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Hydrodynamic description (big picture)

Space and time symmetries: Eulidean P, T, O(3), spin SU(2)

Continuous (global) symmetries result in (local) conservation laws

Local transport equations

Example: Fermi liquids d,n+Vj=0, d p+VII+y=enE, where n and p —
particle and momentum density — conserved quantities, j and 11 — current
and stress tensor (aka Fermi pressure) — functions of conserved
quantities, y — momentum dissipation rate (disorder or phonons)
Separation of time scales—nhonconserved quantities quickly erased from
system memory (Boltzmann). Ordered behavior from chaotic behavior
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Ergodicity and separation of scales

Short-time memory for nonconserved quantities, long-time memory for

conserved quantities

Markovian picture (hydrodynamics justification and validity)

Interesting non-Markovian effects:

o in classical gases (Dorfman and Cohen),

o in quantum systems with disorder: quenching of diffusion, Anderson
localization and weak localization (Gorkov, Larkin, Khmelnitskii),

o many-body localization,

o many others

Manifestations:

o nonlocal transport equations,

o kinetic coeffieints with long-time memory,

o infinite or diverging thermalization rates



Is hydrodynamics ever relevant in metals?

credit: Andy Lucas; from: Jan Zaanen, Science 2016

® High-mobility electron systems (graphene, GaAs 2DES, PdCoOz,
etc):

® Non-Fermi liquids, high-Tc superconductors, strange metals
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Viscous electron fluids in 2D
systems

® Strong interactions (enhanced in
2D, graphene)

Graphene phase diagram

® Graphene: weak electron-
phonon scattering, no Umklapp
ee scattering

Temperature

® Fast p-conserving ee collisions,
shear viscosity 0 5
Carrier density’

Sheehy and Schmalian, PRL
99, 226803 (2007)

Guo et al. 1607.07269 1612.09239 Bandurin et al. 1703.06672,
Ledwith et al. 1708.01915, 1708.02376
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Why to be interested in electron hydrodynamics?

e \iscous transport: A new regime showing a counterintuitive

behavior: carrier collisions assist conduction. Compare
to motional narrowing in spin resonance (Van Fleck and
Anderson) or collision-narrowing in optics (the Dicke effect)
Conductance grows with T: R(T=0)>R(T#0). Other
Instances: Kondo impurity scattering or localization
(dG/dT>0 reflects spin correlations or suppression of
guantum coherence)

This lecture: a non-Fermi-liquid temperature
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Serhii
dependence in electron hydrodynamics. Surprisingly, the  Kryhin 22

measured T dependence is linear rather than T=.
Explanation?



Why to be interested in electron hydrodynamics?

Vortices in electron fluids studied by scanning
probe (Zeldov goup, Weizmann Institute).

Current flow opposite to E field
LL & Falkovich, Nature Phys 12, 672-676 (201 6)
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Why to be interested in electron hydrodynamics?

Hydrodynamic instabilities under small, experimentally B 3TBG L i L ST
accessible fields. Current-induced inversion of band | 32
occupation (experiments in graphene multilayers and :E

monolayers, moire and non-moire. Current-driven ordering? %o
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= 1 ‘ Current density, j (mA/um)
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Tomographic electron fluids

Quasiparticle lifetimes
Kinetic coefficients
Nonlocal conductivity
Tomographic transport
New phenomena



Quasiparticle lifetimes in Landau Fermi-liquids:

- Fermi sea (filled states with E<E )
« All the action at the Fermi surface, E~E_ |
« Quasiparticles: quasi-free particles in a
strongly interacting system

Long-lived excitations, directio 2
nal memory & e-fluids in 2D
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* Even longer lifetimes in 2D systems:

t~1/(k T)* for odd-parity excitations

# « Surprising collective behaviors in e-fluids
. _
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Quasiparticle concep’r

v by

Real particle

Real horse QUGSI horse
R. D. Mattuck, a guide to Feynman Diagrams in the MB problem, Dover, 1976

A quasiparticle has an effective mass, selfenergy (energy and lifetime).



Quasiparticle concept

PR

Real particle

Real horse Quasi horse
R. D. Mattuck, a guide to Feynman Diagrams in the MB problem, Dover, 1976

A quasiparticle has an effective mass, selfenergy (energy andl lifetime).



The phase space argument

/‘ Landau Fermi-liquid theory

4

f

vy~ [d(ere,—es—e,)fe)(1—f(e3))(1~f (€,))~max[e], T*]

credit: Coleman, Introduction to many-body physics S



Kinematics of ee scattering:

In 3D angular relaxation not a bottleneck (and thus does not matter)
Landau argument works

credit: Coleman, Introduction to many-body physics



Kinematics of ee scattering:

In 3D angular relaxation not a bottleneck (and thus does not matter)
Landau argument works
However, in 2D it does matter!
angular relaxation IS a bottleneck
revision of Fermi-liquid theory required

e pp—

credit: Coleman, Introduction to many-body physics



Tomographic electron fluids

Quasiparticle lifetimes
Kinetic coefficients
Nonlocal conductivity
Tomographic transport
New phenomena
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Kinematics of e
two-body ’
collisions:

Long-lived excitations, directio
nal memory & e-fluids in 2D

9

arXiv:1905.03751



Small scattering o
angles: )

AO~T/T,
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arXiv:1905.03751



New behavior in 2D

® Momentum conservation and fermion exclusion single out two
types of collisions: a) head-on, and b) small-angle

® Angular relaxation dominated by (near) head-on collisions.

® The even-parity and odd-parity parts of momentum
distribution, 6f(p)=0f(-p) & of(p)=-6f(-p) relax at different rates

1 =
: 2
A® /
1 - > >
k<, k<k._
9
k>k_ e, k>k_
Long-lived excitations, directio 11

nal memory & e-fluids in 2D arXiv:1905.03751



Even and odd harmonics

® The even-parity and odd-parity parts of momentum
distribution, d8f(p)=0f(-p) & of(p)=-6f(-p) relax at different rates.

® Relaxation rates for the 6f(p) harmonics of the odd and even
parity can differ by orders of magnitude: y'/y~(T/T )?, y=T?/T_

a) Odd-parity modes Long-lived
b) Even-parity modes Short-lived

PORER

Cong-lived excitations, directio
nal memory & e-fluids in 2D arX|v 1905.03751



The rates y_

Long-lived excitations, directio 13
nal memory & e-fluids in 2D



Estimating the rates

2

2 4
YmevenNR*T_z YmoddNR*Lz'Aezmsz*%m2
TF F TF
1
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AB~1
1 - /' > o
k<kF “‘ k<kF
k>k, .
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k>k .

Long-lived excitations, directio 14
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The odd-m rates:

Naively:
2 4 2 3
ym~R*LA62m2~R*T—m2 )(mNR*LABZmz:R*Lm2
2 4 2 3
TF TF TF E

k>k . k>k.

Long-lived excitations, directio 15
nal memory & e-fluids in 2D arXiv:1905.03751



The odd-m rates:

Naively:
2 4 2 3
ym~R,,FL2A82m2~R*T—4m2 ym'\'R*LzA62m2:R*L3m2
F F TF E

k>k . k>k,

Long-lived excitations, directio 16
nal memory & e-fluids in 2D arXiv:1905.03751



The odd-m rates:
- Angu'la/r superdlffusion

k>k . k>k,

Long-lived excitations, directio 17
nal memory & e-fluids in 2D arXiv:1905.03751



cf. lifetimes from selfenergy in 2D

., 9 Chaplik 1971
y=—23""(€,p)~T°In(1/T) Hodges, Smith, Wilkins 1971
Bloom 1975
Giuliani, Quinn 1982
Menashe, Laikhtman 1996
Zheng, DasSarma 1996
Chubukov, Maslov 2003

N = T O

+ + ..

Long-lived excitations, directio 18
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cf. lifetimes from selfenergy in 2D

9 Chaplik 1971
y=—23""(e,p)~T°In(1/T) Hodges, Smith, Wilkins 1971
Bloom 1975
; : Giuliani, Quinn 1982
Dominated by the fast pathvyays (rapid decays) Yok Uy k-1 e Y
and by (near) head-on collisions, Zheng, Das Sarma 1996

Insensitive to slowly decaying modes Chubukov, Maslov 2003

N = T O

+ + ..

Long-lived excitations, directio 19
nal memory & e-fluids in 2D



Lifetime of two-dimensional electrons measured by tunneling spectroscopy

S. Q. Murphy,* J. P. Eisenstein, L. N. Pfeiffer, and K. W. West
AT&T Bell Laboratories, Murray Hill, New Jersey 0797/
(Received 24 October 1994; revised manuscript received 7 June 1995)

For electrons tunneling between parallel two-dimensional electron systems, conservation of in-
plane momentum produces sharply resonant current-voltage characteristics and provides a uniquely
sensitive probe of the underlying electronic spectral functions. We report here the application of
this technique to accurate measurements of the temperature dependence of the electron-electron

scattering rate in clean two-dimensional systems. Our results are in qualitative agreement with
existing calculations.

dl/dv (M0-1)

0.00

L 6 . 0.0 0.1 0.2 0.3
vV (mV)
FIG. 1. Typical 2D-2D tunneling resonances observed FIG. 3‘_ mnel re?onance Widt‘h_vs tempc"_l't‘_lrf: fox: ?.ll sa.rn;l-
at various temperatures in a sample with cqual densities ples (having eight different densities). On dividing T' by T’
(N, = 1.6 x 10'* cm™?) in the two 2DES’s. Insets show and the resonance width (minus the zero-l:.empemture limit
simplified band diagrams on and off resonance. To) by l?'p all the data colla.pse onto a single curve. The
dashed lines are the calculations of GQ (Ref. 18) and FA
(Ref. 20). The solid line is 6.3x GQ. Inset: Coefficient of T2
term in I’ vs inverse density N, ! (in units of 107" c¢cm?).

Long-lived excitations, directio 13
nal memory & e-fluids in 2D



Lifetimes of individual
modes with even and odd
m, a direct calculation



Kinetic equation, how expansion in 7/7_<<1 fails

d
i - T 0 m
Linearize near equilibrium f(p) = fo(p) - %n(p). Jo(1— fo)ﬁ = Leen)

2T 2
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2142¢

S Kryhin & LL arXiv:2112.05076



Kinetic equation, how expansion in 7/7_<<1 fails

d
i - T 0 m
Linearize near equilibrium f(p) = fo(p) - %n(p). Jo(1— fo)ﬁ = Leen)

2T 2
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2172/

Focus on individual angular harmonics

imb

n(pv t) = i Xm () —’me()(l o f0>Xm(x) — eeXm(x)

S Kryhin & LL arXiv:2112.05076



Kinetic equation, how expansion in 7/7_<<1 fails

dT}l

Linearize near equilibrium f(p) = fo(p) - %n(p). fo(1— fo)ﬁ = IL.n

2T 2
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Focus on individual angular harmonics
77(19, t) = e_%"teimgxm(x) _mef()(l - fO)Xm(x) — eeXm(x)

Phase space: collinear pairs of states p.=-p,, p,=-p,,

S Kryhin & LL arXiv:2112.05076



Kinetic equation, how expansion in 7/7_<<1 fails

dT}l

Linearize near equilibrium f(p) = fo(p) - %n(p). fo(1— fo)ﬁ = IL.n

2T 2
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2172/
Focus on individual angular harmonics
n(p,t) = e e xm () —Ym Jo(L = fo)xm(2) = LeeXm ()
Phase space: collinear pairs of states p.=-p,, p,=-p,,

Integrating over angles yields

fo(l —s fo)dxc(lfl) = gT2 / d$2d$1/d$2/F5(£E1 —|— To — 11 — ng)[x(afl) —s X(.CL'Q)]

S Kryhin & LL arXiv:2112.05076



Kinetic equation, how expansion in 7/7_<<1 fails

dx (1)

folt = fo) =5

— gT2 / dSCQd.fEl/dQ?g/Fé(ZEl + &Ly — Ly — xgl)[X(Il) . X(CL’Q)]

Introduce Fourier transform in the energy variable

x(@) = 2cosh2((z)  ((a) = [dkeoy(k)

S Kryhin & LL arXiv:2112.05076



Kinetic equation, how expansion in 7/7_<<1 fails

dx (1)

folt = fo) =5

= gT2 / ded.Tl/deIFé(xl iy — By — ng)[x(xl) — X(CL’Q)]

Introduce Fourier transform in the energy variable

x(@) = 2cosh2((z)  ((a) = [dkeoy(k)

Obtain a 1D Schrodinger equation with a secanth potential (Poschl-Teller problem)

) e - ]

s s

Oy (k) = gT* K— —

2 cosh? 7k

S Kryhin & LL arXiv:2112.05076



Kinetic equation, how expansion in 7/7_<<1 fails

fg(l — fo)dXC(lfl) = gT2 / d$2d$1/d$2/F5(x1 iy — By — xgl)[X(JEl) — X(CL’Q)]

Introduce Fourier transform in the energy variable
x(z) = 2cosh £ ((z) ((z) = [dke?*®y(k)

Obtain a 1D Schrodinger equation with a secanth potential (Poschl-Teller problem)

) e - ]

s s

_ 2 0
O] = I [( 2 cosh?wk

Zero modes, one per each odd m
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Kinetic equation, how expansion in 7/7_<<1 fails

fg(l — fo)dXC(lfl) = gT2 / d$2d$1/d$2/F5(x1 iy — By — xgl)[X(JEl) — X(CL’Q)]

Introduce Fourier transform in the energy variable
x(z) = 2cosh £ ((z) ((z) = [dke?*®y(k)

Obtain a 1D Schrodinger equation with a secanth potential (Poschl-Teller problem)

) e - ]

s s

_ 2 -
O] = I [( 2 cosh?wk

Zero modes, one per each odd m

Infinite lifetimes at order T2

S Kryhin & LL arXiv:2112.05076



Numerically diagonalize the linearized collision operator

A method that does not rely on a small
parameter T<<TF

Eigenvalues, In(4,,72/T?)

Temperature, In(7'/TF)
S Kryhin & LL arXiv:2112.05076
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A method that does not rely on a small
parameter T<<TF

Long-lived excitations: super-Fermi-liquid
lifetimes for odd-m harmonics

Eigenvalues, In(4,,72/T?)

Temperature, In(7'/TF)
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Numerically diagonalize the linearized collision operator

A method that does not rely on a small
parameter T<<TF

Long-lived excitations: super-Fermi-liquid
lifetimes for odd-m harmonics

Scaling y_~T%, a~4

Conventional Fermi-liquid scaling for
even-m harmonics
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Temperature, In(7'/TF)
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Numerically diagonalize the linearized collision operator

A method that does not rely on a small
parameter T<<TF

Long-lived excitations: super-Fermi-liquid
lifetimes for odd-m harmonics

Scaling y_~T%, a~4

Conventional Fermi-liquid scaling for
even-m harmonics

A hierarchy of time scales: Ymodd == Ym even

Eigenvalues, In(4,,72/T?)

Temperature, In(7'/TF)
S Kryhin & LL arXiv:2112.05076



Angular distribution for two-body scattering
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Angular distribution for two-body scattering
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Angular distribution for two-body scattering

90°
x1073

<}

~T? for generic
angles

Sharp peaks o

ar distribution oy x T /T?

0)~T?/6|, o f \
(6)~T?/|6-r] for Log enhancement of total Backseatiering  sGiiering P>
the forward and cross-section:

backscattering Jd0a(0)~T? log(T/T)

directions ‘ o

Find y_ from © S o 4 o o . -

Temperature, In(7/Tr)

angular Fourier

transform i (0 —0.
U(()) — § e’ ( k) ('7"771 — A/’())
m S Kryhin & LL arXiv:2112.05076



Observables?

Nonlocal conductivity j(r)=[d?r’a(r-r)E(r’)

K Nazaryan & LL arXiv:2111.09878
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Observables?

Nonlocal conductivity j(r)=]d?r'a(r-r)E(r’)

A continued fraction representation of
k-dependent response: j,=o(k)E,

K Nazaryan & LL arXiv:2111.09878
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Observables?

Nonlocal conductivity j(r)=]d?r'a(r-r)E(r’)

A continued fraction representation of
k-dependent response: j,=o(k)E,

o(k) determines spatial distribution of vorticity
and the sensitivity of vortices to momentum
relaxing scattering by disorder & phonons

K Nazaryan & LL arXiv:2111.09878

Z
__ D T'(k) = .
Yo + I'(k) Mt g2

0:8:(a)/8a@ '//’ 7 */l | ]\\ [\\\\\\\
\ K
A

" 0.6/ /

/
|
T
l
|
|
|

1.0 e e / ‘ | \ —

osf L ({1 Ty A




Vortices in electron fluids, hydro and non-hydro
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A continued fraction representation of the
k-dependent response: j,=o(k)E, 10; N, 1
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Summary/discussion

Abnormally long-lived excitations in a 2D Fermi gas with super-Fermi-liquid
lifetimes

Origin: collinear scattering

Implications: sharp angular distributions of scattered particles, hole
backscattering, log(T./T) enhanced Fermi-liquid decay rates for other excitations

Robustness: generic 2-body interactions and particle dispersion, OK for weakly
non-circular Fermi surfaces

Manifestations: nonlocal transport, current vortices, angular memory of response
functions



