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Anyons in 2-Dimension

Indistinguishable particles

3-Dimension (and higher)

𝜓 𝑟1,𝑟2
→ − 𝜓 𝑟2,𝑟1

𝜓 𝑟1,𝑟2
→ + 𝜓 𝑟2,𝑟1bosons

fermions

2-Dimension is special!

𝜓 𝑟1,𝑟2
→ 𝑈12𝜓 𝑟2,𝑟1

If the ground state is degenerated,

𝑈12 : unitary operator

𝜓 𝑟1,𝑟2
→ 𝑒𝑖𝜃 ∙ 𝜓 𝑟2,𝑟1

For non-degenerate ground state

𝜃 = ±𝜋/𝑚

             𝑚 = 1,2, 3 …

F. Wilczek, Phys. Rev. Lett. 49, 957 (1982).



Non-Abelian Anions For Topologically Protected Qubit

𝜓 𝑟1,𝑟2
→ 𝑈12𝜓 𝑟2,𝑟1

Non-abelian anyons

Topologically protected quantum computing 
with non-abelian anyons

𝑈12 𝑈21 = 𝑈21 𝑈12 

By braiding the anyons one can 
create non-local entangled qubits Das Sarma, Freedman, Nayak Physics Today (2006)

Field and Simula,  (2018)



Anyons in Fractional Quantum Hall 

Willett et. al.,  PRL (1988)

Fractional Quantum Hall Effect in electrons in GaAs quantum well
Quasiparticle excitation in FQH states are anyons!

• Abelian anyons:
Most of odd denominator fractions

…

Eg.
 =1/3 e*=e/3

 =  /3

 =2/5 e*=e/5

 = 2 /5

• Non-Abelian anyons:
Some of even denominator fractions

 =5/2 e*=e/4Eg.

…

                             

                                            



Aharonov-Bohm (AB) effect

𝜙0 =
ℎ

𝑒
Flux quanta



Quantum Hall Interferometer

themesa, called ‘air bridges’. A phase differenceJ between the two
paths is introduced via the Aharonov–Bohm (AB) effect10,11, J ¼
2pBA=f 0; with B themagnetic field, A theareaenclosed by thetwo
paths (, 45mm2), and f 0 ¼ 4:14£ 102 15 Tm2 theflux quantum. A
few modulation gates, MG, areadded abovetheouter path in order
to tune the phase J by changing the area A.

We briefly review the operation of the interferometer. At filling
factor 1 in the QHE regime, a single chiral edge state carries the
current. The interfering current, in turn, is proportional to the
transmission probability from source to drain, TSD. Neglecting
dephasing processesand having thetransmission (reflection) ampli-
tude t i (r i) of the i th QPC fulfilling jr i j

2
þ jt i j

2
¼ 1; then7 ID1 /

TSD1 ¼ j t1t2 þ r1r2 eiJ j 2 ¼ j t1t2 j 2 þ jr1r2j
2

þ 2jt1t2r1r2jcosJ and
ID2 / TSD2 ¼ jt1r2 þ r1t2 eiJ j

2
¼ jt1r2j

2
þ jr1t2j

2
2 2jt1t2r1r2jcosJ ;

where I D1 and I D2 are the currents in detectors D1 and D2,
respectively. Note that ideally the two currents oscillate out of
phase as function of J while TSD1 þ TSD2 ¼ 1: The visibility of the
oscillation isdefined as: n¼ ðImax 2 IminÞ=ðImax þ IminÞ, whereI max

and I min are the maximum and minimum currents in one of the
detectors. For example, when QPC2 is tuned so that T2 ¼ 0.5, the
visibility isn¼ 2

p
T1ð12 T1Þ, where jt i j

2
¼ T i .

Measurements were done at fi lling factor 1 (magnetic field
, 5.5T) and also at filling factor 2 with similar results. With a
refrigerator temperature of , 6mK, the electron temperature was
determined by measuring the equilibrium noise12 to be , 20mK.
High-sensitivity measurements of the interference pattern were
conducted at , 1.4MHz with a spectrum analyser. Current at
D1 (or D2) was filtered and amplified in situ by an LC
(inductance þ capacitance) circuit and a low-noise, purpose-built
pre-amplifier, both placed near the sample and cooled to 1.5K. A
standard lock-in technique, with a low-frequency signal (7Hz,
10mV r.m.s.), gave similar results, but the measurement lasted
much longer and was affected by the instability of the sample. At
5.5T, each flux quantum occupiesan area of some102 15 m2 (some
60,000fluxquantathread theareaA), so aminutefluctuation in the
superconducting magnet’s current or in the area would smear the
interferencesignal. Two measurement methodswereused. Thefirst
relied on the unavoidable decay of the short-circuited current that
circulates in thesuperconducting magnet, which is in theso-called

Figure 1 Theconfiguration and operation of an optical Mach–Zehnder interferometer,

anditsrealization withelectrons. a, AnopticalMach–Zehnder interferometer. D1andD2

are detectors, BS1 and BS2 are beamsplitters, and M1 and M2 are mirrors. With 0 (p)

phase difference between the two paths, D1 measures maximum(zero) signal and D2

zero (maximum) signal. The sumof the signals in both detectors is constant and equal

totheinput signal. b, TheelectronicMach–Zehnder interferometer andthemeasurement

system. Edge states are formed in a high, perpendicular, magnetic field. The incoming

edge state fromSis split by QPC1 (quantum point contact 1) to two paths; one moves

along the inner edge, and the other along the outer edge, of the device. The two

pathsmeet againat QPC2, interfere, andresult intwocomplementarycurrents inD1and

in D2. By changing the contours of the outer edge state and thus the enclosed area

between the two paths, the modulation gates (MGs) tune the phase difference between

thetwopathsviatheAharonov–Bohmeffect. Ahighsignal-to-noise-ratiomeasurementof

thecurrent inD1 isperformedat 1.4MHzwithacoldLCresonant circuit asaband-pass

filter followed byacold, low-noise, preamplifier. c, Scanning electron micrograph of the

device. Acentrally locatedsmall ohmiccontact (3 £ 3mm2), serving asD2, isconnected

to the outside circuit by a long, metallic, air bridge. Two smaller metallic air bridges

bring thevoltagetotheinner gatesof QPC1 andQPC2—bothserveasbeamsplitters for

edge states. Thefivemetallic gates (at the lower part of the figure) are MGs.

Figure 2 Interference pattern of electrons in aMach–Zehnder interferometer and the

dependenceon transmission. a, Two-dimensional colour plot of thecurrent collected by

D1 asfunctionof magneticfieldandgatevoltageat anelectron temperatureof , 20mK.

Themagnet wasset initspersistent current mode(B< 5.5Tatfilling factor1inthebulk)

with a decay rate of some 0.12mTh2 1, hence time appears on the abscissa. The two

QPCs were both set to transmission T1 ¼ T2 ¼ 0:5: Red (blue) stands for high (low)

current. b, The current (a.u., arbitrary units) collected by D1 plotted as function of the

voltageonamodulationgate, VMG(redplot), andasfunctionof themagneticfield,B(blue

plot)—along thecutsshown ina. Thevisibility of theinterference is0.62. c, Thevisibility

of theinterferencepattern (datapoints)asafunctionof thetransmission probability T1 of

QPC1whenQPC2isset toT2 ¼ 0.5. Reddashedlineisafit totheexperimental datawith

visibility 2h
p

T1ð12 T1Þ: The normalization coefficient h ¼ 0.6 accounts for possible

decoherence and/or phase averaging.

let ters to nature

NATURE| VOL 422| 27 MARCH 2003| www.nature.com/nature416 © 2003        Nature  Publishing Group



Braiding Abelian Anyons (2020)

MESOSCOPIC PHYSICS

Fractional statistics inanyoncollisions
H. Bartolomei1*, M. Kumar1*†, R. Bisognin1, A. Marguerite1‡, J.-M. Berroir1, E. Bocquillon1, B. Plaçais1,

A. Cavanna2, Q. Dong2, U. Gennser2, Y. Jin2, G. Fève1§

Two-dimensional systems can host exotic particles called anyons whose quantum statistics are

neither bosonic nor fermionic. For example, the elementary excitations of the fractional quantum Hall

effect at filling factor n = 1/ m (where m is an odd integer) have been predicted to obey Abelian fractional

statistics, with a phase f associated with the exchange of two particles equal to p/ m. However,

despite numerous experimental attempts, clear signatures of fractional statistics have remained elusive.

We experimentally demonstrate Abelian fractional statistics at filling factor n =⅓ by measuring the

current correlations resulting from the collision between anyons at a beamsplitter. By analyzing their

dependence on the anyon current impinging on the splitter and comparing with recent theoretical

models, we extract f = p/ 3, in agreement with predictions.

I
n three-dimensional space,elementaryexci-

tationsfall into two categoriesdepending

on thephase f accumulated by themany-

body wavefunction whileexchanging two

particles. Thisphasegoverns thestatistics

of an ensembleof particles: Bosonicparticles,

for which f = 0, tend to bunch together,

whereasfermions(f = p) antibunch and follow

Pauli’sexclusion principle. In two-dimensional

systems, other valuesof f can berealized (1, 2),

defining types of elementary excitations called

anyons (3) that obey fractional or anyonic

statisticswith intermediate levelsof bunching

or exclusion.Thefractional quantum Hall effect

(4, 5), obtained by applying a strong magnetic

field perpendicular to a two-dimensional elec-

tron gas, isoneof thephysical systemspredicted

tohost anyons. For afilling factor nof thefirst

Landau level belonging to theLaughlin series

(5)—that is,n=1/m,wheremisan odd integer—

the exchange phase is predicted to be given

by f = p/m (6, 7) interpolating between the

bosonic and fermionic limits.

Direct experimental evidence of fractional

statistics has remained elusive. To date, most

effortshavefocused on theimplementation of

single-particle interferometers (8, 9), where

the output current is expected to be directly

sensitive to the exchange phase f . However,

despitemany experimental attempts(10–15),

clear signatures are still lacking because the

observed modulationsof thecurrent result not

only from thevariation of theexchangephase

but also from Coulomb blockadeand Aharonov-

Bohm interference (16). In the case of non-

Abelian anyons (17), where the exchange of

quasiparticles is described by topological uni-

tary transformations, recent heat conduction

measurementsshowedevidenceof anon-Abelian

state(18,19),although theseresultsgiveonly

indirect evidenceof theunderlying quantum

statistics.

Here,wemeasured thefluctuationsor noise

of the electrical current generated by the col-

lision of anyonson abeamsplitter (20), thereby

demonstratingthat theelementaryexcitations

of the fractional quantum Hall effect at filling

factor n =⅓obey fractional statisticswith f =

p/3. The measurement of the current noise

generated by a single scatterer of fractional

quasiparticles (21, 22) has already shown that

they carry a fractional chargee* = e/3. Shortly

after theseseminal works, it was theoretically

predicted (20, 23–26) that in conductorscom-

prisingseveral scatterers,noisemeasurements

would exhibit two-particle interferenceeffects

where exchange statistics play a central role,

and would thus be sensitive to the exchange

phase f . In thiscontext, current-current cor-

relation measurements in collider geometries

are of particular interest, as they have been

extensively used to probe the quantum statis-

ticsof particlescolliding on a beamsplitter. In

a seminal two-particle collision experiment,

Hong et al. (27) demonstrated that photons

tend to bunch together in the same splitter

output, asexpected from their bosonic statis-

tics. In contrast, collision experiments im-

plemented in quantum conductors(28–30)have

shown a suppression of the cross-correlations

between theoutput current fluctuationscaused

by the antibunching of electrons, as expected

from their fermionic statistics. Thisbehavior

can alsobeunderstood asaconsequenceof the

Pauli exclusion principle that forbids two fer-

mionsfrom occupying thesamequantum state

at thesplitter output.Thisexclusion principle

can be generalized to fractional statistics

(31, 32) by introducing an exclusion quasi-

probability p (20) interpolatingbetween the

fermionic and bosonic limits. In a classical

description of atwo-particlecollision (Fig.1A)

(33), p accounts for the effects of quantum

statistics on the probability K of finding two

quasiparticles in the same output arm of the

beamsplitter: K = T(1– T)(1– p), where T is

the single-particle backscattering probability

(Fig. 1A). The fermionic case isp = 1, leading

to perfect antibunching, K = 0. Contrary to

fermions, thebunchingof bosonsenhancesK,

meaning that 1–p > 1and p < 0.

To implement collision experiments in

quantum conductors, it is necessary to com-

bine a beamsplitter for quasiparticles, a way

to guide them ballistically, and two sources

to emit them. Thetwo first ingredientscan be

easily implemented in two-dimensional elec-

tron gases in thequantum Hall regime. Quan-

tumpoint contacts(QPCs)can beusedastunable

beamsplittersand,at high magneticfield,charge

transport isguided alongthechiral edgechan-

nels. By combining these elements, single-

particle (34) and two-particle (35) electronic

interferometers have been realized, and fer-

mionic antibunching resulting from the colli-

sion between two indistinguishable electrons

has been observed (30). Investigating the any-

onic case requires replacing the conventional

electron sources (such as biased ohmic con-

tacts) by sources of fractional anyonic quasi-

particles. Assuggested in (20) and assketched

in Fig. 1B, this impliesusing three QPCs. Two

input QPCslabeled QPC1and QPC2arebiased

bydcvoltagesV1andV2 and tuned in theweak

backscatteringregimetogeneratedilutedbeams

of fractional quasiparticles. Indeed, it isknown

that in thefractional quantum Hall regime, the

partitioningof adcelectrical current I0 with a

small backscattering probability T 1occurs

through therandom transfer of quasiparticles

of fractional charge q = e* (24). As experimen-

tally observed, theproportionality of thecurrent

noise (21, 22) with the input current I0, the

transmission T, and the fractional charge e*

shows that this random transfer follows a

Poissonian law. QPC1and QPC2 can thus be

used asPoissonian sources of anyons, which

then collideon a third quantum point contact

labeled cQPC; cQPC is used as a beamsplitter

in the collision experiment. The fractional

statistics of the colliding quasiparticlescan be

revealed by measuring the cross-correlations

between theelectrical currentsat theoutput of

the beamsplitter.

The sample (Fig. 1C) is a two-dimensional

electron gas(GaAs/AlGaAs). Themagnetic field

is set to B = 13 T, corresponding to a filling

factor n = ⅓ for a charge density ns = 1.09 ×

1015m–2.At thisfieldandat very low electronic

temperature Tel = 30 mK, ballistic charge

transport occursalong theedgesof thesample

without backscattering(33).Asdiscussed above,

the two quasiparticle sources comprise two

quantum point contactswith transmissionsT1

and T2 (T1, T2 1). We apply the voltages V1

and V2 to ohmic contacts 1 and 2 in order to

RESEARCH
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Anyon Fabry-Perot interferometer Anyon Hong-Ou-Mandel Experiment



High Quality Graphene Channel in hBN vdW Structures

L. Wang et al, Science (2013)

Edge contacting method

Contac Resistance: <100  m
Mobility > 106 cm2/Vsec
Mean free path > 10 m

• Creation of multilayer systems 
with co-lamination techniques

• Encapsulated graphene in hBN

• Completely ballistic at low 
temperature

figure from Li et al Science (2017), see also Zibrov et al Nature (2017)

Even denominator FQHE in bilayer graphene



Graphene Based Quantum Hall Interferometer

XVI 
 

 After removing the PC residue in Chloroform and annealing the stack at 300℃ for 3h 

to ensure that it adheres to the substrate and will remain mechanically and chemically stable 

through subsequent processing, the nanolithography processes outlined in methods are followed 

to fabricate a device. Supp. Fig. 1-3 shows the fabrication process of a single QPC in flowchart 

form. 

 

 

 

SUPP. FIG. 1-3. Fabrication process schematic for QPC. (1) Etch the top graphite into the 

desired shape; it must extend from the bottom graphite (recolored blue here) to avoid drastic filling 

factor changes or PN junctions from forming at the contacts, since we use the Si back gate to dope 

electrons and the Cr/Pd/Au edge contacts naturally dope electrons. (2) Etch through the entire stack 

to define desired geometry and distinct regions for contacts. (3) Deposit edge contacts to the 

exposed graphene and bottom graphite regions, as well as leads to the bridge locations. (4) Deposit 

gold air bridge contacts to top graphite. Note: this device would also have 2 additional bridges to 

contact the other regions that are separated after the next step. (5) Etch ~50nm lines into the top 

graphite to define the split-gates, using the process described in methods.    

  

1 2

3

3

4

3

5

3

Multiple vdW stacks for device fabrication

Ronen*, Werkmeister* et al., Nature Nano (2021), Similar results by   C. Déprez et  l   N ture N        1  ; b l  er gr p e e re ult b   u  Z u’  gr up Fu et  l   N    Letter      3   

Electron Fabry-Perot 
Interference in IQH regime

Graphite top gate

hBN dielectric

hBN dielectric

Graphene channel

Graphite back gate

Substrate



AB Effect in QH Fabry-Perot Interferometer

Plunger gate VPG
to control areaInterferometer area A

Transmission Probability

𝑇 𝜙 = 𝑡 2 =
𝑡1

2 𝑡2
2

1 + 𝑟1
2 𝑟2

2 − 2 𝑟1𝑟2
2 cos(𝜙)

A ~ VPG

B

Transmission Probability

B

VPG

Ronen*, Werkmeister* et al., Nature Nano (2021), 

AB Phase

𝜙0 =
ℎ

𝑒
Flux quanta



Graphene Quantum Hall Point Contact as Charge Sensor

RTrans

Rreflect

Ronen*, Werkmeister* et al., Nature Nano (2021) 

Local gate defined quantum dots and point 
contacts under magnetic fields

1st Gen Airbridge overhang gates for individual QPC controls 2nd Generation

Airbridge suspended gates

Excellent charge stability 
and independent control 
has been demonstrated!

QPC1 QPC2

6 T

Werkmeister et al., arXiv:2312.03150



Interger Quantum Edge Interference

6.0

5.95

B
 (

T)

-1.0 -0.5𝑉𝑃𝐺 (V) -1.0 -0.5

6.0

5.95

B
 (

T)

𝑉𝑃𝐺 (V)

n =2 QH state

Interference of 
inner QH edge

n =2 QH state

Interference of 
Outer QH edge

Partition inner edge Partition outer edge
VPG VPG

6 T @ 20 mK 6 T @ 20 mK

Aharonov-Bohm (AB)
Oscillation



Phase Jumps in Fabry Perot Interference 

outer edge

inner edge

Interference of outer edge with inner edge island

Plunger gate and top gate sweep at Constant Magnetic Field

6 T

Nakamura et al., Nature Phys (2020)

Phase of QH FP Interference

Feldman & Halperin, PRB (2022)

Total charge change 
in interferometer

𝛿𝜃 = 2𝜋𝛿𝑁

= 2𝜋(𝛿𝑁𝑜𝑢𝑡 + 𝛿𝑁𝑖𝑛)

Phase jump of QH FP can 
detect the charge change of 
inner QH edge!

Δ𝜃

2𝜋
= Δ𝑁𝑜𝑢𝑡 = −

𝐾12

𝐾1

Phase jumps
Capacitive coupling

Charging energy

𝑄1

𝑄2

6 T



Inner Edge versus Outer Edge AB Oscillations 

Partition and interference of Inner edgePartition and interference of outer edge

Phase slip lines of the outer edge interference is directly connected to the inner edge AB oscillation!



Fractional Quantum Hall Effect Fabry-Perot Interferometer

27nm hBN 

graphite

Monolayer 
graphene

49nm hBN 

graphite

dG
xy  /dV

M
G  (a.u.)

 =1  =2

VMG (V)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

V
MG

(V)

0

0.5

1

1.5

2

G
xy

[e
2
/h

]

1

2

𝟐

𝟑
𝟏

𝟑

𝟐

𝟓

𝟒

𝟑

𝟓

𝟑B = 12T

20 mK

Gxy (e2/h)Diagonal Conductance

VMG (V)

rQPC1= rQPC2 = 0



Fabry-Pérot FQH interferometer: abelian anyons

S D
VPG

A

fractional charge fractional statistics

NL

: electrons, 
ν=integer

: Laughlin state,
 ν=1/3

𝒆∗

𝒆
 = 1

𝒆∗

𝒆
 =  1

3

Fractionalized Charge

: Laughlin state,
 ν=1/3

: electrons,
 ν=integer

𝜃 = 𝜋

𝜃 = 𝜋
3

𝜽: exchange phase

𝝓 = 𝟐𝝅
𝒆∗

𝒆

𝑨𝑩

𝝋𝟎
 +  𝑵𝑳𝟐𝜽Interference 

Phase

Nakamura et al., Nature Phys. (2020)

1/3 FQH Interference in GaAs heterostructures
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Interference Signal at Constant Gate Voltages and Magnetic Field

Telegraph Noise in FQH Interference

counts
0 40 80

=4/3

12 T @ 20 mK

VPG =-1.56 V

• Random telegraph noise with switching time ~ 10s sec

• Three different switching states: caused by fluctuations in localized anyon number 𝑛

• conductance can only take 3 discrete values depending on 𝑛 mod 3 𝛿𝐺(𝑛) ≈ 𝛽cos 2𝜋𝜃 + 𝑛 mod 3
2𝜋

3

-1.6 -1.5

PG (V)V

-0.04

0.04

0

-1.52-1.54-1.56-1.58

counts
80000

G
 (e

2/h)

QPCs partition inner FQH edge



Telegraph Noise in FQH Interference



AB Oscillation of FQHE and Phase Shift

re
p

e
ti
ti
o

n
 (

t 
=

 3
5
s
 e

a
c
h

)

PG (V)V

-0.92-1.00 -0.94-0.96-0.98

100

20

40

60

80

B
(T

)

12.000.12

-0.09

PG (V)V

-0.92-1.00 -0.94-0.96-0.98
11.98

11.995

11.985

0.15

-0.15

B = 12T
=1

𝜑0/ ∆𝐵1 = 0.80 µm2

B1

G (e2/h)
=1/3

probability

±
𝟐𝝅

𝟑
 phase slips

B = 12 T

3𝜑0/ ∆𝐵1/3 = 0.83 µm2 

B1/3/3

G (e2/h)

PG
V

-0.90-0.92-0.94-0.96-0.98

(V)

G (e2/h)



-0.09 -0.08 -0.07 -0.06

V
MG

-2

-1.5

-1

-0.5

0

VMG (V)

Exponent


  -0.14 -0.11 -0.08 -0.05 -0.02

V
MG

0.002

0.006

0.01
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x
x 
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2
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Switching Rate: Density Dependence

=1/3

12 T 
@ 20 mK

 V
-2

-1
)

0
0

0.1

0.2

0.3

0.4

0.5

0.6

 (
H

z
)

b

-0.09 -0.08 -0.07 -0.06

V
MG

 s
-1

 (
H

z)

VMG (V)

Switching Rate

10
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10
0
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1

Hz

10
-8
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-4
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10
0
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2
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4
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10
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S
 (

A
2

 V
-2

 H
z

-1
)

f (Hz)

Fourier Transform of G(t):  S(f)

𝑆 𝑓 ~ 𝑓𝛼

Random Telegraph Noise

S ~ 1/ f 2:  single time scale 

S ~ 1/f  : multiple time scale

M. B. Weissman Rev. Mod. Phys. 60, 537 (1988)

VMG (V)



Switching Rate: Temperature Dependence


G

 (
a.

u
.)


G

 (e
2 /h

)

0.1

               

   m )

 . 

 . 

 . 

 . 

 

 
 
    m 


G

 (e
2 /h

)

X 0.1

Visibility  ~ 𝑒−𝑇/𝑇0
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Two-time joint probability: Correlation
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PN,N’ (t1-t2): 
The joint probability to find the system in 
state N at time t1 and state N′ at time t2.

Nee a model to describe PN,N’ ( ) 
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Why Does Quasiparticles Hopping Occur?
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Pajama plot with static phase shift 



Exchange versus Braiding

arXiv:2308.12986

Exchange

Braiding(double)

𝑒𝑖𝜃𝑒𝑥

𝑒𝑖𝜃𝑎𝑛𝑦

𝜃𝑎𝑛𝑦 = 2𝜃𝑒𝑥



Proposal for Probing Exchange Phase 

- In standard FP interferometer, only can measure 𝜃𝑏𝑟𝑎𝑖𝑑 = 2𝜃𝑒𝑥

- Additional dot provides a mechanism for a single exchange within the device, enabling direct observation of 𝜃𝑒𝑥

“Direct” tunneling
𝜙 = 2𝜋

𝑒∗

𝑒

𝐴𝐵

Φ0
+ 2𝜃𝑒𝑥𝑁𝐿 + 𝜂𝜃𝑒𝑥 

arXiv:2403.12139

“Cooperative” tunneling, edge QP 
exchanges with existing one already on dot
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Phase Flipping Across the QAD Resonance
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Experimentally, for RTN interferometer should see 60 deg phase shift in triple helix across quantum dot resonance 
(shift from direct to cooperative tunneling)
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Summary and Outlook

• Fabry-Perot Interference for Integer and Fractional Quantum Hall States.

• Phase slips related to the quasi-particle occupancy in the interferometers. 

Outlook

• Abelian anyon braiding phase has been identified.
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Non-abelian braiding: bilayer graphene 

@ 16 T, 250 mK

J. Kim et al., arXiv:2412.19886 



Nonabelian Anyon for Topologically Protected Qubit

Graham P. Collins, SCIENTIFIC AMERICAN April 2006 
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