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1 Lecture 1 — Thermal Dynamics

The goal of these lectures will be to develop nonperturbative tools to study the (slightly) out-
of-equilibrium of generic quantum many-body systems. For example, we will be interested

in the response of our system, initially in an equilibrium state, e.g.
poxe P poc e AH=—1Q) (1.1)

to external probes: E, B, 0T, dp (doping/in plane field), etc. These probes will take the

system out of equilibrium
Ho — H(t) = Hy + /ddx 8(t, H)O(t, ), (1.2)

but in the limit where these probes are weak, we can expand in them and end up computing

dynamical correlation functions in the thermal state:
Tr(pol(tl,fl)()g(tg,fz) ) . (1.3)

These can either be viewed as measuring fluctuations and correlations in the thermal state,
or near equilibrium dynamics as a response to external probes. A typical example of this is
the conductivity, which can either be viewed as an equilibrium two-point function of the
current, or its expectation value in the presence of a small electric field

1

Jilw) = 0ij(W)Ej(w),  0ij(w) ~ —(i(w)ds) - (1.4)

This correspondence goes beyond linear response, with higher-point correlation functions
corresponding encoding the nonlinear response to external probes. However, for this
expansion to work we will always be near thermal equilibrium — hence “slightly” out-of-
equilibrium.

These objects are very difficult to compute in interacting quantum many-body systems.
At nonzero temperature T' > 0, perturbation theoy essentially always breaks down at late
enough times. Even in weakly coupled theories, resummation is extremely difficult. These
lectures will present an alternative approach: an effective field theory describing fluctuating

hydrodynamics, which is expected to emerge in any interacting local many-body system.

1.1 Thermal equilibrium

As a warm-up, we will first consider a simpler set of observables: equilibrium observables,
i.e. the response of the system to time-independent (static) probes. In terms of correlation

functions, this corresponds to integrating every operator in (1.3) over time.



First note that if we analytically continue time, thermal correlators can be represented

as a path integral on a cylinder R% x 5/13:

Tr (pTE{ol(Tl,fl)OQ(TQ,@).-.}> = /sz O (1, &) - - e 3B (1.5)

where T denotes Euclidean time-ordering, and O(7) = ™ Qe [you can derive this the
usual way you derive a path integral — the cylinder of length § arises from p o< e ?H and
the trace which imposes (anti-)periodic boundary conditions for bosons (fermions)]. This
establishes a correspondence between imaginary time observables of quantum many-body
systems in d + 1 spacetime dimensions, and observables of statistical mechanics on a d 4+ 1
dimensional spatial cylinder.

To generate these correlation functions, we couple our system to spatially-dependent
probes that source the operators of interest. One could source any operator, let us start

with a charge density:

218, ()] = Tr Tge— Jo 4@ =[,u@a(E) — ~WiB (1.6)

Note that if we set u(Z) = const, we recover Z = Tre #(H=#Q) The generating functional
(or thermal effective action, or free energy) W generates connected correlators of time
integrated densities. For example,

2w

J— /8 A —\ A _ FE w _ .i.'
()30 = B/O dr Tr [pa(r, £)n], = G, (wn, = 0,7) (1.7)

p=const

where we defined the (connected) Euclidean Green’s function GZ, (7, %) = Tr (pn(r, %)n) —
(Tr pn)? and its Fourier transform.

You may worry that W should be a horribly complicated function of the function u(x)
(“functional”). In most situations, this functional has a simple long-wavelength expansion
thanks to the fact that system has a finite thermal correlation length ¢ < oo, such that

equilibrium correlators decay exponentially at large distances:
(O(2)0(0)) < e /¢ as |7 — oo (1.8)

When the thermal correlation length is finite, one can integrate everything out to obtain
a local generating functional W, in a derivative expansion suppressed by the correlation

length £V. The first few terms are

W= [ dla [ fo(B, (@) + f1(8.s@)Vi)? + O] (1.9)



The coefficients fy, f1,... are unknown “Wilsonian coefficients” — we will see that this
expression has predictive power despite these unknowns. We have assumed isotropy for
simplicity, but this assumption can be straightforwardly lifted. One can show that the first
coefficient, which is the only one entering at zeroth order in derivatives, is related to the

pressure as

Jo(B,p) = =BP(B, ). (1.10)

To see this, consider the simpler case of a homogenous source p = const. In this case, the
functional reduces to

Z[B, 4] = Tre PH-1Q) — Vfo(Bn) (1.11)

It is then straightforward to verify that the function P(S3,u) = —fo(5, 1)/ satisfies the

usual identities of pressure:
dP = sdT + ndpu , e+ P =sT+ un, (1.12)

where n = (n) and € = (ﬁ> are the equilibrium charge and energy density.
So the thermal effective action encodes the equation of state of the system. It also

encodes static response: for example the charge susceptibility can be obtained from (1.7)

-1 , 52w P 2
x(q) = GEn(Wn =0,q9) = ? /ddx e e W = W—Bf1q2+o(q4) (1.13)

p=const

At g = 0, this static susceptibility measures the charge compressibility dn/du. The thermal

effective action tells us that this object has an analytic expansion in ¢2. In Exercise 1, you

will generalize our construction to capture static correlators of charge and energy density.
Our results (in particular, analyticity of x(q)) relied on the assumption of a finite thermal

correlation length £ < co. There are two notable situations where this assumption fails:
o Ordered phases of continuous symmetries (= Nambu-Goldstone modes)
e Thermal phase transitions

In the first, one can simply keep the long range fields (the Goldstones) in the effective
action, we will see an example of this. Thermodynamics and out-of-equilibrium dynamics is
richer near thermal phase transitions (see in particular [1]) — the methods described in these

lectures can be generalized to these situations, but we will not do so here.



Exercise 1: Practice with thermal effective actions

(i) Check Eq. (1.12), and Eq. (1.13).

(ii) Let us generalize the thermal effective action so that it can also generate static correlators

of energy density:

B B(z) (7 NN
Z[ﬁ(f)’u(f)] e Tpe fo 0 d‘rfddzw(h(m,r)—p(z)n(z,r)) = e_Ww’/‘] ) (1.14)

For B(Z) = By = coust, it reduces to our previous expression. Still using the assumption of a
finite correlation length, generalize Eq. (1.9) to obtain a functional of §(Z) and u(Z). Then,
generalize Egs. (1.7) and (1.13) to obtain the matrix of static susceptibilities x 45(q) for heat
and charge A.B = h, .

1.2 Inevitability of hydrodynamics (1): existence of long-lived excitations

We now turn to the actual (real time) dynamics. We saw that the response to static probes
was captured by a local generating functions (or thermal effective action) of the probe fields.
What is the organizing principle for dynamical response? The answer, which we will slowly
build towards, is hydrodynamics.

We start with a simple argument that shows the existence of long-lived excitations in

thermal states. Consider the retarded Green’s function
GR(t,2) = i0(t) Tr (pln(t, o), n]) (1.15)

for the charge density satisfying a continuity relation 0 = n 4+ V - j. Then, the w — 0 and

g — 0 limits of its Fourier transform do not commute:

lim lim Gf(w,q) = x # 0 = lim lim G®(w,q). (1.16)

q—0w—0 w—0g—0
The limit on the RHS simply follows from the fact that n(¢ = 0) is a conserved charge
(which commutes with itself). The LHS follows from the thermal effective action: indeed,

G is the analytic continuation of G¥:
GE(iwn, q) = G¥(wn, q). (1.17)

You will show this and further explore thermal Green’s functions in Exercise 2. We know how
to compute G¥ (wn, = 0, k) from the thermal effective action: it picks up a static susceptibility

(charge compressibility, specific heat, magnetization susceptibility, etc.).



This non-commutativity does not quite prove hydrodynamics (and in fact applies to
free theories as well). But it does require long-lived, long range, excitations to produce
an IR singular behavior capable of making the two limits not commute. In the context of
diffusion, this non-commutativity is realized by the presence of a collective diffusive pole in

the Green’s function
xDq?

Gt = = T D

(1.18)

This becomes analytic again in ¢ when w — 0, as expected from our local thermal effective

action. In the opposite limit, it vanishes as required by charge conservation.

Exercise 2: Fun with thermal Greens functions

(i) The retarded and Euclidean Green’s functions are defined as®

Retarded: GR5(t) = i0(t)([A(t), B]) (1.19)
Euclidean: G%5(1) = (A(T)B), (1.20)
where thermal expectation values are denoted by (-) = Tr(p -) with p = e ## / Tre=#H. We
are assuming the QFT is in a finite (but very large) volume so that the spectrum is discrete.
Recall the convention for Heisenberg operators A(t) = et A=t and A(7) = efI7 Ae=H7.

Using spectral representations (i.e., inserting a complete basis of energy eigenstates), show

that the Fourier transforms of these functions are the analytic continuation of each other:
GR(iwyn) = GF(wn). (1.21)

(ii) Many other Green’s functions are useful in different contexts, for example:

Wightman: G 5(t) = (A(t)B) (1.22a)
Spmmside ©9,40) = %({A(t), BY) _ % (G + ChA(—1) (1.22b)
Feynman: G4 5(t) = (T A(t)B) = Gt +0(—t)GEA(—t) (1.22¢)
Retarded: G&4(t) = i0(t)([A(t), B]) = i0(t) (Gigt) —GEA(—t))  (1.22d)
Twosided: G2 p(t) = T (p1/2A(t)p1/2B) = Giyt-12) (1.22¢)
Euclidean: G%p(7) = (A(1)B) (1.22f)

In a thermal state, these are all related. Show, using either the spectral decomposition method

of (i) or the ie prescription of (ii), some or all of the following relations:

Gt (w) = eP2G%(w), G%(w) = cosh %Gz(w) , ImGF(w) = sinh %Gz(w) . (1.23)



These relations are sometimes called fluctuation dissipation relations, or KMS identities — they
rely on the fact that the thermal density matrix corresponds to evolution in imaginary time.
Thermal higher-point functions are instead not all related to each other, and in particular

cannot all be obtained by analytically continuing Euclidean correlators.

“Note that while our convention for GF is indubitably the best one, it is sadly only adopted in
a minority of textbooks, including Chaikin&Lubensky. It differs from the definition used in, e.g.,
Altland&Simons, Kapusta, Kamenev, and Wen, by a minus sign. With our convention, w Im G (w)

is positive and G is the analytic continuation of +GZ.

1.3 Inevitability of hydrodynamics (2): long-lived excitations are collective

The argument in the previous section shows that there are long-lived excitations in thermal
states. However, quasiparticles typically acquire a finite lifetime at finite temperature, even
if they are stable. For example, in a Fermi liquid interactions lead to an imaginary part of

the self-energy

gw(w, k) = ! Im X(w, kp) = i(772T2 + w?). (1.24)

¢ w—ep — X(w, k)’ Ep

See [?] or [2] (You will derive a similar thermal broadening of fermionic quasiparticles due
to phonons in Exercise 3). Due to the particle-hole continuum, the quasiparticle in a Fermi
liquid is broadened (Im ¥ # 0) even at T' = 0, but the excitation is still sharp at low energies
w — 0. However, when T' > 0 even low energy quasiparticles decay: lim,_,oIm Y o< T?/Ep.
In time domain, this leads to exponential decay of correlation functions e /7, with a time
scale T ~ Ep/ T?. This finite relaxation rate of quasiparticles at finite temperature is very
general, it occurs even if the particle is completely stable Im ¥(ex, k) = 0 at T' = 0 (for
example, a quasiparticle in a gapped system).!

We therefore see that the long-lived excitations responsible for the non-commutativity

of limits in (1.16) must be collective. The effective theory of these collective excitations is

hydrodynamics.

Exercise 3: Thermal broadening in a metal

To illustrate the inevitable thermal broadening of interacting quasiparticles at finite tempera-

ture, we will consider a simple model of a Fermi gas coupled to an Einstein (non-dispersive)

'The one exception to this are Nambu-Goldstone bosons. This is because, in a sense, they already are

(one of) the appropriate degrees of freedom that should be kept in the hydrodynamic description.



phonon:
. 1
5= [ dtdtaw? (10, - o - 5000 + o + g0t (1.25)
While thermal broadening is a real time phenomenon, it is simplest to derive in the imaginary
time formalism, followed by analytic continuation. . The Euclidean (imaginary frequency)
correlators are

1

Wiy, + €k

_ 1
02 + wgh

Gyt (wm, k) = = G(iwm, k) , G5y, q) D(i%,q), (1.26)

where Q,, = 2anT and w,, = (2m + 1)7T with n,m € Z are the bosonic and fermionic
Matsubara frequencies (fermion fields must obey antisymmetric boundary conditions around

the thermal cylinder because of anticommutation relations).

(i) Show that the fermion self-energy at one loop is given by

dq
. _ 9 . . .
S(iwm, k) =g T;/ (ZW)dD(an,q)G(zwm +iQn, k+q). (1.27)
The frequency sum can be evaluated by the following useful trick: the function fgg(w) = ﬁ
(the Bose-Einstein distribution) has simple poles at the bosonic Matsubara frequencies w = i),,,

with residue 7. Use Cauchy’s theorem to write the self-energy as

ity k) = < Z/ifFD(equBE(i”ph) (1.28)
m 2wpn 4 Jy €g — twp twpn ’

(Note that ¥ is independent of k here).

(ii) We now analytically continue iw,, — w +i0" to obtain the self-energy appearing in the

retarded Green’s function. Show that its imaginary part is given by
™
Im X(w, k) = = =—v(0) Y _ + (fee(+wph) + frp (@ £ wpn)) (1.29)
+

where v(0) is the density of single-particle states at the Fermi surface (for a spherical Fermi

£ _ Sa-a ki_l
surface, v(0) = Byl om

). Assuming wpn < T' < Ep, show that this leads to a linear-in-7'
decay rate of fermionic quasiparticles:

2
T~ Im (0, kp) = 7-2-1(0)T . (1.30)
wep



1.4 Schwinger-Keldysh contour for real time dynamics

You showed in Exercise 2 that the retarded Green’s function is the analytic continuation
of the Euclidean Green’s function to real frequencies. One could therefore imagine always
working in Euclidean (imaginary) time, and analytically continuing at the end. However,
this is usually impractical. The most important reason is that in essentially any case
of interest, we will not be able to analytically solve correlators. One therefore typically
only has access to them in an asymptotic high or low frequency expansion, which cannot
be analytically continued. Another reason is that for higher point functions, Euclidean
correlators analytically continue to “fully retarded” Green’s functions (nested commutators),
which do not form a complete basis of real time observables: the other time orderings are
not related to these by fluctuation dissipation relations like the ones you showed for the
two-point function.

We are interested in correlators of the form
Tr (pO(t1)O(t2) -+ ) - (1.31)

Unlike in the ground state, where we can time evolve e~*|0), now we’d like to time evolve
a mixed state:

p(t) = e HipetHt, (1.32)

Let us construct a generating functional to produce correlators like (1.31). To do so, we
couple any operator of interest to background sources J: S — S+ [ OJ. The time evolution

unitary is now:

o f:l_f HO+I0)0()

Uty t)[J] =T (1.33)

We can turn on different sources on both legs, to produce the following generating functional:?
2L, Do) = Tr (U (o0, —00)[J1]pU (00, —o0) 2] (1.34)

which has the following pictorial representation shown in Fig. 1.

There are several general properties that this generating functional satisfies:
1. Z[J,J] =1 “collapse rule” (from trace cyclicity. More generally, latest time cond.)

2. Z|J1, Jo]* = Z[Ja, Ji] unitarity (note that Z is not a pure phase)

>This will actually only produce a subset of all possible time orderings, see Eq. (1.37). To obtain out-of-time

ordered correlators, more “switchbacks” would be needed.



p j )

U]

Figure 1: Schwinger-Keldysh contour with sources. Time increases from left to right.

These apply for any density matrix. For the case of the thermal state p = e #H / Tre=AH
Z satisfies an additional KMS condition. This is entirely parallel to the relations between

various Green’s functions that you derived in your Problem set. The condition reads:
ZJi, Jo) = Z[J1 (=t +if), Ja(—t)] KMS + TR
The proof is simple:
Z[A1, As] = Tr ([ szl(th} [TeifJQOdtD
— Tr <p Tt | J1(t+iB) Odt} [TeifJQOdtD

[
—Tr (p [Tez [ ni(t+iB) Odt} [Tei li JzOdt} - 17')*
|: ’Lle( t— Z,B)Oldt} [TeiifJZ(*t)Oldt})*

(1.35)

=Tr (p
— T ({762‘[J2(7t Oldt} [TeifJ1(ft+i,3)O1dt} p>

= Z[i(—t +if), Jo(—t)]

In the second line we time translated e” {Teif‘holdt} e P = [Teif‘hol(t_w)dt} and then
changed variable in the integral. In the third line, we acted with the antiunitary operator 7~
which we then commuted across the trace. We have assumed time-reversal for simplicity, it
is in fact not necessary (as you might expect given your proofs of fluctuation-dissipation

relations) [3]. We are free to use time translation invariance to impose KMS as
Z[h, Jo) = Z[Ji (=t + 3iB), Ji(—t — 3iB)] . (1.36)

One can then generate various correlators as

- - 6" log Z = e
OO0+ O2BO(F) ) = 7o = T (T[OWOE) -] /T [0@OF)-+-])
(1.37)
It is useful to introduce the Keldysh basis
1
O, = 5 (01 + 02) , O,=01—05. (138)

10



Notice that any correlator involving O, at the latest time vanishes, from trace cyclicity (this

generalizes the “collapse” rule)
(Oayr(t1) - Oqyp(tn-1)0a(tn)) = 0, t <ta<---<ty. (1.39)

as illustrated below:

.
>

b — 1)

-

In particular, (0,0,) vanishes, and
2(0r(t)Oa) = ((O1(t) + Oa(1))(O1 — Og))
= (01(t)01) + (O2(t)01) = (O1(t) O2) — (O2(t)Os)

) (1.40)
= (TO(t)0) + (O(t)0) — (00(t)) — (TO(t)O)
=20(t)([O(¢), O]),
0 (0, (t)0,) = —iGR(t). Similarly,
KO, (t)Or) = (TO(H)O) + (O(t)O) + (0O(t)) + (TO(1)O) (1.41)
=2({0(1),0}),
so that (O,(t)O,) = G(¢).
In Exercise 2, you showed the following fluctuation dissipation relation:
GS(w) = coth%‘*’xm GR(w). (1.42)

You can show it again by using the KMS property of Z[.J1, J2] above.

Example: Einstein phonon. In Exercise 3 you studied the damping of fermions coupled

to an Einstein phonon

1. 1
S = /dt§¢2 - §w§h¢2 (1.43)
Its Euclidean two point function on the thermal cylinder is
1
GF = = 2mnT, 1.44
(wn) g Wgh Wn ™ (1.44)

which implies that the retarded Green’s function is

1

R —
GTw) = —(wHi0+)2 +wl

(1.45)

Note that G is state independent for free fields, since [¢(t),#] is a c-number! Other
correlators will depend on . For example, we know that the symmetric Green’s function
satisfies

B Puw

G (w) = coth 7('0 Im G*(w) = coth 7#5(&;2 - wﬁh) . (1.46)

11



We therefore already know the relevant Schwinger-Keldysh propagators:

(60()ba) = —iGF(w) . (1.47)
<¢r(w)d)r> = Gs(w) _— (1'48>

You will use these and the corresponding fermionic real time propagators in the following

Exercise.

Exercise 4: Thermal broadening in real time formalism

Let us revisit, directly in the real time formalism, the broadening of quasiparticles in Fermi
liquid due to phonons studied in Ex. 3. The path integral on the Schwinger Keldysh contour

takes the form

Z:/D¢1,2D¢1,2 ei(51=52) (1.49)

with S; = S[¢;, ¥;] given by Eq. (1.25). The interaction takes the form

St — it = g (prfs — davlvs) - (1.50)
(i) Write the interaction in Keldysh basis, and show that the electron self-energy at 1-loop
is

d
S(w, k) = ¢ / (Zlf)cﬁfl [D%(Q,q)G(w+Q,k+q) + D (2 q)G (w+ Uk +q)] , (1.51)

where G and D are the fermion and phonon Green’s functions.

(ii) Perform the € integral by residue, and show that one recovers our previous expression
(1.28). In the real time approach, the Fermi-Dirac and Bose-Einstein distributions do not

arise from Matsubara sums, but from the expressions for the symmetric Green’s functions.

2 Lecture 2 — Modern EFTs for Fluctuating Hydrodynamics

The previous lecture showed that interacting quasiparticles have a finite lifetime at nonzero
temperature. Conserved quantities, instead, cannot decay, which hints at an effective
description containing only these collective excitations. This is the theory of fluctuating
hydrodynamics: the dynamics of conserved densities. In the case of liquids like water,
these conserved quantities are mass, energy, and momentum. For correlated materials the
conserved quantities may be charge, energy, spin, etc. depending on the situation under

consideration.

12



Fluctuating hydrodynamics is an Effective Field Theory (EFT), sharing many similarities
with zero temperature EFTs for ordered phases such as magnets or superfluids. Instead
of providing a microscopic formulation, it directly describes the emergent dynamics. As
such, EFTs have a few unfixed parameters (Wilsonian coefficients), whose relation to the
microscopic pararmeters are not always known. Nevertheless, we will see that EFTs are not
just “phenomenological” but have substantial predictive power, relating many otherwise
independent observables.

Hydrodynamic EFTs apply very generally to local many-body systems, on the lattice or
in the continuum, disordered or not, strongly or weakly interacting, quantum or classical,
including even systems with discrete time evolution such as unitary circuits or Floquet
systems. In a sense, hydrodynamics is the most universal EFT. For this reason, it also has a
very long history, and some of the contents of the EFT description presented here have been

long known:

o Their equations of motion (turning off noise fields) reproduce the diffusion equation,

Navier Stokes equation, etc. {19th century physics}

o To leading order, they predict simple poles (diffusive, or sound modes) in response func-
tions of many-body systems {early 20th century physics: Landau-Lifschitz, Kadanoff-
Martin [4]}

o More generally, they describe fluctuating hydrodynamics, noise etc. {late 20th century
physics: Martin-Siggia Rose, KPZ, etc. [5, 6, 7, 8]}

e Beyond: adaptable to purely quantum observables, which can also have hydrodynamic
signatures — spectral form factor [9], OTOCs, entanglement dynamics, open quantum

systems [10]. {21st century physics}

e Further modern developments of these EFTs include: addressing systems with exotic

symmetries (higher-form, or dipole/fracton like) [11, 12, 13]; ...

EFTs for hydrodynamics will be presented below in an ahistorical way, following the
very recent realization that these EFTs can be constructed entirely based on a symmetry
breaking pattern unique to mixed states [14]. This approach of course rests on pioneering
work constructing EFTs on Schwinger-Keldysh contours [3, 15, 16, 17], as well as early

theories of fluctuating hydrodynamics [6].

13



2.1 Symmetries of mixed state time evolution

We have seen that even at weak coupling, real time thermal dynamics is difficult to study
from microscopics. We are in need of an EFT. The cleanest EFTs in theoretical physics come
from spontaneous symmetry breaking (SSB), where Goldstone’s theorem guarantees the
existence of gapless excitations. These are carried by fields that nonlinearly realize the broken
symmetry. This nonlinear realization highly constrains the EFTs, which therefore have
remarkable predictive power [18, 19]. Recently, a SSB pattern applied to mixed states has
been proposed to protect the long-lived nature of hydrodynamic excitations [14, 20, 21, 22].
The resulting EFTs are essentially identical to those used for many decades; however this
approach is appealing as it unifies hydrodynamics with EFTs for SSB.3

To understand the SSB pattern, we first notice that there is a natural action of a doubled
symmetry on density matrices. Consider for simplicity a U(1) symmetry with Noether

charge ). One can consider the action
p — e M@ peiazQ (2.1)

Clearly, since [H, Q] = 0 this action commutes with time evolution. In that sense, this
U(1) x U(1) is is a symmetry. This doubling of symmetries is somewhat awkward and seems
unnecessary; it was first discussed in the context of open systems, where it is useful and
important [23] (this reference also explains more precisely what is meant by the doubled
symmetry (2.1)). In that context, the density matrix evolves according to the Lindblad
equation?

Op = Lp=—ilH,p] + Y (2LipL} — LILip — pL{L;) . (2.2)
7

This open system Lindblad dynamics opens the door to breaking only one of the two
symmetries. Specifically, if charge is exchanged with the bath, then the Lindblad operators
can be charge (e.g., L = ®). This will break the symmetry (2.1) down to the diagonal
a1 = ao.

Why should we care about this in closed systems, where both symmetries are preserved

and would usually be thought of as a single symmetry? The proposal of [20, 14] is that

3

“The evolution is not unitary, because we have integrated out (traced out) the environment. The Lindblad
equation ignores non-localities in time that this could yield (Markovian assumption); it is the most general
trace preserving Tr[p(t)] = 1, completely positive, local in time (and time-independent) evolution. “Completely
positive” is a stronger condition than “positive” (p(t) > 0Vt); Ref. [24] provides a gentle introduction to the
Lindblad equation that explains why this is desired.

14



thermal states generically spontaneously break U(1) x U(1) down to the diagonal. Loosely,

while a pure state transforms just by a phase
B, Q)(E, Q| = "1 79| B, Q)(E, QI (2:3)
the Gibbs state is only invariant if a; = ay (one cannot pull the phase out)
p=> ¢ PPIEQE,Q = Y e % PF|E, Q)(E,Q|. (2.4)

E.Q E.Q

This generalizes to any symmetry (including spacetime and higher-form symmetries): the pro-
posal is that all continuous symmetries have SWSSB in the thermal states, and corresponding
modes.?

We will not further justify this assumption here, but we will study its consequences.

2.2 Warm-up: EFT for ordered phase

Let us start by considering a system with a U(1) symmetry that is spontaneously broken in
the conventional sense, say the 3d XY model in the ordered phase. In the Schwinger-Keldysh

language, both U(1) 2 are broken and we therefore have two Goldstones

Ga=61—02, b= (01 +00). (2.5)

We therefore expect to have a local representation of the generating functional in terms of
these Goldstones:
Z[Ay, Ag] = /D¢1D¢26i5°“[Aflt+‘9“¢l’Aiwﬂw (2.6)

(note that this generating functional is automatically gauge invariant). Let us build the

quadratic action at leading order in derivatives:
L = 190ty + 20i0a0idy + ic3(0ida)? + icad? + -+, (2.7)

with ¢; € R to satisfy the unitarity constraint Z[A4,, A,]* = Z|—Aa, Ay]. Furthermore, the
latest time condition forbids ¢? terms in the quadratic action.® The final condition we still

need to impose is KMS. KMS is a nonlocal (in time) condition on the effective action, but

SSWSSB of discrete symmetries have also been subject of interest in the context of mixed state topological
phases [25].
5Note that we are perturbatively imposing the conditions on the generating functional below (1.34). See

Ref. [15] for a discussion.
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the nonlocality is at a scale 8 that is earlier than the expected hydrodynamic cutoff.” We

will therefore impose it perturbatively in 0. It then acts on the fields as

61— —o1(—t+ 5iB) = —61(—1) — JiBdi(~1) bur ki)
or . .
B2~ —ga(—t — 5if) = —1(~1) + B (~1) br — (6, + LiBa)

Note that ¢,¢0, — dq¢» + T.D., so both ¢; and ¢y are unconstrained. Indeed, we had
already obtained them from a microscopic model, S; — Sy. However the ¢2 terms do not
have this structure, they couple the two legs! (we saw how such terms could be generated

from interactions, cf. ' ~ A\?). While

02 = da(—1)? + i2B¢a(—t)dr(—t) (2.9)

is not invariant, the following combination is:

Sa(ba +1B¢r) = (¢a + iBér)Pa. (2.10)

So we find the following action:
S = [ c16ubr + 20h0uditn + icsda (0 + iB,) + icsdhn (06u +i806r)  (211)

is KMS invariant, to leading order. The retarded Green’s function features a pair of poles at

frequencies®

w=tcsk —iDE* 4 - - (2.12)

Instead of having a finite decay rate —:iI', the superfluid Goldstones are protected even at

finite T and simply have a sound attenuation rate I' — Dk?.

2.3 Strong to Weak SSB of U(1): theory of fluctuating diffusion

Our main interest is the “normal” phase, where there isn’t spontaneous symmetry breaking
in the conventional sense. We will focus on a system with a global G = U (1) symmetry first,
but generalizing this construction to G = R%! will produce a fluctuating theory of fluid
mechanics (Navier-Stokes equations and beyond). We have argued that the normal phase is

characterized by strong to weak SSB:

U(1) x U(1), — U(1),. (2.13)

"This is the conjectured “Planckian bound” [26, 27, 28, 29)].
8Inverting this Gaussian action also produces gapped or relaxed poles lim_so w(k) # 0 that are however

beyond the regime of validity of the EFT.
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We will therefore only have a single Goldstone, ¢,. However, to realize KMS symmetry (and
collapse rules) in the simplest possible way, it will need a Schwinger-Keldysh partner, which
we will call u,. This is a “matter field” which linearly realizes the symmetry, but forms a

KMS multiplet with ¢, as follows:

Ga — _(¢a + Zﬂ/‘?“)

) (2.14)
fir = fir + 1iBda
Le., u, transforms like ¢, from the previous section. We are now ready to build the EFT.

The c¢1, c3 and ¢4 terms from above are allowed:

S = [ c1buns + iTeadiorn 1+ iB0) + iTeada (60 + B ) (2.15)

Interestingly, the absence of the co term changes the leading scaling behavior: the ¢, u, part
of the action shows that we have diffusive behavior w ~ k2. This implies that to leading

order, we can drop ¢4 w.r.to c3. We are then left with the following leading order action

S =X [ s +1TDOG0 (Oita + 1B0hpr) + - (2.16)

We have given names to the remaining coefficients c1, c3: suceptibility x and diffusivity D.
The first name will be justified shortly, whereas D was chosen because the u, satisfies a
(noisy) diffusion equation
08
560
To identify the charge, we can couple the system to background fields. This is simple for ¢,:

0 = Oppty — DOZ iy = —iTDO2 g . (2.17)

OpPa = Vyuda = Ouda — Apa- Now py is already gauge invariant, but KMS requires A, to

enter through F{j; as

ZlA0 Al = [ DnDoue™ S = [ Votuns + DV (Vida + 80, +i6Fg) + -+
(2.18)
You will show this in the problem set. One can also add gauge invariant contact terms such
as Fj F/,,, but this enters at one higher order in derivatives.
We are now ready to compute observables. The retarded Green’s function of the charge
density is )
G (p) = i(j;(p)da) = 1m

We will need the propagators. Inverting the action without sources:

1 dit1y 2iTDk*  iw + Dk? ba

S = 2X/(2)d+1( Pa  fir )_ , ) (2.20)
m P\ —iw+ Dk 0 Ly

p

log Z = ix*Dk* (17 (p)ba) - (2.19)
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gives

—i/x 2TDk?/x
A(p)pa) = —— X (D)) = L 2.21
So we have ,
R B xDFk
Gl k) = ———0s (2.22)

Simple result, but remarkable: a pole in the lower half plane. In finite volume, all discontinu-
ities are along the real axis! They coalesce in the thermodynamic limit. Another important
feature is that we have a single pole: half the mode counting as in 7" = 0 Goldstones: we
have “half” the symmetry breaking.

Part of this Green’s function is accessible by equilibrium physics:

lim GR(w, k) = x = GF(w, = 0,k). (2.23)

w—0
This is a parameter of the TEA, and measures the susceptibility x = dn/du. One other
important parameter in thermal matter is the conductivity j = o E. It can be measured by

the following Kubo formula:

1 . ;Z R T . —iw R _
o= 3}% llliI(l) - Gii(w, k) = 3}1{% éli% o Gy (w, k) = xD (2.24)

I used the WI to relate the GFs, but you could also derive ¢ directly. This is the “Einstein

relation” — the EFT ties several independent observables (x, D, o).

In the limit fw < 1, the Wightman function Tr(pj°(w, k)5°) = eﬁEHGS(w) ~ G¥(w)
are equal and given by
2 2TxDk?
-0 -0 R X
k ~ —ImG k)= —‘—-—. 2.25
Its Fourier transforms are
dw _,, 2TxDk? 2
-0 0\ __ Y —iwt _ —Dk?|t|
t, k = =xT 2.26
(17t k)57) 2wy (DreE - XTe : (2.26)
and .
dk 2 xT 2
.0 0\ ikx ,— Dkt __ —z*/(4Dlt])
t =xT = . 2.27
GO = XT [ e e P = e (227)
Of course these results will receive corrections from irrelevant operators. We will revisit
them soon.
Exercise 5: KMS invariance of diffusion EFT

We showed during the lecture that the combination

8i¢a (8i¢a + Zﬁazlffr) (228)
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is KMS invariant (to leading order in derivatives). Show that the correct way to gauge this

term while preserving KMS is:
Vita (Vide + i80;u, + iBEE;) (2.29)

with V,¢q = 0,00 — Apa-

2.4 EFT of momentum conserving fluids

In certain clean correlated systems, electron fluids or electron-phonon soups may conserve
momentum well enough to exhibit a hydrodynamic regime which includes momentum density
(in addition to charge or energy density) as a long-lived collective degree of freedom [30, 31]
(see Levitov lectures).

The additional degree of freedom arises from strong-to-weak SSB of the translation
Symmetry:

R? x R — RY. (2.30)

Let us consider a system with charge and momentum conservation, ignoring energy conser-
vation for simplicity. We will construct the EFT following App. A of [29]. The EFT will
then contain d + 1 Goldstones that shift under the U(1) x R? symmetry:

¢ = ¢ te, X0 Xt (2.31)

Let us denote the KMS partners of these fields as ¢ and v;. The KMS symmetry then is

realized as (2.14) and
X! — XE4ipu' 4
. , g (2.32)
vz—>—(vz—|—ii,6’X;+--->
Note the overall minus sign compared to (2.32) coming from the fact that momentum flips
under time-reversal symmetry.

Let us construct an EFT for these fields that is invariant under (2.31) and (2.32). We

can first consider each sector separately, as follows:

Su@ylus ¢a] = / Xt + iT04;0;¢0q (9;¢q + iBOjp) + - - - (2.33a)
SRd ['U, X] = /pr’l)z‘XZL + sz]klang (8kX(ll + iﬁf)kvl) + - (233b)

The additional indices carried by the translation Goldstones allows one to write potentially

many “momentum conductivities”, parametrized by the viscosity tensor 7. Let us for
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simplicity consider isotropic systems with reflection symmetry: this requires to express the

tensors o;; and 7;;,; in terms of the tensor d;; (you will generalize this to systems without

reflection or time-reversal symmetry in Ex. 6, in which case one can also use €;,...;;). This

leads to

oij = 005, Mijkl = M50k + M20:051 + 130310k - (2.34)

For the viscosity tensor, notice that after integration by parts it is contracted with a tensor

symmetric in ¢ <+ k — one can therefore wlog either n; or 13 to zero, and are left with two
parameters. These are called the bulk and shear viscosities, and are arranged as

Nijkl = C0ij0k1 + 1 <5ikz5jl + 010k — 2513'5“) - (2.35)

If this were all, both sectors would simply diffuse. However we can also couple the two

— this will lead to a hybridization of these diffusive modes into a sound mode. To leading

order in derivatives, there are two terms that one can

Shix = /OlluaiXé + Oégviaigf)a . (2.36)
This action is only invariant under KMS if oy = as. Moreover, consistency with static

equilibrium requires a; = n. The full action for linearized fluctuating hydrodynamics is then
Su() + Sgra + Smix (2.37)

Its equations of motion are the linearized, noisy Navier-Stokes equations, which arise in the
context of electron hydrodynamics. Solving for the modes as we did for the diffusive EFT,

one finds a sound mode carried by charge and longitudinal momentum

2

1 2
w = Fck — ivsk?, = n , Vs = —— ((d -1+ C) , (2.38)
X XPP xpp \d

as well as a diffusive mode carried by transverse (shear) momentum excitations

w=—iDk*, D=1, (2.39)
XPP
Exercise 6: Parity odd transport in the hydro EFT

Try to extend the EFTs of diffusion (Sec. 2.3) and the EFT of fluids (Sec. 2.4) to systems
without parity or time-reversal symmetry.

Hint: for diffusion, try to introduce a term corresponding to the Hall conductivity oz. You
may need to keep background fields activated to see this term. For parity-violating fluids, you

should be introduce a Hall viscosity nm, as well as a few other parameters (see, e.g., [32]).
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Exercise 7: EFT for nonlinear fluctuating hydrodynamics

2.5 Systematics of the EFT (if time permits)

i

The point of setting up an EFT is to be systematic. This will take us beyond “20th century’
hydrodynamics, and there will be surprises. In particular, studying corrections will reveal
exactly in which regime the EFT is valid. We will find that all new operators in the EFT are
irrelevant. One would therefore expect corrections to Egs. (2.25-2.27) to be small at small
w, k or large ¢,z. While this is correct for Egs. (2.25) and (2.27), it is not for Eq. (2.26),
i.e. (jO(t,k)7°). This “dangerous irrelevance” in the simple theory of diffusion shows the
subtleties of EFTs in non-Lorentz-invariant contexts.

Let us classify operators of the EFT by their scaling dimension. Scaling is a little richer

in this context. By scaling the leading Gaussian action as S ~ 1 one finds
Wk e~y ~ K2 (2.40)

Note that the density 2pt function (2.27) exemplifies this scaling (n ~ g, ~ k%?).

What corrections can one have to the EFT? We can have higher derivative corrections:
Op ~ 02 ~ k2, (2.41)

which will give 1/t corrections at late times (and are clearly irrelevant). We can also have
nonlinearities: because ¢, needs to enter with a derivative, the leading non-linearities will

come from extra factors of

Ly ~ kY2 (2.42)
These will produce cubic vertices in the EFT, for example:
L£> (D + D/MT + - )8i¢a(8i¢a + i/BaiNT) : (2'43)

The D term is the one from the Gaussian action (2.16), the D’ term produces a cubic
vertex.”? Because we need two cubic vertices to give a correction to the 2pt function, the

overall suppression of these corrections is k% ~ 1 / t4/2, they are also irrelevant.

9Notice that we have not written the new cubic term with an arbitrary coefficient, but rather with
D' = dD(p)/du, the derivative of the diffusion with respect to chemical potential — if we know the density

(or p)-dependence of the diffusion constant, we know about inevitable nonlinear terms of the EFT [33].
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We therefore expect the following structure for corrections to observables

) ) xT 1 1
<jo($7t)jo> = (47.‘.Dt)d/2|: FO,O(?J) + ZF[]J(:[/) -+ ﬁF012(y) + ..
1 1 1
Tz (FLO(?/) + oY) + 5 Fely) + - ) (2.44)

1 1 1
+7a <F2,o(y) + () + 5 2a(y) + - ) + - ] ;
where the Fy, are universal scaling functions (up to an overall prefactor or two) of the
dimensionless scaling variable y = x/v/ Dt, arising at ¢-loops and nth order in the derivative
expansion — they are predictions of the EFT (predictive power despite Wilsonian coefficients).

One could write similar expressions for (2.25) or (2.26) in terms of scaling functions of

w/(Dk?) or tDk2.

2.6 Loop correction to diffusion and dangerous irrelevance (time won’t

permit)

The fact that hydrodynamics should receive loop corrections, as anticipated in the previous
section, was in fact discovered numerically in the 70s [34], and is what lead to the first action
formulations for hydrodynamics [6, 7]. These loops are traditionally called “hydrodynamic
long-time tails”. See Refs. [35, 36] for a discussion of their relevance for the QGP. They are
suppressed in holographic theories, where they arise from graviton loop corrections in the
bulk [37] (indeed, the hydrodynamic EFT action is proportional to the free energy, through
X, and hence a large free energy x ~ N? leads to suppressed loop corrections).

See Ref. [38] for a recent treatment of loop corrections within the diffusive EFT. We

quote the result:

d_q
2w _ 1.2)2
R B xDk? 9 _XD'2 L (T_k>
Gjojo(w, k) = D+ 0D (w IR — i’ 0D(w,k*) = 5 ( Zw)—(167r)d/2f(g) .
(2.45)

This result can almost be guessed without any calculation, except for the overall numerical
factor: (i) D2 comes from two insertions of the vertex (2.43); (ii) the scaling of the correction
is O(k?), as anticipated below (2.43); (iii) the branch cut at w = —£Dk? can be found by
cutting rules, see below; (iv) the overall w guarantees that the static Green’s function is
analytic, as required from the thermal effective action (Sec. 1.1) [39]; (v) the remaining
factors of D, x are fixed by dimensional analysis.

The location of the branch point can be found similarly with a similar argument that

leads to the location of the branch point at s = —(2m)? for two-particle threshold in QFT.
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Figure 2: (a) On-shell condition for the two internal legs, leading to a branch point at
w = —%Dk‘z. Further loops would lead to additional branch points at —%Dkz. The branch
points and poles associated with a sound mode w = +c.k — ik? are also shown on the left

and right. (Figure adapted from [40, 41]).

Imagine cutting the one-loop diagram as in Fig. 2, and placing both internal legs on shell.
The smallest (imaginary) value of external frequency that allows for this is w = —%Dk2 , and
arises when k' = —k/2.

You may worry about the fact that this 1-loop branch point is closer to the origin of the
complex w plane, and is therefore more singular in the IR than the leading non-analyticity,
the diffusive pole. The fact that the non-analyticity across the cut is k¢ suppressed implies
that it is still a small correction to Gf(w, k). However, your concerns are warranted: Fourier
transforming to time w — ¢, the non-analyticity is picked up and leads to a correction:

0. P2 # 12
(O3 (8 k) = XT |28 4 Tpems P g (2.46)

Despite the 1 /td/ 2 suppression, the 1-loop correction starts to dominate at late times
t > 1/(Dk?). Eventually, higher and higher loops dominate, with n-loop contributions

. _1 2
scaling as tniﬂe n DR

. This series can be approximately resummed, yielding an entirely

different, stretched exponential decay of the correlator [41]1°
(050 (¢, k) m eV PR (2.47)

This phenomenon highlights the subtleties of non-relativistic EFTs: while correlators can be
expanded in terms of scaling functions as in Eq. (2.44), the behavior of the scaling functions
can be singular in certain parameter regions, leading to a breakdown of the EFT in those

regions.

This “diffuson cascade” and breakdown of the EFT was also observed numerically [42], albeit in a

stochastic system where the resummed behavior appears to be different.

23



3 Lecture 3 — Bounds on Transport

EFTs for fluctuating hydrodynamics capture dynamical (and equilibrium) observables in
thermalizing systems in terms of a handful of parameters (“Wilsonian coefficients”), such as
diffusivities D or susceptibilities y. They have predictive power, in that many experimentally
independent observables are expressed in terms of these parameters.!!

However, the EFTs do not predict the value of parameters like x or D. These must be
typically obtained from a microscopic calculation. The fact that microscopic calculations for
most strongly correlated systems of experimental relevance are not under theoretical control
motivates finding universal constraints that these parameters must satisfy, irrespective of
the microscopics. This lecture will cover such constraints: bounds on transport.

The search for universal bounds on transport shares the philosophy of other UV/IR
constraints on quantum many-body dynamics (e.g., Lieb-Schultz-Mattis, Lieb-Robinson,
sum rules, etc.), where one attempts to constrain emergence based on general principles
(unitarity, symmetries and their anomalies, causality) rather than perturbative calculations.

One experimental motivation for bounds on transport is the linear-in-T resistivity seen in
the normal (“strange metal”) phase of a host of high-Tc superconductors: while establishing a
universal mechanism for strange metal phenomenology has proven challenging, the existence
of a universal bound may explain why many strongly correlated systems with no small

parameter push against this limit.

3.1 Mott-Ioffe-Regel limit

Trasport can often be studied in a semiclassical approach using Boltzman kinetic theory.
Consider a Fermi liquid, where the collision integral produces a mean free path ¢ for the
low energy quasiparticles with momentum close to pr. For this semiclassical picture to be
self-consistent at all, this mean-free-path should be larger than the spatial resolution of the

particles, which according to the uncertainty principle must satisfy
prl 2 h. (3.1)

We set h =1 in the following. Inserting this in the Drude formula for the dc conductivity,
which involves the mean free time 7 = {/vp, gives a limit conductivity that can be achieved

by kinetic theory:

neQ

Ode = T~ ek > 22 (3.2)

*

"For example, nonlinear response depends on the same coefficients as linear response [33].
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Figure 3: (a) The resistivity of very good metals such as copper grows with temperature but
stays well below the MIR limit for all 7" below the melting temperature. Less good metals
such as Nb show resistivity saturation near the MIR limit. (b) Instead, bad metals are
defined as metals that do not show such resistivity saturation, signalling transport beyond

the quasiparticle kinetic theory paradigm. (Figure from [46]).

This Mott-Ioffe-Regel (MIR) limit is not a bound per se: when it is reached, the formalism
of kinetic theory breaks down. Interestingly, many metals show resistivity saturation as
temperature is increased and their resistivity approach this limit (see [43] for a review). This
phenomenon, even in conventional metals, is not entirely understood.!? 13

Part of the interest for the MIR limit is that it is violated in many strongly correlated
materials, called “bad metals” [47]. That this is possible is no surprise, given that the

argument above is not a bound. However that argument suggests that bad metals cannot be

described in terms of quasiparticles obeying kinetic theory.

3.2 Strong coupling bound on non-quasiparticle transport

We now lift the assumption of quasiparticle transport, and explore possible universal bounds
on transport. First note that transport is singular in the limit of weak coupling at weak
coupling A < 1 (at least in clean systems), because free systems do not thermalize. Transport

parameters such as diffusivities, conductivities, viscosities, and the local equilibration time

12Diffusivity saturation at the Mott-Ioffe-Regel limit also seems to occur in the context of spin diffusion in
certain cold atom systems. The diffusion constant of a system of quasiparticles is related to the mean free

time or length as D ~ v?1 ~ vl = L2i= %’“l P %, where the last step is the MIR limit for the diffusivity.
13See [44, 45] for controlled large N models of a Fermi liquid coupled to acoustic phonons, where a feature

occurs in the resistivity at the MIR limit
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diverge in this limit

1
D, o, n, Teq ™~ p . (3.3)

We therefore do not expect an absolute upper bound on these quantities. As coupling is
increased, these parameters decrease; however this expression only holds at weak coupling.
Certain solvable strongly coupled models (mostly: holographic QFTs and SYK-like models)
exhibiting O(1) transport parameters have suggested that these do not continue to decrease
indefinitely as coupling becomes strong. This has lead to a number of conjectured quantum
lower bounds on transport parameters. There are several versions of this conjecture, for

various different observables, discussed below.

Planckian bound: The idea that there is a quantum limit to dissipation is perhaps most

concisely formulated as the Plankian bound on the local equilibration time

h

Tequ7

(3.4)

which states that there is a quantum limit to how fast a many-body system can thermalize
[26, 27, 28]. In quasiparticle systems, transport parameters are often expressed in terms of
Teq (Or a mean-free time), so in a sense the Planckian bound can be thought of as a seed
for other transport bounds. However, one challenge to establish (3.4) has been to provide a

precise definition of 7. We will discuss this below.

Diffusion bound: The calculation of transport parameters in holographic QFTs gave a
key analytic insight on dissipation in strongly coupled quantum many-body systems [48].
Holographic QFTs have conserved momentum, whose transport is characterized by viscosities.
The shear viscosity at strong coupling was found to not decrease indefinitely, but settle at
an order one value (when divided by the entropy density). A similar behavior arises in the

quark-gluon plasma:

1
QCD high T g ~ 2 QCD intermediate T g ~ 1 (3.5)

This has lead to the conjecture that this ratio is bounded by an order one number (times
k). While this bound is not directly useful for transport in materials, it can be formulated
in a way that is amenable to generalization, as a bound on the diffusion constant of shear

momentum modes [49]

(3.6)

Nl %

n
D, =—_ 21>
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The second equality holds in relativistic QFTs where the momentum susceptibility is fixed
by Lorentz invariance. However this suggests a generalization [49]
h
D> qﬂf (3.7)
where v is the velocity relevant to dynamics in the system under consideration — perhaps
v = v for a metal. One appeal of this bound is that metals saturating it exhibit linear-in-T
resistivity:

1_11 vp 1 My

P XD Tk T

T (3.8)

If one were to extracting a time scale from this resistivity using the Drude formula (3.2)
(not necessarily a reasonable thing to do), this would yield a Planckian time scale 7 ~ 1/T.

There has been no proof of these conjectures (even the 7/s one which has stronger
assumptions and were the choice of the velocity is clear). However, progress on related
bounds but in an opposite direction have been made using causality, we will discuss this

below.

Bound on Lyapunov exponent: this formulation of the bound relies on the strongest
assumptions, and applies to an observable that is difficult to measure experimentally; the
flipside is that a sharp bound can actually be established, using analyticity of thermal
correlation functions [50]. It is based on the observation that certain semiclassical or large

N systems feature an exponential growth of out-of-time-ordered correlators
1
(OH)OO)O) ~ 1 — Nem, (3.9)

a semiclassical analog of the “butterfly effect” of classical chaos. If one assumes that
correlators indeed have this behavior, then the corresponding timescale must satisfy a
Planckian bound:!*

> . (3.10)

M=

1 1
AL 27

3.3 Causality bound on diffusion

Some progress in establishing universal bounds on transport has been made by harnessing
the tension between hydrodynamic dispersions and causality [51]. Consider a system with

a lightcone, meaning that the commutator of local operators [O(t,x),0(0,0)] vanishes

YTechnically, the correlator that is studied is a regulated version of the OTOC Tr ¢O(t)cOcO(t)oO with
o= p1/4, which can be shown to be analytic in a strip Im¢ < 3/2. In a nutshell: bounded functions that are

analytic in a region cannot vary too fast.
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Figure 4: (a) Hydrodynamics cannot emerge too soon or it would predict spectral densities

outside of lightcones (from [51])

for x > ct. This applies to relativistic QFTs, where ¢ is the speed of light, as well as
quantum circuits (cellular automata). The Lieb-Robinson bound implies that it also applies
approximately to local Hamiltonians on a lattice, where in this case ¢ is replaced by the
Lieb-Robinson velocity vrr. . Instead, notice that diffusive spreading = ~ /Dt is faster
than any lightcone at sufficiently early times, see Fig. 4a (this also applies to diffusively
broadened sound modes, but we focus on diffusive modes for simplicity). Of course this is
not a contradiction: like any EF'T, hydrodynamics is an emergent description that holds only
after some timescale, which in the context of hydrodynamics is the local equilibration time
Teq- Loosely, causality requires the diffusive front to be subluminal VDt < vigrt, leading to
an upper bound on the diffusivity

D S vfRTeq - (3.11)

This is not a sharp bound since it involves evaluating the Green’s function near the cutoff,
at which point corrections become large.

There are several improvements one can make to this argument. First, the Lieb-Robinson
bound is very conservative (it holds in any state!) and is typically far from being saturated in
the thermal state. A slower state-dependent velocity that bounds dynamics is the butterfly
velocity vg < vpr (usually defined by a spatially-resolved version of the OTOC (3.9)), so
that under certain conditions the bound can be improved to vp,r — vp [52, 53]. Second, the
bound (3.11) can be made sharp in certain special situations, including open systems [54]

and large N QFTs [55].
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3.4 Planckian bound on thermalization

Let us return to the Planckian conjecture:

h

Tea 2 75 (3.12)

Is there a sharp notion or definition for the local equilibration for which this conjecture
is true (and interesting)? Consider first a system of quasiparticles. A natural notion of
equilibration time is the collision time (mean free time between collisions). However, even
here this notion is ambiguous, as there are several collision time scales. Indeed, free fermions
in a disordered landscape will collide frequently with defects, but this is not even truly
a many-body system! (Eigenstates are still tensor products of single-particle states, even
though these are more complicated than Bloch states). What distinguishes this type of
scattering from thermalizing scattering off dynamical degrees of freedom (including the
fermions off themselves) is that scattering off static disorder is elastic: ther energy of the

fermion is conserved as it bumps off defects. This is illustrated in Fig. 5.

Figure 5: (a) Elastic scattering from static disorder. (b) Inelastic electron-electron collisions

(or electron-phonon, etc.) redistribute energy and drive many-body thermalization.

Note that the line between elastic and inelastic scattering can be a little fuzzy. What if
the disorder can move, but only very slowly? A similar situation arises when electrons scatter
off phonons at temperatures above the Debye temperature, such that the typical energy of
electrons is > the available energies of phonons. See Ref. [28] for a detailed discussion.

We would like a definition that does not rely on a quasiparticle picture [29]. One definition

that is tempting is to define it as the decay rate of local operators at late times
(Ot)0) ~ et (3.13)

However, hydrodynamics implies that bosonic operators generically decay polynomially,

because of overlap with hydrodynamic modes. Such a definition could apply in sectors that
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Figure 6: The time scale of emergence of hydrodynamics provides a mechanism-independent

definition of the local equilibration time 7.

decouple from hydrodynamics, but in many situations of interest there is no such sector.
A definition that can apply to any model or system is to identify the local equilibration
time as the time scale of emergence of hydrodynamics (said differently, it is the UV cutoff of
hydrodynamics). This is illustrated in Fig. 6. There are several ways to make this definition
sharp, see [29].

Now hydrodynamic EFTs predict much beyond the asymptotic form of the 2pt function.
They also capture intermediate time corrections (see Eq. (2.44)). These corrections must
die off for standard diffusive behavior to emerge — this leads to a Planckian bound on the

equilibration time [29, 56].
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