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Abstract

The BCS theory of superconductivity named electron-phonon interaction as a glue that over-
comes Coulomb repulsion and binds fermions into pairs which then condense and super-conduct.
We review recent and not so recent works aiming to understand whether a nominally repulsive
Coulomb interaction can by itself give rise to a superconductivity. We briefly review a generic sce-
nario of the pairing by electron-electron interaction, put forward by Kohn and Luttinger back in
1965, and then turn to modern studies of the electronic mechanism of superconductivity in the lat-
tice models for the cuprates, the Fe-pnictides, and the doped graphene. We argue that in the range
of dopings/interactions, where these systems are metals and Mott physics does not play a crucial
role, the pairing in all three classes of materials can be viewed as lattice version of Kohn-Luttinger
physics, despite that the pairing symmetries are different. We discuss the conditions under which
pairing occurs and rationalize the need to do either parquet renormalization-group analysis at
weak coupling or introduce effective interaction mediated by pre-formed spin or charge fluctua-
tions at a stronger coupling. We discuss the interplay between superconductivity and density-wave

instabilities at weak coupling.

PACS numbers:



I. INTRODUCTION

Superconductivity (SC) is one of most remarkable aspects of quantum physics of inter-
acting electrons. Discovered in 1911 by Kamerlingh Onnes and his team of technicians! it
preoccupied the minds of the most prominent physicists of the 20th century and remains at
the forefront of condensed-matter physics in the 21st century. Many ideas developed first
in the studies of superconductivity like the mass generation of the gauge field (the Meissner
effect)®3, and the mass generation of superconducting phase fluctuations?, were later ex-
tended to other fields of physics and served as paradigms for the works by Higgs® and others
to explain mass generation of the electro-weak gauge W and Z bosons in particle physics®.

In simple words, superconductivity is the ability of fermions to carry electric current
without dissipation. In quantum physics such phenomenon is generally associated with the
appearance of a macroscopic condensate, i.e., a quantum state in which 10%* particles “hold

together" at the lowest quantum level and do not allow individual particles to get swiped
away by impurities, interactions with boundaries, etc. Bosons are capable to do this be-
cause any number of them can occupy a single quantum level, and the appearance of a
macroscopic condensate of bosons is a well-known phenomenon of Bose-Einstein condensa-
tion 3. Fermions, however, are "lone wolves'— by Pauli principle, only two of them (with
opposite spins) can occupy a single quantum level, others are expelled. As a result, 10?3
fermions occupy a comparable number of energy levels. In this situation, any coherent mo-
tion of fermions (e.g., a current) will only survive for a limited time, before fermions will be
individually affected by impurities, walls, etc.

There is a way to change this unwanted situation. If, somehow, fermions form bound
pairs, quantum mechanics tells us that each pair has spin S = 0 or 1, i.e., it becomes a
boson. Bosons can condense and behave as one monolithic object, i.e., if they are forced to
move in one direction by an applied electric field, they will continue moving even after the
field is turned off because 10?* bound fermionic pairs will not allow an individual fermion to
change its direction due to, e.g., impurity scattering.

This simple reasoning tells us that the phenomenon of superconductivity can be straight-
forwardly explained if there will be an explanation why fermions form bound states. This

is where the real difficulty is. An electron-electron interaction is repulsive and generally

should not allow fermions to pair. That remained the mystery for almost 50 years after the



discovery of superconductivity.

The breakthrough came in 1957 in a paper by Bardeen, Cooper, and Schrieffer (BCS)”.
They found that the interaction between fermions and lattice vibrations effectively creates
an attraction between fermions. An electron creates a disturbance of a lattice structure
around it, another electron “feels” this disturbance and through it “feels” the other electron.
BCS have demonstrated that the effective electron-electron interaction, mediated by quanta
of lattice vibrations — phonons, is attractive at energies smaller than characteristic phonon
frequency wp. On a first glance this may not be enough as electrons still repel each other by
Coulomb interaction. However, Coulomb repulsion is known to become progressively smaller
at smaller energies due to screening in the particle-particle channel® 1%, and it drops between
fermionic bandwidth, which is typically of order few electron-volts, and Debye frequency,
which is typically a few tens of millivolts. If the drop down to wp is strong enough, electron-
phonon interaction overshoots electron-electron repulsion and the total interaction becomes
attractive. The BCS theory was preceded by the observation by Cooper!! that there is no
threshold for the pairing, i.e., an arbitrary weak attractive interaction already gives rise to
fermionic pairing. As a result, all what is required for pairing is that at energies of order
wp electron-phonon interaction must exceed screened Coulomb interaction.

Electron-phonon mechanism of SC has been successfully applied to explain the pairing in
a large variety of materials, from Hg and Al to recently discovered and extensively studied
MgB; with T, as high as 39K'2. The phonon density of states, obtained by inelastic neutron
scattering experiments, and the spectrum of the bosons which mediate pairing, as deduced
from tunneling experiments, agree very well in systems like, e.g., Pb!3!*, This comparison of
two independent experiments, together with the isotope effect!®!6, are generally considered
to be a very reliable proof of a phonon—mediated pairing state.

BCS theory also stimulated efforts to develop theoretical frameworks to describe the
phenomenon of SC, and the outcomes were the fundamental Gorkov’s theory of the SC
state involving normal and anomalous Green’s functions!”, and the controlled Eliashberg

1418220 of superconductivity, which goes beyond the BCS theory and includes fermionic

theory
self-energy and the dynamical part of the pairing interaction.

Non-phononic mechanisms of the pairing has been also discussed, most notably in con-
nection with the superfluidity of 3He?%?2, but didn’t become the mainstream before the

breakthrough discovery of SC in LaBaCuO in 1986%. That discovery, and subsequent dis-



coveries of superconductivity at higher T, in other cuprates, signaled the beginning of the
new era of “high-temperature superconductivity”?*. The discovery, in 2008, of superconduc-
tivity in Fe-based pnictides® (binary compounds of the elements from the 5th group: N, P,
As, Sh, Bi) with maximum 7, near 60K quickly established another direction of research in
this field.

The high superconducting transition temperature is important but not the central feature
of the phenomenon of "high-temperature superconductivity"'. After all, T, in MgB, is higher
than in many Fe-pnictides. What truly created an enormous interest to new superconductors
is the observation, shared by most scientists(although not all of them) that electron-phonon
interaction is too weak to account for observed T, in these materials. The same belief holds
for organic and heavy-fermion superconductors, for which T, is smaller, but electron-phonon
interaction is not the “glue" for superconductivity, by one reason or another.

If electron-phonon interaction is not the pairing glue, then what binds electrons together?
The only other option is Coulomb interaction. But it is repulsive, how can it give rise to the
pairing? It turns out, it can. In this review, we attempt to present a comprehensive story
of electron-electron pairing by the nominally repulsive Coulomb interaction.

The study of the pairing due to electron-electron interaction (often termed as electronic
mechanism of superconductivity) has a long history. It has been known from early 1950th
that screened Coulomb potential has a long-range oscillatory tail cos(2kpr + ¢g)/r® at large
distances r (kg is Fermi momentum). These oscillations are often called Friedel oscilla-
tions®®. Due to these oscillations, the screened Coulomb interaction gets over-screened at
some distances and becomes attractive. Landau and Pitaevskii analyzed the pairing at non-
zero orbital momentum [ of the pair and found that the pairing problem decouples between
different [ (see Ref. 3). Because of this decoupling, even if only one partial component of the
interaction is attractive and all other repulsive, the system still undergoes a pairing insta-
bility into a state with [ for which the interaction is attractive. Because the components of
the interaction with large [ come from large distances, it is conceivable that occasional over-
screening of the Coulomb interaction at large distances may make some of partial interaction
components with large [ attractive.

A bold next step in this direction has been made by Kohn and Luttinger (KL) in 1965272,
They analyzed the form of the fully screened irreducible pairing interaction at large [ in three-

dimensional, rotationally isotropic systems with k?/(2m) dispersion and separated the non-



analytic 2kr screening and the regular screening from other momenta. They incorporated
the latter into the effective interaction U(q) = U(q) (¢ = |q|) and made no assumptions
about the form U(q) except that it is an analytic function of ¢*. The full irreducible pairing
interaction is U(q) plus extra terms of O (U?(q)) coming from 2kp screening. KL argued
that contributions to partial components of the irreducible interaction from 2kp scattering
scale as 1/1* due to the non-analyticity of the 2kp screening, while the partial components

! i.e., are much smaller. This smallness overshoots

of analytic U(q) behave at large [ as e~
the fact that KL interaction is of second order in U and makes KL contribution larger than
the direct first-order interaction term.

KL found that, for large [, partial components of the full irreducible interaction with even
| are attractive when U(0)/U(q = 2kr) > v/3 — 1, and components with odd [ are attractive
no matter what is the form of U(q). As a result, any rotationally-invariant system with
repulsive Coulomb interaction is unstable against pairing, at least at large enough odd [.
When U(0) = U(2kr) = U, both odd and even components are attractive.

The situation at smaller [ is less definite as one no longer can separate the non-analytic 2kp
contribution to the irreducible pairing vertex and regular contributions from other momenta.
In this situation, one can only do perturbation theory to second order in some bare U(q).
For momentum-independent U(q) = U, KL attraction survives down to [ = 1 which is, by
far, the largest of attractive components?3°. For momentum-dependent interaction, a bare
U(q) has components for all [ and whether second-order KL contribution can overshoot bare
interaction is not obvious and depends on the details. One case when KL term definitely
wins and again leads to [ = 1 pairing instability, is when the Born parameter is of order one,
i.e., the radius of the interaction in real space is about the same as s—wave scattering length
a, and akp/h is small. In this situation, partial components of U(q) scale as (akp/h)?*1,
while KL terms are of order (akyr/h)? for all [, i.e., the KL components are parametrically
larger for all [ > 0.

KL applied their results to *He. Back in 1965, it was widely believed that the pairing
in *He should be with [ = 2, so they approximated U(q) by a constant U, expressed U
in terms of s-wave scattering length a, used akp/h ~ 2, known for 3He, and obtained a
ridiculously small T, ~ 10717K. A few years later, in 1968, Fay and Layzer?® extended KL

calculations to [ = 1, which a few years later (in 1972) was found experimentally®' to be the

actual pairing state in 3He. For p-wave, the KL result for T, is ~ 102K, which by order of



magnitude is the same as experimental T, ~ 2.5 x 1072 K (Ref.3!).

The KL analysis in 2D is more involved. If the regular interaction U(q) is momentum-
independent, the 2k part is also momentum independent for all ¢ < 2kr, which are relevant
for pairing (the pairing interaction connects momenta on the Fermi surface). However, a
picture similar to that in 3D gets restored once we apply perturbation theory and go to
third order in U32. Now the 2kr part becomes momentum dependent and non-analytic at
q — 2kp from below. Its partial components at large [ scale as 1/1% and are attractive. Like
in 3D, the largest KL attraction is for [ = 1, but now it scales as U? rather than U2. As
an additional complication, the relation between U(q) and the scattering amplitude in 2D
is also logarithmically singular, but this does not affect the statement about KL attraction
down to [ = 1, only U? is replaced by (1/log akr)?.

In this review we consider KL. mechanism in lattice systems. In the presence of a lattice,
rotational symmetry is broken and one cannot simply expand in angular harmonics, but
has to consider discrete irreducible representations for a particular lattice. We discuss how
to analyze pairing in lattice systems and show that modified KL. mechanism works here as
well, particularly when the bare interaction is momentum-independent. We consider three
examples of lattice physics in two dimensions: the 2D model with two Fermi pockets in
different parts of the Brillouin zone, and two different models with a single Fermi surface
(FS), but with highly anisotropic density of states, which is peaked at particular points
on the FS — the "patch models". We consider models with two and three non-equivalent
patches. The model with Fermi pockets is applicable to Fe-pnictides®?, the two-patch model
is applicable to overdoped cuprates®*, and three-patch model is applicable to doped graphene
near 3/8 and 5/8 filling, and to fermions on triangular lattice near 3/4 filling3>.

We first discuss what is the condition on superconductivity in lattice systems, assuming
that we deal with short-range repulsive interaction. We show that, in many aspects, the
situation is similar to isotropic systems. Namely, for Hubbard U model, the bare pairing
interaction is repulsive in a conventional s—-wave channel, and zero in other channels, which
in the cases we consider are either d-wave like (in terms of how many times the pair wave
function changes sign along the FS), or, for the case of Fe-pnictides, another s—wave, often
called s*~, in which the pair wave function changes sign between different FS pockets (the
conventional s—wave is called st*). We show that second-order KL contributions to the

pairing interaction are attractive in these "other" channels, much like they are attractive in



all channels with [ > 0 in isotropic systems.

We then consider a more realistic case of a bare U(q), which is still short-range, but does
have momentum dependence and is larger at small ¢ than at large ¢, as it is expected for
a screened Coulomb interaction. We show that, in this situation, the bare interaction is
repulsive in all non-s™* channels, and KL contributions alone cannot cure the situation. We
discuss three approaches which give rise to pairing even in this case. All three explore the
idea that there is another order which the system wants to develop in either spin or charge
density-wave channel, and fluctuations of this order increase the strength of the attractive
KL contribution and make it larger than the repulsive contribution from the bare interaction.

The first one a phenomenological “collective mode" approach®. It abandons the con-
trollable weak coupling limit (i.e. expansion in U) and assumes that the pairing interaction
between fermions can be thought of as being mediated by soft collective fluctuations of some
density-wave order whose fluctuations develop at energies much larger than those at which
superconductivity sets in. It is assumed that collective excitations are soft enough such that
this effective interaction is large and exceeds the bare repulsive interaction. The form of the
static pairing interaction mediated by soft bosons is obtained phenomenologically, based on
physics intuition and experimental results.

The second approach assumes that superconductivity and density-wave instabilities
are competing orders, which grow together and develop at about the same ener-
gies/temperatures. There is no pairing "mediated by collective bosons" in this case because
collective bosons by themselves develop at the same scale as superconductivity. Still, the
idea is that, as these fluctuations develop, they give progressively larger contribution to the
pairing channel via KL mechanism, and below some energy, which is internally set by the
system, the attractive KL interaction gets larger than the bare repulsion. This progressive
increase of the KL interaction with decreasing energy can be analyzed within the parquet
renormalization-group (RG) approach (either conventional®3#537 or functional®®3?), which
is still a weak-coupling approach, but it goes beyond second order in U(g) ana allows one to
sum up series of logarithmically singular KL contributions to the pairing interaction. One
thing one should analyze in the RG approach is whether superconductivity is the leading
instability, or density-wave order develops first.

And the third approach is to obtain the effective pairing interaction in an approximate

computation scheme, called a random phase approximation (RPA), which amounts to a



summation of a particular class of ladder diagrams®. In this effective interaction the bare
repulsion and the KL contributions are the first and the second terms in the expansion
in U(q), however higher-order terms are not assumed to be small and in many cases the
RPA pairing interaction is attractive in one of non-s™* channels. This approach is non-
controlled, but its advantage is that it can be equally applied to the case when density-wave
fluctuations develop before SC fluctuations and to the case when density-wave and SC
fluctuations develop at the same energies.

Crudely speaking, in all these models, the KL effect is enhanced by enhanced density-wave
fluctuations in either spin or charge channel. For repulsive interaction, the enhancement in

the spin channel is a natural choice.

II. PAIRING INSTABILITY AT ARBITRARY WEAK INTERACTION
A. Basic facts

In mathematical apparatus developed to study interacting fermions, the information
about the potential bound pairs is encoded in the two-particle vertex function I', which is
a fully renormalized, anti-symmetrized interaction between quasiparticles, and whose poles

determine collective bosonic excitations.

1 ),31 1
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FIG. 1: The vertex I written to first order in the interaction (wavy line). The numbers 1,2,3,4

represent the momenta k1, ko, k3, k4 respectively. The spin indices are not shown for clarity.

To first order in the interaction (see Fig. 1)

Tapos(krs oy ks, ka) = —U(k1 — k3)0ay05 + U(kr — ka)0as0s, (2.1)

To study pairing it is convenient to decompose I' into singlet and triplet components. A

singlet component has spin structure
00085 — 00508 (2.2)
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and a triplet component is

5&7565 -+ 5«165,87 (2‘3)

Using these formulas, we obtain from Eq. 2.1

Logqs(kr, ko; ks, ka) = —Usi (00085 — 0as08y) — Utr (0005 + 0asdpy) (2.4)
where ~ ~ ~ ~ ~ ~ ~ -
g, U= F) 4 UG —F) Uk k)~ U~ ) 2.5
2 9
p k ph(k+p) pp(o)
-p  Monlk-p) Mo0(0)

FIG. 2: Diagrams to second order in the interaction U(q) = U, which contribute to the vertex
function with zero total incoming momentum. There are contributions from both particle-hole and

particle-particle channels. Other diagrams to order U? cancel each other and we do not show them.

1. A constant interaction

For a constant U, only singlet component is present at the leading order, i.e.,

L0565 = —U (6ar0p5 — 0aslp,) (2.6)

Let’s go to next order. The four diagrams which give rise to the renormalization of I" to
order U? are shown in Fig. 2. Two of these diagrams contain a pair of fermionic Green’s
functions with opposite directions of the arrows. This pair is called a particle-hole bubble

because one can immediately check that the momentum and frequency integral over the two



Green’s functions of intermediate fermions is non-zero at 7' = 0 only when one fermion is
above FS, i.e., is a particle, and the other one is below FS, i.e., is a hole. The other two
diagrams contain the product of two fermionic Green’s functions with the same direction
of arrows. This combination is called particle-particle bubble because the momentum and
frequency integral over these two Green’s functions is non-zero at T' = 0 when both fermions
are above or below FS, i.e. both are particles, or both are holes.

The two diagrams with particle-hole bubbles affect the spin structure of the interaction,
generating the triple component. These diagrams are singular when transferred frequency
and transferred vyq are nearly equal, and this singularity gives rise to zero-sound waves'” But
we are interested in potential poles as a function of the total frequency of two fermions, while
transverse frequencies and transferred momenta can be arbitrary. It is easy to verify that
the particle-hole bubble is not singular for a generic transferred momentum and frequency
and therefore is incapable to substantially modify I' at small U.

The particle-particle bubble is a different story. Suppose we set the total momentum
q of two fermions to be zero (by momentum conservation total incoming and outgoing
momenta are both zero). A straightforward computation shows that in this situation the
renormalization in the particle-particle channel does not affect the spin structure of the
interaction, and that at T" = 0, each particle-particle bubble is logarithmically singular in

the limit of small total frequency and behaves as

o[ BPkdw
pr(Q>q =0) = —Z/WGk,wG—k,—w+Q

mk:p We T
= S [l” (Q) “2] (2.7)

where w, is the upper limit of the integration over vg(k — kp), which, physically, is the
upper end of the energy range in which U can be approximated by a constant.

The logarithmical divergence of II,,(¢ = 0,Q) at Q@ — 0 implies that the product UIl,,
cannot be neglected even when the interaction is weak. Keeping this renormalization, we

find that, to order U?
Fgé/37’75 =-U (1 - UHP;D(O> Q)) (5047556 - 5@6567) (28)

We assume and then verify that the most relevant 2 are the ones for which Ull,,(¢ = 0, Q)

are of order one. Let’s go now to next order of U. The number of diagrams increase, but
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for UIL,, = O(1) all of them are small in U, except for the two diagrams with two particle-
particle bubbles which give (UTIl,,)* with prefactor equal to one The same holds for fourth
and higher orders in U. One can easily make sure that perturbative series form geometric

progression, hence the full " in this approximation is

1
| A o055 — Oos 2.9
aB,yé 1 4 Upr(O, Q) ( vYBd g B'Y) ( )

For positive (repulsive) U, I" has no poles, but for negative (attractive) U, I' has a pole at
2 =€, where

_9r2p3 __mh
Qp = wee 2m°h [|U|mkp _ wee Zalkr (210)

where a = mU/(47h?) is s-wave scattering length in Born approximation. The pole exists at
arbitrary small U and, as we see, is located in the upper half-plane of complex frequency €2. A
pole in the upper half-plane implies that, if we create an excitation with €,,, its amplitude will
exponentially grow with time and destroy a Fermi liquid state that we departed from. What
does it mean physically? The excitations, which grow with time, describe fluctuations in
which a pair of fermions behaves as a single boson with total spin S = 0 and zero momentum.
A natural suggestion would be that the new state, which replaces a Fermi liquid, contains
a macroscopic number of such bosons in the same g = 0 state, i.e., the ground state has a
macroscopic condensate. This is precisely what is needed for super-current.

The analysis of the pole in I' can be extended to a to a non-zero total momentum g
and to a finite temperature. Calculations show!” that at a finite ¢ the pole is located at
Q =1, (1 — gfj@é)' Once ¢ exceeds the critical value \/éth/vp, the pole moves to the
lower half-plane in which case a collective excitation decays with time and does not destroy
a Fermi liquid. The consequence is that, for moving fermions, the pairing instability exists
only when their velocity is below the critical value. A finite T" leads to the same effect: the
pole is located in the upper frequency half-plane only at T" < T,, where T, is comparable
to ,. At larger 7', the pole is in the lower frequency half-plane, and a Fermi-liquid state
is stable. Note by passing that in weak coupling theory bound pairs appear and condense
at the same 7. Beyond weak coupling, pairs condense at a lower T" than the one at which
they appear. This difference between the two temperatures may be large at strong coupling
in lattice systems. This phenomenon is often termed as BCS-BEC crossover (BEC stands
for Bose-Einstein condensation). The meaning is that at strong coupling pairs of fermions

appear at high T" = T,4;,, and condense at low T' = Tgg, and between Tgr and T}, the
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system can be described as a weakly/moderately interacting gas of uncondensed bosons®!.
The two main messages here are (i) the pairing instability can be detected from Fermi-

liquid analysis as the appearance of the pole in I'" in the upper half-plane of the total

frequency of two fermions, and (ii) there is no threshold for such phenomenon — Fermi liquid

state gets destroyed already at infinitesimally small attraction between fermions.

2.  Momentum-dependent interaction

How this helps our consideration of a possible pairing due to repulsive electron-electron
interaction? If fully screened electron-electron interaction was a positive constant, we surely
would not get any superconductivity as attraction is still a must condition for the pairing.
But the screened electron-electron interaction U(q) is generally a function of g. Let’s see
what we obtain for the pairing when the interaction U(q) is still weak, but momentum-
dependent.

The input for the analysis is the observation that the logarithmical singularity in II,,
comes from fermions in the immediate vicinity of the Fermi surface. To logarithmic accuracy,
the interaction between fermions with incoming momenta k, —k and outgoing momenta p
and —p can then be constrained to particles on the FS, such that U(q = |k — p|) depends
only the angle # between incoming kr and outgoing pr. The decomposition of the vertex

function I' into spin-singlet and spin-triplet channels now gives

505 = —U(0)00y055 + U — 0)as0s,

_ _U(@) + (2](71— - 0) (5(1'}'535 _ 5a55ﬁ7)
_ U) — g(ﬂ' —0) (0ar086 + 00505) (2.11)

The way to proceed is to expand the interaction U(f) into angular momentum harmonics.
In 3D, we have

U@) => (2t+1)R(0)U, (2.12)
l

where P,(0) are the Legendre polynomials: Py(0) = 1, P;(0) = cos @, P»(0) = (3cos*0—1)/2,
etc. Even components 11—, (0) satisfy Iy, (0) = I, (7 — 0), odd components satisfy
om11(0) = —Iaopmy1(m—6). Substituting into (2.11), we obtain that spin-singlet contribution
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is the sum of even components, and spin-triplet contribution is the sum of odd components.

chﬂ 75(0) =
- Z [(4m0 4 1) Py (0) Uz (9085 — das0s+)
m=0
+(4m + 3) Po41(0) U1 (90085 + 0a603y)] (2.13)

One can easily make sure that the spin structure of I' is reproduced at every order, if we
restrict with renormalizations in the particle-particle channel, i.e., even and odd angular
momentum components do not mix. As a result, the full I' in this approximation is given

by
F%(@) -
Z [(4m + 1) Py () UL (50855 — Gas0r)

+(4m +3) Pam 1 () U1 (3arOs5 + 0as037)] (2.14)

Even more, using the property of the Legendre polynomials

dQ, 1
ym —4P,.(cosby,)P(cosb,,)

p) = m(gm’npm(cos 0]€7p) (215)

where 0y, , is the angle between fermions with momenta kp and qp and df}, is the element
of the solid angle for qp, one can show that components with different m also do not mix
up, i.e., each partial component Ulf U of the full interaction is expressed only via U;. The
relations are the same as at [ =0, i.e.,

Ui
1+ Ualp(q = Oa Q)

Ui g =0,Q) = (2.16)

This result is very important for our story. It states that, even if the angular-independent
component U;—q is repulsive, the pairing instability may still occur at some finite angular
momentum [. All what is needed is that just one partial channel is attractive, either for
even or for odd [. This may, in principle, occur even if overall the interaction is repulsive.
A good hint comes from the analysis of screened Coulomb interaction. As a reader surely
knows, a screened potential far away from a charge contains Friedel oscillations — ripples of
positive and negative regions of charge density (see Fig.3) Overall, screened interaction is
indeed repulsive, but the negative regions can provide attraction at some angular momenta,

particularly at large [, because dominant contributions to components U; with [ >> 1 come
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from U(r) at large distances. The magnitude U; is not an issue because, as we know, II,,, is
logarithmically singular at small frequencies. Furthermore, an attraction in just one channel
is a sufficient condition for a superconducting instability, because if one of Ulf " has a pole
in the upper half-plane of 2, the full vertex I" ffé”w;(é?) also has such pole. The only difference
with the case of a constant attractive U is that when the instability occurs at some [ > 0 a

two-fermion bound pair has a non-zero angular momentum /.

2

157

Screened Coulomb interaction

0 2 4 6 8 10
distance]r]-arbitrary units

FIG. 3: The screened coulomb potential as a function of . % (dashed line) is the bare coulomb
potential. %e‘r/ @ (blue line) is the Yukawa potential which includes regular screening and dies of
exponentially (a is some characteristic screening length). The fully screened potential (red line)
includes the contribution from the 2kr scattering which gives rise to Friedel oscillations at large
r. These oscillations are responsible for the attraction in large angular momentum channels. The

inset is a zoomed in version, which shows the oscillations.

B. Kohn-Luttinger Mechanism

Friedel oscillations at large distances occur by the special reason — the static particle-hole

polarization bubble II,,(¢) is non-analytic at ¢ = 2kp. For free fermions with spherical F'S,

[ d*kd
Mo(a, 2 =0) = i [ <2TH;G(k,w)G(k+q,w)

mkp <1 1 — 2?2 ’1—i—x
n

2m2h3 §+ 4dx 1—=x

) (2.17)
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where © = 5. Near ¢ = 2kp (or z = 1), II(z) oc (1 — 2)log|l — 2|, and its derivatives
over x are singular at x = 1. This 2kr non-analyticity is a universal property of a FL and
it survives even if one adds self-energy and vertex corrections to the bubble. One can also
show quite generally that the screening due to 2kp scattering acts on top of "conventional'
screening which transforms Coulomb potential into Yukawa-type short-range potential. In
this respect, Friedel oscillations can be considered starting from either bare Coulomb, or
Yukawa, or even Hubbard interaction potential.

Note in passing that the 2kr non-analyticity is an example of the special role played by
"hidden" 1D processes in a multi-dimensional FL*2. Indeed, when ¢ = |kr — pp| is near 2kp,
pr is antiparallel to kp. One can make sure that the two internal fermions, which contribute
to (1—xz)log |1l — z| term in L, (z), are also located near kp and —kp, i.e., everything comes
from fermions moving in direction along or opposite to kg

The effect of 2kr oscillations on superconductivity was first considered by Kohn and Lut-

2728 and the result is known as Kohn-Luttinger (KL) mechanism of superconductivity.

tinger
The idea of KL was the following: let’s incorporate all non-singular corrections to the inter-
action into new U(#) and treat it as unknown, but regular function of §. A simple exercise
with Legendre polynomials shows that for any regular function of 6, partial components with

! i.e., are exponentially small at large [. It is

angular momentum [ (U; in our case) scale as e~
natural to assume that this bare interaction is entirely repulsive, i.e., all U; > 0. If we substi-
tuted these U; into (2.16), we would obviously not obtain any pairing instability. However,
the input for the pairing problem is the full irreducible anti-symmetrized vertex function T
in which incoming fermions have momenta (kr, —kr) and outgoing fermions have momenta
(pr, —pr) (the word "irreducible" means that this vertex function does not contain con-
tributions with the particle-particle bubble at zero total momentum). Such irreducible o
contains additional contributions from non-analytic 2kp scattering. KL computed 2kr con-

tribution to irreducible T°(f) to second order in the renormalized U(#). The corresponding

diagrams are shown in Fig 4 The result is

1;26/3775(9) =
—A(Q) (5a75/35 - 5a55ﬂ7) - B(Q) (5a75[35 + 5a55/37>
(2.18)
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FIG. 4: (Top) The fully renormalized vertex function in the Cooper channel is the sum of the
particle-particle diagrams. The boxed wavy line is the irreducible pairing vertex which is the sum
of all diagrams with the structure different from the Cooper channel. (Bottom) The expansion of
the irreducible vertex to second order in the interactions. The second order terms are particle-hole

channel contributions (Kohn-Luttinger diagrams)

where
a@) = O ITZ0 () a0 - v2()) T Dl T =0
56) = YO0 (o) —av ) + 7(0)) el = Dhnlr =)
(2.19)
IL,(0) ~ —(mkp/167*h%)(1 + cos 0) log (1 + cos §), (2.20)

and in the factors (IL,,(0) £ I, (7 — #) in Eq. (2.19) one should keep only the term II,,(6)
for 6 close to m and only the term II,, (7 — ) for 6 close to 0.

Note that U(0) terms in the prefactors for II,,(0) in A(f) and B(#) have different signs.
This is the consequence of the fact that these terms are of exchange type (two crossed
interaction lines), and in the internal parts of the corresponding diagrams 6 and = — 6 are
interchanged compared to other terms. Note also that for a constant U the exchange terms
are the only ones which do not cancel out.

Now expand A(#) and B(f) into harmonics and consider large [. Like we said, regular

terms coming from U(f) are exponentially small. However, the terms of order U? are non-
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analytic, and integrating them with Legendre polynomials one finds that partial harmonics

decay as 1/I* rather than exponentially. Specifically, at large [,

ds?
S =— T;th(Q)Pl(cos 0) ~

mkp (—1)l
8m2h3 4

(2.21)

One can easily verify that A; are again non-zero when [ = 2m and B; are non-zero when

[l =2m + 1. In explicit form we obtain

Asm = U + (20%(m) = 2U(0)U () — U*(0) ) S
Bismy1 = Usmir + (2U%(x) = 2U(0)U () + U(0)) Sams (2.22)

Al large [, U; is exponentially small and can be neglected compared to S; o 1/1*. Because
Somy1 is negative and 2U%(w) — 2U(0)U () + U?(0) = (U(2kp) — U(0))* + U?(7r) is positive
for any form of U(q), Bany1 are definitely negative at large m. As a result, an isotropic
system with initially repulsive interaction is still unstable towards pairing, at least with large
odd angular momentum of a Cooper pair. The harmonics with even [ are attractive when
U0)/U(r) >v3—1.

The KL scenario for the pairing can be extended in several directions. First, one can
consider the case of strong regular screening, when the bare U(q) can be approximated by
a constant (the Hubbard model). In this situation, without 2kr renormalization, the bare
interaction is repulsive in [ = 0 (s—wave) channel, but zero in all other channels. Once
2kp renormalization is included, T° acquires angular dependence, and both odd and even
partial components become attractive because for U(0) = U(r) = U, As, = —U2%S,,,
Boms1 = U?Somi1, and Sy, > 0, Sop1 < 0. The issue is: at which [ the coupling is most
attractive? The analysis of this last issue requires some caution because at [ = O(1), all
transferred momenta ¢, not only those near 2k, contribute to partial components of fO(G).
One has to be careful here because some of regular contributions from g away from 2kp may
be already included into the renormalization of the Coulomb interaction into short-range,
Hubbard U. If we just neglect this potential double counting, i.e., assume that the screening
from Coulomb interaction into a Hubbard U is produced by the processes different from the
KL ones, we can extend the KL analysis for a constant U to arbitrary [. It then turns out
that attraction survives down to [ = 1, and the | = 1 component is the strongest?**°. In

explicit form,
mkpU? (2log2 — 1)

B, = —
! om2h3 5

(2.23)
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Substituting this B; into the pairing channel, we obtain the pole in the triple component of

the full T/*(0) at Q = iQL=", where

Q- o eiB(”’?F)Q, (2.24)

B =57%/(4(2log2 — 1)), and, as before, a = mU /4nh?* is s—wave scattering length in Born
approximation. The calculation of the prefactor requires quite serious efforts as one needs
to include terms up to fourth order in the interaction (see Ref. 43).

The p—wave pairing can be rationalized even when the bare interaction is angle-
dependent. Because the momentum dependence is via ¢? = 2k2(1 — cos ), higher angular
harmonics of U(q) contain higher powers of kp. In particular, Uy ~ U(rokr/h)?, where
ro is the radius of the interaction. Suppose it is repulsive. The p-wave component of the
effective irreducible interaction, which we obtained, is of order U(akr/h) (see Eq. (2.23).
The ratio a/ry is the Born parameter. When it is of order one, a and ry are of the same
order, i.e., akrp ~ rokp are small. The induced attraction then wins because it contains a
smaller power of the small parameter?. This reasoning, however, works only when a ~ rj.
If we treat interaction as small and kp is arbitrary, bare repulsion is generally larger than
induced attraction, unless a bare U(q) is a constant.

Before we move forward, let us make a quick remark about KL effect in 2D systems. The
eigenfunctions of the angular momenta in 2D are P?=2 = cos(l0) for | # 0 and P§=2 = 1.
The expansion of the irreducible interaction in these eigenfunctions yields

U9) =Us+2> Ucosl (2.25)

1>0

The situation in 2D is more tricky than in 3D because in 2D II,;, for free fermions remains
flat all the way up to ¢ = 2k, i.e., for a constant U, U*II,,(q) does not depend on the angle
between incoming and outgoing fermions. Then harmonics with non-zero [ do not appear,
i.e., there is no KL effect. There is a non-analyticity in IL,,(¢) at 2kr also in 2D, but it is
one-sided: at g > 2kp, IL,,(q) behaves as I, (q) = I, (2kr) — ay/q® — 4k% (a > 0), while at
q < 2kp, 1Ly (q) = I,n(2kp). However, the non-analyticity at ¢ > 2kp is irrelevant for the
pairing problem because we need the interaction between fermions right on the FS, and for
them the largest momentum transfer is 2kp. The situation changes when we move to next
order in U and include vertex corrections to particle-hole bubble. These corrections make

II,,(¢) momentum-dependent also for ¢ < 2kp, and, most important, 2kr non-analyticity
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becomes two-sided. At large [, partial harmonics of T9(6) scale as 1/i> and, like in 3D, are
attractive for both even and odd [, if we set the bare pairing interaction, fully renormalized
by vacuum corrections, to be a constant. The largest interaction is again in [ = 1 (p—wave)
channel, and the pole in the spin-triplet part of the full T/ () is located at = QL7
where QL7 oc e=024/(akr/1)?

Details and other discussion on the KL mechanism and its application to p—wave
superconductivity in systems with strong ferromagnetic fluctuations can be found in

Refs.29:30:3243°49 " The rest of this review will be devoted to discussion of superconductivity

in lattice models, where kg is generally not small and rotational symmetry is broken.

III. SUPERCONDUCTIVITY IN LATTICE MATERIALS: APPLICATION TO
PNICTIDES, CUPRATES AND DOPED GRAPHENE

In studying superconductivity in solid-state systems one has to deal with fermions moving
on a lattice rather than in isotropic media. Lattice systems have only discrete symmetries,
and in general F'S does not have an isotropic form (spherical in 3D or circular in 2D) and
may even be an open electron FS, meaning that its does not form a closed object centered at
k = 0 and instead ends at the boundaries of the Brillouin zone. (The locus of points where
energy is larger than Er is a closed object in this situation, and such a FS is often called
a closed hole FS). Also, in many cases electronic structure is such that there are several
different F'S’s which can be either closed or open. We show examples in Fig. 5.

We will consider systems with inversion symmetry and SU(2) spin symmetry. For such
systems, the pairing instability is still towards a creation of a bound pair of two fermions with
momenta k and —k in either spin-singlet or spin-triplet channel. However, if one attempts
to expand the interaction into eigenfunctions of momenta for isotropic systems (Legendre
polynomials P;(6) in 3D and cos(lf) in 2D), one finds that different angular components no
longer decouple.

One can still do a partial decoupling, however, due to discrete symmetries of lattice sys-
tems. As an example, consider 2D fermions on a square lattice. Fermionic dispersion and
interactions are invariant with respect to rotations by multiples of 7/2 (z — y,y — —z and
r — —x,y — —y), with respect to reflections across = or y axis (z — —z or y — —vy),

and with respect to reflections across diagonals (x — y or x — —y). The correspond-
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FIG. 5: FS topologies for a “simplified” pnictide(left), for hole-overdoped cuprate(center) and
doped graphene(right). In pnictides there are two kinds of FS’s electrons and holes(blue and
orange circles, respectively). For cuprates and graphene one can have disconnected pieces or a
singly-connected FS, depending on the doping. The doping at which an open FS changes its
character to a closed one is called the Van-Hove doping. At this doping the density of states is
logarithmically singular near the saddle points. This points with enhanced density of states are

marked by grey patches.

ing symmetry group Cy, contains 8 elements and has four one-dimensional representations
called Ay, Ay, By, By and one two-dimensional representation E. Eigenfunctions from A;
remain invariant under rotations and reflections, eigenfunctions from B; change sign under
rotation by 7/2 and under reflections across diagonals, but invariant under rotation by 7
and reflection across = or y, eigenfunctions from B, change sign under rotations by 7/2,
and under reflections across x, y, and one of diagonals, but remain invariant under rota-
tion by m, and under reflection across another diagonal, and so on. In real 3D systems,
interactions are also invariant with respect to 2 — —z inversion, and the symmetry group
extends to Dy, which includes 16 elements - 8 are even under to z — —z and 8 are odd
(9 and w subgroups). We will restrict our consideration to spin-singlet superconductivity
with pair wave-functions symmetric with respect to z — —z. Accordingly, we stick with
four one-dimensional representations A,,, As,, By, and By,. Each of these representations
contains infinite number of eigenfunctions: 1, cos k, + cos k,, cos 2k, + cos 2k, etc for A;,,
cos ky — cos ky, cos 2k, — cos 2k, etc for By, sin k, sin ky, sin 2k, sin 2k, etc for By, and so
on. (For convenience, for Brillouin Zone variables we measure k in units of /i/a-where a is the
lattice constant. This makes k dimensionless). The basic functions in each representation

are summarized in Table 1.
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Ay s—wave cos kg +-cos ky, cos k; cos ky
Aoy g—wave sin k, sin ky(cos ky-cos ky)
Biy d—wave cos k;-cos ky

Boy d—wave sin k, sin k,

TABLE I: Basic functions in 1D representations of the square-lattice group Dy

If we try to group eigenfunctions of momenta from the isotropic case into these represen-
tations, we find that eigenfunctions with [ = 4n belong to A,,, eigenfunctions with [ = 4n+-1
belong to E, eigenfunctions with [ = 4n + 2 belong to By, or By, and eigenfunctions with
[ = 4n + 3 belong to Ay,. Because of this decomposition, A, representation is often called
s—wave, I is called p-wave, By, and By, are called d-wave (d,2_,2 and d,,, respectively),
and Ay, is called g-wave. We will use these notations below.

Now, if we now expand the interactions in eigenfunctions of Dy, group and consider
the pairing problem in the same way as we did before, we find that functions belonging to
different representations decouple, but infinite set of functions within a given representation
remain coupled. In this situation, the KL result for the isotropic case that the system will
eventually be unstable against pairing with some angular momentum, is no longer valid
because large [ components from any given representation mix with smaller [ components
from the same representation, and the latter can be repulsive and larger in magnitude.
Indeed, we will see below that for lattice systems, there is no guarantee that the pairing will
occur, i.e., a non-superconducting state well may survive down to 7' = 0. We refer a reader
to several papers in which superconductivity has either been ruled out at large U or found
to be present using the controllable approximation at any U (Ref. 51).

At the same time, we will see that another part of KL-type analysis can be straight-
forwardly extended from isotropic to lattice systems. Namely, if we approximate the bare
interaction U(q) by a constant U > 0, we get a repulsive interaction in s—wave channel,
but nothing in p—wave, d—wave, and g-wave channel. Once we include KL contribution to
order U?, we do get interaction in these channels. We recall that in the isotropic case, the
induced interaction in all non-s-wave channels is attractive. We show that the same happens
in lattice systems, at least in the examples we consider below.

And there is more: even within s—wave channel, the full [/“!(k, —k; p, —p) is the solution

of the coupled set of equations for infinite number of A, eigenfunctions. Diagonalizing
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the set one obtains infinite number of coupling constants (effective interactions). For a
constant U, some eigenfunction are positive (repulsive), but some are zero. This can be
easily understood by looking at the first two wavefunctions: 1 and cosk, + cosk,. The
first is invariant under the shift k — k + (7, 7), while the second changes sign under this
transforation. A constant U cannot create a pairing wavefunction which changes sign under
k — k+(m, 7), hence the bare coupling for such a state is zero. KL terms produce momentum
dependence of the irreducible interaction in the pairing channel and shift the eigenvalue for
the sign-changing wavefunction. If this eigenvalue is attractive, then KL physics gives rise
to an s-wave attractive interaction, which may be even stronger than KL-induced attraction
in other channels.

We will discuss KL pairing in three representative families of materials: Fe-pnictides,
cuprates, and doped graphene. Superconductivity in cuprates and Fe-pnictides (and Fe-
chalcogenides) has been detected in numerous experiments. Superconductivity in doped
graphene has been predicted theoretically but so far not detected experimentally. Although
historically, cuprates were discovered first in 1986, for pedagogical reasons it is convenient
to start with Fe-pnictides, where we show that superconductivity is due to KL-induced
attraction in A;, channel. We then discuss cuprates and show that KL renormalization of
the pairing interaction gives rise to attraction in By, channel. Finally, we consider graphene
doped to van-Hove density (or, equivalently, fermions on a triangular lattice at van-Hove
doping) and show that KL, mechanism gives rise to a doubly-degenerate pairing state, whose
components can be viewed as By, and By, using square-lattice representations (or Es, using
representations for a hexagonal lattice).

There is extensive literature on all three classes of systems, and superconductivity is one
of many interesting and still puzzling properties of these materials. Some researchers believe
that in either all or some of these systems superconductivity is ultimately related to Mott
physics®?, and some believe that superconductivity may be mediated by phonons® 7. We
will not dwell into these issues and simply discuss the conditions and consequences of the
electronic mechanism of superconductivity in these materials for the portions of the phase
diagrams where electronic correlations are not strong enough to localize the electrons. The
goal of this review is to discuss how much information about pairing one can extract from
the analysis of the KL scenario. Our key conclusion is that the pairing in all three classes of

materials can be traced to the same KL physics, which, however, predicts different pairing
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symmetries in each class of materials.

A. Superconductivity in Fe-Pnictides

Fe-pnictides are binary compounds of pnictogens, which are the elements from the 5th
group: N, P, As, Sb, Bi. Superconductivity in these materials has been discovered in 2008

5

by Hosono and his collaborators?®. Later, superconductivity has been found also in Fe-

chalcogenides — Fe-based compounds with elements from the 16th group: S, Se, Te5® 6!,

The family of Fe-based superconductors (FeSCs) is already quite large and keeps grow-
ing. It includes 1111 systems RFeAsO (R =rare earth element)?>261 122 systems
XFeyAsy(B=Ba,Na, K)% and AFe,Se; (A = K, Rb, Cs) ™7 111 systems like LiFeAs™,
and 11 systems, like FeTe;_,Se, ™.

Parent compounds of most of FeSCs are metallic antiferromagnets™. Because electrons,
which carry magnetic moments, can travel relatively freely from site to site, antiferromag-
netic order is often termed as a “spin-density-wave” (SDW), by analogy with e.g., magnetism
in C'r, rather than “Heisenberg antiferromagnetism" — the latter term is reserved for sys-
tems in which electrons are “nailed down" to particular lattice sites by very strong Coulomb
repulsion.

Superconductivity in Fe-pnitides emerges upon either hole or electron doping (see Fig.
6), but can also be induced by pressure or by isovalent replacement of one pnictide element
by another, e.g., As by P (Ref. 75). In some systems, like LiFeAs ™ and LaFePO T,
superconductivity emerges already at zero doping, instead of a magnetic order.

magnetism, the electronic structure, the normal state properties of FeSCs, and the in-
terplay between FeSCs and cuprate superconductors have been reviewed in several recent

7790 Below we shall not dwell into the intricacies of the phase diagram but

publications
only focus on the superconductivity.

The electronic structure of FeSCs is fairly complex with multiple FS’s surfaces extracted
from ARPES and quantum oscillations measurements. In most systems, there are two or
three near-cylindrical hole FS’s centered at &, = £, = 0 and two electron FS’s centered at
(m,m). For electron pockets, states inside the pockets are occupied, for hole pockets, states

inside the pockets are empty.

This electronic structure agrees with the one obtained theoretically from the ten-orbital
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FIG. 6: Schematic phase diagram of Fe-based pnictides upon hole or electron doping. In the shaded
region, superconductivity and antiferromagnetism co-exist. Not all details/phases are shown. Su-
perconductivity can be initiated not only by doping but also by pressure and/or isovalent replace-

5

ment of one pnictide element by another 7. Nematic phase at T > Ty is another interesting

subject but we don’t discuss this in the text. Taken from Ref. 87.

model, which includes five Fe d-orbitals and takes into account the fact that an elementary
unit cell contains two Fe-atoms because As atoms are located above and below an Fe plane.
All d-orbitals hybridize, and to convert to band description one has to diagonalize the Hamil-
tonian in the orbital basis. The diagonalized quadratic Hamiltonian Hy = Zgl ei,kalkai,k
describes ten fermionic bands, some of which cross chemical potential and give rise to hole
and electron pockets. The interactions between these band fermions are the original in-
teractions in the orbital basis, dressed up by the "coherence factors" associated with the
transformation from orbital to band fermions (the coherence factors are the coefficients in
the linear transformation from original fermions describing d-orbitals to new fermions which
diagonalize the quadratic Hamiltonian). Interactions in the orbital basis are local, to a rea-

sonably good accuracy, but the coherence factors know about fermion hopping from site to
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site and depend on momenta. As the consequence, the interactions between band fermions
acquire momentum dependence, which leads to several new and interesting phenomena like
the appearance of accidental zeros in the two-particle bound state wave function®!.

For proof-of-concept we consider a simpler problem: a 2D two-pocket model with one
hole and one electron FS, both circular and of equal sizes (see Fig.5), and approximately

momentum-independent.

The free-fermion Hamiltonian is the sum of kinetic energies of holes and electrons:

H2 = Z gcclt:,ackﬂ + gffl;r,ofk,a (31)
k,o

where ¢ stands for holes, f stands for electrons, and €. y stand for their respective dispersions
with the property the e.(k) = —e¢(k+@Q), where Q is the momentum vector which connects
the centers of the two fermi surfaces. The density of states Ny is the same on both pockets,
and the electron pocket ‘nests’ perfectly within the hole pocket when shifted by Q.

There are five different types of interactions between low-energy fermions: two intra-
pocket density-density interactions, which we treat as equal, interaction between densities
in different pockets, exchange interaction between pockets, and pair hopping term, in which
two fermions from one pocket transform into two fermions from the other pocket. We show

these interactions graphically in Fig 7.

) .
%4

FIG. 7: The interactions between patches/pockets in the pnictides(left), cuprates (center) and

graphene (right). Gp is a density-density interaction between fermions from different pock-
ets/patches. Gq is an exchange between the pockets/patches, G is a pair hopping process between
the pockets/patches, and G4 is a density-density interaction within the same pocket/patch. All

interactions are repulsive (positive).
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FIG. 8: Vertices 'y, = I'ee and I'y. introduced in the 2 pocket model.

In explicit form

Hint = Gl Z C]tjla'f]j;;o"fk[;o'/ckzlo'
[k,0]

+G2 Z flilo'cltgo"fk3a"ck4a'
[k,0]

G
+ Z 73 (Czl,ochQ,ogfk3702fk4701 + hc)
[

k,o]

Gy
_'_ Z <2621,01622,02ck3,0‘26k4701 —|— c & f)
[kvg]

(3.2)

where 3 1+ is short for the sum over the spins and the sum over all the momenta constrained
to ki1 4+ ko = k3 + k4 modulo a reciprocal lattice vector.

As we did for isotropic systems, consider the vertex function for fermions on the FS, for
zero total incoming momentum. Because there are two pockets, there are three relevant
vertices: I'pp(kp, —kp, Pr, —Pr); lee(kp, —kr, pr, —pr), where kr and pr belong to the
same pocket, and ['ye(kp, —kp, pr, —pr), where kp and pp belong to different pockets (see
Fig. 8). To first order in G;, we have

%, (kp, —kp, pr, —Pr) = =G4
Fge(kF, —kp, PF, —PF) =-G,

F?Le(kFu _kF7 Pr, _pF) - _G3 (33)

where the spin dependence for both terms is do055 — das0s. Let’s now solve for the full

G, restricting with the renormalizations in the pairing channel (i.e., with only Cooper loga-
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rithms). A simple analysis shows that the full I is given by

plul _ 1 Gy + G Gy — G

hh 2\ 1+ (G4 + G3)IL,, 1+ (Gy— G3)II,,
ri — ofy
pren _ 1 Gy + G B Gy — G

he 2\ 1+ (G4 + G3)L,, 1+ (Gy— G311,

(3.4)

and II,, = I1,,(¢, Q) has the same logarithmical form as before. For ¢ = 0, I1,,,(0,Q) =
No(log |w./€2| + im/2), where Ny is the density of states at the FS (and is the same on both
electron and hole pockets)

We see that the presence or absence of a pole in I'/*| depends on the signs of G5 + G4 or
G4 — Gjs. If both are positive, there are no poles, i.e., non-superconducting state is stable.
In this situation, at small Q, T/ ~ —1/11,,,, T"" ~ —(G3/(G3 — G3))IL ), ie., both vertex
functions decrease (inter-pocket vertex decreases faster). If one (or both) combinations are
negative, there are poles in the upper frequency half-plane and fermionic system is unstable
against pairing. The condition for the instability is |G3| > G4. G4 is inter-pocket interaction,
and there are little doubts that it is repulsive, even if to get it one has to transform from
orbital to band basis. G is interaction at large momentum transfer, and, in principle, it can
be either positive or negative depending on the interplay between intra- and inter-orbital
interactions. In most microscopic multi-orbital calculations, G5 turns out to be positive,
and we set G3 > 0 in our analysis (for the case G3 < 0 see Ref. 53).

For positive G3, the condition for the pairing instability is G3 > G4. What kind of a
pairing state we get? First, both ngll and Fzgu do not depend on the direction along each of
the two pockets, hence the pairing state is necessary s—wave. On the other hand, the pole
is in T'y, which appears with opposite sign in T'J*" and TY“". The pole components of the
two vertex functions then also differ in sign, which implies that the two-fermion pair wave
function changes sign between pockets. Such an s—wave state is often call s~ to emphasize
that the pair wave function changes sign between F'Ss. This wave function much resembles
the second wave function from A,, representation: cosk, + cos k,. It is still s—wave, but it
changes sign under k — k + (7, ), which is precisely what is needed as hole and electron
F'Ss are separated by (m, 7). We caution, however, that the analogy should not be taken too
far because the pairing wave function is defined only on the two FSs, and any function from

A;, representation which changes sign under k — k + (7, 7) would work equally well.
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Having established the pairing symmetry, we now turn to the central issue: how to get an
attraction. Like we did in the isotropic case, let’s start with the model with a momentum-
independent (Hubbard) interaction in band basis. For such interaction, all G; are equal,
and, in particular, G3 = G4. Then I'y just vanishes, i.e., at the first glance, there is no pole.
However, from KL analysis for the isotropic case, we know that do decide whether or not
there is an attraction in some channel, we need to analyze the full irreducible vertex function.
To first order in G;, the irreducible vertex function coincides with the (anti-symmetrized)
interaction, but to order G?, there appear additional terms. Let’s see how they look like in

the two pocket model.

-,
2G,2 2G,G, G,?
o
= + (2 4 ('211 + 02 4

Cancels
contributions with M1(0)

contributions with IM(Q)

=" > - \)>
_>_ 2y + x2

= / \ + Q2 +
-> - el - >

-2G;G; 2G,G; Cancels

FIG. 9: Contributions to the irreducible vertices f‘%h(top) and T'j,.(bottom). f‘%h only gets contri-

butions form I1(0) while T')_ gets contribution from TI(Q).

The contributions to irreducible I'), and T}, are shown in Fig 9. In analytical form we

have (keeping the notations G; for better clarity)
I, = —Gi— (G} + G3 = 2G1(Gy — G2)) T (0),
[, = =G5 — 2G3(2G1 — G2)ILu(Q), (3.5)
where Q = (7, 7). For a constant G, this reduces to
I, = —G(1+2GT,,(0)),
[he = =G (1+2GI(Q)) (3.6)
The relation (3.4) still holds when we replace G by —T'%, and G4 by —T'%,. It can be very

easily shown that T/ = T/ and thus we will only deal with T/*" and T/*" which are
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given by

pfull _ 1 ( 1?25 + I_i(f)m l_i?m - 1_125 ) 7
2\1— (R + TRy 1= (I3, — T30,

pfull _ 1 ( l_i(f)w + I_i(})m _ l_i?m - 1_126 ) ’
2\ (TR + DIy 1= (I, — D),

(3.7)

and the condition for the pairing instability becomes I'), > |T'.|. Comparing the two

irreducible vertex functions, we find
f%h - f%e = 2G* (th(Q) - th(0)> (3‘8>

i.e., the condition for the pairing is satisfied when IL,,(Q) > IIL,,(0). For a gas of fermions
with one circular FS, II,,(q) either stays constant or decreases with ¢, and the condition
IL,(Q) > I1,,(0) cannot be satisfied. However, in our case, there are two FS’s separated
by Q, and, moreover, one FS is of hole type, while the other is of electron type. One can
easily verify that, in this situation, IL,,(Q) is enhanced comparable to II,,(0). We present
the plot of I, (¢q) along ¢, = ¢, in Fig 10. Indeed, I, () is much larger than II,;(0).

We see therefore that for the two-pocket model with circular hole and electron FSs and

a constant repulsive electron-electron interaction

e the KL mechanism — the renormalization of the bare interaction into an irreducible

pairing vertex, does give rise to a pairing,

e the pair wave function has A;, (s-wave) symmetry, but changes sign between hole and

electron pockets

Comparing isotropic and lattice cases, we see two differences. First, because of the
lattice, particle-hole bubble I1,;(g) no longer has to be a decreasing function of ¢. In fact,
as we just found, in the two-pocket model the KL. mechanism leads to a pairing instability
precisely because IL,;,(Q) is larger than I1,,(0). Second, because we deal with fermions with
circular FSs located near particular k—points, polarization operators at small momentum
transfer and momentum transfer Q = (7, 7) can be approximated by constants. Then the
irreducible vertex function has only an s—wave (A;,) harmonic, like the bare interaction, i.e.
KL renormalization does not generate interactions in other channels. Treating pockets as

circular is indeed an approximation, because for square lattice the only true requirement is
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that each F'S is symmetric with respect to rotations by multiples of 7/2 (C; symmetry). For
small pocket sizes, deviations from circular forms are small, but nevertheless are generally
finite. If we include this effect, we find that the KL effect does generate interactions in other
channels (B , Byy, and As,), which may be attractive, and also leads to more complex
structure of the pair wave function in s™~ channel, which now acquires angular dependence
along hole and electron pockets, consistent with Cy symmetry.?92

The situation changes when we consider the actual bare interactions G;, extracted from
the multi-orbital model. Then G4 — G3 is generally non-zero already before KL renormaliza-
tion. It is natural to expect that the bare interaction is a decreasing function of momenta,
in which case G4, which is the interaction at small momentum transfer, is larger than the
interaction G3 at momentum transfer near (). Then the KL term has to compete with the
first-order repulsion. As long as GII,,(Q) is small, KL renormalization cannot overshoot
bare repulsion, and the bound state does not appear. The situation may change when we
include momentum dependence of the interaction and non-circular nature of the pockets.
In this last case, there appears infinite number of A;, harmonics, which all couple to each
other, and in some cases one or several eigenfunctions may end up as attractive®®. Besides,
angle dependence generates d—wave and g—wave harmonics, and some of eigenfunctions in
these channels may also become attractive and compete®®. Still, however, in distinction to
the isotropic case, there is no guarantee that “some" eigenfunction from either A,,, or By,
or By, or Ay, will be attractive. A lattice system may well remain in the normal state
down to T' = 0.

We will discuss how to go beyond second order in GG in the next section. In the remainder
of this section we discuss KL physics in the two other classes of systems — cuprates and

doped graphene.

B. Superconductivity in cuprates

Cuprates are layered materials with one or more crystal planes consisting of Cu and O
atoms (two O per Cu), and charge reservoirs between them. Superconductivity is widely
believed to originate from electron-electron interactions in these CuO, planes. The un-
doped parent compounds are Mott insulators/Heisenberg antiferromagnets due to very

strong Coulomb repulsion which prevents electron hopping from Cu to Cu and therefore
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I1(g)[arbitrary units]

02 04 06 08 1 12 14
g/(ar) along zone diagonal

FIG. 10: The plot of II(q) for a 2-pocket model with ¢ along the zone diagonal. When ¢ < 2kp,
II(q) saturates, as it is expected for a 2D system with a circular Fermi surface. Note the 2kp
cusp-like feature, which is the one-sided 2kpr non-analiticity of II(¢) in 2D. At larger ¢, II(q) gets
larger and almost diverges at ¢ ~ Cj due to near-nesting. The inset shows the FS topology for
which II(q) has been calculated. The arcs at the corners are parts of the electron pocket and the

one in the center is the hole pocket.

localizes electrons near lattice sites. Doping these insulating CuO, layers with carriers (by
adding/removing electrons from/to charge reservoir) leads to a (bad) metallic behavior and
to the appearance of high- temperature superconductivity. A schematic phase diagram of
doped cuprates is shown in Fig. 11. The richness of this phase diagram generated a lot of
efforts, both in experiment and in theory to understand the key physics of the cuprates (see
e.g. Refs.36:40:52.957106 - There are several features in the phase diagram, like the pseudogap
in hole-doped cuprates, which are still not fully understood, although a substantial progress
has been made over the last few years on the issue of the interplay between pseudogap and
superconductivity. 97109

By all accounts, the symmetry of the superconducting state does not change between
small doping, where pseudogap physics is relevant, and doping above the optimal one. For

these larger dopings, ARPES and quantum oscillation experiments show a large F'S (see Fig.

12) consistent with Luttinger count for fermionic states. In this doping range, it is natural

31



to expect that the pairing symmetry can be at least qualitatively understood by performing

weak coupling analysis.

La) St CuO, /T \ RE, Ce CuO,
\
/ \
Hole- | ¢ ' Electron-
doped ,/ ~ 300K \\ doped
/

0.20 0.10 0.10 0.20
Hole doping / St content () Electron doping / Ce content (X)

FIG. 11: Typical phase diagram for the cuprates for electron and hole doping. The similarity
of this phase diagram with pnictides is the proximity to the antiferromagnetic phase. Amongst
differences, the most important one is the fact that the antiferromagnetic phase in cuprates stems
out of a Mott insulator in the parent compounds. Others are a remarkable asymmetry between
electron and hole doping and pseudogap phase indicated by the T* line. T is the transition into
the antiferromagnetic state and T, is the transition into the superconducting state. We shall only

focus on the superconducting aspect of this phase diagram. Taken from Ref. 98.

The FS for hole-doped cuprates is an is open electron FS shown in Fig. 5(center) and Fig.
12. Central to our consideration is the fact that the fermionic density of states is the largest
near the points (0,+7) and (£7,0), where two FS lines come close to each other (one can
show that the density of states is logarithmically enhanced and actually diverges'!! when
the two FS lines merge at (0, £7) and (£, 0)). The FS regions with the largest DOS mostly
contribute to superconductivity, and, to first approximation, one can consider the FS in Fig.
5(center) as consisting of four patches. We focus on spin-singlet pairing, in which case a
pair wave function is an even function of momentum, and it has the same form in the pairs
of patches which transform into each other under inversion. This leaves two non-equivalent
patches, which for definiteness we choose to be near (0, 7) and (7, 0).

The resulting two-patch model is in many respects similar to the two-pocket model for

Fe-pnictides, only instead of hole-hole, electron-electron, and hole-electron interaction we
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FIG. 12: Angle resolved Photoemission data from Ref.110, showing the presence of a large FS for
doped TlpBagCuOg4s. The FS is extracted from the position of the peak of the spectral function

in the k—space.

now have intra-patch and inter-patch interactions for two patches, which we label as 1 and

2. The interaction Hamiltonian contains four terms, like in Eq. 3.2, and the full pairing

vertices [J" = 14" and /4" are
pful 1 < 1_1(1)2 + f‘fl)l n l_i(l)l - 1??2 )
2\1- (F(1]2 + F?l)pr 1 - (F(l)l - F?Q)HPP
plul 1 < [Py + 1% g — Y )
2 \1— (9 + T9))10,, C1- (C9) — T9)10,,
(3.9)
or
9, + 19
Ffull +Ffull _ _tz + ‘Bl
1— (I + )1,
Ffu” Ffu” — F_(l)l - I:?Q (310)

1— (I = I,

where, as before, T'? are irreducible pairing vertices and 11, = I1,,,(q, ©?) contains the Cooper
logarithm. To first order in the interaction T'); = I'), = —Gy, and I'%, = 'Y, = —G3, such
that [9,+TY9, = —(G4+Gs), I, —TY% = —(G4—Gs). Superconductivity requires 'Y, +T'Y9, or
Y —TY, to be positive. For Hubbard interaction G; = G, the bare T'), 4T, = —(Gs+Gy) =
—2(@ is negative, hence there is no pairing instability which would lead to a state with sign-

preserving wave-function. At the same time, T'Y; — T'%, = G3 — G4 = 0, hence the coupling
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vanishes for a potential instability towards a pairing with a wave function which changes
sign between patches. To obtain the information about the sign of the irreducible I'Y; — 'Y,
one then needs to include KL renormalization. The result is, predictably, the same as in

two-pocket model, namely
Y — 19, = 2G? (T, (Q) — T,,(0)) (3.11)

where Q = (m,7) is now the distance between patches. The two particle-hole polarization
bubbles can be straightforwardly calculated for ¢ — t" model of fermionic dispersion with
hopping between nearest and next nearest neighbors. The result is that I1,,(Q) > II1,,(0)
(see Fig. 13). Then I'% —T9 > 0, and the combination of full vertices IJt# — Ju"

has a pole in the upper frequency half-plane, at 0 = €}, which is the solution of
2G® (th(Q) - th(O)) pr(iQp) = 1.

03 T T —
(r, )

I'Kg)

FIG. 13: The plot of II(q) for a FS topology shown in Fig. 12 with ¢ along the directions in the
Brillouin Zone shown in the inset. Different lines are for different temperatures. Observe that

I1(Q) is always larger that II(0). Taken from Ref. 103

So far, everything is the same as in the two-pocket model. But there is qualitative
difference between the two cases. In the two-pocket model, the sign-changing pair wave-
function changes sign between different FS pockets, but preserves the same sign along a
given pocket. Such a wave function belongs to A;, representation. In two-patch model,

the sign-changing wave function changes sign between the two ends of the same "arc" of
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the FS. In other words, it changes sign under /2 rotation from z to y axis. According
to classification scheme, such a wave function belongs to B;, representation, i.e., has a d-
wave symmetry. Further, if we move along the FS arc away from patches and assume that
the pairing wave function does not vanish on the FS, except may be special points, we
immediately conclude that it should change sign right at the center of the arc, i.e., at the
direction along zone diagonal. By symmetry, this should happen along each diagonal. The
prototype wave function for such a state is cosk, — cosk,. We caution, however, that in
the patch model we only know the wave function near (0,7) and (m,0) and its evolution
between the patches is generally described by the whole subset of wave functions from Bj,
representation with the form cos((2m + 1)k, ) — cos((2m + 1)k,).

We see therefore that for two-patch model with a constant repulsive electron-electron

interaction
e the KL mechanism again gives rise to pairing,

e the pair wave function has By, (d-wave) symmetry, and changes sign twice along the

open electron F'S

The KL consideration can also be applied to electron-doped cuprates!'?, but the analysis in

this case is somewhat different as hot spots are located close to Brillouin zone diagonals”.

C. Superconductivity in doped graphene

Graphene is a two-dimensional array of carbon atoms on a honeycomb lattice. The
energy dispersion of graphene has two bands due two non-equivalent positions of atoms on
a honeycomb lattice. The two bands touch each other at six points in the Brillouin zone,
and the dispersion near these points is j:|l; | what brought them the name Dirac points. At
zero doping, the Fermi level passes right through Dirac points, what gives rise to highly
interesting low-energy physics!'®. Upon doping by either electron or holes, six separate
pockets of carriers emerge. Upon further doping, these pockets grow, merge at some doping
z., and at even larger dopings form a large hexagonal FS (see Fig. 5 right). Such a high
doping of a single layer graphene has been achieved in Ref. 114 by placing Ca and K

dopants above and below a graphene layer. At x = z. the system passes through a Van-

Hove singularity which results in an enhanced density of states at the six saddle points where
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nearest pockets merge. The fermionic dispersion at x = z. is very similar to that in the
cuprates at the Van-Hove doping, but the tendency to the nesting (the existence of parallel
pieces of the Fermi surface) is more pronounced here because in graphene the tight-binding
band structure is not sensitive to the second neighbor hopping!3115.

The increase of the density of states near Van Hove doping increases the relative strength
of the interaction effects, and brings in a possibility that already at a weak coupling the
Fermi liquid state will become unstable towards some kind of order. A number of candidate
ordered states has been considered, including superconductivity, SDW order, nematic order
and so on ( see Refs. 35,113,115-121. Because the density of states diverges at the saddle
points at Van Hove doping, each state can be can be self-consistently obtained at weak
coupling. A phase diagram of doped graphene is shown in Fig. 14. Superconductivity has
also been observed and analyzed in graphite intercalated compounds like CsCa and CgY b*22.
This superconductivity may be due to electron-electron interaction'?®, but most likely the

pairing interaction in these materials is mediated by intercalant phonons and/or acoustic

phonons.

0.60 van Hove

FIG. 14: Schematic phase diagram of doped graphene. T, is the instability temperature towards
spin singlet d + ¢d or spin triplet f—wave SC states, or SDW state. T, is plotted against doping
(n). Doped Graphene is expected to be mostly superconducting with competition with the SDW

phase near the Van-Hove region. Taken from Ref. 121

The presence of saddle (Van-Hove) points along the FS is the feature that draws our

attention and invites us to perform an analysis similar to that in the cuprates, but with
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three rather than two non-equivalent patches (overall there are six Van Hove points along
the F'S, but only three are unique, the three others are related by inversion symmetry (see
Figh right). The treatment of doped graphene parallels the description in the above two
subsections, but we will see that there are interesting details here, not present in the earlier
models.

We treat the low-energy physics of doped graphene within the effective three patch model,
just like we did for the cuprates. We introduce intra-patch and inter-patch vertices I';;,7, j €
(1,2,3) with I';; = I';;. Because the three patches are fully symmetric, the total number of

independent vertices is just two:

F(1)1 = ng = Fg3 =Gy =

We follow the same line of reasoning as before. The full pairing vertices ['/*" and TJ3"

are expressed in terms of irreducible vertices I'? and T as

F{?zz _ fg + fOFf“”pr + FO (Ffull + Ffull) pr
Ffuzz — FO + Foff“”pr + FO (Ffull + Ffull) 1L,

(3.13)
The solutions of this set are
pful 1 1i0 + 2110 49 1?2 - ljg
SA\L— (I +2I9)I,, 1 (I —I9)IL,
SVERYA IF B
SAL— (9 + 2090, 1 — (T — )L,
(3.14)
or
[0 4 219
pfull | opful _ _I(L) + _1(1)
1- (Fu + 2Fv)HPP
r full _r full _ 112 - 112
1 — (I — T9)IL,,
(3.15)
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we see that to get the pairing we need either T +21'0 or T9 — T to be positive. To first order
in the interaction we have I') = T'Y = —G4 and T'? = T'Y = —G3, hence the conditions for the
pairing are G4 + 2G5 < 0 or G35 > G4. The first condition is analogous to G35 + G4 < 0 for
the two-patch model and is never satisfied for a repulsive interaction, when G4 and Gz are
both positive. The second condition is exactly the same as in two-patch model and requires
inter-patch interaction to be larger than intra-patch interaction. If the bare interaction is
momentum-independent, G3 = G4 = G, and one of the two pairing channels is neither
repulsive nor attractive.

Continue with the Hubbard interaction. To second order in U, we have from KL renor-

malization

I = —Gi—T1,(0) [GF + 2G5 — 4G, (G — Gy)]
IV = —Gs — 1L (Q) [2G3(2G; — Gy)] (3.16)

and T? — T'% becomes

Fg - fg = GQ(Qth(Q) - 3th(0)) (3'17)

Like in the previous two examples, if I1,,(Q) is larger than I, (0) (specifically, if IL,,(Q) >
(3/2)I1,,(0)) the irreducible pairing interaction is attractive. The particle-hole bubble can
be straightforwardly computed and the result is, predictably, that near Van-Hove doping,
I,n(Q) > (3/2)I1,,(0). This result was fist obtained by Gonzales''® and reproduced in more
recent work?®.

So far, the results are virtually undistinguishable from the previous two cases. The new
physics in the three-patch model reveals itself when we note that the presence of the pole
for the combination TJ*% — TJ4" and its absence for IJ1* + 203" in Eq. (3.15) implies that
near the instability the fully renormalized intra-patch and inter-patch pairing vertices must
satisfy

Tt — —op/ul (3.18)

together with the symmetry-imposed conditions [ = Ty Ff vl and T3 Ff ul —

4% In other words if intra-patch /" = D, then inter-patch Ff ull —L for i # j. Now,
if we view each F{;“” as the modulus square of the superconducting order parameter |A;|?
and F{j”” as Re[A;Af], we immediately find that Eq. (3.18) implies that the relative phase

of the superconducting order parameter must change by :I:%7r between each pair of patches
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FIG. 15: The phases of the pair-wave functions at the patches (regions with enhanced density of

states). The left and right represent the two Zg breaking d—wave solutions d + id or d — id.

(cos 2 = —1). In other words, if the order parameter in patch 1is Ay, then Ay = Aye*2m/3
and As = Ae™/3 The two resulting A structures are shown in Fig. 15. We used the
fact that this is spin-singlet pairing, hence A(—k) = A(k). This is a d—wave gap because
if we extend the gap structure to all FS, we find that the gap changes sign twice along the
FS. However, we also need to pick one sign of the phase change or the other, and this choice
breaks the Zs symmetry, which in our case is time-reversal symmetry because it changes the
order parameter to its complex conjugate. Putting it differently, Z, symmetry corresponds
to the freedom of choice of counter clockwise or clockwise phase winding by 47 along the
full FS. Such a state is called d + id or d — id. It has a rich phenomenology and is highly
desirable for applications?4 13t

Although intuitively it seems obvious that Z, symmetry is broken in a d + id state, one
actually needs to do full Ginzburg-Landau (GL) analysis and make sure that the supercon-
ducting condensation energy is the largest when only d+ id or only d — id solution develops,
but not both of them. This, however, requires one to go beyond the instability point, while
our goal is to get as much information as possible from the normal state analysis. We just
refer to Ref 35 where GL functional has been derived and analyzed. The result of that study
is that Z; symmetry is indeed broken below T..

Another way to see that the two d-wave states are degenerate by symmetry is to look
at the representations of the symmetry group Dg,. The two d-wave wave-functions cos k, —
cosk, and sink,sink, belong to a two-dimensional Ey, representation of Dg, and must

indeed be degenerate by symmetry.

We see therefore that for a three-patch model with a constant repulsive electron-electron
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interaction
e the KL mechanism again gives rise to pairing,

e the pair wave function has d + ¢d or d — id symmetry. In each of the two states phase
of the wave-function winds by 47 along the FS either clockwise or anticlockwise and

time reversal symmetry is broken.

We have seen therefore that in all the three systems which we analyzed the condition
for the pairing instability (the emergence of the pole in the vertex function in the upper
frequency half plane) is that irreducible inter-pocket/inter-patch pairing vertex should be
larger by absolute value than the absolute value of the irreducible intra-pocket /intra-patch
vertex. For a momentum-independent bare interaction, this reduces to the condition of hav-
ing I1,,(Q) > all,,(0), where a is some numerical factor of O(1) that depends on the model.
Now we will discuss how one still get an attraction if the bare interaction is momentum-
dependent.

A final remark about doped graphene. The KL mechanism has been also applied to
somewhat smaller dopings, when the FS still contains six disconnected pieces. In this doping

range, KL-based analysis yields a novel spin-triplet f-wave superconductivity>14:115:121

IV. WHAT TO DO IF THE BARE IRREDUCIBLE VERTEX IS REPULSIVE

We recall that setting G35 = G, is indeed a crude approximation. In reality, G4 is the
interaction at small momentum transfer, while (G5 is the interaction at momentum transfer
comparable to inverse lattice spacing. By conventional wisdom, one should expect G4 to
be larger (G35, and microscopic calculations generally confirm this, although in multi-orbital
systems the interplay between Gz and G4 is more involved as both appear (in the band
basis) even if we only consider on-site interaction in the orbital basis. In this latter case,
G4 > Gj if Hubbard interaction for fermions belonging to the same orbital is larger than
Hubbard interaction between fermions belonging to different orbitals.

If G4 > Gj, the attractive KL contribution of order G*II,;, has to compete with the
repulsive first-order term. At weak coupling and for a non-nested FS, second-order term is

expected to be smaller than first-order term, i.e., superconductivity does not occur. The
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situation may change when we include momentum dependence of the interaction and non-
circular nature of the pockets. In this case, there appears an infinite number of harmonics
in each of the channels A,,, By,, Byg, or Ay, which all couple to each other, and in some
cases one or several eigenfunctions may end up as attractive. Still, however, in distinction to
the isotropic case, there is no guarantee that “some" eigenfunction from will be attractive.
In other words, a lattice system well may remain in the normal state down to 7" = 0.

How can we still get superconductivity in this situation? As a first try, we use the same
logics as for the calculation of zero-sound excitations in a FL, go beyond G? order and sum up
ladder series of diagrams in the particle-hole channel, involving IL,,(k —p) and neglect terms
with IL,,(k + p). Such a procedure would be rigorously justified if only small momentum
and frequency transfers were relevant because I1,,(k —p) can be made large in this limit. In
our case, all momentum transfers are relevant, and there is no formal justification for such
an approximation (which is called RPA). But let’s apply it anyway and analyze the results.

Summing up ladder series in II,,(k — p) we obtain for k and p at the same pocket/patch,

when k — p is small

G4 1 G4 1

r.o)o=—-———— I,0)=————— 4.1
( ) 2 1+ G4th(0) ( ) 21— G4th(0) ( )
and for k and p at different pockets/patches, when k —p ~ @
Gs 1 Gs 1
I, = T = - 4.2
(Q) 2 1+ G3th(Q) (Q) 21— G3th(Q) ( )
Re-expressing 1_“2(5,75(143, —k;p,—p) in terms of singlet and triplet components as
05 s(k, —k;p,—p) =
Lsi(k = p) (0ay0ps — dasdpy) +
Lir(k = p) (darOss + 0asdpy)
(4.3)
We obtain
Iy = 1(1“ —3l%)
st T 2 C S
1
Lo = 5 (Fe+Ty) (4.4)
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i.e.

G4 1 3
Fsi = T
(0) 4 (1 + G411,,(0) * I G4th(0))

G, 1 1
r — 4 —
t(0) 4 (1 — G4IL,(0) 1+ G4th(0)>

G, 1 5
I'u(Q) = e (1 + G3IL(Q) + 1-— Ggﬂph(Q)>

Gy 1 1
Ferl@) = 4 <1 — G5l (Q) 1+ GSth(Q)> 45)

Let’s compare this result with what we obtained in the KL formalism. Focus on the singlet

channel and expand in (4.5) to second order in G5 4. We have

G4 1
I, ~— 14+ —
si(0) 9 ( Tz G4th(0)>
~ —G4 (1 + 05G4th(0))

~ G3 1
L@~ -5 (1 - 1—@%@))

~ —G3 (1+0.5G5IL,(Q)) (4.6)

Apart from the factor of 1/2 (which is the consequence of an approximate RPA scheme)
I',;(0) is the same as irreducible vertex I'%,, which we obtained in KL calculation in the
previous section, and I';;(Q) the same as TV, By itself, this is not surprising, as in I'; we
included the same particle-hole renormalization of the bare pairing interaction as in the KL
formalism.

The outcome of this formula is the observation that KL term is the first term in the series

for the irreducible pairing vertex. In the RPA scheme, the full series gives,

B 1 G4 3G4
Li(0) = =3 (1 G 0) 1= G4th(0)>
1 Gs 3G
Fsz(o) - _Z (1 4 G3th(Q) + 11— G4th(Q)> ’ (47)

For repulsive interaction, the charge contribution only gets smaller when we add higher
terms in G, but spin contribution gets larger. A conventional recipe is to neglect all renor-

malizations in the charge channel and approximate I'y; with the sum of a constant and the
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interaction in the spin channel. The irreducible interaction in the s + — channel in the

pnictides or in the d—wave channel in the cuprates and in doped graphene is then

—Gy+ G — j (

G4 GS
1— GylL,(0) 1-— Gsﬂph(Q)>
(4.8)

Like we said before if G4I1,,(0) and G3I1,,(Q) are both small, G4 — G term is the largest,
and the pairing interaction is repulsive for G4 > G3. However, we see that there is a way
to overcome the initial repulsion: if G3lIl,,(Q) > G4II,,(0), one can imagine a situation
when G311, (Q) ~ 1, and the correction term in (4.8) becomes large and positive and can
overcome the negative first-order term.

What does it mean from physics perspective? The condition G3llL,,(Q) = 1 implies that
the spin component of the vertex function, viewed as a function of transferred momentum,
diverges. This obviously implies an instability of a metal towards SDW order with momen-
tum Q. We don’t need the order to develop, but we need SDW fluctuations to be strong and
to mediate pairing interaction between fermions. Once spin-mediated interaction exceeds
bare repulsion, the irreducible pairing interaction in the corresponding channel becomes at-
tractive. Notice in this regard that we need magnetic fluctuations to be peaked at large
momentum transfer Q. If they are peaked at small momenta, IT,,(0) exceeds IL,,(Q), and
the interaction in the singlet channel remains repulsive.

There are two ways how one can reach Gsll,,(Q) ~ 1: it can develop in the process of
the system flow towards low-energies, together with the development of pairing correlations,
where G is small and at the bare level (i.e., at energies comparable to the bandwidth)
G5, (Q) is also small. This is what we consider in the next section. Alternatively, spin
fluctuations (but not SDW order) could develop already at energies comparable to the
bandwidth. This generally requires G3 to be of order the bandwidth. In this latter case, at
all energies below the bandwidth, the term G5/(1 — G311, (Q)) in (4.8) makes the dominant
contribution to the pairing interaction. This is the case when the pairing interaction can be
thought of as mediated by collective bosonic fluctuations in the spin channel. We discuss
this case in Sec. VD.

Before we proceed, it is worth pointing out that the importance of spin fluctuations for

spin-singlet pairing was emphasized by many authors, starting from mid-80s. With respect
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to the cuprates, d-wave pairing in the Hubbard model near half-filling was first analyzed by
Scalapino, Loh, and Hirsch? for the Hubbard model near half-filling. They used RPA to
obtain irreducible pairing vertices in spin-singlet and spin-triplet channels and found spin-
singlet d-wave pairing to be the dominant instability in the situation when I1,,(q) is peaked

132,133

at ¢ near (m, 7). This work and subsequent works also analyzed the role of FS nesting

for d-wave superconductivity.

V. PAIRING AT WEAK-COUPLING

The question we pose in this section is the following: suppose that G3 and G4 are small
and repulsive and G4 > G5. At first order in G54, the pairing interaction is repulsive, and
perturbative correction to order G ; is parametrically small in G'3 4/ Ef and cannot convert
repulsion into attraction in any channel. Is it still possible that the system develops pairing
instability despite these obvious arguments to the contrary? The answer is actually yes, it
is possible, but under a special condition that IL,,(Q) is singular and diverges logarithmi-
cally at zero frequency or zero temperature, in the same way as the particle-particle bubble
I1,,(0). This condition is satisfied exactly when there is a perfect nesting between fermionic
excitations separated by (). A situation with a perfect nesting can be found for all three
examples for which we analyzed KL mechanism (another example is quasi-1D organic con-
ductor3”). For Fe-pnictides, it implies that hole and electron FSs perfectly match each other
when one is shifted by @, for cuprates and doped graphene nesting implies the existence of
parallel pieces of the FS.

We show below that I1,,(Q) and II,,(0) do have exactly the same logarithmic singularity
at perfect nesting. At the moment, let’s take it for granted and compare the relevant scales.
First, no fluctuations develop at energies/temperatures of order W because at such high
scales the logarithmical behavior of II,,, and II,, is not yet developed and both bubbles scale
as 1/W. At weak coupling G/W << 1, hence corrections to bare vertices are small. Second,
we know that the pairing vertex evolves at (G3 — G4)I1,,(0) ~ O(1), and that corrections to
the bare irreducible pairing vertex become of order one when G3IL,,(Q) ~ O(1). But we also
know from, e.g., (4.2) that at the same scale the SDW vertex begins to evolve. Moreover
other inter-pocket interactions, which we didn’t include so far: density-density and exchange

interactions (which here and below we label as G; and G, respectively) also start evolving
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because their renormalization involves terms G111, (Q) and Gsll,,(Q) which also become of
O(1) when all bare interactions are of the same order. Once G I1,,(Q) becomes of order
one, the renormalization of G5 by G; and G5 interactions also becomes relevant. The bottom
line here is that renormalization of all interactions become relevant at the same scale. At
this scale we can expect superconductivity, if the corrections to G4 — GG3 overcome the sign
of the pairing interaction, and at the same time we can expect an instability towards SDW
and, possibly, some other order. The issue then is whether it is possible to construct a
rigorous description of the system behavior in the situation when all couplings are small
compared to W, but G;I1,,(Q) and G;I1,,(0) are of order one. The answer is yes, and the
corresponding procedure is called a parquet renormalization group (pRG).

To re-iterate: the pRG approach is a controlled weak coupling approach. It assumes that
no correlations develop at energies comparable to the bandwidth, but that there are several
competing orders whose fluctuations develop simultaneously at a smaller scale. Supercon-
ductivity is one of them, others include SDW and potential charge-density-wave (CDW),
nematic and other orders. The pRG approach treats superconductivity, SDW, CDW and
other potential instabilities on equal footings. Correlations in each channel grow up with
similar speed, and fluctuations in one channel affect the fluctuations in the other channel
and vise versa. For superconductivity, once the corrections to the pairing vertex become of
order one, and there is a potential to convert initial repulsion into an attraction. We know
that second-order contribution to the pairing vertex from SDW channel works in the right
direction, and one may expect that higher-order corrections continue pushing the pairing
interaction towards an attraction. However even if attraction develops, there is no guarantee
that the system will actually undergo a SC transition because it is entire possible that SDW
instability comes before SC instability.

The pRG approach addresses both of these issues. It can be also applied to a more
realistic case of non-perfect nesting if deviations from nesting are small in the sense that
there exist a wide range of energies where IL,;,(Q) and IL,,(0) are approximately equal. Below
some energy scale, wy, the logarithmical singularity in IL,;,(Q) is cut. If this scale is smaller
than the one at which the leading instability occurs, a deviation from a perfect nesting is
an irrelevant perturbation. If it is larger, then pRG runs up to wg, and at smaller energies
only SC channel continues to evolve in BCS fashion.

There also exists a well-developed numerical computational procedure called functional
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RG (fRG)**39. Tts advantage is that it is not restricted to a small number of patches and
captures the evolution of the interactions in various channels even if the interactions depend
on the angles along the FS. The “price" one has to pay is the reduction in the control
over calculations — fRG includes both leading and subleading logarithmical terms. If only
logarithmical terms are left, the angle dependence of the interaction does not change in the
RG flow, only the overall magnitude changes.!3* So far, the results of fRG and pRG analysis
for various systems fully agree. Below we focus on the pRG approach. For a thorough

tutorial on the RG technique, we direct the reader to Ref. 135.

A. Parquet Renormalization Group

We follow the same order of presentation as before — first consider Fe-pnictides and then
discuss patch models for cuprates and doped graphene. We recall that in Fe-pnictides a
bubble with momentum transfer ) contains one hole (c) and one electron (f) propagator, and
at perfect nesting the dispersions of holes and electrons are just opposite. e.(k) = —e;(k+Q).
The particle-hole and particle-particle bubbles are

IL,,(0) = —i / KA ey )Gk, —w)

(27wh)3
[Pk dw
0(Q) = i [ (O )G/ (Q + k) (5.1
where
G = — . Substituting into Eq. 5.1 and using e.(k) = —¢(k + Q) one can
w—e? [htidsgn(w)

easily make sure that the two expressions in Eq. 5.1 are identical. Evaluating the integrals
we obtain

I1,,(0) = ILn(Q) = NoL + ... (5.2)
where Ny = m/2mh? is the 2D density of states,

L= ;log (g) , (5.3)

E' is typical energy of external fermions, and the dots stand for non-logarithmic terms.
The factor 1/2 is specific to the pocket model and accounts for the fact that for small

pocket sizes, the logarithm comes from integration over positive energies W > FE > Ep. At
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non-perfect nesting, the particle-particle channel is still logarithmic, but the particle-hole
channel gets cut by the energy difference (0F) associated with the nesting mismatch, such
that

I, (Q) = Ny log (5.4)

W

VE? + §E?

The main idea of pRG (as of any RG procedure) is to consider F as a running variable,
assume that initial E is comparable to W and G;log (%) = G;L is small, calculate the
renormalizations of all couplings by fermions with energies larger than E, and find how the
couplings evolve as E approaches the region where G;L = O(1).

This procedure can be carried out already in BCS theory, because Cooper renormaliza-
tions are logarithmical. For an isotropic system, the evolution of the interaction U; in a
channel with angular momentum [ due to Cooper renormalization can be expressed in RG

treatment as

/™" full)?
=N (o). (5.5)
The solution of (5.5) is
U
full (1) _ I
Ui™(L) 1+ UNoL (5.6)

which is the same as Eq. (2.16). Similar formulas can be obtained in lattice systems
when there are no competing instabilities, i.e., only renormalizations in the pairing channel
are relevant. For example, in the two-pocket model for the pnictides, the equations for the
full vertices T/ = —G{“" and T[* = —G4"" Egs. (3.4), can be reproduced by solving the

two coupled RG equations

N NGl
dz _ _N, ((G?{ull> " (G{“ll) > (5.7)

with boundary conditions G*"(L = 0) = G4, G§{""(L = 0) = G5. The set can be factorized
by introducing G4*" = G + G and GI = G — GI 1o

gt Jetul
ANy (GRS — N (G (5.8)
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FIG. 16: The couplings G, (inter-pocket density-density interaction), Gy (fermion exchange), G
(pair hopping), G§ and Gf: (intra-pocket density-density interaction). For equivalent hole pockets

= Gf: = G4. The solid lines correspond to hole Green’s functions and the dashed lines to

electron Green’s functions.

The solution of the set yields

Gs+ G

Gfull _ Gfull Gfull _ 3 4
4 R 1+ NoL(Gs + Gy)

G, — G

Gl — gl _ gfull _ (5.9)

1+ NOL(G4 — Gg)

full — _qult plull — _ gl e reproduce (3.4). This returns

Solving this set and using I'
us to the same issue as we had before, namely if G4 > G3, the fully renormalized pairing
interaction does not diverge at any L and in fact decays as L increases: Gf;“” decays as 1/L
and Gg“” decays even faster, as 1/L?.

We now consider how things change when II,,(Q) is also logarithmical and the renormal-

izations in the particle-hole channel have to be included on equal footings with renormal-

izations in the particle-particle channel.

1. pRG in a 2-pocket model

Because two types of renormalizations are relevant, we need to include into consideration
all vertices with either small total momentum or with momentum transfer near () i.e., use
the full low-energy Hamiltonian of Eq. (3.2). There are couplings G3 and G4 which are
directly relevant for superconductivity, and also the couplings (G; and G4 for density-density
and exchange interaction between hole and electron pockets, respectively. These are shown

in Fig 16.
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The strategy to obtain one-loop pRG equations, suitable to our case, is the following:
One has to start with perturbation theory and obtain the variation of each full vertex 0G;
to order G;G, L. Then one has to replace 6G;/L by dG{“”/dL and also replace G;G; in the
rhs. by G u”G;“”. The result is the set of coupled differential equations for dGI""/dL

whose right sides are given by bilinear combinations of Gj . The procedure may look

full G;ﬁuzz
a bit formal, but one can rigorously prove that it is equivalent to summing up series of
corrections to G; in powers of G;L, neglecting corrections terms with higher powers of G;
than of L. One can go further and collecting correction terms of order G;G;GL. This is
called 2-loop order, and 2-loop terms give contributions of order (G7%!)? to the right side of

full

the equations for dG}"" /dL. 2-loop calculations are, however, quite involved!?® and below

N ol s £E 0 53
5 é = § § + 9/ g2 -20,9
91_ -> < - N2 R iy

_—r"""~-;.. e
g, g;? N N §¢
E g %% 29,9,
-’ - i Ehx; é
5g §-> 2,* + g Xé
-- 29394 y

29,9,

we only consider 1-loop pRG equations.

Cancels '292 29,9,

FIG. 17: The diagrams to 1 loop order, which contribute to the parquet flow of g1, g2, g3 and g4

vertices.

The G? corrections to all four couplings are shown in Fig.17. Evaluating the integrals

and following the recipe we obtain

g1=91+9;
g2 = 292(91 — g2)
g3 = 293(291 — 92 — 9a)
g1 =05 — gi
(5.10)

where we introduced g; = Glf “INy and ¢; = dg; /dL

We note that the renormalizations of g, are still only in the Cooper channel and causes g4
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FIG. 18: The flow of dimensionless couplings gi234. g3 grows and eventually crosses g4, which

becomes negative at a large enough RG scale.

to reduce. But for g3 we now have a counter-term from ¢;, which pushes g3 up. And the g;
term is in turn pushed up by g3. Thus already at this stage one can qualitatively expect g3
to eventually get larger. Fig 18 shows the solution of (5.10)— the flow of the four couplings
for this model. We see that, even if g3 is initially smaller than g4, it flows up with increasing
L, while g4 flows to smaller values. At some Lg, g3 crosses g4, and at larger L the pairing
interaction g4 — g3 becomes negative (i.e., attractive). In other words, in the process of pRG
flow, the system self-generates attractive pairing interaction. We remind that the attraction
appears in the st~ channel. The pairing interaction in s™* channel: g3+ g4 remains positive
(repulsive) despite that g4 eventually changes sign and becomes negative. It is essential that
for L ~ Lg the renormalized g; are still of the same order as bare couplings, i.e., are still
small, and the calculations are fully under control. In other words, the sign change of the
pairing interaction is a solid result, and higher-loop corrections may only slightly shift the
value of Ly when it happens.

At some larger L = L., the couplings diverge, signaling the instability towards an ordered
state (which one we discuss later). One-loop pRG is valid "almost" all the way to the
instability, up to L. — L ~ O(1), when the renormalized g; become of order one. At smaller
distances from L. higher-loop corrections become relevant. It is very unlikely, however, that

these corrections will change the physics in any significant way.
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The sign change of the pairing interaction can be detected also if the nesting is not perfect
and II,,(Q) does not behave exactly in the same way as II,,(0). The full treatment of this
case is quite involved. For illustrative purposes we follow the approach first proposed in
Ref.34 and measure the non-equivalence between I1,,(0) and IL,,(Q) by introducing a phe-
nomenological parameter d; = I1,,(Q)/1I1,,(0) and treat d; as an L— independent constant
0 < dy < 1, independent on L. This is indeed an approximation, but it is at least partly
justified by our earlier observation that the most relevant effect for the pairing is the sign
change of g4 — g3 at some scale Ly, and around this scale d; is not expected to have strong
dependence on L. The case d; = 1 corresponds to perfect nesting, and the case d; = 0
implies that particle-hole channel is irrelevant, in which case, we remind, g4 — g3 remains
positive for all L.

The pRG equations for arbitrary d; are straightforwardly obtained using the same strat-

egy as in the derivation of (5.10), and the result is

g =di(g} + 93)
g2 = 2d192(91 — g2)
g3 = 2d193(291 — g2) — 29394
g1=—93 — i
(5.11)

In Fig 19 we show the behavior of the couplings for representative 0 < d; < 1. Like before,
we take bare value of g4 to be larger than the bare g3, i.e., at high energies the pairing
interaction is repulsive. This figure and analytical consideration shows that for any non-
zero d; the behavior is qualitatively the same as for perfect nesting, i.e., at some Ly < L.
the running couplings g3 and g4 cross, and for larger L (smaller energies) pairing interaction
in st~ channel becomes attractive. The only effect of making d; smaller is the increase
in the value of Ly. Still, for sufficiently small bare couplings, the range where the pairing
interaction changes sign is fully under control in 1-loop pRG theory.

A way to see analytically that g3 — g4 changes sign and becomes positive is to consider
the system behavior near L = L. and make sure that in this region g3 > g4. One can easily
make sure that all couplings diverge at L., and their ratios tend to some constant values
(see discussion around Eq. (5.23) below for more detail). Introducing g2 = agi, g3 = by,

and g4 = cgy, and substituting into (5.11) we find an algebraic set of equations for a, b, and
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FIG. 19: The flow of ratio of couplings g3/g1 and g4/¢1 for different nesting parameters d; = 1(a),
dy = 0.3(b),d; = 0.05(c). All cases are qualitatively similar in that gs3/g1 eventually crosses g4/g1.
The smaller is the nesting parameter, the ‘later’ is this crossing. If d; = 0, this crossing will never

happen and g4 > g3 for all L.

\/« /16d}—A4d2+4+2—d?

dq

c. Solving the set, we find that b = and ¢ = % (3 —b?). The negative sign
of ¢ and positive sign of b, combined with the fact that g; definitely increases under the flow
and surely remains positive, imply that near L., g4 is negative, while g3 is positive (this is

also evident from the Fig 19). Obviously then, g3 and g, must cross at some Ly < L.

2. pRG in patch models

We now show that similar behavior holds in patch models. Since the only difference
between patch models for cuprates and for graphene is the number of patches (2 vs 3), we

consider a generic model of n - patches with fermion-fermion interaction in the form
1 n
Hiw = 5 >~ Guol bl atia
a=1

1
+5 3 [Greluhisva + Gavllvaws + Gavlvlvsvs)
o#B
(5.12)

Keeping again all diagrams which diverge logarithmically, we end up with the following

set of pRG equations (using the same notations as before)
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g = di(g; + 93)
G2 = 2d192(91 — o)
g3 = —(n — 2)g32, — 2g3gs + 2d193(291 - 92)

g = —(n—1)g; — g; (5.13)

The equations look similar to the ones for the pocket model, up to the dependence on
n, but there is one important difference: the derivative in the Lh.s. is with respect to
log?(A/E) rather than a first power of the logarithm. The extra logarithm comes from the
logarithmical enhancement of the density of states near Van-Hove density. The presence of
extra logarithms makes the theory somewhat less controlled because already at second order
there are terms of order ¢2log? and g2 log. The set of equations (5.13) corresponds to keeping
g*log” neglecting ¢*log terms, and ¢; in (5.13) is ¢; = dg;/dlog*(A/E). Strictly speaking,
this implies that RG scheme can be applied only at one-loop order, while extending Eq, 5.13
to two-loop and higher orders will require one to go beyond RG.

Like before, dy, subject to 0 < d; < 1, accounts for relative strength of IL,,(()) compared
to I1,,(0). In reality, d; = I1,;,(Q)/I1,,(0) depends on the running scale L = log*(A/E), but
we approximate it by a constants using the same reasoning as for the pocket model.

We show the solution of the set (5.13) in Fig. 20 for n = 3 (n = 2 result is identical to
Fig. 18). Combining again the numerical analysis and the analytical reasoning similar to
the one for the pocket model, we find that, for any n and any d; > 0, there exists a scale L
at which g3 and g4 cross, and at larger L (i.e., at smaller energies) the pairing interaction
in the d-wave channel (for which the pairing vertex is proportional to g4 — g3) changes sign
and becomes attractive.

The outcome of these studies is that in all three systems which we considered, the system

NoG

self-generates attraction below some particular energy FEy, which is of order Ae="/ (&) for

—1/(No@'? for the patch models.

the pocket model and of order Ae

The reason for the sign change of the pairing interaction is clear from the structure of the
PRG equation for g3 the r.h.s. of which contains the term 4d;gsg4, which pushes g3 up. We
know from second-order KL calculation that the upward renormalization of g3 comes from
the magnetic channel and can be roughly viewed as the contribution from spin-mediated part

of effective fermion-fermion interaction. Not surprisingly, we will see below that g; does,

23



S |
w
(@)]
£
o
=
(@]
O
9,
- g,

1 |

0 4 8 L 12
RG scale L

FIG. 20: The flow of the couplings vs the pRG scale L in the 3-patch model. We assume that all
couplings are repulsive. We see that g3 increases under the flow, while g4 decreases. Observe that

the coupling g4 eventually gets overscreened and changes sign. Taken from Ref. 35.

indeed, contribute to the SDW vertex. From this perspective, the physics of the attraction
in pRG (or in fRG, which brings in the same conclusions as pRG) and in spin-fermion model
is the same: magnetic fluctuations push inter-pocket /inter-patch interaction up, and below
some energy scale the renormalized inter-pocket/inter-patch interaction becomes larger than
repulsive intra-pocket/intra-patch interaction.

There is, however, one important difference between the RG description and the descrip-
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tion in terms of spin-fermion model. In the spin-fermion model, magnetic fluctuations are
strong, but the system is assumed to be at some distance away from an SDW instability.
In this situation, SC instability definitely comes ahead of SDW magnetism. There may be
other instabilities produced by strong spin fluctuations, like bond CDW1°7 1% which com-
pete with SC and, by construction, also occur before SDW order sets in In RG treatment
(pRG or fRG), SDW magnetism and SC instability (and other potential instabilities) com-
pete with each other, and which one develops first needs to be analyzed. So far, we only
found that SC vertex changes sign and becomes attractive. But we do not know whether su-
perconductivity is the leading instability, or some other instability comes first. This is what
we will study next. The key issue, indeed, is whether superconductivity can come ahead of
SDW magnetism, whose fluctuations helped convert repulsion in the pairing channel into an

attraction.

B. Competition between density wave orders and superconductivity

Thus far, we identified an instability in a particular channel with the appearance of a
pole in the upper frequency half-plane in the corresponding vertex — the vertex with zero
total momentum in the case of SC instability, and the vertex with the total momentum
@ in the case of SDW instability. Since our goal is to address the competition between
these states, it is actually advantageous to use a slightly different approach: introduce all
potentially relevant fluctuating fields, use them to decouple 4-fermion terms into a set of
terms containing two fermions and a fluctuating field, compute the renormalization of these
“three-legged” vertices and use these renormalized vertices to obtain the susceptibilities in
various channels and check which one is the strongest. We will see that the renormalized
vertices in different channels (most notably, SDW and SC) do diverge near L., but with
different exponents. The leading instability will be in the channel for which the exponent is
the largest. There is one caveat in this approach — for a divergence of the susceptibility the
exponent for the vertex should be larger than 1/2 (Ref.137), but we will see below that this

condition is satisfied for all three cases which we consider, at least for the leading instability.
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FIG. 21: Superconducting and density-wave three legged vertices. Divergence of any of these
vertices indicates that the system is likely to be unstable to the corresponding order. Ff(é are

superconducting vertices, I'*PW is SDW vertex and T¢PW is CDW vertex.
1. Two pocket model

Let us see how it works for a two-pocket model. There are two particle-particle three
legged vertices I}, . as shown in Fig 21. To obtain the flow of these vertices, i.e., FEE(L) we
assume that external fermions and a fluctuating field have energies comparable to some E
(i.e.,L = log A/ E) and collect contributions from all fermions with energies larger than E. To
do this with logarithmical accuracy we write all possible diagrams, choose a particle-particle
cross-section at the smallest internal energy E' > F and sum up all contributions to the left
and to the right of this cross-section, as shown in Fig 22. The sum of all contributions to the
left of the cross-section gives the three legged vertex at energy E’ (or L' = log A/E’), and
the sum of all contributions to the right of the cross-section gives the interaction g; at energy
L. The integration over the remaining cross-section gives [*dL’ (with our normalization of

g:), and the equation for, e.g., I', (L) becomes
L
DEOL) = [ an (TE(L)gu (L) + T50(L)gs(1)) (5.14)

Differentiating over the upper limit, we obtain differential equation for dI';“(L)/dL whose
rhus. contains ['7¢ (L) and gs4(L) at the same scale L.

Collecting the contributions for I'Y(L) an T'Y°(L) we obtain

dFSC

dh[ = 115094 + chg:s
dFSC

deL = 115094 + chgg

(5.15)

or
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FIG. 22: Diagrams to analyze the flow of the effective vertices: SC vertex (top two) and SDW

vertex (bottom). The couplings g;’s here are running couplings in RG sense.

ar
der = (94 +93)T 4t
al’y
dz = (94— g3)l'4—
(5.16)
where T, = 79 +T9¢ and T, = 79 — T'9¢. The first one is for st* pairing, the

second is for sT~ pairing. We have seen in the previous section that the running couplings
gs.4 diverge at some critical RG scale L.. The flow equation near L. is in the form ¢ ~ g2,

hence
- L.—L
Substituting this into Eq. 5.16 and solving the differential equation for I' we find that the

9i (5.17)

two SC three legged vertices behave as

1 1

(Lo = L)-ovax’ 157 = ([, = Lyos-an’ (5.18)

[+ x

The requirement for the divergence of I'y+- is a3 > a4, which is obviously the same as
g3 > gy (see (5.17)).

We follow the same procedure for an SDW vertex ['SPW - We introduce a particle-hole
vertex with momentum transfer () and spin factor 7,3, as shown in Fig 21, and obtain the

equation for dI'°W (L) /dL in the same way as we did for SC vertices. We obtain (see Fig.
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22)

ATSPW .
—d FSDW
0L 1(91 +g3)
(5.19)
Using Eq. 5.17 and following the same steps as above we obtain at L ~ L,
RSDW 1
r x (5.20)

(L. — L)d1(a1+a3)
For CDW vertex (the one with the overall factor d,4 instead o,p), the flow equation is

dFCDW
dL

= di(g1 + g3 — 293 — 2go) [PV

= di(g1 — g5 — 292)T"" (5.21)

Using the same procedure as before we obtain

1
CDW _
v " (L, — L)% (o1—as—2az) (5.22)

The exponents «a; can be easily found by plugging in the asymptotic forms in Eq. 5.17
into the RG equations. This gives the following set of non linear algebraic equations in «;
a1 = dl(Oé% + Oég)

Qg = 2d10&2(0[1 — 062)

a3 — 2d10{3(2041 — O[Q) — 20[30./4
Qg = —Oég — Oéi

(5.23)

Consider first the case of perfect nesting, d; = 1. The solution of the set of equations

as =0, az = Y5 and ay = —%; Combining «o’s, we find that the exponents for

isal:1 5

62

superconducting and spin density wave instabilities and positive and equal:

aspw = a1 +az =

(5.24)
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while the exponent for CDW and s + + vertices are negative

1-V5
6
1—
6

acpw = o1+ a3 = ~ —0.206

S

~ —0.206 (5.25)

Aty = —Q3 — Qg =

We see that the superconducting (s + —) and SDW channels have equal susceptibilities
in this approximation, while CDW channel is not a competitor.

The analysis can be extended to d; < 1. We define = ay/aq, 7 = a3/a; and obtain

o V16d} — A3 +4+2— ]

di
d, ,
8=506-7)
_i; (5.26)
al_d11+’72 )

In Fig23 we plot asz+ = a3 — ay, aspw = a3 + a3, and acpw = a3 — az, We clearly
see that (i) CDW channel is never a competitor, and (ii) as d; decreases (the nesting gets
worse), the pairing vertex diverges with a higher exponent that SDW channel, hence st~
superconductivity becomes the leading instability, overshooting the channel which helped
SC vertex to change sign in the first place.

In real systems, pRG equations are only valid up to some distance from the instability
at L.. Very near L. three-dimensional effects, corrections from higher-loop orders and other
perturbations likely affect the flow of the couplings. Besides, in pocket models, the pRG
equations are only valid for F between the bandwidth W and the Fermi energy Er. At
E < Ep, internal momenta in the diagrams which account for the flow of the couplings
become smaller than external kp, and the renormalization of g; start depending on the
interplay between all four external momenta in the vertices®*'34. The calculation of the flow
in this case is technically more involved, but the result is physically transparent — SDW and
sT~ SC channels stop talking to each other, and the vertex evolves according to Eqs. (5.18)
and (5.19), with g; taken at the scale Er (or Ly = logA/Er). If Lr > L., the presence of
the scale set by the Fermi energy is irrelevant, but if Lp < L. (which is the case for the Fe-
pnictides because superconducting T, and magnetic Tspy are much smaller than Er), then
one should stop pRG flow at Lg,. At perfect nesting, the SDW combination g; + g5 is larger

than s~ combination g3 — g4 at any L < L., hence SDW channel wins, and the leading
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instability upon cooling down the system is towards a SDW order. At non-zero doping,
I1,,(Q) is cut by a deviation from nesting, what in our language implies that d; < 1. If bare
g3 and g4 are not to far apart, there exists a critical d; at which g3 — g4 crosses di(g; + g3)
at Lp, and at larger d; the crossing occurs before Lr. In this situation, st~ SC becomes
the leading instability upon cooling off the system.

The comparison between different channels can be further extended by considering current
SDW and CDW vertices (imaginary I'P" and T¢P") and so on. We will not dwell into
this issue because for all three cases we consider the real competition is between SDW and

SC vertices.

Exponent of instability

0.2 0.4 0.6 0.8 1

FIG. 23: Exponents (ast+, aspw and acpw) for different values of the nesting parameter dy
calculated near the critical RG scale, where the couplings diverge. The state with the largest
exponent wins. SDW and SC are degenerate when d; = 1 (perfect nesting) and superconductivity

wins for all other values of d;. CDW is not a competitor.

Before moving on, we need to clarify one more point. So far we found that the vertices I'*¢
and I'PY diverge and compared the exponents. However, to actually analyze the instability

in a particular channel one has to compute fluctuation correction to susceptibility

Xin(L) ~ / "ar (r(z))’ (5.27)

where I1; is either [I°PW =11, or I1°¢ =11, (see Fig 24)
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FIG. 24: (Left) The fluctuation correction to SC pairing susceptibility. (Right) The fluctuation

correction to SDW susceptibility.

The fully renormalized susceptibility in a given channel is
X (L) =10 = Xp(L) (5.28)

where 7 is some bare value of order one. The true instability occurs at L* when x';(L*) = 7.
At weak coupling, the critical L* is close to L., and, indeed, the instability occurs first in the
channel with the largest exponent for I'". However, we need X}Z(L) to diverge at L., otherwise
there will no instability at weak coupling'®”. This requirement sets the condition that the
exponent for the corresponding I" must be larger than 1/2. Fortunately, this condition is
satisfied in the two-pocket model. For d; = 1, this is evident from (5.24). For d; < 1, the
exponent for the SC channel only increases, while the one in SDW channel decreases but
still remains larger than 1/2 as it is evidenced from Fig23 where we plotted the exponents

for SC and SDW vertices as a function of d;. In the limit d; — 0,

1 d;
~ — 4+ — 2
aspw 2+ 1 (5.29)

The fact that both age and agpy are larger than 1/2 implies that in Landau-Ginzburg
expansion in powers of SC and SDW order parameters (A and M, respectively), not only
the prefactor for A% changes sign at 7., but also the prefactor for M? term changes sign and
becomes negative below some T, < T.. This brings in the possibility that at low T SC and
SDW orders co-exist. The issue of the co-existence, however, requires a careful analysis of
the interplay of prefactors for fourth order terms M*, A* and M2A?. We do not discuss
this specific issue. For details see 138,139.
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2. Multi-pocket models

The interplay between SDW and SC vertices is more involved in more realistic multi-
pocket models Fe-pnictides, with several electron and hole pockets. We recall that weakly
doped Fe-pnictides have 2 electron pockets and 2-3 hole pockets. In multi-pocket models one
needs to introduce a larger number of intra-and inter-pocket interactions and analyze the
flow of all couplings to decide which instability is the leading one. This does not provide any
new physics compared to what we have discussed, but in several cases the interplay between
SC and SDW instabilities becomes such that superconductivity wins already at perfect
nesting. In particular, in 3-pocket models (two electron pockets and one hole pockets) the
exponent for the SC vertex gets larger than the exponent for the SDW vertex already at
dy = 1. We show the flow of SC an SDW couplings for 3-pocket model in Fig.25. Once d;

becomes smaller than one, SC channel wins even bigger compared to SDW channel.

10/ --=-=-sdw |

-
- -
—
-
-—— -
b -

0 SC rt/ tak
over SDW Lc
-5t J
1.1 1.3 1.5 1.7

FIG. 25: The flow of the SC and SDW vertices with the RG scale. Both diverge at a critical scale,

L., but the SC vertex diverges stronger. Taken from Ref. 134.

Superconductivity right at zero doping has been detected in several Fe-pnictides, like
LaOFeAs and LiFeAs, and it is quite possible that this is at least partly due to the specifics
of pRG flow.

62



0.5 I I — T
— - - _- :
0.0 -
7]
E
S 0.5
c
8_ <1.0 | —cd-wave
» = ==SPIN
o - ==charge
'1.5 " -
-2.0

0 0.2 0.4 0.6 0.8 1

FIG. 26: The exponents for various instabilities computed for different nesting parameters d;. At
perfect nesting (d; = 1) the SDW and SC channels have the same exponent, for d; < 1. The larger

exponent is in the superconducting channel. Compare with Fig. 23. (Taken from Ref. 34.)
C. Patch models

The analysis of the patch model show a very similar behavior — SDW and d-wave SC
vertices compete, and which one wins depends on the number of patches and (for n = 2) on
the value of d;.

For 2-patch model, the equations and the results are the same as in 2-pocket model:
SDW wins at perfect nesting and SC winds at non-perfect nesting (see Fig 26).

For 3-patch model we have

dFSC
dl, = 2(93 - 94)FSC
dFSDW sp
T 2d, (g, + g3) TPV (5.30)

and g; = «;/(L. — L), so which channel wins depends on the interplay between age =

2(043 — Oé4) and aspw = 2d1(0&1 + 053)
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Substituting ¢; = /(L. — L) into the set of pRG equations (5.13) we obtain

a1 = dl(a? + Oég)

Qg — 2d1a2(a1 — CYQ)

a3 — —Oég — 20[3064 + 2d10ég(20[1 — 062)
ay = —aj — 203 (5.31)
For dy = 1, the solution is
ay ~0.14, a5 = 0,3 = 0.35, ay = —0.4. (5.32)
Hence
ago = 074, aspw ~ 0.48 (533)

We see that already at perfect nesting SC vertex has a larger exponent, i,e superconduc-
tivity is the first instability of a system upon cooling. The same result has been obtained
in fRG approach!?'. Observe that agc > 1/2, i.e., the divergence of the SC three legged
vertex does indeed lads to a SC instability (which, we recall, leads to a d + id or d — id
state, each breaks time-reversal symmetry). However, agpw < 1/2 what implies that in
Ginzburg-Landau expansion the prefactor for the M2, remains positive, at least around
superconducting 7,.. This generally makes the possibility that SC and SDW states co-exist
below T}, less likely!.

When d; < 1, age gets larger and agpw gets smaller, i.e, SC instability becomes even
more dominant. We show the behavior of agc and agpy at different d; in Fig27.

To summarize the results of pRG analysis:

e The SC vertex starts out as repulsive, but it eventually changes sign at some RG scale
(Lo). This happens due to the "push" from SDW channel, which rives rise to upward

renormalization of the inter-pocket/inter-patch interaction gs.

e Both SDW and SC vertices diverge at RG scale L. which is larger than Ly. The leading
instability is in the channel whose vertex diverges with a larger exponent. At perfect
nesting, SDW instability occurs first in 2-pocket and two-patch models, however in
3-patch model (and in some multi-pocket models) SC vertex has a larger exponent

that the SDW vertex and SC becomes the leading instability.
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FIG. 27: Plot of agc and agpw in 3-patch model vs di. Observe that age is larger already at
d; = 1. In this respect, the flow in 3-patch model is different from that in two-patch model (Fig

23), where agpw and age were degenerate (to leading) order for d; = 1.

e Deviations from perfect nesting (quantified by d; < 1) act against SDW order by
reducing the corresponding exponent. At sufficiently small d; SC instability becomes

the leading one in all models which we considered

e The necessary condition for the instability is the diverges of the fluctuating component
of the susceptibility. This sets up a condition o > 1/2, where « is the exponent for
the corresponding vertex. For the leading instability, we found « > 1/2 in all cases.
For the subleading instability, o can be either larger or smaller than 1/2. This affects

potential co-existence of the leading and subleading orders at a lower T

D. Pairing mediated by collective spin fluctuations

Like we said before, when the interaction and the bandwidth are of the same order, one can
foresee a situation in which strong fluctuations in the SDW channel develop already at energy
scales comparable to the bandwidth, in which case the KL component of the interaction is
large already at the onset of low-energy description and can be viewed as the effective

interaction mediated by spin fluctuations. The spin-mediated pairing interaction can be
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obtained either within RPA®2839 or using one of several advanced numerical methods
developed over the last decade like dynamical cluster approximation'®!, cluster DMFT42,
or just introduced semi-phenomenologically. The semi-phenomenological model is often
called the spin-fermion model®®.

The question which we pose for this case is somewhat different from the one we addressed
in the previous section. There, our primary interest was to understand how the initially re-
pulsive pairing interactions gets converted into an attractive one, and under what conditions
superconductivity wins over SDW order. For the case we consider in this section, we essen-
tially postulate that (i) the pairing interaction is attractive, at least in one channel, (ii) the
feedback from pairing fluctuations on the SDW channel is weak, and (iii) in the parameter
range where we want to analyze superconductivity, SDW fluctuations are strong but the
SDW order is not yet developed, i.e., there is a large but finite correlation length &.

In the following, we discuss the pairing at large £ in the framework of spin-fermion model
for the cuprates with the FS as in Fig. 12. The new aspect which we will explore is the effect
of spin fluctuations on fermionic properties in the normal state. We show that spin-mediated
interaction destroys fermionic coherence in some portions of the FS, if £ is large enough,
and discuss novel quantum-critical pairing, in which incoherent fermions are attracted to
each other by the interaction mediated by a near-massless collective boson. As another
complication, this spin-mediated interaction has a strong dynamical part due to Landau
damping — the decay of a spin fluctuation into a particle-hole pair. This dynamics also has
to be included into consideration, which makes the solution of the pairing problem in the

quantum-critical regime quite involved theoretical problem.

Spin fermi
pin revmion Integrate out

model ,
——~,—>E
A AFM W

correlations

FIG. 28: The spin-fermion model is an effective low energy model resulting from integrating out
fermions with higher energies, ranging from the the bandwidth, W, to the upper boundary of the

spin-fermion, A, which is usually a fraction of the bandwidth.

We re-iterate the two crucial aspects of the spin-fluctuation approach - first, static mag-

netic fluctuations are assumed to develop at energies much larger than the ones relevant for
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the pairing, typically at energies comparable to the to the bandwidth W. The static mag-
netic susceptibility is considered as an input for the low-energy theory, for which we set the
upper boundary at a scale A, which is a fraction of the bandwidth. (see Fig. 28). The Lan-
dau damping of spin fluctuations, on the other hand, comes from low-energy fermions and
is not an input. Rather, it is obtained self-consistently within the spin-fermion model itself.
It is crucial for the spin-fluctuation approach that SDW magnetism is the only instability
which develops at such high energies. There may be other instabilities (e.g., charge order),
but the assumption is that they develop at small enough energies and can be captured within
the low-energy model with spin fluctuations already present!07:108:143

Second, spin-fluctuation approach is fundamentally not a weak coupling approach. In
the absence of nesting, II,,(Q) and I1,,(0) are generally of order 1/W, and II,,(Q) is only
larger numerically. Then the interaction G3, required to get a strong magnetically-mediated
component of the pairing interaction, must be of order W. One way to put calculations
under control, at least partially, in this situation is to assume that, while the interaction
at large energies is of order W, the interaction between low-energy fermions, which we
label as g, is smaller than W and do controlled low-energy analysis treating g/W as a

36,107,108,143 * Thjg is what we will do. There are several ways to make the

small parameter
assumptions g < W and G ~ W consistent with each other, e.g., if microscopic interaction
has length I'g and Tokp/h > 1, then g is small in 1/(*25) compared to G (Refs.144,145).
Also, the analysis of the pairing in the spin-fermion model does not crucially depend on
the ratio g/W, so the hope is that, even if the actual g is of order W, the analysis based
on expansion in g/W captures the essential physics of the pairing system behavior near an

SDW instability in a metal. The only real assumption here is that the truly strong coupling
Mott Physics does not develop.

E. The spin-fermion model

Like we said, we assume that the effective interaction between fermions can be approxi-
mated by the RPA-type expression, Eq. (4.2), and that only spin component of the inter-
action with large momentum transfer is relevant. We further assume that spin fluctuations

are peaked at Q = (m, 7). Quite generally, such an effective interaction can be expressed
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Faﬁ;&y(kja k/;p7 k+ k/ - p) - _V(k - p)5a6 : 0_:,37 (534‘>

where spin components « and ¢ belong to fermions with momenta k& and p, respectively, and

9

Vig) = : (5.35)
{2 +]a— QP
where ¢ is the magnetic correlation length.
The model Hamiltonian can be written as
H= ZaF’E : (k’ - k‘F)C%’aC,;a + V(/{? - p)CE,aCT]}’/,BCE+E’—17,WCI775505 : 0_357 (536)
k,a

where UF,E is the Fermi velocity. Its value generally depends on the location of k along
the FS. For simplicity, we assume that this dependence is rather weak and neglect it i.e.,
set vpr = vp. The effective 4-fermion interaction can be viewed as the pairing vertex, if
k' = —k, or as the interaction which gives rise to fermionic self-energy at one-loop order, if
k' = p.
Let’s quickly look at energy scales involved in the problem. There are three parameters
in this low energy theory- (i) the Fermi velocity vg; (ii) the correlation length &, and (iii)
the effective coupling g. Another parameter is the bandwidth, W, but for g < W, the low-
energy sector is separated from high-energy sector and W does not appear in the formulas.
Out of three remaining parameters, one can construct a dimensionless quantity
N 09
drop€t

(5.37)

(the numerical factor is for later convenience). We will see that A determines the strength
of the mass renormalization and the renormalization of the quasiparticle residue in the hot
regions on the FS, where both kr and kr + Q are near the FS. At A\ < 1, these renormal-
izations are weak and fermions behave almost as free particles with static d-wave attraction
provided by spin-mediated interaction in (5.36). However, at large enough &, A is necessarily
large, and fermions in hot regions acquire a strong mass renormalization. Simultaneously,
Landau damping of collective spin excitations becomes relevant (see below), which in turn
gives rise to a strong imaginary part of the propagator of a hot fermion. Specifically, when
A is larger, there appears a wide range of frequencies between g and g/\?, where fermions

behave as diffusive rather than propagating quasiparticles. The spin-mediated interaction
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still provides a d—wave attraction between these incoherent quasiparticles, but whether this
attraction will lead to pairing is a’priori unclear.
To set the stage for the analysis of the pairing problem, we first summarize the results of

the normal state analysis of the spin-fermion model.

1. Normal state properties at strong coupling (A > 1)

The normal state properties of the spin-fermion model have been analyzed in series of

36,107,108,143,146-151 a1 we just briefly summarize the results. The most relevant

publications
issue is that A = O(1) sets the boundary not only between weak-coupling and strong coupling
regions, but also between the regime where bosonic damping is irrelevant and fermionic self-
energy depends on momentum much stronger than it depends on frequency (A < 1) and
the regime of self-generated locality, where the Landau damping plays the central role and
fermionic self-energy depends on frequency much stronger than it depends on momentum

(A > 1). In the latter regime, the effective 4-fermion interaction V(k — p) is dynamic and

has the form

_ g
£24 |q—QJ2 —iv|Q]

where v = (47 sin 0)g/v% and 6 is the angle between Fermi velocities in hot regions around

kp and kr + Q (see Fig. 29).

V(g Q) (5.38)

The self-energy of a hot fermion is given by (see Fig. 30)

Sw) = 22 (5.39)

1+ ,/1—ided
Wsf
where wg; = £72/y = (965}4—‘;9) )\%. With this self-energy, fermionic propagator evolves

between three different regimes. At the lowest frequencies w < wsy, the self-energy (5.39)

retains a FL form

Y(w) = lw
2
1" (JJ
by = A 4
@) = A (5.40)
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FIG. 29: A schematic picture of the Brillouin Zone for the cuprates. The arcs are the boundaries
of the open electron FS. The dark spots are the hot spots. The arrows indicate the fermionic
velocities at the two hot spots separated by Q, at which the spin fluctuations are enhanced. 6 is

the angle between these velocities.

k,w aaB k-q,w-Q c'qu k,w

FIG. 30: Diagrammatic representation of 1-loop fermionic self energy, X(k,w). V(gq,Q) is the

spin-fluctuation propagator. ¢ are Pauli matrices.

At larger frequencies, the self-energy has a non-FL, quantum-critical form (as if £ was

infinite)
" |W|(D 1/2
Y(w)=% (w) = - sgn(w) (5.41)
where w = 1% (we use this scale instead of simply g to simplify the formulas in the

next subsection). In this situation, ¥'(w) and X" (w) both scale as w'/2. There is also
a relatively wide intermediate regime w > w,; where %" (w) is well approximated by a

36 The true quantum-critical regime with non-FL behavior holds when

linear dependence
Y(w) > w. This is satisfied when w < @w. At larger frequencies, w > @, the self-energy still
has the form of Eq. (5.41), but the self-energy is a small correction to a bare w term in the

fermionic propagator, i.e., hot fermions behave as almost free quasiparticles. We sketch the
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behavior of the fermionic self-energy in Fig.31

Fermi liquid  Non-Fermi liquid Fermi Gas
region region
| | |
¢ | | -> E
Wy \ w A~W

Swk) ~ o Y(wk) ~ (@‘W)l/Q Y(w k) <w
Z”(w.l«) ~ w-z Z”(w./\‘) ~ (@,w)l/‘z

FIG. 31: Behavior of self energy ¥(w, k) at different energies. The characteristic energy scales
in the spin-fermion model are @ ~ g, below which the self energy exceeds a bare w term in the
fermionic propagator, and a smaller scale, w,y ~ /‘\%, that separates the Fermi liquid behavior at

smaller frequencies from the non Fermi liquid behavior at higher frequencies.

The frequency wss also sets the crossover behavior in V(k — p). At frequencies smaller
than w,y, the Landau damping term is irrelevant and V(k — p) is well approximated by

-2

its static form, Eq. (5.35). At frequencies larger than wsr, €72 can be neglected in the

denominator of Eq. (5.38), and the effective interaction becomes

1
(a—Q)—iv|Q
To analyze the pairing, we will need the effective "local" interaction between particles at

V(g, Q) ~ (5.42)

the FS, averaged over the deviations from hot spots along the FS. This amounts to setting

q — Q along a particular direction and averaging over q — Q along this direction. We have

1 dx 1 1
V() = 7/ — - 5.4
=50 | =—aal ~ 2 iane (5.43)

For fermions outside hot regions, FL behavior with ¥’ o w and ¥ o w? holds even

when £ = oo. The formulas for the fermionic self-energy for these fermions are presented

in36’107’146’148’150’152 .

In particular, for lukewarm fermions, >'(k,w) ~ where 0k is a

qgw
UF5k )

deviation from a hot spot along the FS.
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F. Pairing near the quantum critical point

We now use normal state results and consider the pairing at large £. The full analysis of
the pairing is rather involved as both hot fermions and lukewarm fermions give comparable
contributions to the pairing. We use the result of a recent analysis'*® that 7T, obtained in
calculations with the full self-energy is of the same order as T, obtained by approximating the
self-energy of relevant fermions by the expression at a hot spot, Eq. (5.39), as a justification
to simplify the problem and neglect the dependence of the self-energy on the momenta along
the F'S.

To make the story shorter and discuss the main issue, consider the system right at £ = oo.
Here we have fermions with the self-energy (w) oc w'/2, coupled by the dynamical pairing
interaction V'(k, ) given by (5.42). We know that the interaction is attractive in a d—wave
channel, the issue is whether this attraction is sufficient for the pairing when the fermionic

propagator has a non-FL form.

k,Q k,Q

10 y ([0} y
= +
«,-Q -k,-Q

FIG. 32: Diagrammatic representation of the equation for the pairing vertex I',. The wavy line is

the spin-fluctuation propagator V(q,w), ¢ are Pauli matrices.

We follow the same reasoning as in the previous sections and construct the linearized

equation for the superconducting order parameter (the pairing vertex) I',(k, Q) (see Fig.32).

Lp(k,w) = —SQTZ: / (Qilriél)sz(q,w’)G(q, WNG(—q, ="V (k — q,w— ) (5.44)

The overall factor 3 comes from spin summation. If this equation has a solution at a
nonzero T' = T, one should expect a pairing instability below this temperature (at least,
in the absence of pairing fluctuations). It is more convenient to analyze the equation for
T. in Matsubara frequencies, and we convert fermionic self-energy and bosonic propagator

to Matsubara axis. The negative sign reflects the fact that spin-mediated interaction is a
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repulsive interaction, and the only reason it gives rise to the pairing is because it is peaked
at a finite momentum (= Q in our case) and has attractive d—wave component.

Since both k and ¢ have to be near the FS, and V(q, () is strongly peaked at q = Q,
only the regions near hot spots are relevant to the pairing as the pairing is a low-energy
phenomenon (we recall that the coupling g is set to be much smaller than the bandwidth
W). This last observation reduces the "hot spot" model to effective two-patch model, for
which d—wave pairing simply implies that the pairing vertex I',(k,€2) changes sign when
k =~ kp is shifted by Q. Once we build this information into (5.44), the dependence on
the momenta remains only in the Green’s functions and in the bosonic propagator, and
the momentum integration can be done exactly. As one further simplification, we factorize
the momentum integral — integrate transverse to the FS in the fermionic propagators and
along the F'S in the bosonic propagator. This factorization is a signature of the Eliashberg

14,1920 “and it is rigorously justified when bosons are slow modes

theory of superconductivity
compared to fermions. In our case, typical momenta for bosons and dressed fermions scale
as v/w and this justification is not well justified. However, it works well numerically*® and
we just use it.

Factorizing the integration in the above manner, we obtain 1D integral equation for

Lp(k,w) = —Iy(k + Q,w) = I'p(w).

Vi(w — )
112 (14 (o] /2)*")

[p(w) = WTZ/FP(LU/) (5.45)

where V() is given by (5.43) after the conversion to Matsubara frequencies. Substituting

the form of V;, we obtain

1 Ip(w') 1
r = 7T :
p(w) 27T %: |w/\1/2|w _ w/’1/2 1+ (|w’]/@)1/2

(5.46)

The remarkable nature of this formula is that there is no overall coupling around which
a perturbation treatment can be performed. The pairing problem near a quantum critical
point is in this sense a universal problem. The only dimensional parameter in this equation
is w, which sets the upper scale of the quantum-critical behavior. Hence, if this equation
has a solution at a nonzero T,, this temperature must be of order w. But, like we said, one

needs to analyze the integral equation to see whether or not it has a solution.
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To proceed, let’s return momentarily to the case when ¢! is non-zero and consider the
pairing problem in the frequency regime where the system is a FL. Like we said, in this
regime, the frequency dependence of the pairing interaction can be neglected. Integrating
over momentum, we then obtain that I', does not depend on w and is the solution of

sf Fp

A
Fp ~ m'ﬂ—Tz

w

o (5.47)

We can solve this equation either directly, or perturbatively, order-by-order, if we add to
the r.h.s. of this equation some bare pairing vertex I',o. In the last case, one can sum up

geometric series of logarithmical terms, like in BCS theory, and obtain

A Wsf A Wsf 2
r,=rn~ 1+ ——-

r

_ .0 (5.48)
1— 1J%\ln o

The transition temperature is determined by the condition that the pairing susceptibility
Xp = I'p/T'po diverges:

1+

T, ~ wpe (5.49)

At £ = o0, wsy = 0 and FL range vanishes. Let’s, however, export the reasoning and
compute the pairing susceptibility in the quantum-critical case. Adding I, to the r.h.s. of
(5.46) and formally computing x, in an order-by-order expansion we again obtain the series
of logarithmical terms. Collecting only the terms with the highest power of the logarithm

at each order, we obtain

Iy(w)=T,0 (1 + ;log <ma:€ia,ﬂ> + ; (; log (W)) + ) (5.50)

However, in our case, the series of logarithms are not geometrical and sum up into a

power-law form

06) = oo (s " (5.51)

We see that x,(w) = I',(w)/T'p 0 does not diverge at any finite 7" and /or w, hence summing
up series of logarithms does not lead to the pairing instability. This is one distinction between

quantum-critical pairing and BCS pairing.
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That logarithmical series does not lead to T, does not necessary imply that there is no
superconductivity. One has to go back to Eq. (5.46) without I', ¢ term and try to solve it.
Because the kernel obviously drops at w > @, and Matsubara frequencies hold in quanta
of T, it is natural to expect that the solution of Eq. (5.46), if it exists, is determined
by frequencies w’ such that, T <« w' < @. For such frequencies, one can safely replace

summation over frequencies by integration, i.e., rewrite (5.46) as

Ty(w) = i /. ’ dw’ii,(rfg < SR ) (5.52)

|w_w/|1/2 |w+w/|1/2

We can further simplify this equation by replacing it with

Iy(w) = i I dw’fg,(rf/;) ( SR ) (5.53)

|w_w/|1/2 ‘w+w/|1/2

and requesting that I',(w) vanishes at the two original boundaries. [One can do a more
accurate analysis here'®®, but the outcome is the same as using our approximation).

The kernel in (5.53) has dimension 1/w and it is natural to search for the solution in the
power-law form. We choose

T)(w) ~ w(728) (5.54)

Substituting this back into Eq. 5.53 we get,

| 1/°°d ™ L ! v (5) (5.55)
= — a = .
4 Jo 2[4\ [T — 212 " |1+ 2|12

The function (/) is plotted for real 5 in Fig. 33(left). A solution consistent with a formal
(and approximate) order-by-order expansion would be § = —1/8. However, we clearly see
that the situation is even worse — there is actually no solution, as the minimal value of ¥ (/3)
is 4.48 at § = 0.

Does this prove that T, vanishes at the critical point. Actually not. To see this check
what happens if we choose  to be purely imaginary. The plot of W(5) along imaginary axis
is shown in Fig. 33(right). We clearly see that there are two solutions of ¥(5 = i3) = 1,
one at 3 = By, another at § = —fy, where fy = 0.27 Substituting these two solutions with
some complex prefactors into I',(w) and choosing the prefactors such that I',(w) is real, we
obtain

Ip(w) = C’L cos (250 Inw + gbo) (5.56)

|(,U|1/4
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FIG. 33: (Left)Plot of ¥(3) along the real axis. (/) has a minimum value of 4.48 at 5 = 0, and
hence cannot reach the desired value of 1. (Right) ¥(f) along the imaginary axis. ¥(8 = i) now
has a maximum at 8 = 0 and falls off for larger |3|. There are two solutions to ¥(i3) = 1, at

By = £0.27.

where C' is an overall constant that does not matter as we are solving the linearized gap
equation, and ¢, is a phase which at this stage is a free parameter. We emphasize that we
have this free phase because there are two solutions of W(if3) = 1.

Now we have to satisfy the two "boundary conditions'

T(w=w) =0 (5.57)

Substituting the solution we obtain two equations

2BoInw + ¢y = g—i—mr
260 InT + ¢y = g—l—mﬂ,m#n (5.58)

The phase can be chosen up to nm (not 2nm because changing I', to —I', is equivalent to
change the sign of the prefactor), hence we can incorporate nm into ¢g. Once this is done,
the two equations determine ¢y and that largest temperature at which the second equation

in (5.58) is satisfied. Elementary analysis shows that this temperature (= T.) satisfies

~ w
2ol o = (5.59)

Hence, the linearized equation on the superconducting order parameter has a solution at a
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non-zero T, given by (in this approximation)
T, = e /20 (5.60)

We emphasize again that to obtain this solution we had to go beyond logarithmical
approximation and solve the full integral equation on the pairing vertex I',. Just summing
up logarithms does not lead to a solution for 7.. From a generic perspective this implies
that the pairing at the quantum-critical point is a threshold phenomenon. Indeed, if we
formally add a factor of € to the Lh.s. of Eq. (5.53), we find that the solution for 7, exists
only for € > €., = 0.22 (Ref.151). On the other hand, like we said, the quantum-critical
pairing problem is universal, with no adjustable overall factor in front of the integral. From
this perspective, the existence of a formal threshold may not be that important.

0.2

T/®

0.1 |

McMillan

0 05 1 15 2
inverse coupling A" ~ ¢!

FIG. 34: Plot of T, (in units of @) versus At ~ ¢71. As A= — 0, the T, calculated from the

McMillan formula, which only picks contribution from the Fermi liquid region, vanishes (blue line).

But T, calculated by taking the contributions from the non-Fermi liquid region (red line), tends to

a finite value as ¢! — 0 (taken from Ref. 151).

The linearized equation on T', has been solved numerically!48:150:151

, and the result is not
very different from Eq. (5.60). In Fig. 34. we show the numerical solution of this equation
at a finite £&. We see that T, gradually evolves as £ increases and tends to a finite value
T, ~ 0.17w at £ = oco. A more sophisticated analysis, which includes the dependence of
the self-energy on the momentum along the FS gives T, of the same order of w, but with

somewhat smaller prefactor: T, ~ 0.04w (Ref.148).
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1. Other models of quantum-critical pairing

The quantum-critical pairing problem is not restricted to systems with the FS as in Fig.
12 near the antiferromagnetic Q = (7, ) instability but can be applied to other systems in
which interaction between fermions is mediated by gapless or near-gapless bosonic modes.
A generic problem of this kind contains V;(Q) oc 1/€27 and the corresponding ¥(w) oc w!™7.
The case we considered above corresponds to v = 1/2.

For a generic v, the linearized equation for the pairing vertex is

_ — T Fp(a/) 1
L) = U= i =P T4 (=) (e

(5.61)

The same reasoning as we applied for v = 1/2 works for all 0 < v < 1, and, with some
modifications, for v > 1. Namely, summing up the leading logarithms does not lead to
superconductivity, but one can go beyond logarithmical approximation, search for a power-
law solution at frequencies T" < w < w, and then check whether one can verify the boundary
conditions at the lower and the upper limit. As for the case of v = 1/2, the power-law
solution that satisfies Eq. (5.61) has a complex exponent and arbitrary phase. Choosing the
phase to satisfy one boundary condition, one is left with only one other boundary condition,
which is satisfied by choosing a particular 7' = T,. (see Refs. 151,153-156 for details). A
special care is needed to study the cases of small v, v = 1, and v > 1. The result, which
we just cite without going into details, is that 7T, monotonically decreases as v increases and
smoothly passes between v < 1 and v > 1.

The BCS problem corresponds to v = 0, although in this case one needs to impose by
hand the upper limit in frequency summation. The case v = é describes pairing in double-

157

layer composite fermion metals™’ and the pairing near an Ising ferromagnetic quantum-

t1587160

critical poin The case v = 40 (which implies that w? is replaced by log w) de-

scribes pairing near antiferromagnetic and Ising ferromagnetic quantum-critical point in 3D

155,156,161

also color superconductivity . The case v = 0.7 describes fermions with dirac cone

dispersion'®?, and v = 1 describes the pairing mediated by undamped, propagating bosons.

Finally, ¥ = 2 describes the pairing mediated by near-gapless phonons!%?

. The case of ~
varying with doping and the pairing in the presence of density-wave order has been con-
sidered in Refs. 155,164. The quantum-critical pairing problem has been discussed from

a slightly different perspective in Refs. 165 and 166. The pairing problems with singular
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dependence of the interaction on momentum rather than frequency have been considered in

Ref. 167,168.

The issue which is not fully addressed in the literature is whether the quantum-critical

pairing at T, implies a true superconductivity, or only signals the development of the energy

scale associated with the superconducting gap, while the actual T, is lower due to strong

superconducting fluctuations. This issue is currently under investigation by several groups,

and we refrain from speculating on it.

VI.

To summarize:

e In this section we considered the pairing under the assumption that fluctuations in

the density-wave channel, which favors KL- type superconductivity, develop already
at high energies, comparable to the fermionic bandwidth. In this situation, the domi-
nant pairing interaction between low-energy quasiparticles can be thought of as being

mediated by the corresponding density-wave fluctuations.

By construction, the pairing interaction is attractive in the channel favored by density-
wave fluctuations. However, the same interaction also gives rise to strong fermionic
self-energy which destroys fermionic coherence at least in some parts of the FS. The
issue we addressed is whether the lack of coherence prevents fermions from pairing.
We argued that incoherent fermions can still pair, and the onset temperature of the

pairing remains finite even when the range of the FL. behavior shrinks to zero.

The quantum-critical pairing problem is quite universal as the effective coupling is a
number, of O(1), and T, is the universal number, when measured in units of the upper

boundary of the quantum-critical behavior.

Whether the T, obtained by solving the linearized "gap equation" is close to the actual
T., or superconducting fluctuations prevents superconducting coherence to develop

down to a substantially smaller 7" is an open issue.

SUMMARY

The goal of this review was two-fold. First, to discuss electronic mechanism of supercon-

ductivity in systems with nominally repulsive interaction, and, second, to provide a guideline

79



how to perform calculations to analyze SC instability and its interplay with other potential
instabilities, most notably SDW instability. This is by no means a comprehensive review of
the electronic mechanism of superconductivity, and we apologize if we have missed some of
the viewpoints and references. We have presented how KL ideas, originally developed for
isotropic systems, can be used to describe not only superconductivity in lattice systems but
also the interplay between superconductivity and competing density-wave orders.

We started with a brief review of KL mechanism of superconductivity in isotropic systems.
We demonstrated that the pairing problem decouples between pairing channels with different
angular momentum [, and to get SC, it is enough to have attraction for just one value of [. We
then presented the KL arguments that Friedel oscillations of the screened repulsive fermion-
fermion interaction give rise to the appearance of attractive components of the pairing
interaction at large odd [, no matter how the screening affects the regular (non-oscillating)
part of the interaction potential. Mathematically, the attraction is due to non-analyticity
of the screened interaction at the maximum momentum transfer 2kr between particles on
the FS. We applied KL reasoning to weak coupling and showed that in 3D the attraction
persists down to [ = 1, and the partial component with [ = 1 is the largest by magnitude.
The outcome is that an isotropic 3D system with weak repulsive electron-electron interaction
is unstable towards a p—wave pairing. The p—wave pairing is the leading pairing instability
also in 2D case, but to get it one has to go to third order in the perturbation, while in 3D
systems the attraction emerges already at second order.

Such a decomposition into decoupled angular momentum harmonics is, however, not
possible in lattice systems due to reduced symmetry. We discussed how KL ideas can be
applied to lattice systems, particularly to the ones in which either the density of states is
the largest in particular patches along the F'S, or there are several different Fermi pockets
in the Brillouin zone. We showed that KL reasoning can be applied to lattice cases as well
and considered, as examples, three 2D models: a two-pocket model with small electron and
hole pockets separated by Q = (7, ), a two-patch model with one large F'S on which there
are two distinct regions with large density of states, and a three-patch model, with three
such regions. We argued that the first model is applicable to Fe-pnictides, the second one to
optimally doped and overdoped cuprates, and the third one to graphene doped to a vicinity
of a topological transition from multiple small F'Ss sheets to a single large F'S. For each model

we found that superconductivity is possible if the interaction at large momentum transfer
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Q exceeds the interaction at a small momentum transfer (G5 > G4 in our notations). The

emerging pairing state has s™~ symmetry for the Fe-pnictides, d,2_,» symmetry for the

-y
cuprates, and d + id symmetry for doped graphene. In the latter case, superconductivity
breaks time-reversal symmetry.

We found that KL renormalization, taken to order G2, does produce an attractive compo-
nent of the interaction. If bare G5 (the interaction at large momentum transfer) and bare G4
(the interaction at small momentum transfer) are identical, as in the case of the momentum-
independent Hubbard-like interaction, KL. mechanism is sufficient to explain the emergence
of the attractive pairing interaction. However, in a more realistic case, G, is larger than
(5. In this situation, KL attraction has to overcome bare repulsion, and this is generally
not possible, particularly at weak coupling. As a result, a lattice system can, in principle,
remain in the normal (non-SC) state down to 7" = 0.

We discussed two scenarios for superconductivity even when G4 > G3. First, we consid-
ered the situation when the when the FS is nested and the renormalization in particle-hole
channel is almost as strong as the renormalization in the particle-particle (Cooper) channel.
We argued that the nesting case can be studied beyond second-order by applying a par-
quet renormalization group technique. This is a fully controlled weak coupling theory which
neglects higher terms in the dimensional couplings G; but keeps corrections in G;I1,,(0)
and G;I1,,(Q) to all orders. We found that in all three examples which we considered, RG
flow of the couplings is such that the system self-generates an attraction below some energy
scale. Specifically, we demonstrated that at some RG scale the initially repulsive pairing
interaction changes sign and beyond this scale (at smaller energies) becomes attractive. We
argued that this conversion of repulsion into attraction is a universal phenomenon which
does not depend on the details of the underlying model, as long as particle-hole bubble is
comparable to particle-particle bubble and RG analysis is applicable.

We also analyzed the interplay between superconductivity and other orders. The compe-
tition with SDW order is a particularly relevant issue because SDW fluctuations are respon-
sible for the appearance of an attraction in the SC channel. We argued that in some cases
of near-perfect nesting SDW order occurs first, but at deviations from nesting SC instability
eventually occurs prior to a magnetic instability. In other cases, SC instability comes first
even at perfect nesting, overshooting the interaction which made attraction in the pairing

channel possible.
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We then considered another scenario, in which density-wave fluctuations develop at much
larger energies than the ones relevant to superconductivity. We argued that in this situation
the pairing interaction is enhanced already at high-energies, and the pairing interaction
can be viewed as mediated by collective density-wave modes. We showed that the KL
interaction term can be viewed as the first term in the series which gives rise to effective
interaction mediated by collective spin fluctuations. We speculated how one can get SC
by going beyond weak coupling and discussed the spin-fermion model in this context. We
argued that the interplay between strong attraction and strong fermionic self-energy gives
rise to a new concept of quantum-critical pairing, when incoherent fermions gets attracted
by the interaction mediated by a near-gapless boson. We showed that the pairing problem
in this limit is different rom BCS, but, nevertheless, there is a finite 7T, even when fermions
which contribute to the pairing are fully incoherent and display a non-FL behavior.

We hope to have fairly addressed the phenomenon of superconductivity in systems with
repulsive interactions, but we fully understand that we left a near-infinite amount of inter-
esting physics that comes along with it. Our main hope is that the readers, particularly
graduate students, will find this subject interesting and worth studying in more detail and

depth.
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