)

H = H0 + Hint =
∑

k

εkâ†kâk +
1
2

∑
kpq

Uqn̂qn̂−q (3.9)

where n̂q =
∑

k a†k−qa†k is the number density. The corresponding current operator is deduced from

the continuity equation

−e∂tn̂q = iq · ĵq. (3.10)

and the Heisenberg equation of motion for the number density

∂tn̂q = i[n̂q,H] = i[n̂q,H0] + i[n̂q,Hint]. (3.11)

Since n̂q commutes with Hint, we only need the first commutator. Straightforward commutation

algebra yields

ĵq = −e
∑
kσ

vkâ†k−q/2âk+q/2. (3.12)

Next, we calculate the time derivative of the uniform (q = 0) current (this is left as a homework

exercise #1 in Sec. IV)

∂ĵ0 = i[ĵ0,H] = −e
i
2

∑
kq

Uq
(
vk−q/2 + vp+q/2 − vk+q/2 − vp−q/2

)
â†k−q/2â†p+q/2âk+q/2âp−q/2.

(3.13)

For a Galilean-invariant system, v = k/m and thus the combination of the velocities cancel due to

momentum conservation.

Note that the non-uniform current, jq,0, is not conserved, which means that the conductivity at

finite q is finite, rather than infinite. For example, for a 2D system with parabolic dispersion and

Coulomb interaction, we have [41]

Reσ(q,Ω) =
e2

24π2

q2κ2

m2Ω2

(
1 +

4π2T 2

ω

)
ln

kF

κ
, (3.14)

where κ is the inverse screening radius and q ≪ Ω/3F .

In a disordered system, the total electric field, which is the sum of the applied field and the

fields of impurities, is non-uniform. This means that in the presence of disorder electron-electron

interaction does affect the current–we will be exploring consequences of this observation.
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C. Non-Galilean–invariant Fermi liquids without disorder

Now let’s move on to lattice systems, which are not Galilean-invariant. Two things change.

First, the electron spectrum is now non-parabolic and, generally speaking, anisotropic, and mo-

mentum conservation does not imply conservation of the group velocity vk = ∂kεk. Second,

umklapp scattering, which does not conserve the momentum.

1. Momentum-conserving scattering in non-Galilean–invariant Fermi liquids

In this section we will show if the momentum is conserved, electron-electron interaction cannot

render the dc conductivity finite, no matter how anisotropic the spectrum is. To this end, we need

to invoke the Boltzmann equation with the electron-electron collision integral

Iee = −

∫
k′,p,p′

Wk,p→k′p′
[
fk fp (1 − fk′)

(
1 − fp′

)
− fk′ fp′ (1 − fk)

(
1 − fp

)]
×δ

(
εk + εp − εk′ − εp′

)
δ
(
k + p − k′ − p′

)
, (3.15)

If the external electric field is weak, the deviations of the equilibrium are small, and the collision

integral can be linearized. It is convenient to parametrize the distribution function as [42]

fk = f0k + f0k (1 − f0k) gk = f0k − T f ′0kgk (3.16)

a. dc conductivity. We start with the dc case. Linearizing the LHS of the Boltzmann equa-

tion with respect to E and the RHS with respect to gk, we arrive at

e(vk · E) f ′0k =

∫
k′pp′

Wk,p→k′p′
(
gk + gp − gk′ − gp′

)
f0k f0p (1 − f0k′)

(
1 − f0p′

)
×δ

(
k + p − k′ − p′

)
δ
(
εk + εp − εk′ − εp′

)
. (3.17)

Mathematically speaking, (3.17) does not have a unique solution. Indeed, observe that, because of

momentum conservation, the collision integral is nullified by the combination

g0
k = A · k = −C(eE · k), (3.18)

where A is k-independent but otherwise arbitrary vector, which are free to choose in a form spec-

ified above with C being an arbitrary constant [10]. In mathematical terms, g0
k is the zero mode

of the integral operator in (3.17). Therefore, if we found a partial solution of the inhomogeneous

problem, g̃k, we can always obtain another solution by adding this combination

gk = g̃k −C(eE · k). (3.19)
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Accordingly, the current will change by the amount

δj = e2C
∫

k
vk(E · k) f0k(1 − f0k), (3.20)

Notice that C can be arbitrarily large and its sign can correspond to the current flowing in the

direction opposite to that of the electric field, which means Joule cooling of the sample. and the

conductivity by

δσαβ = e2C
∫

k
3αkβ f0k(1 − f0k). (3.21)

Because we are free to choose C positive and infinitely large, the conductivity can be made infinite.

Note that δσαβ = 0 only if S αβ =
∫

dOk3αkβ = 0 for any α and β, where dOk is the solid angle

element. It is easy to see that at least the diagonal components, S αα, are finite. Indeed, assume that

opposite is true: S xx =
∫

dOk3xkx = 0, S yy =
∫

dOk3yky = 0 ... Adding these relations together, we

obtain
∫

dOk (vk · k) = 0, but this cannot happen because vk · k is even on k → −k. Therefore,

momentum-conserving electron-electron interaction alone cannot control the dc conductivity.

b. Compensated metals. There is one but important exception from this rule: a metal

with closed Fermi pockets that contain equal numbers of electron and hole, which is known

as a“compensated metal”. However, a compensated metal is an exception of this rule, because

solution (3.18) corresponds to zero current [10]. Indeed, re-write (3.20) for the extra current as

δj = e2CT
∫

k
(E · k)vk

∂ f0k

∂εk
= e2CT

∫
k
(E · k)

∂ f0k

∂k
, (3.22)

Now we introduce the distribution function for holes f (h)
0k = 1 − f0k and split the integral into two

parts, going over the electron and hole pockets of the Fermi surface, respectively:

δj = e2CT

∫
k∈eFS

(E · k)
∂ f0k

∂k
−

∫
k∈hFS

(E · k)
∂ f (h)

k0

∂k

 . (3.23)

Integrating by parts and discarding the boundary terms, which are zero because a closed Fermi

surface does not cross the boundaries of the Brillouin zone, we obtain

δj = e2CTE
[
−

∫
k∈eFS
+

∫
k∈hFS

f (h)
0

]
= e2CTE(Nh − Ne), (3.24)

where Ne and Nn are the number densities of electrons and holes. For a compensated metal,

Ne = Ne and thus δj = 0. As we see, this condition does not depend on the actual shapes of

pockets.
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For the model case of two spherical electron and hole pockets with masses m±, the linearized

Boltzmann equation can be solved exactly, generalizing the method of Refs. [43–45], developed

originally for 3He. The result is the expected FL behavior [46, 47]

ρ =

√
m+m−
e2N

1
τee

(3.25)

where 1/τee = AT 2/εF and A depends on the details of the scattering probability. T 2 scaling of

teh resistivity resulting from electron-hole scattering in a compensated metal is known as Baber

mechanism [48].

The proof above works for systems with electron and hole pockets located in different regions

of the Brillouin zone, which is the case, e.g., in Bi. However, it can be also modified to apply a

zero-gap semiconductor at charge neutrality as well. As an example, consider a single Dirac cone

with linear spectrum ε± = ±3Dk. Re-write the extra current as

δj = e2CT
∫

k
E · k

[
v+(k) f ′0+ + v−(k) f ′0−

]
(3.26)

where

− f ′0± =
1

4T cosh2 ±3Dk−εF
2T

(3.27)

and v±(k) = ±3Dk̂. Substituting the last two equations into (3.26) yields

δj =
1
4

e2C3D

∫
k
(E · k)k̂

 1

cosh2 3Dk−εF
2T

−
1

cosh2 3Dk+εF
2T

 . (3.28)

At the charge neutrality point (CNP), where εF = 0, the integral vanishes. Therefore, the conduc-

tivity of a Dirac system at CNP can be controlled by electron-hole interaction alone [49–51].

c. Optical conductivity. Now let’s look at the oscillatory driving field, E = E0e−iΩt. Accord-

ingly, (3.17) is replaced by

iΩ f0k(1 − f0k)gk + e(vk · E0) f ′0k =

∫
k′pp′

Wk,p→k′p′
(
gk + gp − gk′ − gp′

)
f0k f0p (1 − f0k′)

(
1 − f0p′

)
×δ

(
k + p − k′ − p′

)
δ
(
εk + εp − εk′ − εp′

)
, (3.29)

or, recalling that f0k(1 − f0k) = −T f ′0k and canceling the common factors,

iΩgk −
e
T

(vk · E0) =
∫

k′pp′
Wk,p→k′p′

(
gk + gp − gk′ − gp′

) 1 − f0k′

1 − f0k
f0p

(
1 − f0p′

)
×δ

(
k + p − k′ − p′

)
δ
(
εk + εp − εk′ − εp′

)
(3.30)
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Now the freedom of adding the zero mode (3.18) is gone, and (3.30) should have a unique solution.

The units of the RHS is the scattering rate. Let’s denote the order-of-magnitude of this rate as 1/τ j,

which may or may not coincide with the Pauli rate, 1/τee. When Ωτ j ≫ 1, one can iterate in the

collision integral. The zeroth order iteration yields

g(0)
k =

e(vk · E0)
iΩT

. (3.31)

The corresponding contribution to the conductivity is purely imaginary-the second term in (3.8).

Substituting this back into (3.30) and iterating one more time, we obtain

g(1)
k = −

e
TΩ2

∫
k′pp′

Wk,p→k′p′
(
vk + vp − vk′ − vp′

)
· E0

1 − f0k′

1 − f0k
f0p

(
1 − f0p′

)
×δ

(
k + p − k′ − p′

)
δ
(
εk + εp − εk′ − εp′

)
. (3.32)

In a Galilean-invariant system, the combination of velocities in in the first line of the last equation

vanishes, and the same will be true to all orders 1/Ωτ j. As long as vk , k/m, however, this

combination is, in general, finite, and thus g(1)
k will contribute to Reσ(Ω). Therefore, the optical

conductivity can be controlled by electron-electron interactions alone, as long as the system is not

Galilean-invariant. The corresponding contribution to the conductivity behaves as

Reσ(Ω) ∝
1
Ω2τ j

. (3.33)

Power-counting yields that, generically, 1/τ j ∝ T 2, although, as we will see later, additional

conservation laws may reduce it to 1/τ j ∝ T 4.

Equation (3.33) looks like a high-frequency limit of the Drude formula

ReσD(Ω) ∝
τ j

1 + Ω2τ2
j

, (3.34)

which does a finite dc limit ReΣ(0) ∝ τ j. Nevertheless, we showed in Sec. III C 1 a that e-e

interactions cannot control the dc conductivity, unless the metal is compensated. The resolution

of this contradiction is that the conductivity of a non-Galilean Fermi liquid with momentum-

conserving e-e scattering and in the absence of disorder contains two terms, singular and regular

[52]:

Reσ(Ω) = Dδ(Ω) + σreg(Ω,T ), (3.35)

where D denotes the Drude weight, while the Ω → 0 Ω → ∞ limits σreg(Ω,T ) coincide with

the corresponding limits of the Drude conductivity in (3.34). Therefore, the conductivity is finite
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at any Ω , 0 but infinite at Ω = 0. Momentum-non-conserving scattering due to impurities,

umklapps, phonons, etc. smears the delta function, such that the conductivity becomes finite

at Ω = 0 as well. For a compensated metal, D = 0 [52], and the regular part determines the

conductivity at any Ω.

On general grounds, one would expect 1/τ j to depend on T and Ω in a symmetric way, e.g.,

1/τ j(T,Ω) ∝ max{T 2,Ω2}. However, since the RHS of (3.42) does not contain Ω, the ensuing

1/τ j may depend only on T . This is a drawback of the semiclassical Boltzmann equation, which

is valid only for Ω ≪ T . To restore duality between Ω and T one has to use either the quantum

Boltzmann equation or Kubo formula.

2. Umklapp scattering

In the presence of lattice, momentum is conserved only up to an integer number of reciprocal

lattice vectors:

k + p = k′ + p′ + nb. (3.36)

n = 0 corresponds to momentum-conserving or “normal” scattering, considered in the previous

section. n , 0 corresponds to umklapp scattering. For umklapp scattering, (3.18) is no longer a

solution of (3.17). Power-counting the collision integral, one obtains the expected Fermi-liquid

scaling ρ ∝ T 2, which is known as Landau-Pomeranchuk mechanism [40, 53].

Umklapp scattering requires two conditions. First is that the Fermi surface must be large

enough to accommodate the condition |k + p − k′ − p′| ≥ b or kF max ≥ b/4, where kF max is

the longest radius of the Fermi surface. In a multi-valley system, the valleys have to be separated

by reciprocal lattice vector. This is the case, for example, in Ge, where the distance between the

electron valleys, located at the L points of the Brillouin zone, is b001/2 (cf. Fig. 14. Therefore,

a simultaneous transfer of two electrons from one valley to another satisfies the umklapp condi-

tion. If the umklapp condition is not satisfied, the corresponding contribution to the resistivity is

exponentially small, ρ ∝ exp(−∆k/T ), where ∆k is the momentum deficit.

In the case of honeycomb lattice, shown in Fig. 15, the centers of the K and K′ valleys are

separated by b/3, which is not enough to allow for umklapp scattering at low filling. Then the

Fermi surfaces has to be also larger enough to accommodate for missing momentum. If the Fermi

contours are modeled by circles of radii kF , then the largest change in momentum is achieved in
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FIG. 14: Reproduced from Ref. [54].

a process, in which two electrons are taken from lowest point of the first valley and transferred to

the highest point of the second valley. Umklapp becomes possible if [55]

4kF + 2b/3 ≥ b⇒ kF ≥ b/12. (3.37)

This condition can be readily satisfied in twisted bilayer graphene [56], where b is related to

the spacing of superlattice, which is significantly larger than the atomic spacing in monolayer

graphene. (To determine the umklapp threshold more accurately one certainly needs to take into

account anisotropy of the Fermi surface, which is significant at high filling.)

The second condition is that, even if the Fermi surface is sufficiently large, the interaction

should allow large (∼ kF ∼ b) momentum transfers. Suppose that the opposite is true, i.e., that e-e

scattering is of the forward type. Consider an umklapp process on a 2D Fermi surface shown in

Fig. (16). Since momentum transfers are small, we have either k ≈ k′ or p ≈ p′. Accordingly,

umklapp condition (3.36) needs to be satisfied at the expense of the other two momenta, e.g.,

|p − p′| ≈ b, which pins p and p′ to small spots near the boundaries of the Brillouin zone. In this
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b

b = b1 − b2

b/3

Minimum condition for umklapps

kin = − 2kF

kf = 2 (kF + b
3 )

→ Δk = kf − kin = 4kF + 2b
3 ≥ b → kf ≥ b

12
Obtains in TBG with superlattice constant ∼ 50 − 100 Å

FIG. 15: Left: If the Fermi surface is too small, umklapps are forbidden. Right: An example of

inter-valley umklapp process on honeycomb lattice [55].

FIG. 16: Umklapp process for forward scattering [57].

case, umklapp contribution to the resistivity is suppressed in proportion to q̄2/k2
F , where q̄ is the

typical momentum transfer [57]. This condition becomes relevant near the quantum critical points,

separating the high-symmetry phase and a phase with spatially uniform order, e.g., a ferromagnet

or nematic. 11

11 Accidentally, two umklapp hot spots can happen to be close to each other. This case is considered in Ref. [58].
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D. What about the experiment?

Armed with understanding acquired in previous sections, we now look at several examples of

T 2 scaling observed in real systems.

Figure 17 illustrates T 2 scaling of the resistivity in aluminum (left) and a heavy-fermion metal

CeAl3. In both cases, the Fermi surfaces are large and there is no reason to assume that the

interaction is of the forward-scattering type. Therefore, we can safely attribute the T 2 behavior to

umklapps, as in the Landau-Pomeranchu mechanism.

Figure 18 shows the temperature dependence of electron and hole mobilities in bismuth. Both

mobilities behave as 1/T 2, which means that the scattering rate scales as T 2. Bismuth is an

archetypic compensated semi-metal, with small and equal number densities of electrons and holes:

Ne = Nh = 4×1017 cm−3, located in different regions of the BZ. Baber mechanism is fully expected

to work here, as well as in other compensated semi-metals.

The two examples above fit squarely into the conventional Fermi-liquid behavior. Now, we

come to a family “strange” Fermi liquids. The first example is doped quantum paraelectric (an

insulator very close to ferroelectricity but never making it) SrTiO3 (STO). T 2 scaling behavior in

its resistivity had been observed since 1950s, but it did not cause any surprise until a seminal paper

[59] pointed out that, for most of the doping range, the Fermi surface is too small to accommo-

date umklapp processes. And STO is not a compensated semi-metal. Yet, the resistivity exhibits

a strongly pronounced T 2 behavior over a wide temperature range, which is much wider that in

canonical “umklapp” materials in Fig. 17. In fact, the temperature range of the T 2 behavior is

too wide, as it goes through a number of apparently relevant energy scales. At low doping, the

T 2 behavior is observed both below and above the Fermi energy, indicated by an arrow in the top

panel of Fig. 19. Since a Fermi-liquid behavior is supposed to strictly bounded to T below (in

fact, well below) the Fermi energy, theorists (including this author) started to search for another

source of T 2 scaling, not related to e-e interaction. In fact, STO is a highly unusual material. Its

proximity to ferroelectricity gives rise to two unusual but related properties: i) the lattice dielectric

constant is very high, reaching 25, 000 at liquid helium and ii) the transverse optical phonon mode

is very soft, with frequency ω0 ∼ 10 K, also at helium. The first property effective eliminates

the Coulomb interaction between free charge carriers. The second property makes the temper-

ature separating equipartition and inelastic ranges of electron-phonon interaction, discussed in

Sec. I B 4, to be abnormally low. An additional quirk is that electrons do not couple directly to
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polarization produced by a transverse optical mode: such a coupling should be of the form ∇ · P,

which is zero for transverse polarization P. This means that single-phonon scattering is forbidden,

but two-phonon scattering (described by diagrams in the lower panel of Fig. 20) is allowed. For

the same reason as single-phonon scattering in the equipartition regime gives ρ ∝ T , two-phonon

scattering gives ρ ∝ T 2 [60]. As a bonus, this model explains why EF is not a relevant energy

scale: the dependence of two-phonon scattering rate on electron momentum cancel out between

the electron-phonon vertex and electron density of states, making the rate to be the same for de-

generate and non-degenerate electrons. The two-phonon model describes the data in the interval

T > ω0 reasonably well (at higher T , one needs to add scattering by LO phonons). In fact–and this

is a problem–it describes the data even below ω0, where scattering is inelastic rather than quasi-

elastic. In fact, the same model should predict ρ ∝ exp(−ω0/T ) for T ≪ ω0 due an exponential

freeze-out of the optical phonons.

The two-phonon model comes with two falsifiable predictions. First, as discussed I B 4, one

should observe the universal Lorentz ratio in the quasi-elastic regime. Instead, one observes that

both the charge resistivity and thermal resistivity, W = CT/κ, scale as T 2 [61], which indicates

the common origin and charge and heat transport. However, the Lorentz ratio is only about 1/3

of the universal value, which is typical for small-angle scattering but not expected within the

two-phonon mechanism. To be precise, the measurements in Ref. [61] were performed on much

heavier doped samples N ∼ 1020 cm−3, when all three d-bands are occupied, whereas the data in

Fig. 20 corresponds to much lower doping (4×1017 cm−3), when only the lowest band is occupied.

As will see in the next section, a FL-like T 2 term is expected in a disordered multi-band system.

Second, the two-phonon mechanism predicts that the energy relaxation rate is independent of

T . Indeed, substituting τsp ∝ 1/T 2 into (1.67), we obtain τε = const. Instead, recent experi-

ment observed that 1/τε increases with T [62]. Again, the experiment was performed on highly-

doped samples, where the two-phonon model is not applicable. Indeed, the Bloch-Grueneisen

temperature for scattering at a dispersive optical phonon is TBG = ω0(q = 2kF), which for STO

translates into TBG =

√
ω2

0(q = 0) + (2kF)2s2, where s ≈ 6.6 × 105 cm/s from neutron scattering.

At n ∼ 1020 cm−3, TBG ∼ 250 K which means that the data in [62] was collected in the inelastic

regime. It would be fair to say the two experiments described above neither confirmed no ruled out

the two-phonon mechanism, and thus a T 2 behavior in STO still remains somewhat mysterious.

As we have just seen, STO is a rather exotic material. What about something simpler, such

is a plain vanilla doped semiconductor? Figure 21 shows the resistivity of just that: a doped

III TRANSPORT IN NORMAL AND “STRANGE” FERMI LIQUIDS 46



Electron Transport in Fermi liquids and beyond D. L. Maslov and J. Covey

semiconductor Bi2O2Se [63]. There is nothing exotic about this material, in particular, it does not

have soft optical modes. Nevertheless, it does exhibit ρ ∝ T 2 also over a wide temperature range.

However, the Fermi energy in Bi2O2Se is much higher than in STO, and T 2 scaling does not extend

into a non-degenerate range.

One more recent addition to the family of strange liquids is illustrated in Fig. 22: it’s a two-

dimensional electron gas (2DEG) in HgTe quantum well [64]. Again, no umklapps, no compen-

sation, yet a T 2 behavior is still pronounced.

Finally, Fig. 23 shows unpublished data from Denis Bandurin’s group at the National University

of Singapore on TBG away from the magic angle [56]. Here, the story is more complicated,

because, as discussed in Sec. III C 2, TBG can be gated into the regime, where umklapps are

allowed. Figure 24 shows the number-density dependence of the coefficient Aρ2 in the relation

ρ = Aρ2T 2. The blue curve is obtained by subtracting the T 2 term arising from the impurity part

of the resistivity at finite T . 12 The vertical lines indicate umklapp thresholds calculated by Joshua

Covey using a realistic band structure model. It is clear that Aρ2 behaves differently above and

below the threshold. Therefore, the T 2 behavior above the threshold can be attributed to inter-

valley umklapp scattering. An additional confirmation of the e-e origin of the T 2 term is the data

obtained under THz radiation, while the lattice was kept at the lowest temperature. As shown

in panel B, THz radiation increase the resistivity. Given THz is absorbed mostly by electrons,

it means that in a situation when Te , TL, the resistivity follows the electron rather than lattice

temperature. This rules out phonons as the source of the T -dependence.

However, there is also a range of densities below the umklapp threshold, where ρ ∝ T 2, al-

though umklapps are not allowed. Along with STO, Bi2O2Se, and HgTe, this range belongs to the

category of strange Fermi liquids.

E. Non-Galilean–invariant Fermi liquids with disorder

1. Generic case

There is one more aspect of the story that we have discussed yet: what happens if one takes

disorder, which is always present in real materials. Naively speaking, can one have a situation
12 For elastic scattering, the conductivity at finite T is related to that at finite energy of an electron via σi(T ) =∫

dε(− f ′0)σi(ε). On its turn, σi(ε) is obtained from the residual resistivity as a function of n as σi(εF) = 1/ρi (εF(n))

with εF(n) calculated from a band structure model.
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when the corresponding scattering rates just add up, such that

ρ ∝
1
τimp
+

1
τee
= const + AT 2 ? (3.38)

The answer is yes and no. Yes, in a sense that if the system is non-Galilean–invariant, e-e in-

teraction can add a T -dependent correction to the resistivity, which scales, generically, T 2, but

can be reduced down to T 4. No, in a sense that (3.38) works only at low enough T , when as

1/τee ≪ 1/τimp. For 1/τee ≫ 1/τimp, the resistivity saturates–in the absence of phonons–at another

T -independent value, which is controlled only by disorder and which may or may not coincide

with the residual resistivity.

Now let’s go back to (3.29), put Ω = 0, but add the e-i collision integral instead. As we

have shown that the RTA form is good enough for weak and uniform electric fields, I choose the

simplest form, applicable for point-like impurities

Iei =
fk0 − fk

τimp
= −

f0k(1 − f0k)gk

τimp
(3.39)

Instead of (3.30) we then obtain

gk

τimp
−

e
T

(vk · E) =
∫

k′pp′
Wk,p→k′p′

(
gk + gp − gk′ − gp′

) 1 − f0k′

1 − f0k
f0p

(
1 − f0p′

)
×δ

(
k + p − k′ − p′

)
δ
(
εk + εp − εk′ − εp′

)
. (3.40)

As for the optical conductivity, we can iterate in Iee if 1/τee ≪ 1/τimp. The zeroth and first order

iterations are given by

g(0)
k = τimp

e(vk · E)
T

(3.41)

and

g(1)
k =

eτ2
imp

T

∫
k′pp′

Wk,p→k′p′
(
vk + vp − vk′ − vp′

)
· E0

1 − f0k′

1 − f0k
f0p

(
1 − f0p′

)
×δ

(
k + p − k′ − p′

)
δ
(
εk + εp − εk′ − εp′

)
. (3.42)

Substituting the last result into the current, we obtain the correction to the σαβ component of

the conductivity

δσαβ = −
2e2τ2

imp

T

∫
k,p,k′,p′

Wk,p→k′,p′ f0k f0p(1 − f0k′)(1 − f0p′)

×3k,α
(
3k,β + 3p,β − 3k′,β − 3p′,β

)
δ
(
k + p − k′ − p′

)
δ
(
εk + εp − εk′ − εp′

)
. (3.43)
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FIG. 17: Top: Resistivity of Al. Reproduced from Ref. [65]. Bottom: Resistivity of a heavy

fermion metal CeAl3 below 0.1 K. Reproduced from Ref. [66].

In the presence of time-reversal and inversion symmetries, the scattering kernel is symmetric with

respect two permutations of the fermionic momenta. Using these symmetries, one can re-write the

last equation in a more symmetric form [5, 57, 68]

δσαβ = −
e2τ2

imp

2T

∫
k,p,k′,p′

Wk,p→k′,p′ f0k f0p(1 − f0k′)(1 − f0p′)

×
(
3k,α + 3p,α − 3k′,α − 3p′,α

) (
3k,β + 3p,β − 3k′,β − 3p′,β

)
×δ

(
k + p − k′ − p′

)
δ
(
εk + εp − εk′ − εp′

)
. (3.44)

Let’s power-count the last result. The integrals over three independent energies, e.g., εk, εp, and

εk′ , give a factor of T 3.13 With an additional 1/T factor, we obtain δσαβ ∝ T 2. The corresponding

13 This is true for a generic case. Additional cancellations, arising in special cases, are discussed in Sec. III E 2.
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FIG. 18: Mobilities of electrons (µ1) and holes (ν1) in a compensated semi-metal Bi. The straight

lines indicate T−2 fits. Reproduced from Ref. [67].

FIG. 19: Resistivity of a doped quantum paraelectric SrTiO3. Reproduced from Ref. [59].
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ρ ¼ 3m"T
2e2n

R∞
−∞ dϵ̃e−ϵ̃=T

R∞
0 dξNðξÞð−ÞImGðξ; ϵÞR∞

−∞ dϵ̃e−ϵ̃=T
R∞
0 dξNðξÞξ½ImGðξ; ϵÞ&2

; ð14Þ

where NðξÞ ¼ m"3=2 ffiffiffiffiffi
2ξ

p
=π2 is the density of states. The

numerator in Eq. (14) comes from the relation between the
chemical potential and number density. The lower limit in
the ϵ̃ integrals is −ϵ0, and the Boltzmann factor e−ϵ̃=T is
exponentially large near −ϵ0. Therefore, the ϵ̃ integrals
come from the near-threshold region, where the self-energy
is given by Eqs. (12) and (13). Substituting these forms into
Eq. (14), we obtain

ρ ¼ 5.6
m"

ne2
ffiffiffiffiffiffiffiffi
Tϵ0

p
∝ T3=2: ð15Þ

Despite the Drude-like appearance of Eq. (15), its
physical content is very different because transport in this
regime is controlled by off-shell electrons with ϵ̃ ≈ −ϵ0 and
ξ ∼ ϵ0. However, if one still chooses to interpret Eq. (15) in
a Drude-like way, the corresponding scattering time τD ∼
E1=2
0 =T3=2 is shorter than the Planckian bound, τP ¼ 1=T,

for T ≫ E0. In Supplemental Material [26], we show that
the analytic results in Eqs. (8), (12), and (15) are confirmed
by a numerical solution of Eq. (9). In particular, the inset in
Fig. 2 shows the resistivity obtained by substituting a
numerical solution of Eq. (9) into Eq. (14).
We now discuss briefly the role of other diagrams in

Fig. 1. For EF ≪ T ≪ E0, the higher-order umbrella
diagrams [Figs. 1(b), 1(c), etc.], provide corrections of
order

ffiffiffiffiffiffiffiffiffiffiffi
T=E0

p
, as specified in Eq. (7). For T ≫ E0, it is the

self-energy near the threshold that matters to transport.

Near the threshold, umbrella diagrams modify scaling
function S in Eq. (12) but not the square-root singularity
in ImΣ as a function of ϵ [26]. Therefore, these diagrams
affect only the numerical coefficient in Eq. (15) but not the
T3=2 scaling of ρ. Next, Fig. 1(e) is a vertex correction to
Fig. 1(a), which is small by an effective Migdal parameter,
m"s2=E0 ∼ 0.03 [26]. Finally, Fig. 1(f) describes a four-
phonon process, which gives a subleading correction to the
resistivity for T below the melting temperature.
We now compare the theoretical results to the data for

STO, restoring the gap (ω0) in the phonon dispersion. The
T dependence of ω0 is obtained by substituting the
measured ε0ðTÞ [36] into the LST relation [above
Eq. (5)]. However, due to a partial cancellation between
the T dependences of ω0 and of the rms electron momen-
tum, the T dependence of ω0 does not change the results
significantly [24–26]. The 2TO contribution to the resis-
tivity is described by an interpolation formula that repro-
duces the analytic results at low and high T [Eqs. (8) and
(15), respectively], with 2TO coupling constant g2 as a
fitting parameter. In the experiment, ρ varies faster than T2

at higher T: a power-law fit gives ρ ∝ T2.7−3 [6,42–44].
An exponent larger than 2 was conjectured to result from
multi-TO-phonon scattering [44]. However, we have shown
that TO scattering gives a slower than T2 variation of ρ for
T ≫ E0 [cf. Eq. (15)]. An alternative explanation of the
faster than T2 dependence is scattering by LO phonons
[45–48]. We adopt the latter model here and include
scattering by the 58 meV LO mode within the Low-
Pines approach [49], treating the Fröhlich coupling

(a)

(b)

FIG. 2. Resistivity of SrTiO3 [36] (minus the residual value ρ0) (points, red) vs theory (solid, black), which includes scattering by two
TO phonons and by the 58 meV LO phonon. An extrapolation of the theory to the regime of T < ω0 is shown by the dashed line. The
dash-dotted line is a T2 fit to the data (shifted for clarity). Insets: (a) The temperature dependence of the resistivity predicted by the 2TO
model, obtained by a numerical solution of Eqs. (9) and (14), along with the fits to the asymptotic results. Here, ρs ¼ m"E0=ne2. (b) An
enlargement on the low-temperature region of the main panel.
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We consider 3D electrons coupled to an O(3) electric
polarization PðrÞ, produced by TO phonons. Because
∇ · P ¼ 0, single-phonon coupling is forbidden and the
Hamiltonian starts with a two-phonon term [24–26]

H2TO ¼ g2
2

Z
d3rP2ðrÞψ†ðrÞψðrÞ; ð1Þ

where g2 is the coupling constant (with units of the
volume). Other than allowing for TO modes, we treat
the material as isotropic. For a TO mode with dispersion
ω2
q ¼ ω2

0 þ s2q2 and polarization eaq,

PðrÞ ¼
X

q;a

eaqffiffiffiffi
V

p Aqbqeiq·r þ H:c:; ð2Þ

where A2
q ¼ ½ε0ðqÞ − ε∞&ωq=4π [34]. The sum over a ¼ 1,

2 accounts for two (degenerate) branches of the TO mode,
ε0ðqÞ and ε∞ are the static and high-frequency limits of the
dielectric function, respectively, and bq is the bosonic
annihilation operator. The diagrams for the electron
self-energy are shown in Fig. 1, where the solid and wavy
lines denote the (Matsubara) electron and phonon
Green’s functions, Gðk; ϵmÞ and Dðq;ωmÞ, respectively,
and solid dots denote the electron-2TO-phonon vertex
ΓαβðqÞ ¼ g2A2

qðδαβ − qαqβ=q2Þ. Phonons will be treated
as bare ones; hence Dðq;ωmÞ ¼ −2ωq=ðω2

m þ ω2
qÞ.

We now focus on the classical regime, when phonons
can be treated as static “thermal disorder” [35], which
corresponds to setting ωm ¼ 0 in the phonon lines. After
analytic continuation iϵm → ϵþ i0þ, Fig. 1(a) yields

Σðk; ϵÞ ¼
Z

q
Gðkþ q; ϵÞUðqÞ; ð3Þ

where the correlation function of thermal disorder is

UðqÞ ¼ 2T2

Z
d3q1
ð2πÞ3

X

αβ

Γαβðq1Þ
ωq1

Γβαðq − q1Þ
ωq−q1

: ð4Þ

Other diagrams can be treated in a similar manner.
We also assume for now that the material is very close to

the quantum-critical point, so that the gap in the phonon
dispersion can be neglected, i.e., ωq ¼ sq. Neglecting also
ϵ∞ compared to ε0ðqÞ and excluding ε0ðqÞ via the Lyddan-
Sachs-Teller (LST) relation ε0ðqÞ ¼ Ω2

0=ω
2
q and integrating

over q1, we obtain

UðqÞ ¼ 3π
2m'q

T2

E0

with E0 ≡ 64π3s4

m'g22Ω4
0

; ð5Þ

where E0 is characteristic energy scale of the model. The
1=q scaling of UðqÞ (or 1=r2 scaling is real space) will be
crucial in what follows.
For T ≪ E0, thermal disorder is weak. This is the

quasiparticle regime, when Fig. 1(a) with G replaced by
its free-electron form,G0ðk; ϵÞ ¼ ðϵ − ξk þ μþ i0Þ−1 with
ξk ¼ k2=2m', gives the leading-order result. Accounting
also for a transport correction, we obtain the standard result
for the transport scattering rate

1

τ
¼ 2π

Z
d3q
ð2πÞ3

δðξkþq − ξkÞUðqÞð1 − cos θÞ; ð6Þ

where θ is the angle between k and kþ q. (The difference
between the quantum and transport rates is insignificant
because our thermal disorder is relatively short ranged; as a
result, the two rates differ only by a factor of 2=3).
In general, τ depends on the electron energy ξk via the

electron density of states. This is the reason why, for
example, the resistivity of a semiconductor due to acoustic
phonon scattering scales as T for T ≪ EF and as T3=2 for
T ≫ EF. Our case of UðqÞ ∝ 1=q is, however, special: the
1=q factor cancels out with the density of states, and the
result does not depend on ξk. Evaluating also Figs. 1(b)
and 1(c), we obtain

1

τ
¼ T2

E0

− 1.24
T3

ffiffiffiffiffiffi
m'

p

kE3=2
0

þO
"
T5m'3=2

k3E5=2
0

#
: ð7Þ

The leading term in Eq. (7) is the most relevant one for
the experiment: because it does not depend on ξk, its
thermal average does not depend on the statistics of charge
carriers, and the corresponding resistivity

FIG. 1. Diagrams for the electron self-energy due to scattering
by TO phonons. (a) Two-loop two-phonon diagram. (b),(c)
Three- and four-loop “umbrella” diagrams without crossings.
(d),(e) Examples of diagrams with crossings. (f) Four-phonon
diagram resulting from adding a P4 term to Eq. (1).
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FIG. 20: Top panel.Red curve: resistivity of STO at n = 4.0 × 1017 cm−3. Black curve:

two-phonon model with an additional contribution due to scattering by LO phonons. Bottom:

two-phonon diagrams for the electron self-energy. Reproduced from [60].

correction to the conductivity can be written as,

δσ = −σimp
τimp

τ j
(3.45)

where 1/τ j ∝ T 2. Accordingly

ρ =
1

σimp − σimp(τimp/τ j)
≈ ρimp

(
1 +
τimp

τ j

)
= ρimp +

d
e232FνF

1
τ j
. (3.46)

Note that the last result does look like the Matthiessen rule: the e-i and e-e resistivities add up.

However, this is only the first term in the expansion in τimp/τ j. What happens in the opposite

limit, when 1τ j ≫ 1/τimp? In this regime, e-e collisions are much more frequent than e-i ones.

Consequently, e-e collision establish quasi equilibrium in the electronic system, however, they

cannot fix the center-of-mass velocity. In the isotropic case, the result is especially simple. The

distribution function is a Fermi function of a system moving as a whole with velocity u:

fk = f0(εk + u · k), (3.47)
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mass of mb= 0.125me. In contrast, in SrTiO3, band dispersion of
the lower band is nonparabolic and there is a significant mass
enhancement due to coupling to phonons7,11. This comparison
highlights the simplicity of the case of Bi2O2Se where any
polaronic effect seems to be absent.

Scaling between A and EF. With the help of Fig. 3d, we can map
n to EF and translate the data of Fig. 2g in a new figure (Fig. 4a),
which compares the evolution of A with EF in Bi2O2Se and in
SrTiO3−δ. Remarkably, the two sets of data join each other.
Because of the lightness of its electrons, Bi2O2Se has a Fermi
energy ten times higher than SrTiO3−δ at the same carrier
density.

In Fig. 4b, we include the new Bi2O2Se data in a universal plot
of A v.s. EF. The data for other materials are taken from
references7,8,30 and are summarized in Supplementary Table 4–6.
Note that for all anisotropic conductors including Bi2O2Se, the
plot shows the prefactor in the plane with the higher conductivity.

This plot is an extension of the original Kadowaki–Woods
plot4 to dilute Fermi liquids. In a dense metal, the electronic-
specific heat (in molar units) is an accurate measure of the Fermi
energy. In a dilute metal, on the other hand, the molar units for
atoms and electrons differ by orders of magnitude and therefore,
one cannot use the electronic-specific heat as a measure of the
Fermi energy.

Kadowaki and Woods observed originally that correlation
between A and γ2 in heavy-electron metals, such A/γ2 ≈ 10 μΩ.

a

f

g

e

d

c

b

et al.

et al.

Fig. 2 Temperature-dependent resistivity of Bi2O2Se at various Hall carrier concentrations (n). a Resistivity as a function of temperature from 1.8–300K
on a Log–Log scale. The data at n≈ 1.1 × 1019 cm−3 are from ref. 22. b–e The low-T resistivity as a function of quadratic temperature. The linear lines are fits
by Eq. (1). f TF and Tquad as a function of n. Tquad is a characteristic temperature above which the resistivity deviates from the T2 behavior. TF and Tquad are
represented by solid magenta circles and open blue squares respectively. The error bars denote uncertainty in determining Tquad from b–e. g The slope of
T2 resistivity (A) as a function of n for Bi2O2Se: solid magenta circles, compared with doped SrTiO3 (SrTiO3−δ

7: open blue diamonds, SrTi1−xNbxTiO3
7,11:

open orange squares, and Sr1−xLaxTiO3
10: open black circles) and K1−xBaxTaOx

45: solid olive hexagons. The dashed line is a guide to eyes. The inset shows
the variation of residual resistivity with increasing n for Bi2O2Se.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17692-6

4 NATURE COMMUNICATIONS | ��������(2020)�11:3846� | https://doi.org/10.1038/s41467-020-17692-6 | www.nature.com/naturecommunications

FIG. 21: Resistivity of a doped “trivial” semiconductor Bi2O2Se. Reproduced from Ref. [63].

where u is independent of k. This function nullifies the e-e collision integral due the identity

known as “detailed balance”,

f0k f0p(1 − f0k′)(1 − f0p′) = f0k′ f0p′(1 − f0k)(1 − f0p), (3.48)

which is valid if k + p = k′ + p′. In equilibrium, i.e., for u = 0, (3.48) works because εk + εp =

εk′ + εp′ . However, it works also for u , 0 due to momentum conservation k + p = k′ + p′.

Expanding (3.47) to linear order in u, we obtain

fk = f0k + f ′0k(u · k), (3.49)

which, according to (3.16), means that gk = −u · k/T . On substituting gk into (3.40), the RHS
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JT ¼
!
T
T"

"
2
Z

∞

0

x4dx
sinh2ðxÞ

#
ln
!
1þ T"

xT

"
−

1

1þ xT=T"

$
;

ð4Þ

where T⋆ ¼ ℏvqs ¼ ðμe2=εℏvÞ is the characteristic tem-
perature separating different temperature regimes [26].
The parameter qs ¼ 2μe2=ϵv2 represents the screening
wave vector for mobile carriers with a linear spectrum.
One can expect that at low temperatures (T ≪ T⋆),
JT → ðT=T⋆Þ2 lnT, and the corrections are given by
σxx ∼ T4 lnð2μ=TÞ. At high temperatures (T ≫ T⋆),
JT → const, and the corrections follow σxx ∼ T2.
Experiment—HgTe-based quantum wells have attracted

considerable attention due to their ability to generate a
range of unconventional quantum materials, which are
influenced by the quantum well’s thickness. Notably, the
energy spectrum of a gapless HgTe quantum well with a
width of 6.3–6.5 nm features a single-valley Dirac cone at
the center of the Brillouin zone. This characteristic makes
the system quite similar to graphene. However, due to the
single-valley structure, the electronic properties differ
significantly from those of the multivalley graphene. In
this HgTe well, Dirac fermions exhibit a linear energy
spectrum for both electrons and holes given by εp ¼ &vjpj,
where the Fermi velocity is v ¼ 7 × 107 cm=s ¼ c=430
(with c being the speed of light) and k representing the
momentum [30].
The inset of Fig. 1 illustrates the variation in resistivity as

a function of the gate voltage for samples A and B at a
temperature of 5 K. The resistance displays a pronounced
peak at the charge neutrality point corresponding to the
zero-energy level. This behavior is characteristic of gapless
semiconductors, such as graphene. The maximum electron
density observed corresponds to a Fermi energy of approx-
imately 150 meV.
We fabricated quantum wells using HgTe=CdxHg1−xTe

material with a [013] surface orientation. The wells had
equal widths, with d0 measuring 6.7 nm. The devices used
in this Letter were multiterminal bars with three consecu-
tive segments, each 50 μm wide, and varying lengths
of 100, 250, and 100 μm [26]. A 200 nm SiO2 di-
electric layer was deposited on the sample surface, which
was then covered by a TiAu gate. The density variation
with gate voltage was estimated to be approximately
0.9 × 1011 cm−2=V calculated from the dielectric thickness
and Hall measurements. Figures 1(a) and 1(b) display the
variation of resistance with the gate voltage across a broad
temperature range, specifically for the gate voltage interval
corresponding to the electronic part of the spectrum. The
plot shows a notable increase in resistance as the temper-
ature rises, with one exception: In the temperature range
5 K < T < 20 K, a reduction in resistance with increasing
temperature is observed. This phenomenon can be

attributed to the weak localization effect, which has been
previously reported in the studies [26,27].
To further explore the temperature-dependent behavior

of resistance (or resistivity), we calculate the ratio of the
excess resistivity to resistivity at T ¼ 5 K denoted as
ΔρðTÞ=ρðT ¼ 5 KÞ ¼ ½ρðTÞ − ρðT ¼ 5 KÞ(=ρðT ¼ 5 KÞ.
Figure 2 presents the excess resistance for different electron
densities across a wide temperature range for both samples
A and B. The main feature of the experimental dependences
shown in Fig. 2 is the presence of two distinct regimes with
fundamentally different temperature behaviors, separated
by an excess resistance minimum at T" ∼ ð10 − 20Þ K. The
value of T" varies slightly between different samples and
electron densities.
In the low-temperature regime (T < T"), the excess

resistance increases slightly as the temperature approaches

FIG. 1. Resistance as a function of the gate voltage at different
temperatures for samples A (a) and sample B (b) for the electron
side of the energy spectrum. Inset: resistance as a function of the
gate voltage at for two gapless HgTe quantum wells, T ¼ 5 K.

FIG. 2. Excess resistivity ΔρðTÞ ¼ ½ρðTÞ − ρðT ¼ 5 KÞ(=
ρðT ¼ 5 KÞ as a function of the temperature for various densities
for samples A (a) and B (b). The dashes show the T2 dependence
calculated from Eq. (6).

PHYSICAL REVIEW LETTERS 134, 196303 (2025)

196303-3

FIG. 22: Resistivity of a 2DEG in HgTe quantum well. Reproduced from Ref. [64].

vanishes, and we obtain an equation for u [69]:

u · k = −e(vk · E)τimp. (3.50)

This means that u is determined entirely by disorder, as if e-e interaction were absent, and the

corresponding conductivity is the same as T = 0.

To summarize, ρ initially increases with T until τ j becomes comparable to τimp, but then de-

creases back to its residual value.

For anisotropic dispersion, the analysis is more complicated. Nevertheless, using the spectral

decomposition of the (non-self-adjoint) operator Iee, one can show that the conductivity saturates at

higher T at a value which is controlled solely by disorder [68]. The high-T limit if the conductivity

is given by

σαβ|T→∞ = 2e2τimpνF

∑
γ

⟨3αkγ⟩
⟨k2
γ⟩
⟨kγ3β⟩, (3.51)

where ⟨. . . ⟩ stands for averaging over the Fermi surface. For comparison, the residual conductivity
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FIG. 23: Resistivity of twisted bilayer graphene. (A) Longitudinal resistivity ρ of 2◦ TBG as a

function of temperature and carrier density n. Inset: ρ(n) at representative temperatures. Arrows

indicate scaling regimes with ρ ∼ Tα, where α = 1 (orange) and α = 2 (green). Thermometers

indicate that both electron and lattice temperatures are varied simultaneously. (B) ρ(n) measured

in the dark and under continuous-wave illumination at 0.14 THz. Inset: schematic showing

THz-driven electron heating. Thermometers indicate that THz radiation increases the electron

temperature while the lattice remains intact. Reproduced from Ref. [56]

.

at T = 0 is given by

σαβ|T→0 = 2e2τimpνF⟨3α3β⟩. (3.52)

It is easy to check that, for an isotropic dispersion, σαβ|T→∞ = σαβ|T→0.

The temperature dependence of the resistivity is sketched in Fig. 25. The work on exact solution

of the Boltzmann equation for the isotropic case is currently in progress [70].

2. Special cases

There is a number of special cases when, instead of an expected T 2 correction to the residual

resistivity, one obtains T 4 ln T (in 2D) or T 4 in 3D. These special cases are 1) isotropic (but non-
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FIG. 24: Number-density dependence of the coefficient Aρ2 obtained by fitting the T 2 part of the

resistivity into ρ = Aρ2T 2. Positive/negative n corresponds to electron/hole doping. Red: raw

data. Blue: data after subtracting the T 2 contribution to the residual resistivity due to smearing of

the Fermi function of at finite T . The vertical lines indicate umklapp thresholds, calculated using

the realistic band structure model. Reproduced from [56].
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FIG. 25: Temperature dependence of the resistivity of a non-Galilean–invariant Fermi liquid with

disorder. The currently available theory describes the initial increase of the resistance and its

saturation at higher T . The full curves needs to be understood as a sketch.
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parabolic) electron spectrum, both in 2D and 3D, and 2) a convex Fermi surface in 2D.

a. Isotropic Fermi liquid. In an isotropic case, there are only diagonal components of the

conductivity, which are equal to each other. with δσ = (1/d)
∑
α δσαα, Eq. (3.44) becomes

δσ = −
e2τ2

imp

2dT

∫
k,p,k′,p′

Wk,p→k′,p′ f0k f0p(1 − f0k′)(1 − f0p′)

×
(
vk + vp − vk′ − vp′

)2
δ
(
k + p − k′ − p′

)
δ
(
εk + εp − εk′ − εp′

)
.. (3.53)

If the electron dispersion is isotropic, εk = ε(k),

vk = ∂kεk =
k

m(k)
, (3.54)

where m(k) = k/ε′(k). If all four fermions are projected onto the Fermi surface, i..e, k = p = k′ =

p′ = kF , their masses become the same and(
vk + vp − vk′ − vp′

)2
=

1
m2(kF)

(
k + p − k′ − p′

)2
= 0 (3.55)

by momentum conservation. To get a final result, one needs to expand the dispersions near the

Fermi surface. In 3D, this gives an additional factor of T 2, and δσ ∝ T 4. In 2D, there is an extra

log factor, arising from the 2D kinematic singularity: δσ ∝ T 4 ln T [71]. The T 4 correction is

likely to be masked either by eph scattering or by weak localization. For example, in a monolayer

graphene 1/τeph ∝ T 4 for T ≪ TBG, see Fig. 9. Restoring the units and setting the eph coupling

constant to 1, 1/τeph ∼ T 4/T 3
BG. On the hand, the ee momentum relaxation rate can be written as

1/τ j ∼ (T 4/ε3
F) ln(Λ/T ), whereΛ is a UV cutoff, which depends on the details of the ee interaction.

As long as the speed of sound is much smaller than 3F , we have TBG ≪ εF , and thus 1/τeph ≪ 1/τ j.

On the other hand, the ee contribution wins over the eph one in the optical conductivity, mea-

sured at Ω ≫ T [71, 72]. In this case, the scaling 1/τ j ∝ Ω
4 ln(Λ/Ω) (in 2D) continues up

to Ω ∼ Λ, whereas the eph one saturates at a frequency-independent value for Ω ≫ TBG. The

corresponding real part of the optical conductivity behaves as

Reσ(Ω) ∝ 1/Ω2τ j ∝ Ω
2 ln(Λ/Ω). Figure 26 shows the real part of the optical conductivity

of monolayer graphene at different gate voltages (the number density increases from the green to

dark-blue curve). The vertical arrows indicate the Pauli threshold in a non-interacting graphene,

equal to 2εF . In the absence of any interactions, the optical conductivity would be strictly zero for

Ω < 2εF and attain a universal value of πe2/2h for Ω > 2εF (shown by the horizontal dotted line).

In reality, there is a substantial spectral weight below 2εF . Part of this weight is just a Drude tail,

arising from ei and eph scatterings. However, when the Drude tail becomes small, the conductivity
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FIG. 26: The real part of the optical conductivity of monolayer graphene for different gate

voltages. The vertical arrows indicate the Pauli threshold in the non-interacting system, equal to

2εF . Reproduced from Ref. [73]

starts to increase, presumably due to ee interactions, as explained above. A detailed theory of

absorption in this range, which includes not only the electron-electron but also the electron-hole

interactions can be found in Ref. [72].

IV. HOMEWORK PROBLEMS FOR SECTION III

1. Derive Eq. (3.13).

2. Derive Eq. (3.17). Hint: when linearizing the collision integral, take an advantage of the

following identity

f0k f0p(1 − f0k′)(1 − f0p′) = f0k′ f0p′(1 − f0k)(1 − f0p).

3. Consider two spherical pockets, containing equal numbers of electrons and holes with

parabolic spectra ε± = k2/2m±. The pockets are assumed to be sufficiently far away from
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each other to neglect inter-pocket transfer. Electron-electron and hole-hole interactions drop

out from the equations of motion, but electron-hole interaction remains. In addition, elec-

trons and holes are scattered by impurities with mean free times τ±. Phenomenologically,

dc transport in such a system can be described by coupled equations of motion

0 = −eE −
m+3+
τ+
− Nγ(3+ − 3−)

0 = +eE −
m−3−
τ−
− Nγ(3− − 3+).

The last terms in these equations describe electron-hole interactions as frictional forces,

parametrized by the coefficient γ. In a Fermi liquid, γ ∝ T 2. Find the dc conductivity and

show that it remains finite in the limit τ± → ∞.

Appendix A: Green’s function of the Boltzmann equation

The Green’s function of the Boltzmann equation for elastic scattering by point-like impurities

with collision integral given by (1.7) satisfies the following equation[
∂

∂t
+ vk · ∇⃗r +

1
τ

]
G(k, r, t|k′, r′, t′) −

1
τ
Ḡ(k, r, t|k′, r′, t) = δ(k − k′)δ(r − r′)δ(t − t′), (A1)

where Ḡ(k, r, t|k, r′, t′) =
∫

k̂
G(k, r, t|k, r′, t′) is the Green’s function averaged over the directions of

k′. In a translational- and time-reversal-invariant system, G(k, r, t|k′, r′, t′) = G(r− r′, t− t′; k,k′).

Switching to the Fourier space via

G(q, ω; k,k′) =
∫

ddr
∫

dtei(ωt−q·r)G(r, t; k,k′), (A2)

we obtain

i(q · v − ω)G(q, ω; k,k′) +
1
τ

[
G(q, ω; k,k′ − Ḡ(q, ω; k,k′)

]
= δ(k − k′). (A3)

First, we solve Eq. (A3) at fixed Ḡ to obtain

G(q, ω; k,k′) =
τ(ε)δ(k − k′) + Ḡ(q, ω; k,k′)

iτ(ε)(v · q − ω) + 1
, (A4)

and then average Eq. (A4) over the directions of k to exclude Ḡ. This way, we arrive at

G(q, ω; k,k′) = G1(q, ω; k,k′) + G2(q, ω; k,k′) (A5a)

G1(q, ω; k,k′) =
τ(ε)δ(k − k′)

1 + iτ(ε)(v · q − ω)
(A5b)

G2(q, ω; k,k′) =
τ(ε)δ(ε − ε′)

(2π)dν(ε)
1[

1 + iτ(ε)(v · q − ω)
] [

1 + iτ(ε)(v′ · q − ω)
]Dd(ε; q, ω), (A5c)
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where

Dd(ε; q, ω) =
1

1 −
〈

1
1+iτ(ε)(v·q−ω)

〉
k̂

(A6)

with ⟨. . . ⟩k̂ standing for averaging over the directions of k.

The first term in Eq. (A5a) describes fast, over time τ, relaxation of the initial perturbation.

This would have been the only term, had we use used the RTA collision integral from Eq. (1.8).The

second term describes slow relaxation due to diffusion, which sets for q3Fτ ≪ 1 and ωτ ≪ 1. In

this regime, functionDd displays a diffusion pole:

Dd(ε; q, ω) =
1

τ(ε)
[
D(ε)q2 − iω

] , (A7)

where D(ε) = 32(ε)τ(ε)/d is the diffusion coefficient of an electron with energy ε. Note that for

short-range disorder 3(ε)kτ(ε) = 3Fτ with τ ≡ τ(εF).

Appendix B: Diffuson ladder

A dotted line in Fig. 12(h) can be related to 1/τs by calculating the imaginary part of the self-

energy. To lowest order, we need to consider only the first diagram in Fig. 4 (with the dashed line

replaced with the dotted one). The dotted line is the Fourier transform of the correlation function

u0δ(r − r′), which just equals u0. Then

ImΣR(ω = 0,k) = u2
0

∫
k′

ImGR
k′(0) = −πu2

0

∫
k′
δ(εk′) = −πu2

0νF . (B1)

Comparing Eqs. (1.40) and (1.45), we see that ImΣR = −1/2τsp or, for delta-correlated disorder,

ImΣR = −1/2τs. Therefore, u0 = 1/2πνFτs. The − f ′0(ω) = δ(ω) factor projects the electrons onto

the Fermi surface, which means that we need to the diffuson only at ω = 0. The diffuson ladder is

obtained be summing the geometric series

ΛR(q,Ω) = u0 + u2
0R(q,Ω) + u3

0R3(q,Ω) + · · · =
u0

1 − u0R(q,Ω)
, (B2)

where R(qω) is the “rung ”of the ladder,

R(q,Ω) = νF

∫
dOp

Od

∫
dϵpGR

p+q(Ω)GA
p(0) = 2πνF

∫
dOp

Od

i
Ω − vp · q + i/τs

= 2πνF

 i/
√

(Ω + i/τs)2 − (3Fq)2, d = 2

(i/23Fq) ln Ω+3Fq+i/τs
Ω−3Fq+i/τs

d = 3
(B3)
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For d = 2, the branch of the square roo function is defined by the condition Im
√

(Ω + i/τs)2 − (3Fq)2 >

0. We then obtain

ΛR
q (0) =

1
2πNFτs

√
(qℓs)2 + 1√

(qℓs)2 + 1 − 1
=

1
2πNFτs

D2(qℓs), (B4)

ΛR(q,Ω) =
1

2πNFτs

1
1 − i√

(Ωτs+i)2−q2ℓ2s

, d = 2 (B5)

and

ΛR(q,Ω) =
1

2πνFτs

1

1 − i
2qℓs

ln Ωτs+qℓs+i
Ωτs−qℓs+i

, d = 3, (B6)

where ℓs = 3Fτs.

D2(a) =

√
a2 + 1

√
a2 + 1 − 1

. (B7)

For |Ω|τs ≪ 1 and qℓs ≪ 1, both (B5) and (B6) exhibit the diffusion pole

ΛR(q,Ω) =
1

2πνFτ2
s

1
Dsq2 − iΩ

, (B8)

where Ds = 3
2
Fτs/d. The static limits are given by

ΛR(q, 0) =
1

2πNFτs

√
(qℓs)2 + 1√

(qℓs)2 + 1 − 1
, d = 2 (B9)

and

ΛR(q, 0) =
1

2πNFτs

1

1 − tan−1(qℓs)
qℓs

, d = 3. (B10)
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