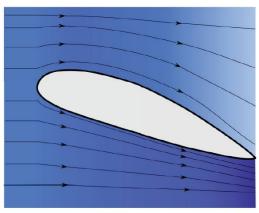
Electron fluids

Leonid Levitov (MIT)

Boulder Summer School 2025

Fluids: chaotic on microscales, orderly on macroscales (conservation laws!)



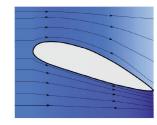
Fluids: chaotic on microscales, orderly on macroscales (conservation laws!)

Hydrodynamics: theory of everything

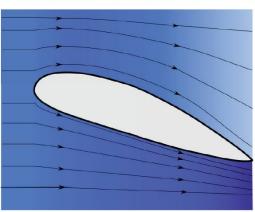
Hydrodynamics: theory of everything

Hydrodynamic description (big picture)

- Space and time symmetries: Eulidean P, T, O(3), spin SU(2)
- Continuous (global) symmetries result in (local) conservation laws
- Local transport equations
- Example: Fermi liquids $\partial_t n + \nabla j = 0$, $\partial_t p + \nabla \Pi + \gamma = enE$, where n and p particle and momentum density conserved quantities, j and Π current and stress tensor (aka Fermi pressure) functions of conserved quantities, γ momentum dissipation rate (disorder or phonons)
- Separation of time scales—nonconserved quantities quickly erased from system memory (Boltzmann). Ordered behavior from chaotic behavior



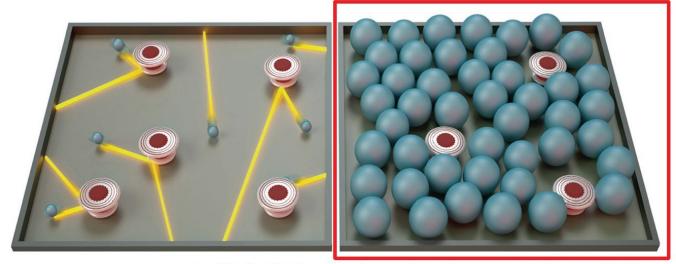
Fluids: chaotic on microscales, orderly on macroscales (conservation laws!)



Ergodicity and separation of scales

- Short-time memory for nonconserved quantities, long-time memory for conserved quantities
- Markovian picture (hydrodynamics justification and validity)
- Interesting non-Markovian effects:
 - in classical gases (Dorfman and Cohen),
 - in quantum systems with disorder: quenching of diffusion, Anderson localization and weak localization (Gorkov, Larkin, Khmelnitskii),
 - many-body localization,
 - many others
- Manifestations:
 - nonlocal transport equations,
 - kinetic coefficients with long-time memory,
 - infinite or diverging thermalization rates

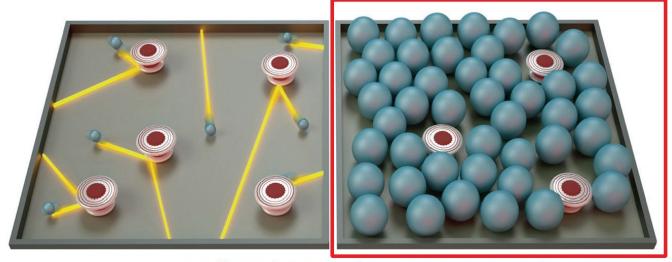
Is hydrodynamics ever relevant in metals?



credit: Andy Lucas; from: Jan Zaanen, Science 2016

- High-mobility electron systems (graphene, GaAs 2DES, PdCoO₂, etc):
- Non-Fermi liquids, high-Tc superconductors, strange metals

Is hydrodynamics ever relevant in metals?



credit: Andy Lucas; from: Jan Zaanen, Science 2016

- High-mobility electron systems (graphene, GaAs 2DES, PdCoO₂, etc):
- Non-Fermi liquids, high-Tc superconductors, strange metals

Literature

Gurzhi, Hydrodynamic effects in solids at low temperature. *Sov. Phys. Uspekhi* **11**, 255 (1968). Yu *et al.* Negative temperature derivative of resistivity.. The Gurzhi Effect? *PRL* **52**, 368 (1984).

de Jong, Molenkamp, Hydrodynamic electron flow in high-mobility wires. *PRB.* **51,** 13389 (1995). R. N. Gurzhi, A. N. Kalinenko, and A. I. Kopeliovich, PRL 74, 3872 (1995) H. Buhmann, L. W. Molenkamp, Physica E 12, 715-718 (2002)

Damle, Sachdev, Nonzero-T transport near a quantum critivcal points, PRB 56, 8714 (1997) Muller, Schmalian, Fritz, Graphene: A Nearly Perfect Fluid, *PRL* **103** 025301 (2009)

Renard et al. ...e-e interactions in quantum point contacts, *PRL* **100**, 186801 (2008) Nagaev, Kostyuchenko, E-e scattering and MR of ballistic contacts, *PRB* **81**, 125316 (2010) Melnikov et al. ...e-e scattering and T dependence of a point contact *PRB* **86**, 75425 (2012)

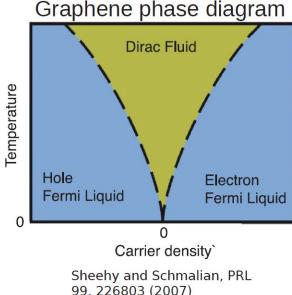
LL & Falkovich, Electron viscosity... negative nonlocal resistance, Nat Phys 12, 672 (2015) Bandurin *et al.* Negative local resistance caused by viscous... *Science* **351**, 1055 (2016). Crossno *et al.* Observation of the Dirac fluid... *Science* **351**, 1058 (2016).

Moll *et al.* Evidence for hydrodynamic electron flow in PdCoO₂. *Science* **351**, 1061 (2016). Gooth *et al.* Electrical and Thermal Transport at the Planckian Bound of Dissipation in WP2 (2017)

. . .

Viscous electron fluids in 2D systems

- Strong interactions (enhanced in 2D, graphene)
- Graphene: weak electronphonon scattering, no Umklapp ee scattering
- Fast p-conserving ee collisions, shear viscosity



99, 226803 (2007)

Viscous electron fluids in 2D systems

- Strong interactions (enhanced in 2D, graphene)
- Graphene: weak electronphonon scattering, no Umklapp ee scattering
- Fast p-conserving ee collisions, shear viscosity
- Signatures of viscous effects?
- New collective phenomena?

Graphene phase diagram Dirac Fluid Temperature Hole Electron Fermi Liquid Fermi Liquid Carrier density` Sheehy and Schmalian, PRL

99, 226803 (2007)

Guo et al. 1607.07269 1612.09239 Bandurin et al. 1703.06672, Ledwith et al. 1708.01915, 1708.02376

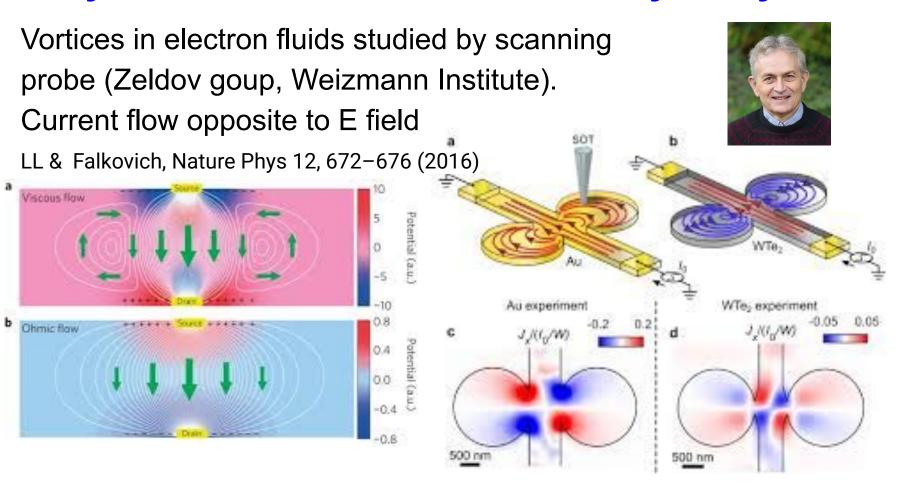
Why to be interested in electron hydrodynamics?

- Viscous transport: A new regime showing a counterintuitive behavior: carrier collisions assist conduction. Compare to motional narrowing in spin resonance (Van Fleck and Anderson) or collision-narrowing in optics (the Dicke effect)
- Conductance grows with T: R(T=0)>R(T≠0). Other instances: Kondo impurity scattering or localization (dG/dT>0 reflects spin correlations or suppression of quantum coherence)
- This lecture: a non-Fermi-liquid temperature dependence in electron hydrodynamics. Surprisingly, the measured T dependence is linear rather than T². Explanation?

Serhii

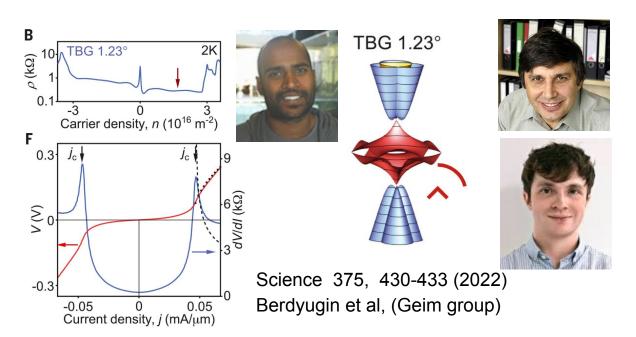
Kryhin '22

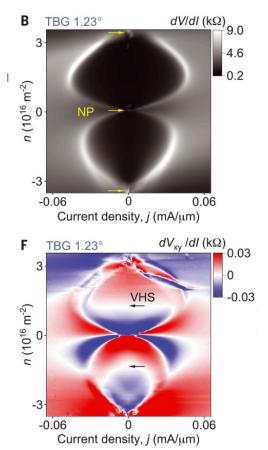
Why to be interested in electron hydrodynamics?



Why to be interested in electron hydrodynamics?

Hydrodynamic instabilities under small, experimentally accessible fields. Current-induced inversion of band occupation (experiments in graphene multilayers and monolayers, moire and non-moire. Current-driven ordering?

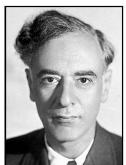




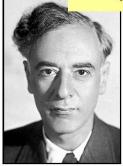
Tomographic electron fluids

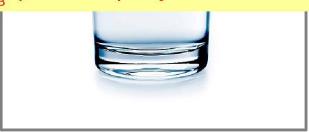
- Quasiparticle lifetimes
- Kinetic coefficients
- Nonlocal conductivity
- Tomographic transport
- New phenomena

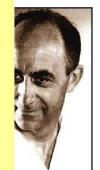
- Fermi sea (filled states with E<E_E)
- All the action at the Fermi surface, E~E_
- Quasiparticles: quasi-free particles in a strongly interacting system



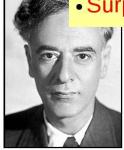
- Fermi sea (filled states with E<E_E)
- All the action at the Fermi surface, E~E_
- Quasiparticles: quasi-free particles in a strongly interacting system
- Relatively long lifetimes in 3D systems: $\tau \sim 1/(E-E_F)^2$, $\tau \sim 1/(k_BT)^2$
- Even longer lifetimes in 2D systems: $\tau \sim 1/(k_B T)^4$ for odd-parity excitations

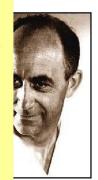




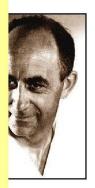


- Fermi sea (filled states with E<E_E)
- All the action at the Fermi surface, E~E_
- Quasiparticles: quasi-free particles in a strongly interacting system
- Relatively long lifetimes in 3D systems: $\tau \sim 1/(E-E_F)^2$, $\tau \sim 1/(k_BT)^2$
- Even longer lifetimes in 2D systems: $\tau \sim 1/(k_B T)^4$ for odd-parity excitations
- Surprising collective behaviors in e-fluids





- Fermi sea (filled states with E<E_E)
- All the action at the Fermi surface, E~E_
- Quasiparticles: quasi-free particles in a strongly interacting system
- Relatively long lifetimes in 3D systems: $\tau \sim 1/(E-E_F)^2$, $\tau \sim 1/(k_BT)^2$
- Even longer lifetimes in 2D systems:

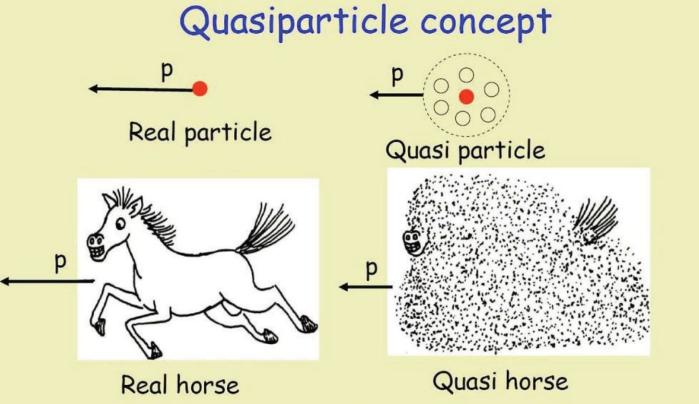


One cannot live in society and be free from society (V I Lenin)

Quasiparticle concept Real particle Quasi particle Quasi horse Real horse

R. D. Mattuck, a guide to Feynman Diagrams in the MB problem, Dover, 1976

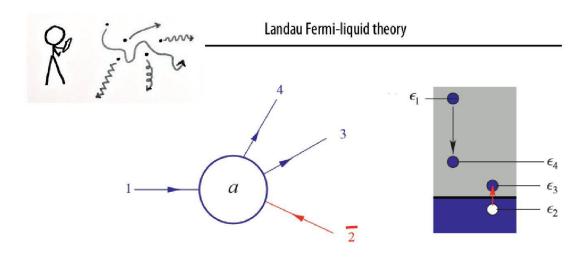
A quasiparticle has an effective mass, selfenergy (energy and lifetime).



R. D. Mattuck, a guide to Feynman Diagrams in the MB problem, Dover, 1976

A quasiparticle has an effective mass, selfenergy (energy and lifetime).

The phase space argument

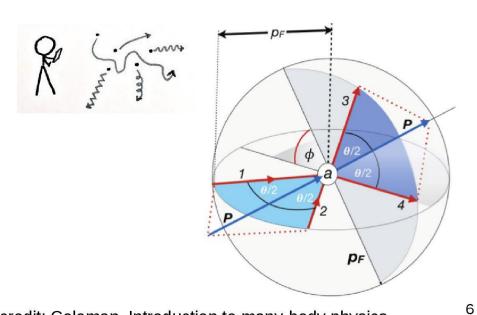


$$\gamma \sim \int \int \delta(\epsilon_1 + \epsilon_2 - \epsilon_3 - \epsilon_4) f(\epsilon_2) (1 - f(\epsilon_3)) (1 - f(\epsilon_4)) \sim max[\epsilon_1^2, T^2]$$

Kinematics of ee scattering:

In 3D angular relaxation not a bottleneck (and thus does not matter)

Landau argument works

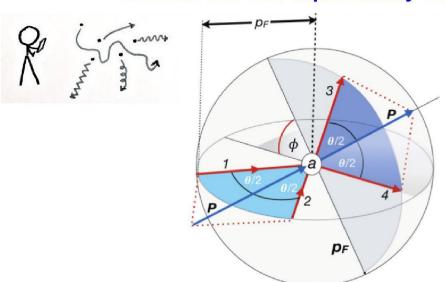


Kinematics of ee scattering:

In 3D angular relaxation not a bottleneck (and thus does not matter) **Landau argument works**

However, in 2D it does matter!

angular relaxation IS a bottleneck revision of Fermi-liquid theory required



Tomographic electron fluids

- Quasiparticle lifetimes
- Kinetic coefficients
- Nonlocal conductivity
- Tomographic transport
- New phenomena

Team

Lev Kendrick '19

(Exeter, UK)

Patrick Ledwith '19

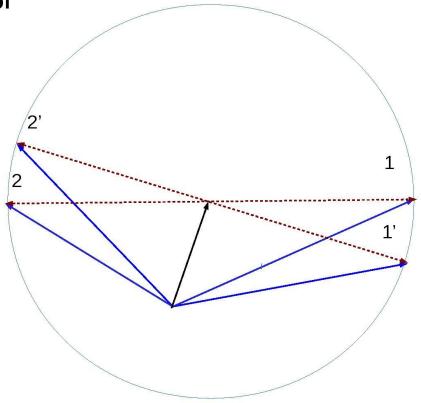
Haoyu Guo '18

Qiantan Hong '21

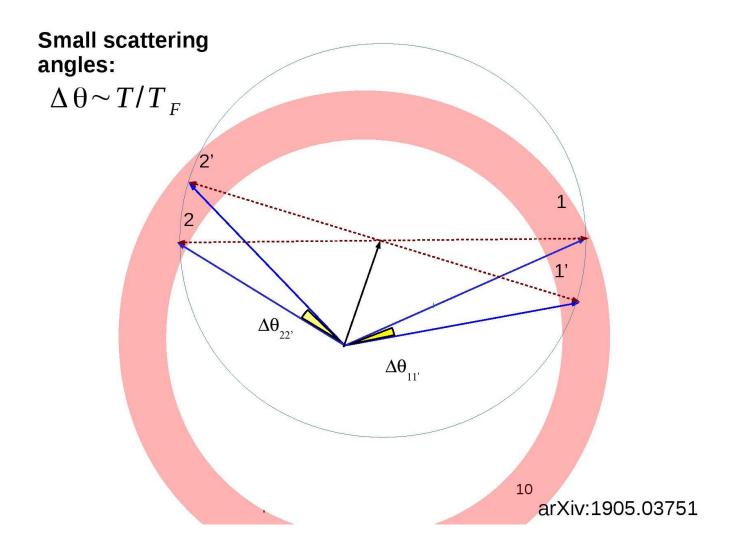
Serhii Kryhin '22

Gregory Falkovich Weizmann Institute

Kinematics of two-body collisions:

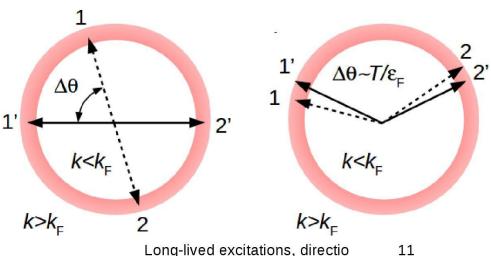


Long-lived excitations, directio nal memory & e-fluids in 2D



New behavior in 2D

- Momentum conservation and fermion exclusion single out two types of collisions: a) head-on, and b) small-angle
- Angular relaxation dominated by (near) head-on collisions.
- The **even-parity** and **odd-parity** parts of momentum distribution, $\delta f(p) = \delta f(-p) \& \delta f(p) = -\delta f(-p)$ relax at different rates

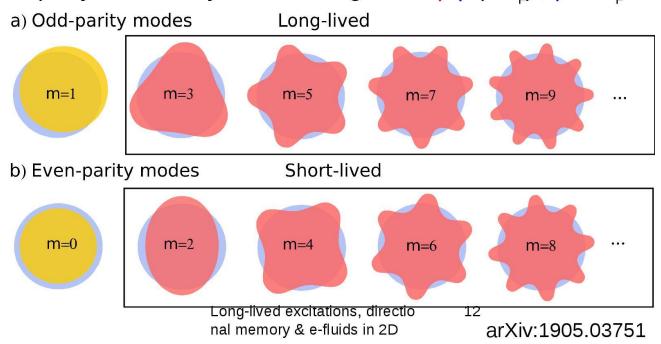


nal memory & e-fluids in 2D

11

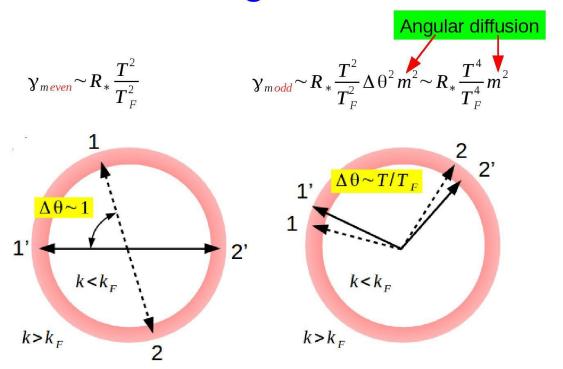
Even and odd harmonics

- The **even-parity** and **odd-parity** parts of momentum distribution, $\delta f(p) = \delta f(-p) \& \delta f(p) = -\delta f(-p)$ relax at different rates.
- Relaxation rates for the $\delta f(p)$ harmonics of the **odd** and **even** parity can differ by orders of magnitude: $\gamma'/\gamma \sim (T/T_E)^2$, $\gamma \sim T^2/T_E$



The rates $\gamma_{_{m}}$

Estimating the rates

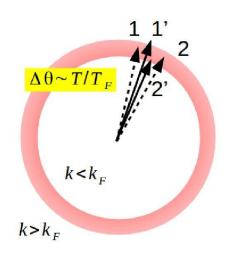


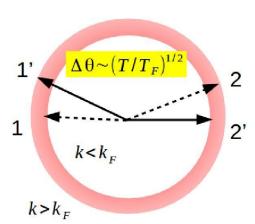
Long-lived excitations, directio nal memory & e-fluids in 2D

The odd-*m* rates:

Naively:

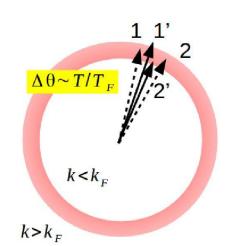
$$\gamma_m \sim R_* \frac{T^2}{T_E^2} \Delta \theta^2 m^2 \sim R_* \frac{T^4}{T_E^4} m^2$$
 $\gamma_m \sim R_* \frac{T^2}{T_E^2} \Delta \theta^2 m^2 = R_* \frac{T^3}{T_E^3} m^2$





Long-lived excitations, directio nal memory & e-fluids in 2D

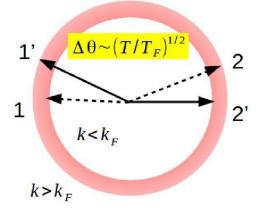
The odd-*m* rates:



Naively:

$$\gamma_{m} \sim R_{*} \frac{T^{2}}{T_{E}^{2}} \Delta \theta^{2} m^{2} \sim R_{*} \frac{T^{4}}{T_{E}^{4}} m^{2}$$
 $\gamma_{m} \sim R_{*} \frac{T^{2}}{T_{E}^{2}} \Delta \theta^{2} m^{2} = R_{*} \frac{T^{3}}{T_{E}^{3}} m^{2}$

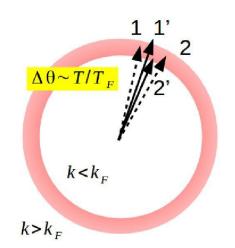
Is this true? Not quite

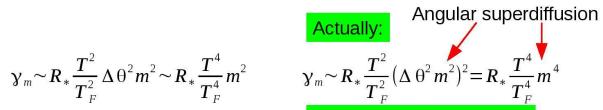


Long-lived excitations, directio nal memory & e-fluids in 2D

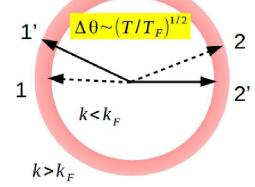
The odd-*m* rates:

$$\gamma_m \sim R_* \frac{T^2}{T_E^2} \Delta \theta^2 m^2 \sim R_* \frac{T^4}{T_E^4} m^2$$





Origin: correlated angular shifts in ee scattering

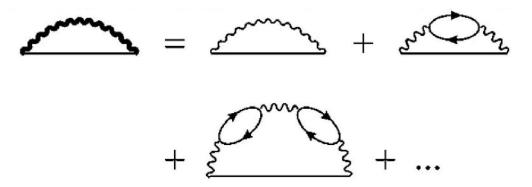


Long-lived excitations, directio nal memory & e-fluids in 2D

cf. lifetimes from selfenergy in 2D

$$\gamma = -2\Sigma''(\epsilon, p) \sim T^2 \ln(1/T)$$

Chaplik 1971 Hodges, Smith, Wilkins 1971 Bloom 1975 Giuliani, Quinn 1982 Menashe, Laikhtman 1996 Zheng, DasSarma 1996 Chubukov, Maslov 2003



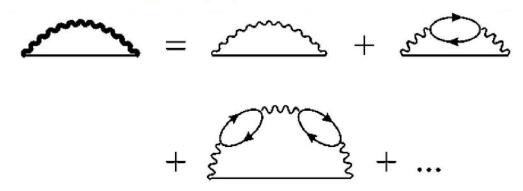
Long-lived excitations, directio nal memory & e-fluids in 2D

cf. lifetimes from selfenergy in 2D

$$\gamma = -2\Sigma''(\epsilon, p) \sim T^2 \ln(1/T)$$

Dominated by the fast pathways (rapid decays) and by (near) head-on collisions, Insensitive to slowly decaying modes

Chaplik 1971 Hodges, Smith, Wilkins 1971 Bloom 1975 Giuliani, Quinn 1982 Menashe, Laikhtman 1996 Zheng, Das Sarma 1996 Chubukov, Maslov 2003



Long-lived excitations, directional memory & e-fluids in 2D

Lifetime of two-dimensional electrons measured by tunneling spectroscopy

 S. Q. Murphy,* J. P. Eisenstein, L. N. Pfeiffer, and K. W. West AT&T Bell Laboratories, Murray Hill, New Jersey 07974
 (Received 24 October 1994; revised manuscript received 7 June 1995)

For electrons tunneling between parallel two-dimensional electron systems, conservation of inplane momentum produces sharply resonant current-voltage characteristics and provides a uniquely sensitive probe of the underlying electronic spectral functions. We report here the application of this technique to accurate measurements of the temperature dependence of the electron-electron scattering rate in clean two-dimensional systems. Our results are in qualitative agreement with existing calculations.

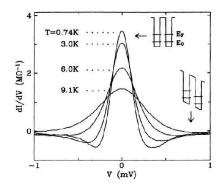


FIG. 1. Typical 2D-2D tunneling resonances observed at various temperatures in a sample with equal densities $(N_s=1.6\times 10^{11}~{\rm cm}^{-2})$ in the two 2DES's. Insets show simplified band diagrams on and off resonance.

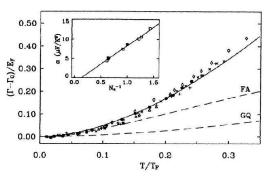


FIG. 3. Tunnel resonance width vs temperature for all samples (having eight different densities). On dividing T by T_F and the resonance width (minus the zero-temperature limit Γ_0) by E_F all the data collapse onto a single curve. The dashed lines are the calculations of GQ (Ref. 18) and FA (Ref. 20). The solid line is $6.3 \times$ GQ. Inset: Coefficient of T^2 term in Γ vs inverse density N_s^{-1} (in units of $10^{-11}~{\rm cm}^2$).

Lifetimes of individual

modes with even and odd

m, a direct calculation

Linearize near equilibrium $f(\mathbf{p}) = f_0(\mathbf{p}) - \frac{\partial f_0}{\partial \epsilon} \eta(\mathbf{p})$, $f_0(1 - f_0) \frac{d\eta_1}{dt} = I_{\mathrm{ee}} \eta$

$$I_{\text{ee}}\eta = \sum_{21'2'} \frac{2\pi}{\hbar} |V|^2 F_{121'2'} \delta_{\epsilon_1 + \epsilon_2 - \epsilon_{1'} - \epsilon_{2'}} \delta_{\boldsymbol{p}_1 + \boldsymbol{p}_2 - \boldsymbol{p}_{1'} - \boldsymbol{p}_{2'}}^{(2)} \left(\eta_{1'} + \eta_{2'} - \eta_1 - \eta_2 \right) \qquad F_{121'2'} = f_1^0 f_2^0 (1 - f_{1'}^0) (1 - f_{2'}^0)$$

Linearize near equilibrium $f(\mathbf{p}) = f_0(\mathbf{p}) - \frac{\partial f_0}{\partial \epsilon} \eta(\mathbf{p})$, $f_0(1-f_0) \frac{d\eta_1}{dt} = I_{\mathrm{ee}} \eta$

$$I_{\text{ee}}\eta = \sum_{21'2'} \frac{2\pi}{\hbar} |V|^2 F_{121'2'} \delta_{\epsilon_1 + \epsilon_2 - \epsilon_{1'} - \epsilon_{2'}} \delta_{\boldsymbol{p}_1 + \boldsymbol{p}_2 - \boldsymbol{p}_{1'} - \boldsymbol{p}_{2'}}^{(2)} (\eta_{1'} + \eta_{2'} - \eta_1 - \eta_2) \qquad F_{121'2'} = f_1^0 f_2^0 (1 - f_{1'}^0) (1 - f_{2'}^0)$$

Focus on individual angular harmonics

$$\eta(\mathbf{p},t) = e^{-\gamma_m t} e^{im\theta} \chi_m(x)$$

$$-\gamma_m f_0(1-f_0) \chi_m(x) = I_{ee} \chi_m(x)$$

Linearize near equilibrium $f(\mathbf{p}) = f_0(\mathbf{p}) - \frac{\partial f_0}{\partial \epsilon} \eta(\mathbf{p})$, $f_0(1-f_0) \frac{d\eta_1}{dt} = I_{\mathrm{ee}} \eta$

$$I_{\text{ee}}\eta = \sum_{21'2'} \frac{2\pi}{\hbar} |V|^2 F_{121'2'} \delta_{\epsilon_1 + \epsilon_2 - \epsilon_{1'} - \epsilon_{2'}} \delta_{\boldsymbol{p}_1 + \boldsymbol{p}_2 - \boldsymbol{p}_{1'} - \boldsymbol{p}_{2'}}^{(2)} (\eta_{1'} + \eta_{2'} - \eta_1 - \eta_2) \qquad F_{121'2'} = f_1^0 f_2^0 (1 - f_{1'}^0) (1 - f_{2'}^0)$$

Focus on individual angular harmonics

$$\eta(\mathbf{p},t) = e^{-\gamma_m t} e^{im\theta} \chi_m(x)$$

$$-\gamma_m f_0(1-f_0) \chi_m(x) = I_{ee} \chi_m(x)$$

Phase space: collinear pairs of states $p_1 = -p_2$, $p_1 = -p_2$

Linearize near equilibrium $f(\mathbf{p}) = f_0(\mathbf{p}) - \frac{\partial f_0}{\partial \epsilon} \eta(\mathbf{p})$, $f_0(1-f_0) \frac{d\eta_1}{dt} = I_{\mathrm{ee}} \eta$

$$I_{\text{ee}}\eta = \sum_{21'2'} \frac{2\pi}{\hbar} |V|^2 F_{121'2'} \delta_{\epsilon_1 + \epsilon_2 - \epsilon_{1'} - \epsilon_{2'}} \delta_{\boldsymbol{p}_1 + \boldsymbol{p}_2 - \boldsymbol{p}_{1'} - \boldsymbol{p}_{2'}}^{(2)} (\eta_{1'} + \eta_{2'} - \eta_1 - \eta_2) \qquad F_{121'2'} = f_1^0 f_2^0 (1 - f_{1'}^0) (1 - f_{2'}^0)$$

Focus on individual angular harmonics

$$\eta(\mathbf{p},t) = e^{-\gamma_m t} e^{im\theta} \chi_m(x)$$

$$-\gamma_m f_0(1-f_0) \chi_m(x) = I_{ee} \chi_m(x)$$

Phase space: collinear pairs of states $p_1 = -p_2$, $p_1 = -p_2$

Integrating over angles yields

$$f_0(1-f_0)\frac{d\chi(x_1)}{dt} = gT^2 \int dx_2 dx_{1'} dx_{2'} F\delta(x_1 + x_2 - x_{1'} - x_{2'}) [\chi(x_1) - \chi(x_2)]$$

$$f_0(1-f_0)\frac{d\chi(x_1)}{dt} = gT^2 \int dx_2 dx_{1'} dx_{2'} F\delta(x_1 + x_2 - x_{1'} - x_{2'}) [\chi(x_1) - \chi(x_2)]$$

Introduce Fourier transform in the energy variable

$$\chi(x) = 2 \cosh \frac{x}{2} \zeta(x)$$
 $\zeta(x) = \int dk e^{ikx} \psi(k)$

$$f_0(1-f_0)\frac{d\chi(x_1)}{dt} = gT^2 \int dx_2 dx_{1'} dx_{2'} F\delta(x_1 + x_2 - x_{1'} - x_{2'}) [\chi(x_1) - \chi(x_2)]$$

Introduce Fourier transform in the energy variable

$$\chi(x) = 2 \cosh \frac{x}{2} \zeta(x)$$
 $\zeta(x) = \int dk e^{ikx} \psi(k)$

Obtain a 1D Schrodinger equation with a secanth potential (Poschl-Teller problem)

$$\partial_t \psi(k) = gT^2 \left[\left(\frac{\pi^2}{2} - \frac{\pi^2}{\cosh^2 \pi k} \right) \psi(k) - \frac{1}{2} \psi''(k) \right]$$

$$f_0(1-f_0)\frac{d\chi(x_1)}{dt} = gT^2 \int dx_2 dx_{1'} dx_{2'} F\delta(x_1 + x_2 - x_{1'} - x_{2'}) [\chi(x_1) - \chi(x_2)]$$

Introduce Fourier transform in the energy variable

$$\chi(x) = 2 \cosh \frac{x}{2} \zeta(x)$$
 $\zeta(x) = \int dk e^{ikx} \psi(k)$

Obtain a 1D Schrodinger equation with a secanth potential (Poschl-Teller problem)

$$\partial_t \psi(k) = gT^2 \left[\left(\frac{\pi^2}{2} - \frac{\pi^2}{\cosh^2 \pi k} \right) \psi(k) - \frac{1}{2} \psi''(k) \right]$$

Zero modes, one per each odd *m*

$$f_0(1-f_0)\frac{d\chi(x_1)}{dt} = gT^2 \int dx_2 dx_{1'} dx_{2'} F\delta(x_1 + x_2 - x_{1'} - x_{2'}) [\chi(x_1) - \chi(x_2)]$$

Introduce Fourier transform in the energy variable

$$\chi(x) = 2 \cosh \frac{x}{2} \zeta(x)$$
 $\zeta(x) = \int dk e^{ikx} \psi(k)$

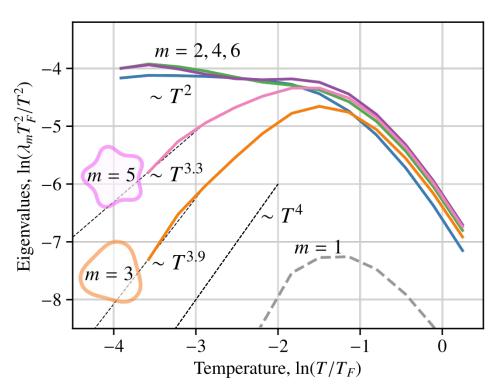
Obtain a 1D Schrodinger equation with a secanth potential (Poschl-Teller problem)

$$\partial_t \psi(k) = gT^2 \left[\left(\frac{\pi^2}{2} - \frac{\pi^2}{\cosh^2 \pi k} \right) \psi(k) - \frac{1}{2} \psi''(k) \right]$$

Zero modes, one per each odd *m*

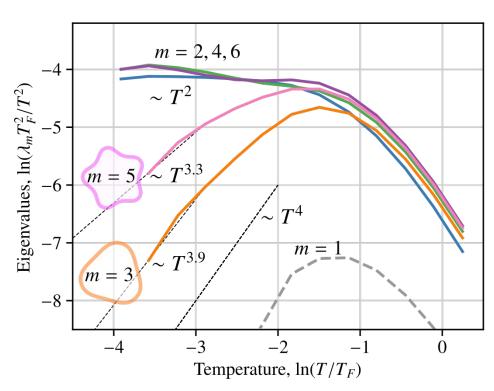
Infinite lifetimes at order T^2

A method that does not rely on a small parameter T<<TF



A method that does not rely on a small parameter T<<TF

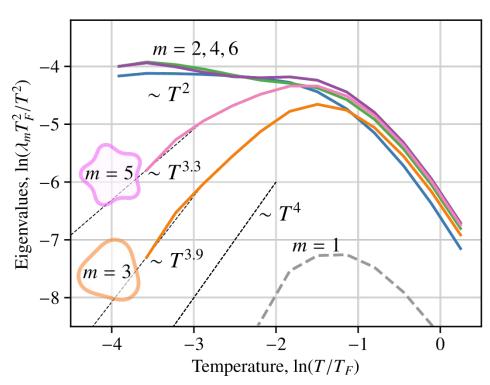
Long-lived excitations: super-Fermi-liquid lifetimes for odd-m harmonics



A method that does not rely on a small parameter T<<TF

Long-lived excitations: super-Fermi-liquid lifetimes for odd-m harmonics

Scaling $\gamma_{\rm m}{\sim}{\rm T}^{\alpha}$, $\alpha{\sim}4$

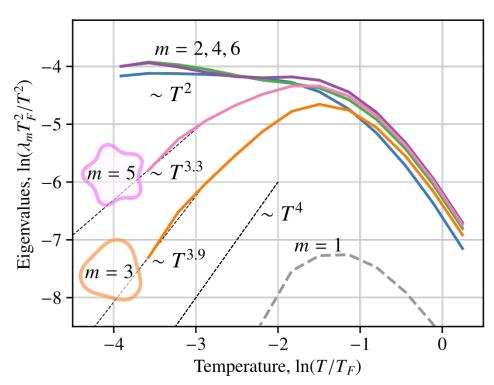


A method that does not rely on a small parameter T<<TF

Long-lived excitations: super-Fermi-liquid lifetimes for odd-m harmonics

Scaling $\gamma_{\rm m}{\sim}{\sf T}^{\alpha}$, $\alpha{\sim}4$

Conventional Fermi-liquid scaling for even-m harmonics



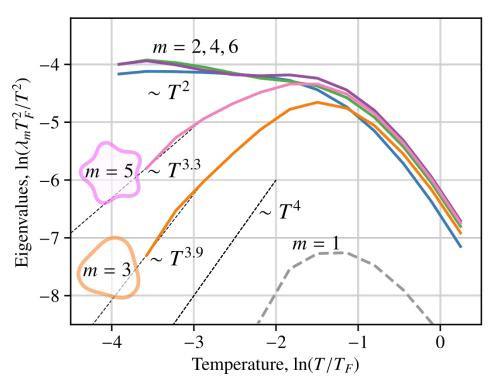
A method that does not rely on a small parameter T<<TF

Long-lived excitations: super-Fermi-liquid lifetimes for odd-m harmonics

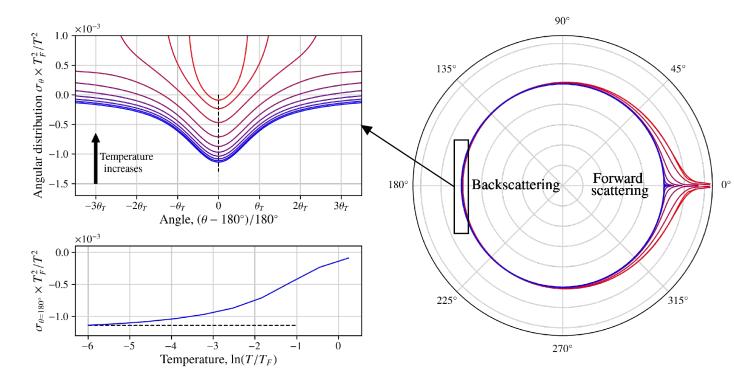
Scaling $\gamma_{\rm m}{\sim}{\sf T}^{\alpha}$, $\alpha{\sim}4$

Conventional Fermi-liquid scaling for even-m harmonics

A hierarchy of time scales: $\gamma_{\rm m\ odd} << \gamma_{\rm m\ even}$



 $\sim T^2$ for generic angles



$$\sigma(\theta) = \sum_{m} e^{im(\theta - \theta_i)} (\gamma_m - \gamma_0)$$

 $\sim T^2$ for generic angles

Sharp peaks σ $(\theta) \sim T^2/|\theta|$, σ $(\theta) \sim T^2/|\theta-\pi|$ for the forward and backscattering directions

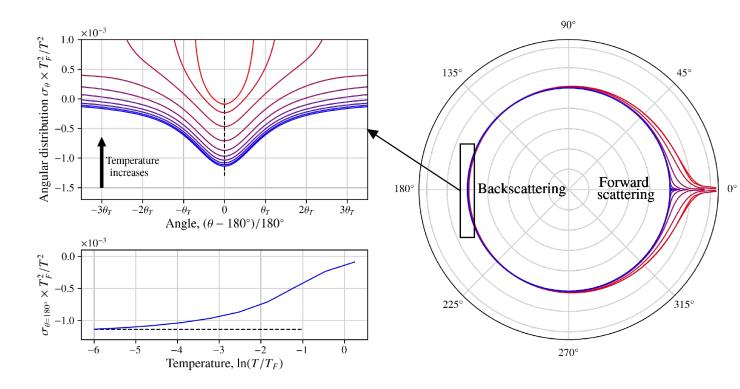


$$\sigma(\theta) = \sum_{m} e^{im(\theta - \theta_i)} (\gamma_m - \gamma_0)$$

 $\sim T^2$ for generic angles

Sharp peaks σ $(\theta) \sim T^2/|\theta|$, σ $(\theta) \sim T^2/|\theta-\pi|$ for the forward and backscattering directions

Find γ_m from angular Fourier transform

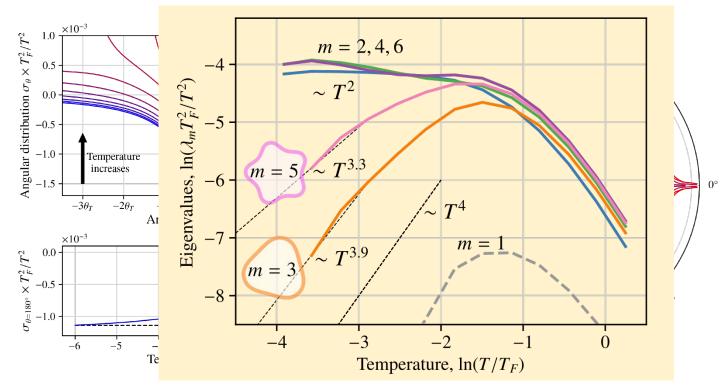


$$\sigma(\theta) = \sum_{m} e^{im(\theta - \theta_i)} (\gamma_m - \gamma_0)$$

 $\sim T^2$ for generic angles

Sharp peaks σ $(\theta) \sim T^2/|\theta|$, σ $(\theta) \sim T^2/|\theta-\pi|$ for the forward and backscattering directions

Find γ_m from angular Fourier transform

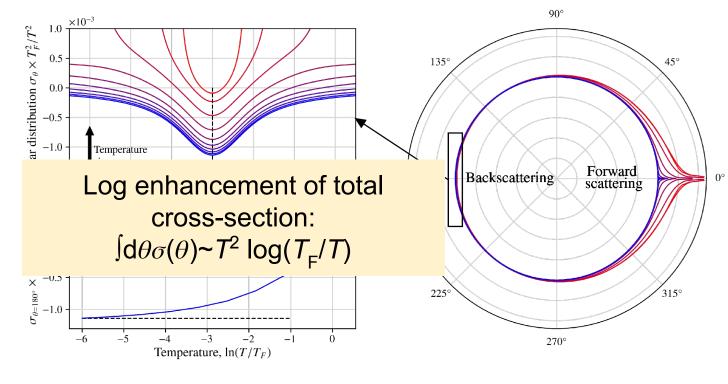


$$\sigma(\theta) = \sum_{m} e^{im(\theta - \theta_i)} (\gamma_m - \gamma_0)$$

 $\sim T^2$ for generic angles

Sharp peaks σ $(\theta) \sim T^2/|\theta|$, σ $(\theta) \sim T^2/|\theta-\pi|$ for the forward and backscattering directions

Find γ_m from angular Fourier transform

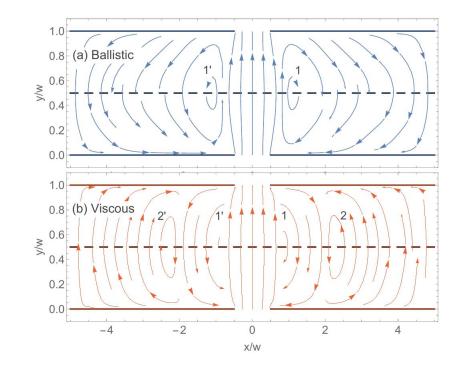


$$\sigma(\theta) = \sum_{m} e^{im(\theta - \theta_i)} (\gamma_m - \gamma_0)$$

Observables?

$$z = \frac{k^2 v^2}{4}$$

Nonlocal conductivity
$$j(\mathbf{r}) = \int d^2\mathbf{r}' \sigma(\mathbf{r} - \mathbf{r}') E(\mathbf{r}')$$
 $\sigma(k) = \frac{D}{\gamma_0 + \Gamma(k)}$ $\Gamma(k) = \frac{z}{\gamma_1 + \frac{z}{\gamma_2 + \frac{z}{\gamma_3 + \dots}}}$



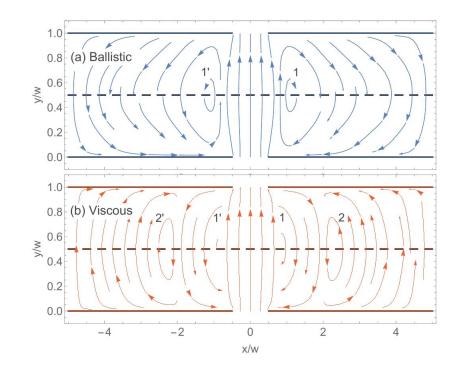
Observables?

 $z = \frac{k^2 v^2}{4}$

Nonlocal conductivity $j(r) = \int d^2r' \sigma(r-r') E(r')$

 $\sigma(k) = \frac{D}{\gamma_0 + \Gamma(k)} \qquad \Gamma(k) = \frac{z}{\gamma_1 + \frac{z}{\gamma_2 + \frac{z}{\gamma_3 + \dots}}}$

A continued fraction representation of k-dependent response: $j_k = \sigma(k)E_k$



Observables?

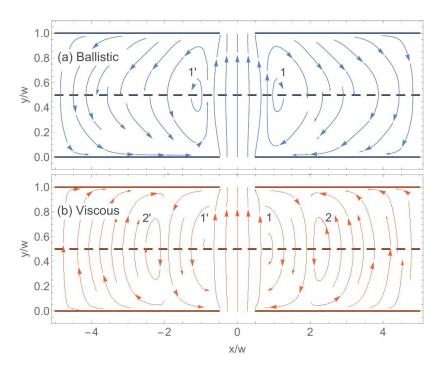
$$z = \frac{k^2 v^2}{4}$$

Nonlocal conductivity $j(r) = \int d^2r' \sigma(r-r') E(r')$

$$\sigma(k) = \frac{D}{\gamma_0 + \Gamma(k)} \qquad \Gamma(k) = \frac{z}{\gamma_1 + \frac{z}{\gamma_2 + \frac{z}{\gamma_3 + \dots}}}$$

A continued fraction representation of k-dependent response: $j_{k} = \sigma(k)E_{k}$

 $\sigma(k)$ determines spatial distribution of vorticity and the sensitivity of vortices to momentum relaxing scattering by disorder & phonons



Vortices in electron fluids, hydro and non-hydro

$$z = \frac{k^2 v^2}{4}$$

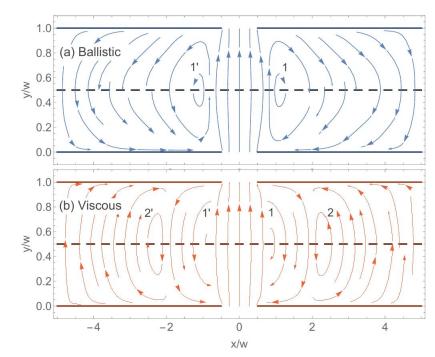
Nonlocal conductivity
$$j(r) = \int d^2r' \sigma(r-r') E(r')$$
 $\sigma(k) = \frac{D}{\gamma_0 + \Gamma(k)}$ $\Gamma(k) = \frac{z}{\gamma_1 + \frac{z}{\gamma_2 + \frac{z}{\gamma_3 + \dots}}}$

A continued fraction representation of the k-dependent response: $j_{\nu} = \sigma(k) E_{\nu}$

 $\sigma(k)$ determines spatial distribution of vorticity and the sensitivity of vortices to momentum relaxing scattering by disorder & phonons

The relaxation rates γ_m are a "genetic code" that governs the dispersion $\sigma(k)$

Robustness of vortices



Summary/discussion

Abnormally long-lived excitations in a 2D Fermi gas with super-Fermi-liquid lifetimes

Origin: collinear scattering

Implications: sharp angular distributions of scattered particles, hole backscattering, $log(T_F/T)$ enhanced Fermi-liquid decay rates for other excitations

Robustness: generic 2-body interactions and particle dispersion, OK for weakly non-circular Fermi surfaces

Manifestations: nonlocal transport, current vortices, angular memory of response functions