
Electron fluids

Leonid Levitov (MIT)

Boulder Summer School 2025









Hydrodynamic description (big picture)
● Space and time symmetries: Eulidean P, T, O(3), spin SU(2)
● Continuous (global) symmetries result in (local) conservation laws
● Local transport equations 
● Example: Fermi liquids 𝜕tn+𝛻j=0, 𝜕tp+𝛻𝛱+𝛾=enE, where n and p – 

particle and momentum density – conserved quantities, j and 𝛱 – current 
and stress tensor (aka Fermi pressure) – functions of conserved 
quantities, 𝛾 – momentum dissipation rate (disorder or phonons)

● Separation of time scales–nonconserved quantities quickly erased from 
system memory (Boltzmann). Ordered behavior from chaotic behavior





Ergodicity and separation of scales
● Short-time memory for nonconserved quantities, long-time memory for 

conserved quantities
● Markovian picture (hydrodynamics justification and validity)
● Interesting non-Markovian effects: 

○ in classical gases (Dorfman and Cohen), 
○ in quantum systems with disorder: quenching of diffusion, Anderson 

localization and weak localization (Gorkov, Larkin, Khmelnitskii), 
○ many-body localization, 
○ many others

● Manifestations: 
○ nonlocal transport equations, 
○ kinetic coeffieints with long-time memory, 
○ infinite or diverging thermalization rates













Why to be interested in electron hydrodynamics?
● Viscous transport: A new regime showing a counterintuitive 

behavior: carrier collisions assist conduction. Compare 
to motional narrowing in spin resonance (Van Fleck and 
Anderson) or collision-narrowing in optics (the Dicke effect)

● Conductance grows with T: R(T=0)>R(T≠0). Other 
instances: Kondo impurity scattering  or localization 
(dG/dT>0 reflects spin correlations or suppression of 
quantum coherence) 

● This lecture: a non-Fermi-liquid temperature 
dependence in electron hydrodynamics. Surprisingly, the 
measured T dependence is linear rather than T2. 
Explanation?

Serhii 
Kryhin ‘22



Why to be interested in electron hydrodynamics?
Vortices in electron fluids studied by scanning 
probe (Zeldov goup, Weizmann Institute). 
Current flow opposite to E field
LL &  Falkovich, Nature Phys 12, 672–676 (2016)



Why to be interested in electron hydrodynamics?
Hydrodynamic instabilities under small, experimentally 
accessible fields. Current-induced inversion of band 
occupation (experiments in graphene multilayers and 
monolayers, moire and non-moire. Current-driven ordering?

Science  375,  430-433 (2022)
Berdyugin et al, (Geim group)



Tomographic electron fluids
● Quasiparticle lifetimes
● Kinetic coefficients
● Nonlocal conductivity
● Tomographic transport
● New phenomena









One cannot live in society and be free from society (V I Lenin)
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Lifetimes of individual 
modes with even and odd 
m, a direct calculation



Kinetic equation, how expansion in T/TF<<1 fails

Linearize near equilibrium

Focus on individual angular harmonics

Phase space: collinear pairs of states p1=-p2, p1’=-p2’

Integrating over angles yields

S Kryhin & LL arXiv:2112.05076
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Kinetic equation, how expansion in T/TF<<1 fails

Introduce Fourier transform in the energy variable

Obtain a 1D Schrodinger equation with a secanth potential (Poschl-Teller problem)

Zero modes, one per each odd m

Infinite lifetimes at order T2
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Numerically diagonalize the linearized collision operator

A method that does not rely on a small 
parameter T<<TF

Long-lived excitations: super-Fermi-liquid 
lifetimes for odd-m harmonics

Scaling 𝛾m~T⍺ , ⍺~4

Conventional Fermi-liquid scaling for 
even-m harmonics

A hierarchy of time scales: 𝛾m odd << 𝛾m even
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Angular distribution for two-body scattering

~T2 for generic 
angles

Sharp peaks 𝜎
(𝜃)~T2/|𝜃|, 𝜎
(𝜃)~T2/|𝜃-𝜋| for 
the forward and 
backscattering 
directions

Find 𝛾m from 
angular Fourier 
transform 
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Angular distribution for two-body scattering
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Log enhancement of total 
cross-section: 

∫d𝜃𝜎(𝜃)~T2 log(TF/T)

S Kryhin & LL arXiv:2112.05076



Observables?

Nonlocal conductivity j(r)=∫d2r’𝜎(r-r’)E(r’)

A continued fraction representation of 
k-dependent response: jk=𝜎(k)Ek

𝜎(k) determines spatial distribution of vorticity 
and the sensitivity of vortices to momentum 
relaxing scattering by disorder & phonons

The relaxation rates 𝛾m are a “genetic code” 
that governs the dispersion 𝜎(k)

K Nazaryan & LL arXiv:2111.09878
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Vortices in electron fluids, hydro and non-hydro

Nonlocal conductivity j(r)=∫d2r’𝜎(r-r’)E(r’)

A continued fraction representation of the 
k-dependent response: jk=𝜎(k)Ek

𝜎(k) determines spatial distribution of vorticity 
and the sensitivity of vortices to momentum 
relaxing scattering by disorder & phonons

The relaxation rates 𝛾m are a “genetic code” 
that governs the dispersion 𝜎(k)

Robustness of vortices

K Nazaryan & LL arXiv:2111.09878



Summary/discussion

Abnormally long-lived excitations in a 2D Fermi gas with super-Fermi-liquid 
lifetimes

Origin: collinear scattering

Implications: sharp angular distributions of scattered particles, hole 
backscattering, log(TF/T) enhanced Fermi-liquid decay rates for other excitations

Robustness: generic 2-body interactions and particle dispersion, OK for weakly 
non-circular Fermi surfaces

Manifestations: nonlocal transport, current vortices, angular memory of response 
functions


