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Abstract
The BCS theory of superconductivity named electron-phonon interaction as a glue that over-

comes Coulomb repulsion and binds fermions into pairs which then condense and super-conduct.

We review recent and not so recent works aiming to understand whether a nominally repulsive

Coulomb interaction can by itself give rise to a superconductivity. We briefly review a generic sce-

nario of the pairing by electron-electron interaction, put forward by Kohn and Luttinger back in

1965, and then turn to modern studies of the electronic mechanism of superconductivity in the lat-

tice models for the cuprates, the Fe-pnictides, and the doped graphene. We argue that in the range

of dopings/interactions, where these systems are metals and Mott physics does not play a crucial

role, the pairing in all three classes of materials can be viewed as lattice version of Kohn-Luttinger

physics, despite that the pairing symmetries are different. We discuss the conditions under which

pairing occurs and rationalize the need to do either parquet renormalization-group analysis at

weak coupling or introduce effective interaction mediated by pre-formed spin or charge fluctua-

tions at a stronger coupling. We discuss the interplay between superconductivity and density-wave

instabilities at weak coupling.

PACS numbers:
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I. INTRODUCTION

Superconductivity (SC) is one of most remarkable aspects of quantum physics of inter-

acting electrons. Discovered in 1911 by Kamerlingh Onnes and his team of technicians1 it

preoccupied the minds of the most prominent physicists of the 20th century and remains at

the forefront of condensed-matter physics in the 21st century. Many ideas developed first

in the studies of superconductivity like the mass generation of the gauge field (the Meissner

effect)2,3, and the mass generation of superconducting phase fluctuations4, were later ex-

tended to other fields of physics and served as paradigms for the works by Higgs5 and others

to explain mass generation of the electro-weak gauge W and Z bosons in particle physics6.

In simple words, superconductivity is the ability of fermions to carry electric current

without dissipation. In quantum physics such phenomenon is generally associated with the

appearance of a macroscopic condensate, i.e., a quantum state in which 1023 particles “hold

together" at the lowest quantum level and do not allow individual particles to get swiped

away by impurities, interactions with boundaries, etc. Bosons are capable to do this be-

cause any number of them can occupy a single quantum level, and the appearance of a

macroscopic condensate of bosons is a well-known phenomenon of Bose-Einstein condensa-

tion 3. Fermions, however, are "lone wolves"– by Pauli principle, only two of them (with

opposite spins) can occupy a single quantum level, others are expelled. As a result, 1023

fermions occupy a comparable number of energy levels. In this situation, any coherent mo-

tion of fermions (e.g., a current) will only survive for a limited time, before fermions will be

individually affected by impurities, walls, etc.

There is a way to change this unwanted situation. If, somehow, fermions form bound

pairs, quantum mechanics tells us that each pair has spin S = 0 or 1, i.e., it becomes a

boson. Bosons can condense and behave as one monolithic object, i.e., if they are forced to

move in one direction by an applied electric field, they will continue moving even after the

field is turned off because 1023 bound fermionic pairs will not allow an individual fermion to

change its direction due to, e.g., impurity scattering.

This simple reasoning tells us that the phenomenon of superconductivity can be straight-

forwardly explained if there will be an explanation why fermions form bound states. This

is where the real difficulty is. An electron-electron interaction is repulsive and generally

should not allow fermions to pair. That remained the mystery for almost 50 years after the
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discovery of superconductivity.

The breakthrough came in 1957 in a paper by Bardeen, Cooper, and Schrieffer (BCS)7.

They found that the interaction between fermions and lattice vibrations effectively creates

an attraction between fermions. An electron creates a disturbance of a lattice structure

around it, another electron “feels” this disturbance and through it “feels” the other electron.

BCS have demonstrated that the effective electron-electron interaction, mediated by quanta

of lattice vibrations – phonons, is attractive at energies smaller than characteristic phonon

frequency ωD. On a first glance this may not be enough as electrons still repel each other by

Coulomb interaction. However, Coulomb repulsion is known to become progressively smaller

at smaller energies due to screening in the particle-particle channel8–10, and it drops between

fermionic bandwidth, which is typically of order few electron-volts, and Debye frequency,

which is typically a few tens of millivolts. If the drop down to ωD is strong enough, electron-

phonon interaction overshoots electron-electron repulsion and the total interaction becomes

attractive. The BCS theory was preceded by the observation by Cooper11 that there is no

threshold for the pairing, i.e., an arbitrary weak attractive interaction already gives rise to

fermionic pairing. As a result, all what is required for pairing is that at energies of order

ωD electron-phonon interaction must exceed screened Coulomb interaction.

Electron-phonon mechanism of SC has been successfully applied to explain the pairing in

a large variety of materials, from Hg and Al to recently discovered and extensively studied

MgB2 with Tc as high as 39K12. The phonon density of states, obtained by inelastic neutron

scattering experiments, and the spectrum of the bosons which mediate pairing, as deduced

from tunneling experiments, agree very well in systems like, e.g., Pb13,14. This comparison of

two independent experiments, together with the isotope effect15,16, are generally considered

to be a very reliable proof of a phonon–mediated pairing state.

BCS theory also stimulated efforts to develop theoretical frameworks to describe the

phenomenon of SC, and the outcomes were the fundamental Gorkov’s theory of the SC

state involving normal and anomalous Green’s functions17, and the controlled Eliashberg

theory14,18–20 of superconductivity, which goes beyond the BCS theory and includes fermionic

self-energy and the dynamical part of the pairing interaction.

Non-phononic mechanisms of the pairing has been also discussed, most notably in con-

nection with the superfluidity of 3He21,22, but didn’t become the mainstream before the

breakthrough discovery of SC in LaBaCuO in 198623. That discovery, and subsequent dis-
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coveries of superconductivity at higher Tc in other cuprates, signaled the beginning of the

new era of “high-temperature superconductivity”24. The discovery, in 2008, of superconduc-

tivity in Fe-based pnictides25 (binary compounds of the elements from the 5th group: N, P,

As, Sb, Bi) with maximum Tc near 60K quickly established another direction of research in

this field.

The high superconducting transition temperature is important but not the central feature

of the phenomenon of "high-temperature superconductivity". After all, Tc in MgB2 is higher

than in many Fe-pnictides. What truly created an enormous interest to new superconductors

is the observation, shared by most scientists(although not all of them) that electron-phonon

interaction is too weak to account for observed Tc in these materials. The same belief holds

for organic and heavy-fermion superconductors, for which Tc is smaller, but electron-phonon

interaction is not the “glue" for superconductivity, by one reason or another.

If electron-phonon interaction is not the pairing glue, then what binds electrons together?

The only other option is Coulomb interaction. But it is repulsive, how can it give rise to the

pairing? It turns out, it can. In this review, we attempt to present a comprehensive story

of electron-electron pairing by the nominally repulsive Coulomb interaction.

The study of the pairing due to electron-electron interaction (often termed as electronic

mechanism of superconductivity) has a long history. It has been known from early 1950th

that screened Coulomb potential has a long-range oscillatory tail cos(2kF r+ϕ0)/r3 at large

distances r (kF is Fermi momentum). These oscillations are often called Friedel oscilla-

tions26. Due to these oscillations, the screened Coulomb interaction gets over-screened at

some distances and becomes attractive. Landau and Pitaevskii analyzed the pairing at non-

zero orbital momentum l of the pair and found that the pairing problem decouples between

different l (see Ref. 3). Because of this decoupling, even if only one partial component of the

interaction is attractive and all other repulsive, the system still undergoes a pairing insta-

bility into a state with l for which the interaction is attractive. Because the components of

the interaction with large l come from large distances, it is conceivable that occasional over-

screening of the Coulomb interaction at large distances may make some of partial interaction

components with large l attractive.

A bold next step in this direction has been made by Kohn and Luttinger (KL) in 196527,28.

They analyzed the form of the fully screened irreducible pairing interaction at large l in three-

dimensional, rotationally isotropic systems with k2/(2m) dispersion and separated the non-
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analytic 2kF screening and the regular screening from other momenta. They incorporated

the latter into the effective interaction U(q) = U(q) (q = |q|) and made no assumptions

about the form U(q) except that it is an analytic function of q2. The full irreducible pairing

interaction is U(q) plus extra terms of O (U2(q)) coming from 2kF screening. KL argued

that contributions to partial components of the irreducible interaction from 2kF scattering

scale as 1/l4 due to the non-analyticity of the 2kF screening, while the partial components

of analytic U(q) behave at large l as e−l, i.e., are much smaller. This smallness overshoots

the fact that KL interaction is of second order in U and makes KL contribution larger than

the direct first-order interaction term.

KL found that, for large l, partial components of the full irreducible interaction with even

l are attractive when U(0)/U(q = 2kF ) >
√

3 − 1, and components with odd l are attractive

no matter what is the form of U(q). As a result, any rotationally-invariant system with

repulsive Coulomb interaction is unstable against pairing, at least at large enough odd l.

When U(0) = U(2kF ) = U , both odd and even components are attractive.

The situation at smaller l is less definite as one no longer can separate the non-analytic 2kF

contribution to the irreducible pairing vertex and regular contributions from other momenta.

In this situation, one can only do perturbation theory to second order in some bare U(q).

For momentum-independent U(q) = U , KL attraction survives down to l = 1 which is, by

far, the largest of attractive components29,30. For momentum-dependent interaction, a bare

U(q) has components for all l and whether second-order KL contribution can overshoot bare

interaction is not obvious and depends on the details. One case when KL term definitely

wins and again leads to l = 1 pairing instability, is when the Born parameter is of order one,

i.e., the radius of the interaction in real space is about the same as s−wave scattering length

a, and akF/~ is small. In this situation, partial components of U(q) scale as (akF/~)2l+1,

while KL terms are of order (akF/~)2 for all l, i.e., the KL components are parametrically

larger for all l > 0.

KL applied their results to 3He. Back in 1965, it was widely believed that the pairing

in 3He should be with l = 2, so they approximated U(q) by a constant U , expressed U

in terms of s-wave scattering length a, used akF/~ ≈ 2, known for 3He, and obtained a

ridiculously small Tc ∼ 10−17K. A few years later, in 1968, Fay and Layzer29 extended KL

calculations to l = 1, which a few years later (in 1972) was found experimentally31 to be the

actual pairing state in 3He. For p-wave, the KL result for Tc is ∼ 10−3K, which by order of
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magnitude is the same as experimental Tc ∼ 2.5 × 10−3K (Ref.31).

The KL analysis in 2D is more involved. If the regular interaction U(q) is momentum-

independent, the 2kF part is also momentum independent for all q ≤ 2kF , which are relevant

for pairing (the pairing interaction connects momenta on the Fermi surface). However, a

picture similar to that in 3D gets restored once we apply perturbation theory and go to

third order in U32. Now the 2kF part becomes momentum dependent and non-analytic at

q → 2kF from below. Its partial components at large l scale as 1/l2 and are attractive. Like

in 3D, the largest KL attraction is for l = 1, but now it scales as U3 rather than U2. As

an additional complication, the relation between U(q) and the scattering amplitude in 2D

is also logarithmically singular, but this does not affect the statement about KL attraction

down to l = 1, only U3 is replaced by (1/ log akF )3.

In this review we consider KL mechanism in lattice systems. In the presence of a lattice,

rotational symmetry is broken and one cannot simply expand in angular harmonics, but

has to consider discrete irreducible representations for a particular lattice. We discuss how

to analyze pairing in lattice systems and show that modified KL mechanism works here as

well, particularly when the bare interaction is momentum-independent. We consider three

examples of lattice physics in two dimensions: the 2D model with two Fermi pockets in

different parts of the Brillouin zone, and two different models with a single Fermi surface

(FS), but with highly anisotropic density of states, which is peaked at particular points

on the FS – the "patch models". We consider models with two and three non-equivalent

patches. The model with Fermi pockets is applicable to Fe-pnictides33, the two-patch model

is applicable to overdoped cuprates34, and three-patch model is applicable to doped graphene

near 3/8 and 5/8 filling, and to fermions on triangular lattice near 3/4 filling35.

We first discuss what is the condition on superconductivity in lattice systems, assuming

that we deal with short-range repulsive interaction. We show that, in many aspects, the

situation is similar to isotropic systems. Namely, for Hubbard U model, the bare pairing

interaction is repulsive in a conventional s−-wave channel, and zero in other channels, which

in the cases we consider are either d-wave like (in terms of how many times the pair wave

function changes sign along the FS), or, for the case of Fe-pnictides, another s−wave, often

called s+−, in which the pair wave function changes sign between different FS pockets (the

conventional s−wave is called s++). We show that second-order KL contributions to the

pairing interaction are attractive in these "other" channels, much like they are attractive in
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all channels with l > 0 in isotropic systems.

We then consider a more realistic case of a bare U(q), which is still short-range, but does

have momentum dependence and is larger at small q than at large q, as it is expected for

a screened Coulomb interaction. We show that, in this situation, the bare interaction is

repulsive in all non-s++ channels, and KL contributions alone cannot cure the situation. We

discuss three approaches which give rise to pairing even in this case. All three explore the

idea that there is another order which the system wants to develop in either spin or charge

density-wave channel, and fluctuations of this order increase the strength of the attractive

KL contribution and make it larger than the repulsive contribution from the bare interaction.

The first one a phenomenological “collective mode" approach36. It abandons the con-

trollable weak coupling limit (i.e. expansion in U) and assumes that the pairing interaction

between fermions can be thought of as being mediated by soft collective fluctuations of some

density-wave order whose fluctuations develop at energies much larger than those at which

superconductivity sets in. It is assumed that collective excitations are soft enough such that

this effective interaction is large and exceeds the bare repulsive interaction. The form of the

static pairing interaction mediated by soft bosons is obtained phenomenologically, based on

physics intuition and experimental results.

The second approach assumes that superconductivity and density-wave instabilities

are competing orders, which grow together and develop at about the same ener-

gies/temperatures. There is no pairing "mediated by collective bosons" in this case because

collective bosons by themselves develop at the same scale as superconductivity. Still, the

idea is that, as these fluctuations develop, they give progressively larger contribution to the

pairing channel via KL mechanism, and below some energy, which is internally set by the

system, the attractive KL interaction gets larger than the bare repulsion. This progressive

increase of the KL interaction with decreasing energy can be analyzed within the parquet

renormalization-group (RG) approach (either conventional33,35,37 or functional38,39), which

is still a weak-coupling approach, but it goes beyond second order in U(q) ana allows one to

sum up series of logarithmically singular KL contributions to the pairing interaction. One

thing one should analyze in the RG approach is whether superconductivity is the leading

instability, or density-wave order develops first.

And the third approach is to obtain the effective pairing interaction in an approximate

computation scheme, called a random phase approximation (RPA), which amounts to a
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summation of a particular class of ladder diagrams40. In this effective interaction the bare

repulsion and the KL contributions are the first and the second terms in the expansion

in U(q), however higher-order terms are not assumed to be small and in many cases the

RPA pairing interaction is attractive in one of non-s++ channels. This approach is non-

controlled, but its advantage is that it can be equally applied to the case when density-wave

fluctuations develop before SC fluctuations and to the case when density-wave and SC

fluctuations develop at the same energies.

Crudely speaking, in all these models, the KL effect is enhanced by enhanced density-wave

fluctuations in either spin or charge channel. For repulsive interaction, the enhancement in

the spin channel is a natural choice.

II. PAIRING INSTABILITY AT ARBITRARY WEAK INTERACTION

A. Basic facts

In mathematical apparatus developed to study interacting fermions, the information

about the potential bound pairs is encoded in the two-particle vertex function Γ, which is

a fully renormalized, anti-symmetrized interaction between quasiparticles, and whose poles

determine collective bosonic excitations.
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FIG. 1: The vertex Γ written to first order in the interaction (wavy line). The numbers 1, 2, 3, 4

represent the momenta k1, k2, k3, k4 respectively. The spin indices are not shown for clarity.

To first order in the interaction (see Fig. 1)

Γαβ,γδ(k1, k2; k3, k4) = −U(k⃗1 − k⃗3)δαγδβδ + U(k⃗1 − k⃗4)δαδδβγ (2.1)

To study pairing it is convenient to decompose Γ into singlet and triplet components. A

singlet component has spin structure

δαγδβδ − δαδδβγ (2.2)
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and a triplet component is

δαγδβδ + δαδδβγ (2.3)

Using these formulas, we obtain from Eq. 2.1

Γαβ,γδ(k1, k2; k3, k4) = −Usi (δαγδβδ − δαδδβγ) − Utr (δαγδβδ + δαδδβγ) (2.4)

where

Usi = U(k⃗1 − k⃗3) + U(k⃗1 − k⃗4)
2

, Utr = U(k⃗1 − k⃗3) − U(k⃗1 − k⃗4)
2

(2.5)
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FIG. 2: Diagrams to second order in the interaction U(q) = U , which contribute to the vertex

function with zero total incoming momentum. There are contributions from both particle-hole and

particle-particle channels. Other diagrams to order U2 cancel each other and we do not show them.

1. A constant interaction

For a constant U , only singlet component is present at the leading order, i.e.,

Γ0
αβ,γδ = −U (δαγδβδ − δαδδβγ) (2.6)

Let’s go to next order. The four diagrams which give rise to the renormalization of Γ to

order U2 are shown in Fig. 2. Two of these diagrams contain a pair of fermionic Green’s

functions with opposite directions of the arrows. This pair is called a particle-hole bubble

because one can immediately check that the momentum and frequency integral over the two
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Green’s functions of intermediate fermions is non-zero at T = 0 only when one fermion is

above FS, i.e., is a particle, and the other one is below FS, i.e., is a hole. The other two

diagrams contain the product of two fermionic Green’s functions with the same direction

of arrows. This combination is called particle-particle bubble because the momentum and

frequency integral over these two Green’s functions is non-zero at T = 0 when both fermions

are above or below FS, i.e. both are particles, or both are holes.

The two diagrams with particle-hole bubbles affect the spin structure of the interaction,

generating the triple component. These diagrams are singular when transferred frequency

and transferred vF q are nearly equal, and this singularity gives rise to zero-sound waves17 But

we are interested in potential poles as a function of the total frequency of two fermions, while

transverse frequencies and transferred momenta can be arbitrary. It is easy to verify that

the particle-hole bubble is not singular for a generic transferred momentum and frequency

and therefore is incapable to substantially modify Γ at small U .

The particle-particle bubble is a different story. Suppose we set the total momentum

q of two fermions to be zero (by momentum conservation total incoming and outgoing

momenta are both zero). A straightforward computation shows that in this situation the

renormalization in the particle-particle channel does not affect the spin structure of the

interaction, and that at T = 0, each particle-particle bubble is logarithmically singular in

the limit of small total frequency and behaves as

Πpp(Ω, q = 0) = −i
∫ d3kdω

(2π~)4Gk,ωG−k,−ω+Ω

= mkF

2π2~3

[
ln
(
ωc

Ω

)
+ i

π

2

]
(2.7)

where ωc is the upper limit of the integration over vF (k − kF ), which, physically, is the

upper end of the energy range in which U can be approximated by a constant.

The logarithmical divergence of Πpp(q = 0,Ω) at Ω → 0 implies that the product UΠpp

cannot be neglected even when the interaction is weak. Keeping this renormalization, we

find that, to order U2,

Γ0
αβ,γδ = −U (1 − UΠpp(0,Ω)) (δαγδβδ − δαδδβγ) (2.8)

We assume and then verify that the most relevant Ω are the ones for which UΠpp(q = 0,Ω)

are of order one. Let’s go now to next order of U . The number of diagrams increase, but
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for UΠpp = O(1) all of them are small in U , except for the two diagrams with two particle-

particle bubbles which give (UΠpp)2 with prefactor equal to one The same holds for fourth

and higher orders in U . One can easily make sure that perturbative series form geometric

progression, hence the full Γ in this approximation is

Γfull
αβ,γδ = −U 1

1 + UΠpp(0,Ω)
(δαγδβδ − δαδδβγ) (2.9)

For positive (repulsive) U , Γ has no poles, but for negative (attractive) U , Γ has a pole at

Ω = iΩp where

Ωp = ωce
−2π2~3/|U |mkF = ωce

− π~
2|a|kF . (2.10)

where a = mU/(4π~2) is s-wave scattering length in Born approximation. The pole exists at

arbitrary small U and, as we see, is located in the upper half-plane of complex frequency Ω. A

pole in the upper half-plane implies that, if we create an excitation with Ωp, its amplitude will

exponentially grow with time and destroy a Fermi liquid state that we departed from. What

does it mean physically? The excitations, which grow with time, describe fluctuations in

which a pair of fermions behaves as a single boson with total spin S = 0 and zero momentum.

A natural suggestion would be that the new state, which replaces a Fermi liquid, contains

a macroscopic number of such bosons in the same q = 0 state, i.e., the ground state has a

macroscopic condensate. This is precisely what is needed for super-current.

The analysis of the pole in Γ can be extended to a to a non-zero total momentum q

and to a finite temperature. Calculations show17 that at a finite q the pole is located at

Ω = iΩp

(
1 − v2

F q2

6~2Ω2
p

)
. Once q exceeds the critical value

√
6~Ωp/vF , the pole moves to the

lower half-plane in which case a collective excitation decays with time and does not destroy

a Fermi liquid. The consequence is that, for moving fermions, the pairing instability exists

only when their velocity is below the critical value. A finite T leads to the same effect: the

pole is located in the upper frequency half-plane only at T < Tc, where Tc is comparable

to Ωp. At larger T , the pole is in the lower frequency half-plane, and a Fermi-liquid state

is stable. Note by passing that in weak coupling theory bound pairs appear and condense

at the same T . Beyond weak coupling, pairs condense at a lower T than the one at which

they appear. This difference between the two temperatures may be large at strong coupling

in lattice systems. This phenomenon is often termed as BCS-BEC crossover (BEC stands

for Bose-Einstein condensation). The meaning is that at strong coupling pairs of fermions

appear at high T = Tpair, and condense at low T = TBE, and between TBE and Tpair the
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system can be described as a weakly/moderately interacting gas of uncondensed bosons41.

The two main messages here are (i) the pairing instability can be detected from Fermi-

liquid analysis as the appearance of the pole in Γ in the upper half-plane of the total

frequency of two fermions, and (ii) there is no threshold for such phenomenon – Fermi liquid

state gets destroyed already at infinitesimally small attraction between fermions.

2. Momentum-dependent interaction

How this helps our consideration of a possible pairing due to repulsive electron-electron

interaction? If fully screened electron-electron interaction was a positive constant, we surely

would not get any superconductivity as attraction is still a must condition for the pairing.

But the screened electron-electron interaction U(q) is generally a function of q. Let’s see

what we obtain for the pairing when the interaction U(q) is still weak, but momentum-

dependent.

The input for the analysis is the observation that the logarithmical singularity in Πpp

comes from fermions in the immediate vicinity of the Fermi surface. To logarithmic accuracy,

the interaction between fermions with incoming momenta k,−k and outgoing momenta p

and −p can then be constrained to particles on the FS, such that U(q = |k − p|) depends

only the angle θ between incoming kF and outgoing pF . The decomposition of the vertex

function Γ into spin-singlet and spin-triplet channels now gives

Γ0
αβ,γδ = −U(θ)δαγδβδ + U(π − θ)δαδδβγ

= −U(θ) + U(π − θ)
2

(δαγδβδ − δαδδβγ)

− U(θ) − U(π − θ)
2

(δαγδβδ + δαδδβγ) (2.11)

The way to proceed is to expand the interaction U(θ) into angular momentum harmonics.

In 3D, we have

U(θ) =
∑

l

(2l + 1)Pl(θ)Ul, (2.12)

where Pl(θ) are the Legendre polynomials: P0(θ) = 1, P1(θ) = cos θ, P2(θ) = (3 cos2 θ−1)/2,

etc. Even components Πl=2m(θ) satisfy Π2m(θ) = Π2m(π − θ), odd components satisfy

Π2m+1(θ) = −Π2m+1(π−θ). Substituting into (2.11), we obtain that spin-singlet contribution
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is the sum of even components, and spin-triplet contribution is the sum of odd components.

Γ0
αβ,γδ(θ) =

−
∞∑

m=0
[(4m+ 1)P2m(θ)U2m (δαγδβδ − δαδδβγ)

+(4m+ 3)P2m+1(θ)U2m+1 (δαγδβδ + δαδδβγ)] (2.13)

One can easily make sure that the spin structure of Γ is reproduced at every order, if we

restrict with renormalizations in the particle-particle channel, i.e., even and odd angular

momentum components do not mix. As a result, the full Γ in this approximation is given

by

Γfull
αβ,γδ(θ) =

−
∞∑

m=0

[
(4m+ 1)P2m(θ)U full

2m (δαγδβδ − δαδδβγ)

+(4m+ 3)P2m+1(θ)U full
2m+1 (δαγδβδ + δαδδβγ)

]
(2.14)

Even more, using the property of the Legendre polynomials∫ dΩq

4π
Pm(cos θk,q)Pn(cos θq,p) = 1

2m+ 1
δm,nPm(cos θk,p) (2.15)

where θk,q is the angle between fermions with momenta kF and qF and dΩq is the element

of the solid angle for qF , one can show that components with different m also do not mix

up, i.e., each partial component U full
l of the full interaction is expressed only via Ul. The

relations are the same as at l = 0, i.e.,

U full
l (q = 0,Ω) = Ul

1 + UlΠpp(q = 0,Ω)
(2.16)

This result is very important for our story. It states that, even if the angular-independent

component Ul=0 is repulsive, the pairing instability may still occur at some finite angular

momentum l. All what is needed is that just one partial channel is attractive, either for

even or for odd l. This may, in principle, occur even if overall the interaction is repulsive.

A good hint comes from the analysis of screened Coulomb interaction. As a reader surely

knows, a screened potential far away from a charge contains Friedel oscillations – ripples of

positive and negative regions of charge density (see Fig.3) Overall, screened interaction is

indeed repulsive, but the negative regions can provide attraction at some angular momenta,

particularly at large l, because dominant contributions to components Ul with l >> 1 come
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from U(r) at large distances. The magnitude Ul is not an issue because, as we know, Πpp is

logarithmically singular at small frequencies. Furthermore, an attraction in just one channel

is a sufficient condition for a superconducting instability, because if one of U full
l has a pole

in the upper half-plane of Ω, the full vertex Γfull
αβ,γδ(θ) also has such pole. The only difference

with the case of a constant attractive U is that when the instability occurs at some l > 0 a

two-fermion bound pair has a non-zero angular momentum l.

FIG. 3: The screened coulomb potential as a function of r. 1
r (dashed line) is the bare coulomb

potential. 1
r e−r/a (blue line) is the Yukawa potential which includes regular screening and dies of

exponentially (a is some characteristic screening length). The fully screened potential (red line)

includes the contribution from the 2kF scattering which gives rise to Friedel oscillations at large

r. These oscillations are responsible for the attraction in large angular momentum channels. The

inset is a zoomed in version, which shows the oscillations.

B. Kohn-Luttinger Mechanism

Friedel oscillations at large distances occur by the special reason – the static particle-hole

polarization bubble Πph(q) is non-analytic at q = 2kF . For free fermions with spherical FS,

Πph(q,Ω = 0) = i
∫ d3kdω

(2π~)4G(k, ω)G(k + q, ω)

= mkF

2π2~3

(
1
2

+ 1 − x2

4x
ln
∣∣∣∣1 + x

1 − x

∣∣∣∣
)

(2.17)
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where x ≡ q
2kF

. Near q = 2kF (or x = 1), Π(x) ∝ (1 − x) log |1 − x|, and its derivatives

over x are singular at x = 1. This 2kF non-analyticity is a universal property of a FL and

it survives even if one adds self-energy and vertex corrections to the bubble. One can also

show quite generally that the screening due to 2kF scattering acts on top of "conventional"

screening which transforms Coulomb potential into Yukawa-type short-range potential. In

this respect, Friedel oscillations can be considered starting from either bare Coulomb, or

Yukawa, or even Hubbard interaction potential.

Note in passing that the 2kF non-analyticity is an example of the special role played by

"hidden" 1D processes in a multi-dimensional FL42. Indeed, when q = |kF −pF | is near 2kF ,

pF is antiparallel to kF . One can make sure that the two internal fermions, which contribute

to (1−x) log |1 − x| term in Πph(x), are also located near kF and −kF , i.e., everything comes

from fermions moving in direction along or opposite to kF

The effect of 2kF oscillations on superconductivity was first considered by Kohn and Lut-

tinger27,28, and the result is known as Kohn-Luttinger (KL) mechanism of superconductivity.

The idea of KL was the following: let’s incorporate all non-singular corrections to the inter-

action into new U(θ) and treat it as unknown, but regular function of θ. A simple exercise

with Legendre polynomials shows that for any regular function of θ, partial components with

angular momentum l (Ul in our case) scale as e−l, i.e., are exponentially small at large l. It is

natural to assume that this bare interaction is entirely repulsive, i.e., all Ul > 0. If we substi-

tuted these Ul into (2.16), we would obviously not obtain any pairing instability. However,

the input for the pairing problem is the full irreducible anti-symmetrized vertex function Γ̄0

in which incoming fermions have momenta (kF ,−kF ) and outgoing fermions have momenta

(pF ,−pF ) (the word "irreducible" means that this vertex function does not contain con-

tributions with the particle-particle bubble at zero total momentum). Such irreducible Γ̄0

contains additional contributions from non-analytic 2kF scattering. KL computed 2kF con-

tribution to irreducible Γ̄0(θ) to second order in the renormalized U(θ). The corresponding

diagrams are shown in Fig 4 The result is

Γ̄0
αβ,γδ(θ) =

−A(θ) (δαγδβδ − δαδδβγ) −B(θ) (δαγδβδ + δαδδβγ)

(2.18)
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FIG. 4: (Top) The fully renormalized vertex function in the Cooper channel is the sum of the

particle-particle diagrams. The boxed wavy line is the irreducible pairing vertex which is the sum

of all diagrams with the structure different from the Cooper channel. (Bottom) The expansion of

the irreducible vertex to second order in the interactions. The second order terms are particle-hole

channel contributions (Kohn-Luttinger diagrams)

where

A(θ) = U(θ) + U(π − θ)
2

−
(
2U2(π) − 2U(0)U(π) − U2(0)

) Πph(θ) + Πph(π − θ)
2

B(θ) = U(θ) − U(π − θ)
2

−
(
2U2(π) − 2U(0)U(π) + U2(0)

) Πph(θ) − Πph(π − θ)
2

(2.19)

Πph(θ) ≈ −(mkF/16π2~3)(1 + cos θ) log (1 + cos θ), (2.20)

and in the factors (Πph(θ) ± Πph(π − θ) in Eq. (2.19) one should keep only the term Πph(θ)

for θ close to π and only the term Πph(π − θ) for θ close to 0.

Note that U(0) terms in the prefactors for Πph(θ) in A(θ) and B(θ) have different signs.

This is the consequence of the fact that these terms are of exchange type (two crossed

interaction lines), and in the internal parts of the corresponding diagrams θ and π − θ are

interchanged compared to other terms. Note also that for a constant U the exchange terms

are the only ones which do not cancel out.

Now expand A(θ) and B(θ) into harmonics and consider large l. Like we said, regular

terms coming from U(θ) are exponentially small. However, the terms of order U2 are non-
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analytic, and integrating them with Legendre polynomials one finds that partial harmonics

decay as 1/l4 rather than exponentially. Specifically, at large l,

Sl = −
∫ dΩq

4π
Πph(θ)Pl(cos θ) ≈ mkF

8π2~3
(−1)l

l4
(2.21)

One can easily verify that Al are again non-zero when l = 2m and Bl are non-zero when

l = 2m+ 1. In explicit form we obtain

Al=2m = U2m +
(
2U2(π) − 2U(0)U(π) − U2(0)

)
S2m

Bl=2m+1 = U2m+1 +
(
2U2(π) − 2U(0)U(π) + U2(0)

)
S2m+1 (2.22)

Al large l, Ul is exponentially small and can be neglected compared to Sl ∝ 1/l4. Because

S2m+1 is negative and 2U2(π) − 2U(0)U(π) + U2(0) = (U(2kF ) −U(0))2 +U2(π) is positive

for any form of U(q), B2m+1 are definitely negative at large m. As a result, an isotropic

system with initially repulsive interaction is still unstable towards pairing, at least with large

odd angular momentum of a Cooper pair. The harmonics with even l are attractive when

U(0)/U(π) >
√

3 − 1.

The KL scenario for the pairing can be extended in several directions. First, one can

consider the case of strong regular screening, when the bare U(q) can be approximated by

a constant (the Hubbard model). In this situation, without 2kF renormalization, the bare

interaction is repulsive in l = 0 (s−wave) channel, but zero in all other channels. Once

2kF renormalization is included, Γ̄0 acquires angular dependence, and both odd and even

partial components become attractive because for U(0) = U(π) = U , A2m = −U2S2m,

B2m+1 = U2S2m+1, and S2m > 0, S2m+1 < 0. The issue is: at which l the coupling is most

attractive? The analysis of this last issue requires some caution because at l = O(1), all

transferred momenta q, not only those near 2kF , contribute to partial components of Γ̄0(θ).

One has to be careful here because some of regular contributions from q away from 2kF may

be already included into the renormalization of the Coulomb interaction into short-range,

Hubbard U . If we just neglect this potential double counting, i.e., assume that the screening

from Coulomb interaction into a Hubbard U is produced by the processes different from the

KL ones, we can extend the KL analysis for a constant U to arbitrary l. It then turns out

that attraction survives down to l = 1, and the l = 1 component is the strongest29,30. In

explicit form,

B1 = −mkFU
2

2π2~3
(2 log 2 − 1)

5
. (2.23)
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Substituting this B1 into the pairing channel, we obtain the pole in the triple component of

the full Γfull(θ) at Ω = iΩl=1
p , where

Ωl=1
p ∝ e

−B

(
~

akF

)2

, (2.24)

B = 5π2/(4(2 log 2 − 1)), and, as before, a = mU/4π~2 is s−wave scattering length in Born

approximation. The calculation of the prefactor requires quite serious efforts as one needs

to include terms up to fourth order in the interaction (see Ref. 43).

The p−wave pairing can be rationalized even when the bare interaction is angle-

dependent. Because the momentum dependence is via q2 = 2k2
F (1 − cos θ), higher angular

harmonics of U(q) contain higher powers of kF . In particular, U1 ∼ U(r0kF/~)2, where

r0 is the radius of the interaction. Suppose it is repulsive. The p-wave component of the

effective irreducible interaction, which we obtained, is of order U(akF/~) (see Eq. (2.23).

The ratio a/r0 is the Born parameter. When it is of order one, a and r0 are of the same

order, i.e., akF ∼ r0kF are small. The induced attraction then wins because it contains a

smaller power of the small parameter29. This reasoning, however, works only when a ∼ r0.

If we treat interaction as small and kF is arbitrary, bare repulsion is generally larger than

induced attraction, unless a bare U(q) is a constant.

Before we move forward, let us make a quick remark about KL effect in 2D systems. The

eigenfunctions of the angular momenta in 2D are P d=2
l = cos(lθ) for l ̸= 0 and P d=2

0 = 1.

The expansion of the irreducible interaction in these eigenfunctions yields

U(θ) = U0 + 2
∑
l>0

Ul cos lθ (2.25)

The situation in 2D is more tricky than in 3D because in 2D Πph for free fermions remains

flat all the way up to q = 2kF , i.e., for a constant U , U2Πpp(q) does not depend on the angle

between incoming and outgoing fermions. Then harmonics with non-zero l do not appear,

i.e., there is no KL effect. There is a non-analyticity in Πph(q) at 2kF also in 2D, but it is

one-sided: at q ≥ 2kF , Πph(q) behaves as Πph(q) = Πph(2kF ) −a
√
q2 − 4k2

F (a > 0), while at

q < 2kF , Πph(q) = Πph(2kF ). However, the non-analyticity at q > 2kF is irrelevant for the

pairing problem because we need the interaction between fermions right on the FS, and for

them the largest momentum transfer is 2kF . The situation changes when we move to next

order in U and include vertex corrections to particle-hole bubble. These corrections make

Πph(q) momentum-dependent also for q < 2kF , and, most important, 2kF non-analyticity

18



becomes two-sided. At large l, partial harmonics of Γ̄0(θ) scale as 1/l2 and, like in 3D, are

attractive for both even and odd l, if we set the bare pairing interaction, fully renormalized

by vacuum corrections, to be a constant. The largest interaction is again in l = 1 (p−wave)

channel, and the pole in the spin-triplet part of the full Γfull(θ) is located at Ω = iΩl=1
2D ,

where Ωl=1
2D ∝ e−0.24/(akF /~)3 .

Details and other discussion on the KL mechanism and its application to p−wave

superconductivity in systems with strong ferromagnetic fluctuations can be found in

Refs.29,30,32,43–49. The rest of this review will be devoted to discussion of superconductivity

in lattice models, where kF is generally not small and rotational symmetry is broken.

III. SUPERCONDUCTIVITY IN LATTICE MATERIALS: APPLICATION TO

PNICTIDES, CUPRATES AND DOPED GRAPHENE

In studying superconductivity in solid-state systems one has to deal with fermions moving

on a lattice rather than in isotropic media. Lattice systems have only discrete symmetries,

and in general FS does not have an isotropic form (spherical in 3D or circular in 2D) and

may even be an open electron FS, meaning that its does not form a closed object centered at

k = 0 and instead ends at the boundaries of the Brillouin zone. (The locus of points where

energy is larger than EF is a closed object in this situation, and such a FS is often called

a closed hole FS). Also, in many cases electronic structure is such that there are several

different FS’s which can be either closed or open. We show examples in Fig. 5.

We will consider systems with inversion symmetry and SU(2) spin symmetry. For such

systems, the pairing instability is still towards a creation of a bound pair of two fermions with

momenta k and −k in either spin-singlet or spin-triplet channel. However, if one attempts

to expand the interaction into eigenfunctions of momenta for isotropic systems (Legendre

polynomials Pl(θ) in 3D and cos(lθ) in 2D), one finds that different angular components no

longer decouple.

One can still do a partial decoupling, however, due to discrete symmetries of lattice sys-

tems. As an example, consider 2D fermions on a square lattice. Fermionic dispersion and

interactions are invariant with respect to rotations by multiples of π/2 (x → y, y → −x and

x → −x, y → −y), with respect to reflections across x or y axis (x → −x or y → −y),

and with respect to reflections across diagonals (x → y or x → −y). The correspond-

19



Г

M

Г

M
1

22’

1’

1

22’

1’

1

23

1’

3’2’

1

23

1’

3’2’

FIG. 5: FS topologies for a “simplified” pnictide(left), for hole-overdoped cuprate(center) and

doped graphene(right). In pnictides there are two kinds of FS’s electrons and holes(blue and

orange circles, respectively). For cuprates and graphene one can have disconnected pieces or a

singly-connected FS, depending on the doping. The doping at which an open FS changes its

character to a closed one is called the Van-Hove doping. At this doping the density of states is

logarithmically singular near the saddle points. This points with enhanced density of states are

marked by grey patches.

ing symmetry group C4v contains 8 elements and has four one-dimensional representations

called A1, A2, B1, B2 and one two-dimensional representation E. Eigenfunctions from A1

remain invariant under rotations and reflections, eigenfunctions from B1 change sign under

rotation by π/2 and under reflections across diagonals, but invariant under rotation by π

and reflection across x or y, eigenfunctions from B2 change sign under rotations by π/2,

and under reflections across x, y, and one of diagonals, but remain invariant under rota-

tion by π, and under reflection across another diagonal, and so on. In real 3D systems,

interactions are also invariant with respect to z → −z inversion, and the symmetry group

extends to D4h, which includes 16 elements - 8 are even under to z → −z and 8 are odd

(g and u subgroups). We will restrict our consideration to spin-singlet superconductivity

with pair wave-functions symmetric with respect to z → −z. Accordingly, we stick with

four one-dimensional representations A1g, A2g, B1g and B2g. Each of these representations

contains infinite number of eigenfunctions: 1, cos kx + cos ky, cos 2kx + cos 2ky, etc for A1g,

cos kx − cos ky, cos 2kx − cos 2ky, etc for B1g, sin kx sin ky, sin 2kx sin 2ky, etc for B2g, and so

on. (For convenience, for Brillouin Zone variables we measure k in units of ~/a-where a is the

lattice constant. This makes k dimensionless). The basic functions in each representation

are summarized in Table I.

20



A1g s−wave cos kx+cos ky, cos kx cos ky

A2g g−wave sin kx sin ky(cos kx-cos ky)

B1g d−wave cos kx-cos ky

B2g d−wave sin kx sin ky

TABLE I: Basic functions in 1D representations of the square-lattice group D4h

If we try to group eigenfunctions of momenta from the isotropic case into these represen-

tations, we find that eigenfunctions with l = 4n belong to A1g, eigenfunctions with l = 4n+1

belong to E, eigenfunctions with l = 4n + 2 belong to B1g or B2g, and eigenfunctions with

l = 4n+ 3 belong to A2g. Because of this decomposition, A1g representation is often called

s−wave, E is called p-wave, B1g and B2g are called d-wave (dx2−y2 and dxy, respectively),

and A2g is called g-wave. We will use these notations below.

Now, if we now expand the interactions in eigenfunctions of D4h group and consider

the pairing problem in the same way as we did before, we find that functions belonging to

different representations decouple, but infinite set of functions within a given representation

remain coupled. In this situation, the KL result for the isotropic case that the system will

eventually be unstable against pairing with some angular momentum, is no longer valid

because large l components from any given representation mix with smaller l components

from the same representation, and the latter can be repulsive and larger in magnitude.

Indeed, we will see below that for lattice systems, there is no guarantee that the pairing will

occur, i.e., a non-superconducting state well may survive down to T = 0. We refer a reader

to several papers in which superconductivity has either been ruled out at large U50 or found

to be present using the controllable approximation at any U (Ref. 51).

At the same time, we will see that another part of KL-type analysis can be straight-

forwardly extended from isotropic to lattice systems. Namely, if we approximate the bare

interaction U(q) by a constant U > 0, we get a repulsive interaction in s−wave channel,

but nothing in p−wave, d−wave, and g-wave channel. Once we include KL contribution to

order U2, we do get interaction in these channels. We recall that in the isotropic case, the

induced interaction in all non-s-wave channels is attractive. We show that the same happens

in lattice systems, at least in the examples we consider below.

And there is more: even within s−wave channel, the full Γfull(k,−k; p,−p) is the solution

of the coupled set of equations for infinite number of A1g eigenfunctions. Diagonalizing
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the set one obtains infinite number of coupling constants (effective interactions). For a

constant U , some eigenfunction are positive (repulsive), but some are zero. This can be

easily understood by looking at the first two wavefunctions: 1 and cos kx + cos ky. The

first is invariant under the shift k → k + (π, π), while the second changes sign under this

transforation. A constant U cannot create a pairing wavefunction which changes sign under

k → k+(π, π), hence the bare coupling for such a state is zero. KL terms produce momentum

dependence of the irreducible interaction in the pairing channel and shift the eigenvalue for

the sign-changing wavefunction. If this eigenvalue is attractive, then KL physics gives rise

to an s-wave attractive interaction, which may be even stronger than KL-induced attraction

in other channels.

We will discuss KL pairing in three representative families of materials: Fe-pnictides,

cuprates, and doped graphene. Superconductivity in cuprates and Fe-pnictides (and Fe-

chalcogenides) has been detected in numerous experiments. Superconductivity in doped

graphene has been predicted theoretically but so far not detected experimentally. Although

historically, cuprates were discovered first in 1986, for pedagogical reasons it is convenient

to start with Fe-pnictides, where we show that superconductivity is due to KL-induced

attraction in A1g channel. We then discuss cuprates and show that KL renormalization of

the pairing interaction gives rise to attraction in B1g channel. Finally, we consider graphene

doped to van-Hove density (or, equivalently, fermions on a triangular lattice at van-Hove

doping) and show that KL mechanism gives rise to a doubly-degenerate pairing state, whose

components can be viewed as B1g and B2g using square-lattice representations (or E2g using

representations for a hexagonal lattice).

There is extensive literature on all three classes of systems, and superconductivity is one

of many interesting and still puzzling properties of these materials. Some researchers believe

that in either all or some of these systems superconductivity is ultimately related to Mott

physics52, and some believe that superconductivity may be mediated by phonons53–57. We

will not dwell into these issues and simply discuss the conditions and consequences of the

electronic mechanism of superconductivity in these materials for the portions of the phase

diagrams where electronic correlations are not strong enough to localize the electrons. The

goal of this review is to discuss how much information about pairing one can extract from

the analysis of the KL scenario. Our key conclusion is that the pairing in all three classes of

materials can be traced to the same KL physics, which, however, predicts different pairing
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symmetries in each class of materials.

A. Superconductivity in Fe-Pnictides

Fe-pnictides are binary compounds of pnictogens, which are the elements from the 5th

group: N, P, As, Sb, Bi. Superconductivity in these materials has been discovered in 2008

by Hosono and his collaborators25. Later, superconductivity has been found also in Fe-

chalcogenides – Fe-based compounds with elements from the 16th group: S, Se, Te58–61.

The family of Fe-based superconductors (FeSCs) is already quite large and keeps grow-

ing. It includes 1111 systems RFeAsO (R =rare earth element)25,62–64, 122 systems

XFe2As2(B=Ba,Na, K)65–69 and AFe2Se2 (A = K, Rb, Cs) 70,71, 111 systems like LiFeAs72,

and 11 systems, like FeTe1−xSex
73.

Parent compounds of most of FeSCs are metallic antiferromagnets74. Because electrons,

which carry magnetic moments, can travel relatively freely from site to site, antiferromag-

netic order is often termed as a “spin-density-wave” (SDW), by analogy with e.g., magnetism

in Cr, rather than “Heisenberg antiferromagnetism" – the latter term is reserved for sys-

tems in which electrons are “nailed down" to particular lattice sites by very strong Coulomb

repulsion.

Superconductivity in Fe-pnitides emerges upon either hole or electron doping (see Fig.

6), but can also be induced by pressure or by isovalent replacement of one pnictide element

by another, e.g., As by P (Ref. 75). In some systems, like LiFeAs 72 and LaFePO 76,

superconductivity emerges already at zero doping, instead of a magnetic order.

magnetism, the electronic structure, the normal state properties of FeSCs, and the in-

terplay between FeSCs and cuprate superconductors have been reviewed in several recent

publications 77–90. Below we shall not dwell into the intricacies of the phase diagram but

only focus on the superconductivity.

The electronic structure of FeSCs is fairly complex with multiple FS’s surfaces extracted

from ARPES and quantum oscillations measurements. In most systems, there are two or

three near-cylindrical hole FS’s centered at kx = ky = 0 and two electron FS’s centered at

(π, π). For electron pockets, states inside the pockets are occupied, for hole pockets, states

inside the pockets are empty.

This electronic structure agrees with the one obtained theoretically from the ten-orbital
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FIG. 6: Schematic phase diagram of Fe-based pnictides upon hole or electron doping. In the shaded

region, superconductivity and antiferromagnetism co-exist. Not all details/phases are shown. Su-

perconductivity can be initiated not only by doping but also by pressure and/or isovalent replace-

ment of one pnictide element by another 75. Nematic phase at T > TN is another interesting

subject but we don’t discuss this in the text. Taken from Ref. 87.

model, which includes five Fe d-orbitals and takes into account the fact that an elementary

unit cell contains two Fe-atoms because As atoms are located above and below an Fe plane.

All d-orbitals hybridize, and to convert to band description one has to diagonalize the Hamil-

tonian in the orbital basis. The diagonalized quadratic Hamiltonian H2 = ∑10
i=1 ϵi,ka

†
i,kai,k

describes ten fermionic bands, some of which cross chemical potential and give rise to hole

and electron pockets. The interactions between these band fermions are the original in-

teractions in the orbital basis, dressed up by the "coherence factors" associated with the

transformation from orbital to band fermions (the coherence factors are the coefficients in

the linear transformation from original fermions describing d-orbitals to new fermions which

diagonalize the quadratic Hamiltonian). Interactions in the orbital basis are local, to a rea-

sonably good accuracy, but the coherence factors know about fermion hopping from site to
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site and depend on momenta. As the consequence, the interactions between band fermions

acquire momentum dependence, which leads to several new and interesting phenomena like

the appearance of accidental zeros in the two-particle bound state wave function91.

For proof-of-concept we consider a simpler problem: a 2D two-pocket model with one

hole and one electron FS, both circular and of equal sizes (see Fig.5), and approximately

momentum-independent.

The free-fermion Hamiltonian is the sum of kinetic energies of holes and electrons:

H2 =
∑
k,σ

εcc
†
k,σck,σ + εff

†
k,σfk,σ (3.1)

where c stands for holes, f stands for electrons, and εc,f stand for their respective dispersions

with the property the εc(k) = −εf (k+Q), where Q is the momentum vector which connects

the centers of the two fermi surfaces. The density of states N0 is the same on both pockets,

and the electron pocket ‘nests’ perfectly within the hole pocket when shifted by Q.

There are five different types of interactions between low-energy fermions: two intra-

pocket density-density interactions, which we treat as equal, interaction between densities

in different pockets, exchange interaction between pockets, and pair hopping term, in which

two fermions from one pocket transform into two fermions from the other pocket. We show

these interactions graphically in Fig 7.
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FIG. 7: The interactions between patches/pockets in the pnictides(left), cuprates (center) and

graphene (right). G1 is a density-density interaction between fermions from different pock-

ets/patches. G2 is an exchange between the pockets/patches, G3 is a pair hopping process between

the pockets/patches, and G4 is a density-density interaction within the same pocket/patch. All

interactions are repulsive (positive).
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FIG. 8: Vertices Γhh = Γee and Γhe introduced in the 2 pocket model.

In explicit form

Hint = G1
∑
[k,σ]

c†
k1σf

†
k2σ′fk3σ′ck4σ

+G2
∑
[k,σ]

f †
k1σc

†
k2σ′fk3σ′ck4σ

+
∑
[k,σ]

G3

2
(
c†

k1,σ1
c†

k2,σ2
fk3,σ2fk4,σ1 + h.c

)

+
∑
[k,σ]

(
G4

2
c†

k1,σ1
c†

k2,σ2
ck3,σ2ck4,σ1 + c ↔ f

)
(3.2)

where∑ [k,σ] is short for the sum over the spins and the sum over all the momenta constrained

to k1 + k2 = k3 + k4 modulo a reciprocal lattice vector.

As we did for isotropic systems, consider the vertex function for fermions on the FS, for

zero total incoming momentum. Because there are two pockets, there are three relevant

vertices: Γhh(kF ,−kF ,pF ,−pF ); Γee(kF ,−kF ,pF ,−pF ), where kF and pF belong to the

same pocket, and Γhe(kF ,−kF ,pF ,−pF ), where kF and pF belong to different pockets (see

Fig. 8). To first order in Gi, we have

Γ0
hh(kF ,−kF ,pF ,−pF ) = −G4

Γ0
ee(kF ,−kF ,pF ,−pF ) = −G4

Γ0
he(kF ,−kF ,pF ,−pF ) = −G3 (3.3)

where the spin dependence for both terms is δαγδβδ − δαδδβγ . Let’s now solve for the full

G, restricting with the renormalizations in the pairing channel (i.e., with only Cooper loga-
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rithms). A simple analysis shows that the full Γ is given by

Γfull
hh = −1

2

(
G4 +G3

1 + (G4 +G3)Πpp

+ G4 −G3

1 + (G4 −G3)Πpp

)
Γfull

ee = Γfull
hh

Γfull
he = −1

2

(
G4 +G3

1 + (G4 +G3)Πpp

− G4 −G3

1 + (G4 −G3)Πpp

)
(3.4)

and Πpp = Πpp(q,Ω) has the same logarithmical form as before. For q = 0, Πpp(0,Ω) =

N0(log |ωc/Ω| + iπ/2), where N0 is the density of states at the FS (and is the same on both

electron and hole pockets)

We see that the presence or absence of a pole in Γfull, depends on the signs of G3 +G4 or

G4 − G3. If both are positive, there are no poles, i.e., non-superconducting state is stable.

In this situation, at small Ω, Γfull
hh ≈ −1/Πpp, Γfull

he ≈ −(G3/(G2
4 −G2

3))Π2
pp, i.e., both vertex

functions decrease (inter-pocket vertex decreases faster). If one (or both) combinations are

negative, there are poles in the upper frequency half-plane and fermionic system is unstable

against pairing. The condition for the instability is |G3| > G4. G4 is inter-pocket interaction,

and there are little doubts that it is repulsive, even if to get it one has to transform from

orbital to band basis. G3 is interaction at large momentum transfer, and, in principle, it can

be either positive or negative depending on the interplay between intra- and inter-orbital

interactions. In most microscopic multi-orbital calculations, G3 turns out to be positive,

and we set G3 > 0 in our analysis (for the case G3 < 0 see Ref. 53).

For positive G3, the condition for the pairing instability is G3 > G4. What kind of a

pairing state we get? First, both Γfull
hh and Γfull

he do not depend on the direction along each of

the two pockets, hence the pairing state is necessary s−wave. On the other hand, the pole

is in Γ2, which appears with opposite sign in Γfull
hh and Γfull

he . The pole components of the

two vertex functions then also differ in sign, which implies that the two-fermion pair wave

function changes sign between pockets. Such an s−wave state is often call s+− to emphasize

that the pair wave function changes sign between FSs. This wave function much resembles

the second wave function from A1g representation: cos kx + cos ky. It is still s−wave, but it

changes sign under k → k + (π, π), which is precisely what is needed as hole and electron

FSs are separated by (π, π). We caution, however, that the analogy should not be taken too

far because the pairing wave function is defined only on the two FSs, and any function from

A1g representation which changes sign under k → k + (π, π) would work equally well.
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Having established the pairing symmetry, we now turn to the central issue: how to get an

attraction. Like we did in the isotropic case, let’s start with the model with a momentum-

independent (Hubbard) interaction in band basis. For such interaction, all Gi are equal,

and, in particular, G3 = G4. Then Γ2 just vanishes, i.e., at the first glance, there is no pole.

However, from KL analysis for the isotropic case, we know that do decide whether or not

there is an attraction in some channel, we need to analyze the full irreducible vertex function.

To first order in Gi, the irreducible vertex function coincides with the (anti-symmetrized)

interaction, but to order G2
i , there appear additional terms. Let’s see how they look like in

the two pocket model.
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FIG. 9: Contributions to the irreducible vertices Γ̄0
hh(top) and Γ̄he(bottom). Γ̄0

hh only gets contri-

butions form Π(0) while Γ̄0
he gets contribution from Π(Q).

The contributions to irreducible Γ̄0
hh and Γ̄0

he are shown in Fig 9. In analytical form we

have (keeping the notations Gi for better clarity)

Γ̄0
hh = −G4 −

(
G2

4 +G2
2 − 2G1(G1 −G2)

)
Πph(0),

Γ̄0
he = −G3 − 2G3(2G1 −G2)Πph(Q), (3.5)

where Q = (π, π). For a constant G, this reduces to

Γ̄0
hh = −G (1 + 2GΠph(0)) ,

Γ̄0
he = −G (1 + 2GΠph(Q)) , (3.6)

The relation (3.4) still holds when we replace G3 by −Γ̄0
he and G4 by −Γ̄0

hh. It can be very

easily shown that Γfull
ee = Γfull

hh and thus we will only deal with Γfull
hh and Γfull

he which are

28



given by

Γfull
hh = 1

2

(
Γ̄0

he + Γ̄0
hh

1 − (Γ̄0
he + Γ̄0

hh)Πpp

+ Γ̄0
hh − Γ̄0

he

1 − (Γ̄0
hh − Γ̄0

he)Πpp

)
,

Γfull
he = 1

2

(
Γ̄0

he + Γ̄0
hh

1 − (Γ̄0
he + Γ̄0

hh)Πpp

− Γ̄0
hh − Γ̄0

he

1 − (Γ̄0
hh − Γ̄0

he)Πpp

)
,

(3.7)

and the condition for the pairing instability becomes Γ̄0
hh > |Γ̄0

he|. Comparing the two

irreducible vertex functions, we find

Γ̄0
hh − Γ̄0

he = 2G2 (Πph(Q) − Πph(0)) (3.8)

i.e., the condition for the pairing is satisfied when Πph(Q) > Πph(0). For a gas of fermions

with one circular FS, Πph(q) either stays constant or decreases with q, and the condition

Πph(Q) > Πph(0) cannot be satisfied. However, in our case, there are two FS’s separated

by Q, and, moreover, one FS is of hole type, while the other is of electron type. One can

easily verify that, in this situation, Πph(Q) is enhanced comparable to Πph(0). We present

the plot of Πph(q) along qx = qy in Fig 10. Indeed, Πph(Q) is much larger than Πph(0).

We see therefore that for the two-pocket model with circular hole and electron FSs and

a constant repulsive electron-electron interaction

• the KL mechanism – the renormalization of the bare interaction into an irreducible

pairing vertex, does give rise to a pairing,

• the pair wave function has A1g (s-wave) symmetry, but changes sign between hole and

electron pockets

Comparing isotropic and lattice cases, we see two differences. First, because of the

lattice, particle-hole bubble Πph(q) no longer has to be a decreasing function of q. In fact,

as we just found, in the two-pocket model the KL mechanism leads to a pairing instability

precisely because Πph(Q) is larger than Πph(0). Second, because we deal with fermions with

circular FSs located near particular k−points, polarization operators at small momentum

transfer and momentum transfer Q = (π, π) can be approximated by constants. Then the

irreducible vertex function has only an s−wave (A1g) harmonic, like the bare interaction, i.e.

KL renormalization does not generate interactions in other channels. Treating pockets as

circular is indeed an approximation, because for square lattice the only true requirement is
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that each FS is symmetric with respect to rotations by multiples of π/2 (C4 symmetry). For

small pocket sizes, deviations from circular forms are small, but nevertheless are generally

finite. If we include this effect, we find that the KL effect does generate interactions in other

channels (B1g, B2g, and A2g), which may be attractive, and also leads to more complex

structure of the pair wave function in s+− channel, which now acquires angular dependence

along hole and electron pockets, consistent with C4 symmetry.91,92

The situation changes when we consider the actual bare interactions Gi, extracted from

the multi-orbital model. Then G4 −G3 is generally non-zero already before KL renormaliza-

tion. It is natural to expect that the bare interaction is a decreasing function of momenta,

in which case G4, which is the interaction at small momentum transfer, is larger than the

interaction G3 at momentum transfer near Q. Then the KL term has to compete with the

first-order repulsion. As long as GΠph(Q) is small, KL renormalization cannot overshoot

bare repulsion, and the bound state does not appear. The situation may change when we

include momentum dependence of the interaction and non-circular nature of the pockets.

In this last case, there appears infinite number of A1g harmonics, which all couple to each

other, and in some cases one or several eigenfunctions may end up as attractive93. Besides,

angle dependence generates d−wave and g−wave harmonics, and some of eigenfunctions in

these channels may also become attractive and compete94. Still, however, in distinction to

the isotropic case, there is no guarantee that “some" eigenfunction from either A1g, or B1g,

or B2g, or A2g, will be attractive. A lattice system may well remain in the normal state

down to T = 0.

We will discuss how to go beyond second order in G in the next section. In the remainder

of this section we discuss KL physics in the two other classes of systems – cuprates and

doped graphene.

B. Superconductivity in cuprates

Cuprates are layered materials with one or more crystal planes consisting of Cu and O

atoms (two O per Cu), and charge reservoirs between them. Superconductivity is widely

believed to originate from electron-electron interactions in these CuO2 planes. The un-

doped parent compounds are Mott insulators/Heisenberg antiferromagnets due to very

strong Coulomb repulsion which prevents electron hopping from Cu to Cu and therefore
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FIG. 10: The plot of Π(q) for a 2-pocket model with q⃗ along the zone diagonal. When q⃗ < 2kF ,

Π(q) saturates, as it is expected for a 2D system with a circular Fermi surface. Note the 2kF

cusp-like feature, which is the one-sided 2kF non-analiticity of Π(q) in 2D. At larger q, Π(q) gets

larger and almost diverges at q⃗ ∼ Q⃗ due to near-nesting. The inset shows the FS topology for

which Π(q) has been calculated. The arcs at the corners are parts of the electron pocket and the

one in the center is the hole pocket.

localizes electrons near lattice sites. Doping these insulating CuO2 layers with carriers (by

adding/removing electrons from/to charge reservoir) leads to a (bad) metallic behavior and

to the appearance of high- temperature superconductivity. A schematic phase diagram of

doped cuprates is shown in Fig. 11. The richness of this phase diagram generated a lot of

efforts, both in experiment and in theory to understand the key physics of the cuprates (see

e.g. Refs.36,40,52,95–106. There are several features in the phase diagram, like the pseudogap

in hole-doped cuprates, which are still not fully understood, although a substantial progress

has been made over the last few years on the issue of the interplay between pseudogap and

superconductivity.107–109

By all accounts, the symmetry of the superconducting state does not change between

small doping, where pseudogap physics is relevant, and doping above the optimal one. For

these larger dopings, ARPES and quantum oscillation experiments show a large FS (see Fig.

12) consistent with Luttinger count for fermionic states. In this doping range, it is natural
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to expect that the pairing symmetry can be at least qualitatively understood by performing

weak coupling analysis.

FIG. 11: Typical phase diagram for the cuprates for electron and hole doping. The similarity

of this phase diagram with pnictides is the proximity to the antiferromagnetic phase. Amongst

differences, the most important one is the fact that the antiferromagnetic phase in cuprates stems

out of a Mott insulator in the parent compounds. Others are a remarkable asymmetry between

electron and hole doping and pseudogap phase indicated by the T∗ line. TN is the transition into

the antiferromagnetic state and Tc is the transition into the superconducting state. We shall only

focus on the superconducting aspect of this phase diagram. Taken from Ref. 98.

The FS for hole-doped cuprates is an is open electron FS shown in Fig. 5(center) and Fig.

12. Central to our consideration is the fact that the fermionic density of states is the largest

near the points (0,±π) and (±π, 0), where two FS lines come close to each other (one can

show that the density of states is logarithmically enhanced and actually diverges111 when

the two FS lines merge at (0,±π) and (±π, 0)). The FS regions with the largest DOS mostly

contribute to superconductivity, and, to first approximation, one can consider the FS in Fig.

5(center) as consisting of four patches. We focus on spin-singlet pairing, in which case a

pair wave function is an even function of momentum, and it has the same form in the pairs

of patches which transform into each other under inversion. This leaves two non-equivalent

patches, which for definiteness we choose to be near (0, π) and (π, 0).

The resulting two-patch model is in many respects similar to the two-pocket model for

Fe-pnictides, only instead of hole-hole, electron-electron, and hole-electron interaction we
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FIG. 12: Angle resolved Photoemission data from Ref.110, showing the presence of a large FS for

doped Tl2Ba2CuO6+δ. The FS is extracted from the position of the peak of the spectral function

in the k−space.

now have intra-patch and inter-patch interactions for two patches, which we label as 1 and

2. The interaction Hamiltonian contains four terms, like in Eq. 3.2, and the full pairing

vertices Γfull
11 = Γfull

22 and Γfull
12 are

Γfull
11 = 1

2

(
Γ̄0

12 + Γ̄0
11

1 − (Γ̄0
12 + Γ̄0

11)Πpp

+ Γ̄0
11 − Γ̄0

12

1 − (Γ̄0
11 − Γ̄0

12)Πpp

)
,

Γfull
12 = 1

2

(
Γ̄0

12 + Γ̄0
11

1 − (Γ̄0
12 + Γ̄0

11)Πpp

− Γ̄0
11 − Γ̄0

12

1 − (Γ̄0
11 − Γ̄0

12)Πpp

)
,

(3.9)

or

Γfull
11 + Γfull

12 = Γ̄0
12 + Γ̄0

11

1 − (Γ̄0
12 + Γ̄0

11)Πpp

Γfull
11 − Γfull

12 = Γ̄0
11 − Γ̄0

12

1 − (Γ̄0
11 − Γ̄0

12)Πpp

(3.10)

where, as before, Γ̄0 are irreducible pairing vertices and Πpp = Πpp(q,Ω) contains the Cooper

logarithm. To first order in the interaction Γ̄0
11 = Γ0

11 = −G4, and Γ̄0
12 = Γ0

12 = −G3, such

that Γ̄0
12+Γ̄0

11 = −(G4+G3), Γ̄0
11−Γ̄0

12 = −(G4−G3). Superconductivity requires Γ̄0
11+Γ̄0

12 or

Γ̄0
11−Γ̄0

12 to be positive. For Hubbard interaction Gi = G, the bare Γ0
11+Γ0

12 = −(G3+G4) =

−2G is negative, hence there is no pairing instability which would lead to a state with sign-

preserving wave-function. At the same time, Γ0
11 − Γ0

12 = G3 − G4 = 0, hence the coupling
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vanishes for a potential instability towards a pairing with a wave function which changes

sign between patches. To obtain the information about the sign of the irreducible Γ0
11 − Γ0

12

one then needs to include KL renormalization. The result is, predictably, the same as in

two-pocket model, namely

Γ̄0
11 − Γ̄0

12 = 2G2 (Πph(Q) − Πph(0)) (3.11)

where Q = (π, π) is now the distance between patches. The two particle-hole polarization

bubbles can be straightforwardly calculated for t − t′ model of fermionic dispersion with

hopping between nearest and next nearest neighbors. The result is that Πph(Q) > Πph(0)

(see Fig. 13). Then Γ̄0
11 − Γ̄0

12 > 0, and the combination of full vertices Γfull
11 − Γfull

12

has a pole in the upper frequency half-plane, at Ω = iΩp, which is the solution of

2G2 (Πph(Q) − Πph(0)) Πpp(iΩp) = 1.

FIG. 13: The plot of Π(q) for a FS topology shown in Fig. 12 with q⃗ along the directions in the

Brillouin Zone shown in the inset. Different lines are for different temperatures. Observe that

Π(Q) is always larger that Π(0). Taken from Ref. 103

So far, everything is the same as in the two-pocket model. But there is qualitative

difference between the two cases. In the two-pocket model, the sign-changing pair wave-

function changes sign between different FS pockets, but preserves the same sign along a

given pocket. Such a wave function belongs to A1g representation. In two-patch model,

the sign-changing wave function changes sign between the two ends of the same "arc" of
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the FS. In other words, it changes sign under π/2 rotation from x to y axis. According

to classification scheme, such a wave function belongs to B1g representation, i.e., has a d-

wave symmetry. Further, if we move along the FS arc away from patches and assume that

the pairing wave function does not vanish on the FS, except may be special points, we

immediately conclude that it should change sign right at the center of the arc, i.e., at the

direction along zone diagonal. By symmetry, this should happen along each diagonal. The

prototype wave function for such a state is cos kx − cos ky. We caution, however, that in

the patch model we only know the wave function near (0, π) and (π, 0) and its evolution

between the patches is generally described by the whole subset of wave functions from B1g

representation with the form cos((2m+ 1)kx) − cos((2m+ 1)ky).

We see therefore that for two-patch model with a constant repulsive electron-electron

interaction

• the KL mechanism again gives rise to pairing,

• the pair wave function has B1g (d-wave) symmetry, and changes sign twice along the

open electron FS

The KL consideration can also be applied to electron-doped cuprates112, but the analysis in

this case is somewhat different as hot spots are located close to Brillouin zone diagonals98.

C. Superconductivity in doped graphene

Graphene is a two-dimensional array of carbon atoms on a honeycomb lattice. The

energy dispersion of graphene has two bands due two non-equivalent positions of atoms on

a honeycomb lattice. The two bands touch each other at six points in the Brillouin zone,

and the dispersion near these points is ±|⃗k| what brought them the name Dirac points. At

zero doping, the Fermi level passes right through Dirac points, what gives rise to highly

interesting low-energy physics113. Upon doping by either electron or holes, six separate

pockets of carriers emerge. Upon further doping, these pockets grow, merge at some doping

xc, and at even larger dopings form a large hexagonal FS (see Fig. 5 right). Such a high

doping of a single layer graphene has been achieved in Ref. 114 by placing Ca and K

dopants above and below a graphene layer. At x = xc the system passes through a Van-

Hove singularity which results in an enhanced density of states at the six saddle points where
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nearest pockets merge. The fermionic dispersion at x = xc is very similar to that in the

cuprates at the Van-Hove doping, but the tendency to the nesting (the existence of parallel

pieces of the Fermi surface) is more pronounced here because in graphene the tight-binding

band structure is not sensitive to the second neighbor hopping113,115.

The increase of the density of states near Van Hove doping increases the relative strength

of the interaction effects, and brings in a possibility that already at a weak coupling the

Fermi liquid state will become unstable towards some kind of order. A number of candidate

ordered states has been considered, including superconductivity, SDW order, nematic order

and so on ( see Refs. 35,113,115–121. Because the density of states diverges at the saddle

points at Van Hove doping, each state can be can be self-consistently obtained at weak

coupling. A phase diagram of doped graphene is shown in Fig. 14. Superconductivity has

also been observed and analyzed in graphite intercalated compounds like C6Ca and C6Y b
122.

This superconductivity may be due to electron-electron interaction123, but most likely the

pairing interaction in these materials is mediated by intercalant phonons and/or acoustic

phonons.

FIG. 14: Schematic phase diagram of doped graphene. Tc is the instability temperature towards

spin singlet d + id or spin triplet f−wave SC states, or SDW state. Tc is plotted against doping

(n). Doped Graphene is expected to be mostly superconducting with competition with the SDW

phase near the Van-Hove region. Taken from Ref. 121

The presence of saddle (Van-Hove) points along the FS is the feature that draws our

attention and invites us to perform an analysis similar to that in the cuprates, but with
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three rather than two non-equivalent patches (overall there are six Van Hove points along

the FS, but only three are unique, the three others are related by inversion symmetry (see

Fig5 right). The treatment of doped graphene parallels the description in the above two

subsections, but we will see that there are interesting details here, not present in the earlier

models.

We treat the low-energy physics of doped graphene within the effective three patch model,

just like we did for the cuprates. We introduce intra-patch and inter-patch vertices Γij,i, j ∈

(1, 2, 3) with Γij = Γji. Because the three patches are fully symmetric, the total number of

independent vertices is just two:

Γ0
11 = Γ0

22 = Γ0
33 = −G4 = Γ0

u

Γ0
12 = Γ0

13 = Γ0
23 = −G3 = Γ0

v (3.12)

We follow the same line of reasoning as before. The full pairing vertices Γfull
11 and Γfull

12

are expressed in terms of irreducible vertices Γ̄0
u and Γ̄0

v as

Γfull
11 = Γ̄0

u + Γ̄0
uΓfull

11 Πpp + Γ̄0
v

(
Γfull

21 + Γfull
31

)
Πpp

Γfull
12 = Γ̄0

v + Γ̄0
uΓfull

12 Πpp + Γ̄0
v

(
Γfull

22 + Γfull
32

)
Πpp

(3.13)

The solutions of this set are

Γfull
11 = 1

3

(
Γ̄0

u + 2Γ̄0
v

1 − (Γ̄0
u + 2Γ̄0

v)Πpp

+ 2 Γ̄0
u − Γ̄0

v

1 − (Γ̄0
u − Γ̄0

v)Πpp

)

Γfull
12 = 1

3

(
Γ̄0

u + 2Γ̄0
v

1 − (Γ̄0
u + 2Γ̄0

v)Πpp

− Γ̄0
u − Γ̄0

v

1 − (Γ̄0
u − Γ̄0

v)Πpp

)
(3.14)

or

Γfull
11 + 2Γfull

12 = Γ̄0
u + 2Γ̄0

v

1 − (Γ̄0
u + 2Γ̄0

v)Πpp

Γfull
11 − Γfull

12 = Γ̄0
u − Γ̄0

v

1 − (Γ̄0
u − Γ̄0

v)Πpp

(3.15)
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we see that to get the pairing we need either Γ̄0
u +2Γ̄0

v or Γ̄0
u −Γ̄0

v to be positive. To first order

in the interaction we have Γ̄0
u = Γ0

u = −G4 and Γ̄0
v = Γ0

v = −G3, hence the conditions for the

pairing are G4 + 2G3 < 0 or G3 > G4. The first condition is analogous to G3 + G4 < 0 for

the two-patch model and is never satisfied for a repulsive interaction, when G4 and G3 are

both positive. The second condition is exactly the same as in two-patch model and requires

inter-patch interaction to be larger than intra-patch interaction. If the bare interaction is

momentum-independent, G3 = G4 = G, and one of the two pairing channels is neither

repulsive nor attractive.

Continue with the Hubbard interaction. To second order in U , we have from KL renor-

malization

Γ̄0
u = −G4 − Πph(0)

[
G2

4 + 2G2
2 − 4G1(G1 −G2)

]
Γ̄0

v = −G3 − Πph(Q) [2G3(2G1 −G2)] (3.16)

and Γ̄0
u − Γ̄0

v becomes

Γ̄0
u − Γ̄0

v = G2(2Πph(Q) − 3Πph(0)) (3.17)

Like in the previous two examples, if Πph(Q) is larger than Πph(0) (specifically, if Πph(Q) >

(3/2)Πph(0)) the irreducible pairing interaction is attractive. The particle-hole bubble can

be straightforwardly computed and the result is, predictably, that near Van-Hove doping,

Πph(Q) > (3/2)Πph(0). This result was fist obtained by Gonzales115 and reproduced in more

recent work35.

So far, the results are virtually undistinguishable from the previous two cases. The new

physics in the three-patch model reveals itself when we note that the presence of the pole

for the combination Γfull
11 − Γfull

12 and its absence for Γfull
11 + 2Γfull

12 in Eq. (3.15) implies that

near the instability the fully renormalized intra-patch and inter-patch pairing vertices must

satisfy

Γfull
11 = −2Γfull

12 (3.18)

together with the symmetry-imposed conditions Γfull
11 = Γfull

22 = Γfull
33 and Γfull

12 = Γfull
13 =

Γfull
23 . In other words if intra-patch Γfull

ii = D, then inter-patch Γfull
ij = −D

2 for i ̸= j. Now,

if we view each Γfull
ii as the modulus square of the superconducting order parameter |∆i|2

and Γfull
ij as Re[∆i∆∗

j ], we immediately find that Eq. (3.18) implies that the relative phase

of the superconducting order parameter must change by ±2π
3 between each pair of patches
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FIG. 15: The phases of the pair-wave functions at the patches (regions with enhanced density of

states). The left and right represent the two Z2 breaking d−wave solutions d + id or d − id.

(cos 2π
3 = −1

2). In other words, if the order parameter in patch 1 is ∆1, then ∆2 = ∆1e
±2πi/3

and ∆3 = ∆1e
±4πi/3. The two resulting ∆ structures are shown in Fig. 15. We used the

fact that this is spin-singlet pairing, hence ∆(−k) = ∆(k). This is a d−wave gap because

if we extend the gap structure to all FS, we find that the gap changes sign twice along the

FS. However, we also need to pick one sign of the phase change or the other, and this choice

breaks the Z2 symmetry, which in our case is time-reversal symmetry because it changes the

order parameter to its complex conjugate. Putting it differently, Z2 symmetry corresponds

to the freedom of choice of counter clockwise or clockwise phase winding by 4π along the

full FS. Such a state is called d + id or d − id. It has a rich phenomenology and is highly

desirable for applications124–131.

Although intuitively it seems obvious that Z2 symmetry is broken in a d + id state, one

actually needs to do full Ginzburg-Landau (GL) analysis and make sure that the supercon-

ducting condensation energy is the largest when only d+ id or only d− id solution develops,

but not both of them. This, however, requires one to go beyond the instability point, while

our goal is to get as much information as possible from the normal state analysis. We just

refer to Ref 35 where GL functional has been derived and analyzed. The result of that study

is that Z2 symmetry is indeed broken below Tc.

Another way to see that the two d-wave states are degenerate by symmetry is to look

at the representations of the symmetry group D6h. The two d-wave wave-functions cos kx −

cos ky and sin kx sin ky belong to a two-dimensional E2g representation of D6h and must

indeed be degenerate by symmetry.

We see therefore that for a three-patch model with a constant repulsive electron-electron

39



interaction

• the KL mechanism again gives rise to pairing,

• the pair wave function has d+ id or d− id symmetry. In each of the two states phase

of the wave-function winds by 4π along the FS either clockwise or anticlockwise and

time reversal symmetry is broken.

We have seen therefore that in all the three systems which we analyzed the condition

for the pairing instability (the emergence of the pole in the vertex function in the upper

frequency half plane) is that irreducible inter-pocket/inter-patch pairing vertex should be

larger by absolute value than the absolute value of the irreducible intra-pocket/intra-patch

vertex. For a momentum-independent bare interaction, this reduces to the condition of hav-

ing Πph(Q) > aΠph(0), where a is some numerical factor of O(1) that depends on the model.

Now we will discuss how one still get an attraction if the bare interaction is momentum-

dependent.

A final remark about doped graphene. The KL mechanism has been also applied to

somewhat smaller dopings, when the FS still contains six disconnected pieces. In this doping

range, KL-based analysis yields a novel spin-triplet f-wave superconductivity45,114,115,121.

IV. WHAT TO DO IF THE BARE IRREDUCIBLE VERTEX IS REPULSIVE

We recall that setting G3 = G4 is indeed a crude approximation. In reality, G4 is the

interaction at small momentum transfer, while G3 is the interaction at momentum transfer

comparable to inverse lattice spacing. By conventional wisdom, one should expect G4 to

be larger G3, and microscopic calculations generally confirm this, although in multi-orbital

systems the interplay between G3 and G4 is more involved as both appear (in the band

basis) even if we only consider on-site interaction in the orbital basis. In this latter case,

G4 > G3 if Hubbard interaction for fermions belonging to the same orbital is larger than

Hubbard interaction between fermions belonging to different orbitals.

If G4 > G3, the attractive KL contribution of order G2Πph has to compete with the

repulsive first-order term. At weak coupling and for a non-nested FS, second-order term is

expected to be smaller than first-order term, i.e., superconductivity does not occur. The
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situation may change when we include momentum dependence of the interaction and non-

circular nature of the pockets. In this case, there appears an infinite number of harmonics

in each of the channels A1g, B1g, B2g, or A2g, which all couple to each other, and in some

cases one or several eigenfunctions may end up as attractive. Still, however, in distinction to

the isotropic case, there is no guarantee that “some" eigenfunction from will be attractive.

In other words, a lattice system well may remain in the normal state down to T = 0.

How can we still get superconductivity in this situation? As a first try, we use the same

logics as for the calculation of zero-sound excitations in a FL, go beyond G2 order and sum up

ladder series of diagrams in the particle-hole channel, involving Πph(k−p) and neglect terms

with Πph(k + p). Such a procedure would be rigorously justified if only small momentum

and frequency transfers were relevant because Πph(k− p) can be made large in this limit. In

our case, all momentum transfers are relevant, and there is no formal justification for such

an approximation (which is called RPA). But let’s apply it anyway and analyze the results.

Summing up ladder series in Πph(k− p) we obtain for k and p at the same pocket/patch,

when k − p is small

Γc(0) = −G4

2
1

1 +G4Πph(0)
Γs(0) = G4

2
1

1 −G4Πph(0)
(4.1)

and for k and p at different pockets/patches, when k − p ≈ Q

Γc(Q) = −G3

2
1

1 +G3Πph(Q)
Γs(Q) = G3

2
1

1 −G3Πph(Q)
(4.2)

Re-expressing Γ̄0
αβ,γδ(k,−k; p,−p) in terms of singlet and triplet components as

Γ̄0
αβ,γδ(k,−k; p,−p) =

Γsi(k − p) (δαγδβδ − δαδδβγ) +

Γtr(k − p) (δαγδβδ + δαδδβγ)

(4.3)

We obtain

Γsi = 1
2

(Γc − 3Γs)

Γtr = 1
2

(Γc + Γs) (4.4)
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i.e.

Γsi(0) = −G4

4

(
1

1 +G4Πph(0)
+ 3

1 −G4Πph(0)

)

Γtr(0) = G4

4

(
1

1 −G4Πph(0)
− 1

1 +G4Πph(0)

)

Γsi(Q) = −G3

4

(
1

1 +G3Πph(Q)
+ 3

1 −G3Πph(Q)

)

Γtr(Q) = G3

4

(
1

1 −G3Πph(Q)
− 1

1 +G3Πph(Q)

)
(4.5)

Let’s compare this result with what we obtained in the KL formalism. Focus on the singlet

channel and expand in (4.5) to second order in G3,4. We have

Γsi(0) ≈ −G4

2

(
1 + 1

1 −G4Πph(0)

)
≈ −G4 (1 + 0.5G4Πph(0))

Γsi(Q) ≈ −G3

2

(
1 + 1

1 −G3Πph(Q)

)
≈ −G3 (1 + 0.5G3Πph(Q)) (4.6)

Apart from the factor of 1/2 (which is the consequence of an approximate RPA scheme)

Γsi(0) is the same as irreducible vertex Γ̄0
11, which we obtained in KL calculation in the

previous section, and Γsi(Q) the same as Γ̄0
12 By itself, this is not surprising, as in Γsi we

included the same particle-hole renormalization of the bare pairing interaction as in the KL

formalism.

The outcome of this formula is the observation that KL term is the first term in the series

for the irreducible pairing vertex. In the RPA scheme, the full series gives,

Γsi(0) = −1
4

(
G4

1 +G4Πph(0)
+ 3G4

1 −G4Πph(0)

)

Γsi(0) = −1
4

(
G3

1 +G3Πph(Q)
+ 3G3

1 −G4Πph(Q)

)
, (4.7)

For repulsive interaction, the charge contribution only gets smaller when we add higher

terms in G, but spin contribution gets larger. A conventional recipe is to neglect all renor-

malizations in the charge channel and approximate Γsi with the sum of a constant and the
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interaction in the spin channel. The irreducible interaction in the s + − channel in the

pnictides or in the d−wave channel in the cuprates and in doped graphene is then

Γsi(0) − Γsi(Q) =

−G4 +G3 − 3
4

(
G4

1 −G4Πph(0)
− G3

1 −G3Πph(Q)

)
(4.8)

Like we said before if G4Πph(0) and G3Πph(Q) are both small, G4 −G3 term is the largest,

and the pairing interaction is repulsive for G4 > G3. However, we see that there is a way

to overcome the initial repulsion: if G3Πph(Q) > G4Πph(0), one can imagine a situation

when G3Πph(Q) ≈ 1, and the correction term in (4.8) becomes large and positive and can

overcome the negative first-order term.

What does it mean from physics perspective? The condition G3Πph(Q) = 1 implies that

the spin component of the vertex function, viewed as a function of transferred momentum,

diverges. This obviously implies an instability of a metal towards SDW order with momen-

tum Q. We don’t need the order to develop, but we need SDW fluctuations to be strong and

to mediate pairing interaction between fermions. Once spin-mediated interaction exceeds

bare repulsion, the irreducible pairing interaction in the corresponding channel becomes at-

tractive. Notice in this regard that we need magnetic fluctuations to be peaked at large

momentum transfer Q. If they are peaked at small momenta, Πph(0) exceeds Πph(Q), and

the interaction in the singlet channel remains repulsive.

There are two ways how one can reach G3Πph(Q) ≈ 1: it can develop in the process of

the system flow towards low-energies, together with the development of pairing correlations,

where G is small and at the bare level (i.e., at energies comparable to the bandwidth)

G3Πph(Q) is also small. This is what we consider in the next section. Alternatively, spin

fluctuations (but not SDW order) could develop already at energies comparable to the

bandwidth. This generally requires G3 to be of order the bandwidth. In this latter case, at

all energies below the bandwidth, the term G3/(1 −G3Πph(Q)) in (4.8) makes the dominant

contribution to the pairing interaction. This is the case when the pairing interaction can be

thought of as mediated by collective bosonic fluctuations in the spin channel. We discuss

this case in Sec. V D.

Before we proceed, it is worth pointing out that the importance of spin fluctuations for

spin-singlet pairing was emphasized by many authors, starting from mid-80s. With respect
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to the cuprates, d-wave pairing in the Hubbard model near half-filling was first analyzed by

Scalapino, Loh, and Hirsch95 for the Hubbard model near half-filling. They used RPA to

obtain irreducible pairing vertices in spin-singlet and spin-triplet channels and found spin-

singlet d-wave pairing to be the dominant instability in the situation when Πph(q) is peaked

at q⃗ near (π, π). This work and subsequent works 132,133 also analyzed the role of FS nesting

for d-wave superconductivity.

V. PAIRING AT WEAK-COUPLING

The question we pose in this section is the following: suppose that G3 and G4 are small

and repulsive and G4 > G3. At first order in G3,4, the pairing interaction is repulsive, and

perturbative correction to order G2
3,4 is parametrically small in G3,4/EF and cannot convert

repulsion into attraction in any channel. Is it still possible that the system develops pairing

instability despite these obvious arguments to the contrary? The answer is actually yes, it

is possible, but under a special condition that Πph(Q) is singular and diverges logarithmi-

cally at zero frequency or zero temperature, in the same way as the particle-particle bubble

Πpp(0). This condition is satisfied exactly when there is a perfect nesting between fermionic

excitations separated by Q. A situation with a perfect nesting can be found for all three

examples for which we analyzed KL mechanism (another example is quasi-1D organic con-

ductor37). For Fe-pnictides, it implies that hole and electron FSs perfectly match each other

when one is shifted by Q, for cuprates and doped graphene nesting implies the existence of

parallel pieces of the FS.

We show below that Πph(Q) and Πpp(0) do have exactly the same logarithmic singularity

at perfect nesting. At the moment, let’s take it for granted and compare the relevant scales.

First, no fluctuations develop at energies/temperatures of order W because at such high

scales the logarithmical behavior of Πpp and Πph is not yet developed and both bubbles scale

as 1/W . At weak coupling G/W << 1, hence corrections to bare vertices are small. Second,

we know that the pairing vertex evolves at (G3 −G4)Πpp(0) ∼ O(1), and that corrections to

the bare irreducible pairing vertex become of order one when G3Πph(Q) ∼ O(1). But we also

know from, e.g., (4.2) that at the same scale the SDW vertex begins to evolve. Moreover

other inter-pocket interactions, which we didn’t include so far: density-density and exchange

interactions (which here and below we label as G1 and G2, respectively) also start evolving
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because their renormalization involves terms G1Πph(Q) and G2Πph(Q) which also become of

O(1) when all bare interactions are of the same order. Once G1,2Πph(Q) becomes of order

one, the renormalization of G3 by G1 and G2 interactions also becomes relevant. The bottom

line here is that renormalization of all interactions become relevant at the same scale. At

this scale we can expect superconductivity, if the corrections to G4 −G3 overcome the sign

of the pairing interaction, and at the same time we can expect an instability towards SDW

and, possibly, some other order. The issue then is whether it is possible to construct a

rigorous description of the system behavior in the situation when all couplings are small

compared to W , but GiΠph(Q) and GiΠpp(0) are of order one. The answer is yes, and the

corresponding procedure is called a parquet renormalization group (pRG).

To re-iterate: the pRG approach is a controlled weak coupling approach. It assumes that

no correlations develop at energies comparable to the bandwidth, but that there are several

competing orders whose fluctuations develop simultaneously at a smaller scale. Supercon-

ductivity is one of them, others include SDW and potential charge-density-wave (CDW),

nematic and other orders. The pRG approach treats superconductivity, SDW, CDW and

other potential instabilities on equal footings. Correlations in each channel grow up with

similar speed, and fluctuations in one channel affect the fluctuations in the other channel

and vise versa. For superconductivity, once the corrections to the pairing vertex become of

order one, and there is a potential to convert initial repulsion into an attraction. We know

that second-order contribution to the pairing vertex from SDW channel works in the right

direction, and one may expect that higher-order corrections continue pushing the pairing

interaction towards an attraction. However even if attraction develops, there is no guarantee

that the system will actually undergo a SC transition because it is entire possible that SDW

instability comes before SC instability.

The pRG approach addresses both of these issues. It can be also applied to a more

realistic case of non-perfect nesting if deviations from nesting are small in the sense that

there exist a wide range of energies where Πph(Q) and Πpp(0) are approximately equal. Below

some energy scale, ω0, the logarithmical singularity in Πph(Q) is cut. If this scale is smaller

than the one at which the leading instability occurs, a deviation from a perfect nesting is

an irrelevant perturbation. If it is larger, then pRG runs up to ω0, and at smaller energies

only SC channel continues to evolve in BCS fashion.

There also exists a well-developed numerical computational procedure called functional
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RG (fRG)38,39. Its advantage is that it is not restricted to a small number of patches and

captures the evolution of the interactions in various channels even if the interactions depend

on the angles along the FS. The “price" one has to pay is the reduction in the control

over calculations – fRG includes both leading and subleading logarithmical terms. If only

logarithmical terms are left, the angle dependence of the interaction does not change in the

RG flow, only the overall magnitude changes.134 So far, the results of fRG and pRG analysis

for various systems fully agree. Below we focus on the pRG approach. For a thorough

tutorial on the RG technique, we direct the reader to Ref. 135.

A. Parquet Renormalization Group

We follow the same order of presentation as before – first consider Fe-pnictides and then

discuss patch models for cuprates and doped graphene. We recall that in Fe-pnictides a

bubble with momentum transfer Q contains one hole (c) and one electron (f) propagator, and

at perfect nesting the dispersions of holes and electrons are just opposite. εc(k) = −εf (k+Q).

The particle-hole and particle-particle bubbles are

Πpp(0) = −i
∫ d2k dω

(2π~)3G
c(k, ω)Gc(−k,−ω)

Πph(Q) = i
∫ d2k dω

(2π~)3G
c(k, ω)Gf (Q+ k, ω) (5.1)

where

Gc,f = 1
ω−εc,f

k
/~+iδsgn(ω)

. Substituting into Eq. 5.1 and using εc(k) = −εf (k +Q) one can

easily make sure that the two expressions in Eq. 5.1 are identical. Evaluating the integrals

we obtain

Πpp(0) = Πph(Q) = N0L+ ... (5.2)

where N0 = m/2π~2 is the 2D density of states,

L = 1
2

log
(
W

E

)
, (5.3)

E is typical energy of external fermions, and the dots stand for non-logarithmic terms.

The factor 1/2 is specific to the pocket model and accounts for the fact that for small

pocket sizes, the logarithm comes from integration over positive energies W > E > EF . At

46



non-perfect nesting, the particle-particle channel is still logarithmic, but the particle-hole

channel gets cut by the energy difference (δE) associated with the nesting mismatch, such

that

Πph(Q) = N0 log W√
E2 + δE2

(5.4)

The main idea of pRG (as of any RG procedure) is to consider E as a running variable,

assume that initial E is comparable to W and Gi log
(

W
E

)
= GiL is small, calculate the

renormalizations of all couplings by fermions with energies larger than E, and find how the

couplings evolve as E approaches the region where GiL = O(1).

This procedure can be carried out already in BCS theory, because Cooper renormaliza-

tions are logarithmical. For an isotropic system, the evolution of the interaction Ul in a

channel with angular momentum l due to Cooper renormalization can be expressed in RG

treatment as
dU full

l

dL
= −N0

(
U full

L

)2
. (5.5)

The solution of (5.5) is

U full
l (L) = Ul

1 + UlN0L
(5.6)

which is the same as Eq. (2.16). Similar formulas can be obtained in lattice systems

when there are no competing instabilities, i.e., only renormalizations in the pairing channel

are relevant. For example, in the two-pocket model for the pnictides, the equations for the

full vertices Γfull
hh = −Gfull

4 and Γfull
he = −Gfull

3 , Eqs. (3.4), can be reproduced by solving the

two coupled RG equations

dGfull
3

dL
= −2N0G

full
3 Gfull

4

dGfull
4

dL
= −N0

((
Gfull

3

)2
+
(
Gfull

4

)2
)

(5.7)

with boundary conditions Gfull
4 (L = 0) = G4, Gfull

3 (L = 0) = G3. The set can be factorized

by introducing Gfull
A = Gfull

3 +Gfull
4 and Gfull

B = Gfull
4 −Gfull

3 to

dGfull
A

dL
= −N0

(
Gfull

A

)2
,
dGfull

B

dL
= −N0

(
Gfull

B

)2
(5.8)
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FIG. 16: The couplings G1 (inter-pocket density-density interaction), G2 (fermion exchange), G3

(pair hopping), Gc
4 and Gf

4 (intra-pocket density-density interaction). For equivalent hole pockets

Gc
4 = Gf

4 = G4. The solid lines correspond to hole Green’s functions and the dashed lines to

electron Green’s functions.

The solution of the set yields

Gfull
A = Gfull

4 +Gfull
3 = G3 +G4

1 +N0L(G3 +G4)

Gfull
B = Gfull

4 −Gfull
3 = G4 −G3

1 +N0L(G4 −G3)
(5.9)

Solving this set and using Γfull
hh = −Gfull

4 , Γfull
he = −Gfull

3 , we reproduce (3.4). This returns

us to the same issue as we had before, namely if G4 > G3, the fully renormalized pairing

interaction does not diverge at any L and in fact decays as L increases: Gfull
4 decays as 1/L

and Gfull
3 decays even faster, as 1/L2.

We now consider how things change when Πph(Q) is also logarithmical and the renormal-

izations in the particle-hole channel have to be included on equal footings with renormal-

izations in the particle-particle channel.

1. pRG in a 2-pocket model

Because two types of renormalizations are relevant, we need to include into consideration

all vertices with either small total momentum or with momentum transfer near Q i.e., use

the full low-energy Hamiltonian of Eq. (3.2). There are couplings G3 and G4 which are

directly relevant for superconductivity, and also the couplings G1 and G2 for density-density

and exchange interaction between hole and electron pockets, respectively. These are shown

in Fig 16.
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The strategy to obtain one-loop pRG equations, suitable to our case, is the following:

One has to start with perturbation theory and obtain the variation of each full vertex δGi

to order GiGjL. Then one has to replace δGi/L by dGfull
i /dL and also replace GiGj in the

r.h.s. by Gfull
i Gfull

j . The result is the set of coupled differential equations for dGfull
i /dL

whose right sides are given by bilinear combinations of Gfull
i Gfull

j . The procedure may look

a bit formal, but one can rigorously prove that it is equivalent to summing up series of

corrections to Gi in powers of GiL, neglecting corrections terms with higher powers of Gi

than of L. One can go further and collecting correction terms of order GiGjGkL. This is

called 2-loop order, and 2-loop terms give contributions of order (Gfull)3 to the right side of

the equations for dGfull
i /dL. 2-loop calculations are, however, quite involved136 and below

we only consider 1-loop pRG equations.
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FIG. 17: The diagrams to 1 loop order, which contribute to the parquet flow of g1, g2, g3 and g4

vertices.

The G2 corrections to all four couplings are shown in Fig.17. Evaluating the integrals

and following the recipe we obtain

ġ1 = g2
1 + g2

3

ġ2 = 2g2(g1 − g2)

ġ3 = 2g3(2g1 − g2 − g4)

ġ4 = −g2
3 − g2

4

(5.10)

where we introduced gi = Gfull
i N0 and ġi = dgi/dL

We note that the renormalizations of g4 are still only in the Cooper channel and causes g4
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FIG. 18: The flow of dimensionless couplings g1,2,3,4. g3 grows and eventually crosses g4, which

becomes negative at a large enough RG scale.

to reduce. But for g3 we now have a counter-term from g1, which pushes g3 up. And the g1

term is in turn pushed up by g3. Thus already at this stage one can qualitatively expect g3

to eventually get larger. Fig 18 shows the solution of (5.10)– the flow of the four couplings

for this model. We see that, even if g3 is initially smaller than g4, it flows up with increasing

L, while g4 flows to smaller values. At some L0, g3 crosses g4, and at larger L the pairing

interaction g4 − g3 becomes negative (i.e., attractive). In other words, in the process of pRG

flow, the system self-generates attractive pairing interaction. We remind that the attraction

appears in the s+− channel. The pairing interaction in s++ channel: g3 +g4 remains positive

(repulsive) despite that g4 eventually changes sign and becomes negative. It is essential that

for L ∼ L0 the renormalized gi are still of the same order as bare couplings, i.e., are still

small, and the calculations are fully under control. In other words, the sign change of the

pairing interaction is a solid result, and higher-loop corrections may only slightly shift the

value of L0 when it happens.

At some larger L = Lc, the couplings diverge, signaling the instability towards an ordered

state (which one we discuss later). One-loop pRG is valid "almost" all the way to the

instability, up to Lc −L ∼ O(1), when the renormalized gi become of order one. At smaller

distances from Lc higher-loop corrections become relevant. It is very unlikely, however, that

these corrections will change the physics in any significant way.
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The sign change of the pairing interaction can be detected also if the nesting is not perfect

and Πph(Q) does not behave exactly in the same way as Πpp(0). The full treatment of this

case is quite involved. For illustrative purposes we follow the approach first proposed in

Ref.34 and measure the non-equivalence between Πpp(0) and Πph(Q) by introducing a phe-

nomenological parameter d1 = Πph(Q)/Πpp(0) and treat d1 as an L− independent constant

0 < d1 < 1, independent on L. This is indeed an approximation, but it is at least partly

justified by our earlier observation that the most relevant effect for the pairing is the sign

change of g4 − g3 at some scale L0, and around this scale d1 is not expected to have strong

dependence on L. The case d1 = 1 corresponds to perfect nesting, and the case d1 = 0

implies that particle-hole channel is irrelevant, in which case, we remind, g4 − g3 remains

positive for all L.

The pRG equations for arbitrary d1 are straightforwardly obtained using the same strat-

egy as in the derivation of (5.10), and the result is

ġ1 = d1(g2
1 + g2

3)

ġ2 = 2d1g2(g1 − g2)

ġ3 = 2d1g3(2g1 − g2) − 2g3g4

ġ4 = −g2
3 − g2

4

(5.11)

In Fig 19 we show the behavior of the couplings for representative 0 < d1 < 1. Like before,

we take bare value of g4 to be larger than the bare g3, i.e., at high energies the pairing

interaction is repulsive. This figure and analytical consideration shows that for any non-

zero d1 the behavior is qualitatively the same as for perfect nesting, i.e., at some L0 < Lc

the running couplings g3 and g4 cross, and for larger L (smaller energies) pairing interaction

in s+− channel becomes attractive. The only effect of making d1 smaller is the increase

in the value of L0. Still, for sufficiently small bare couplings, the range where the pairing

interaction changes sign is fully under control in 1-loop pRG theory.

A way to see analytically that g3 − g4 changes sign and becomes positive is to consider

the system behavior near L = Lc and make sure that in this region g3 > g4. One can easily

make sure that all couplings diverge at Lc, and their ratios tend to some constant values

(see discussion around Eq. (5.23) below for more detail). Introducing g2 = ag1, g3 = bg1,

and g4 = cg1, and substituting into (5.11) we find an algebraic set of equations for a, b, and
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FIG. 19: The flow of ratio of couplings g3/g1 and g4/g1 for different nesting parameters d1 = 1(a),

d1 = 0.3(b),d1 = 0.05(c). All cases are qualitatively similar in that g3/g1 eventually crosses g4/g1.

The smaller is the nesting parameter, the ‘later’ is this crossing. If d1 = 0, this crossing will never

happen and g4 > g3 for all L.

c. Solving the set, we find that b =

√√
16d4

1−4d2
1+4+2−d2

1

d1
and c = d1

2 (3 − b2). The negative sign

of c and positive sign of b, combined with the fact that g1 definitely increases under the flow

and surely remains positive, imply that near Lc, g4 is negative, while g3 is positive (this is

also evident from the Fig 19). Obviously then, g3 and g4 must cross at some L0 < Lc.

2. pRG in patch models

We now show that similar behavior holds in patch models. Since the only difference

between patch models for cuprates and for graphene is the number of patches (2 vs 3), we

consider a generic model of n - patches with fermion-fermion interaction in the form

Hint = 1
2

n∑
α=1

G4ψ
†
αψ

†
αψαψα

+1
2
∑
α ̸=β

[
G1ψ

†
αψ

†
βψβψα +G2ψ

†
αψ

†
βψαψβ +G3ψ

†
αψ

†
αψβψβ

]
(5.12)

Keeping again all diagrams which diverge logarithmically, we end up with the following

set of pRG equations (using the same notations as before)
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ġ1 = d1(g2
1 + g2

3)

ġ2 = 2d1g2(g1 − g2)

ġ3 = −(n− 2)g2
3 − 2g3g4 + 2d1g3(2g1 − g2)

ġ4 = −(n− 1)g2
3 − g2

4 (5.13)

The equations look similar to the ones for the pocket model, up to the dependence on

n, but there is one important difference: the derivative in the l.h.s. is with respect to

log2(Λ/E) rather than a first power of the logarithm. The extra logarithm comes from the

logarithmical enhancement of the density of states near Van-Hove density. The presence of

extra logarithms makes the theory somewhat less controlled because already at second order

there are terms of order g2 log2 and g2 log. The set of equations (5.13) corresponds to keeping

g2 log2 neglecting g2 log terms, and ġi in (5.13) is ġi = dgi/d log2(Λ/E). Strictly speaking,

this implies that RG scheme can be applied only at one-loop order, while extending Eq, 5.13

to two-loop and higher orders will require one to go beyond RG.

Like before, d1, subject to 0 < d1 < 1, accounts for relative strength of Πph(Q) compared

to Πpp(0). In reality, d1 = Πph(Q)/Πpp(0) depends on the running scale L = log2(Λ/E), but

we approximate it by a constants using the same reasoning as for the pocket model.

We show the solution of the set (5.13) in Fig. 20 for n = 3 (n = 2 result is identical to

Fig. 18). Combining again the numerical analysis and the analytical reasoning similar to

the one for the pocket model, we find that, for any n and any d1 > 0, there exists a scale L0

at which g3 and g4 cross, and at larger L (i.e., at smaller energies) the pairing interaction

in the d-wave channel (for which the pairing vertex is proportional to g4 − g3) changes sign

and becomes attractive.

The outcome of these studies is that in all three systems which we considered, the system

self-generates attraction below some particular energy E0, which is of order Λe−1/(N0G) for

the pocket model and of order Λe−1/(N0G)1/2 for the patch models.

The reason for the sign change of the pairing interaction is clear from the structure of the

pRG equation for g3 the r.h.s. of which contains the term 4d1g3g4, which pushes g3 up. We

know from second-order KL calculation that the upward renormalization of g3 comes from

the magnetic channel and can be roughly viewed as the contribution from spin-mediated part

of effective fermion-fermion interaction. Not surprisingly, we will see below that g1 does,
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FIG. 20: The flow of the couplings vs the pRG scale L in the 3-patch model. We assume that all

couplings are repulsive. We see that g3 increases under the flow, while g4 decreases. Observe that

the coupling g4 eventually gets overscreened and changes sign. Taken from Ref. 35.

indeed, contribute to the SDW vertex. From this perspective, the physics of the attraction

in pRG (or in fRG, which brings in the same conclusions as pRG) and in spin-fermion model

is the same: magnetic fluctuations push inter-pocket/inter-patch interaction up, and below

some energy scale the renormalized inter-pocket/inter-patch interaction becomes larger than

repulsive intra-pocket/intra-patch interaction.

There is, however, one important difference between the RG description and the descrip-
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tion in terms of spin-fermion model. In the spin-fermion model, magnetic fluctuations are

strong, but the system is assumed to be at some distance away from an SDW instability.

In this situation, SC instability definitely comes ahead of SDW magnetism. There may be

other instabilities produced by strong spin fluctuations, like bond CDW107–109, which com-

pete with SC and, by construction, also occur before SDW order sets in In RG treatment

(pRG or fRG), SDW magnetism and SC instability (and other potential instabilities) com-

pete with each other, and which one develops first needs to be analyzed. So far, we only

found that SC vertex changes sign and becomes attractive. But we do not know whether su-

perconductivity is the leading instability, or some other instability comes first. This is what

we will study next. The key issue, indeed, is whether superconductivity can come ahead of

SDW magnetism, whose fluctuations helped convert repulsion in the pairing channel into an

attraction.

B. Competition between density wave orders and superconductivity

Thus far, we identified an instability in a particular channel with the appearance of a

pole in the upper frequency half-plane in the corresponding vertex – the vertex with zero

total momentum in the case of SC instability, and the vertex with the total momentum

Q in the case of SDW instability. Since our goal is to address the competition between

these states, it is actually advantageous to use a slightly different approach: introduce all

potentially relevant fluctuating fields, use them to decouple 4-fermion terms into a set of

terms containing two fermions and a fluctuating field, compute the renormalization of these

“three-legged” vertices and use these renormalized vertices to obtain the susceptibilities in

various channels and check which one is the strongest. We will see that the renormalized

vertices in different channels (most notably, SDW and SC) do diverge near Lc, but with

different exponents. The leading instability will be in the channel for which the exponent is

the largest. There is one caveat in this approach — for a divergence of the susceptibility the

exponent for the vertex should be larger than 1/2 (Ref.137), but we will see below that this

condition is satisfied for all three cases which we consider, at least for the leading instability.
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FIG. 21: Superconducting and density-wave three legged vertices. Divergence of any of these

vertices indicates that the system is likely to be unstable to the corresponding order. ΓSC
h,e are

superconducting vertices, ΓSDW is SDW vertex and ΓCDW is CDW vertex.

1. Two pocket model

Let us see how it works for a two-pocket model. There are two particle-particle three

legged vertices Γh,e as shown in Fig 21. To obtain the flow of these vertices, i.e., ΓSC
h,e (L) we

assume that external fermions and a fluctuating field have energies comparable to some E

(i.e.,L = log Λ/E) and collect contributions from all fermions with energies larger than E. To

do this with logarithmical accuracy we write all possible diagrams, choose a particle-particle

cross-section at the smallest internal energy E ′ ≥ E and sum up all contributions to the left

and to the right of this cross-section, as shown in Fig 22. The sum of all contributions to the

left of the cross-section gives the three legged vertex at energy E ′ (or L′ = log Λ/E ′), and

the sum of all contributions to the right of the cross-section gives the interaction gi at energy

L′. The integration over the remaining cross-section gives
∫ L dL′ (with our normalization of

gi), and the equation for, e.g., Γh(L) becomes

ΓSC
h (L) =

∫ L

dL′
(
ΓSC

h (L′)g4(L′) + ΓSC
e (L′)g3(L′)

)
(5.14)

Differentiating over the upper limit, we obtain differential equation for dΓSC
h (L)/dL whose

r.h.s. contains ΓSC
h,e (L) and g3,4(L) at the same scale L.

Collecting the contributions for ΓSC
h (L) an ΓSC

e (L) we obtain

dΓSC
h

dL
= ΓSC

h g4 + ΓSC
e g3

dΓSC
e

dL
= ΓSC

e g4 + ΓSC
h g3

(5.15)

or
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FIG. 22: Diagrams to analyze the flow of the effective vertices: SC vertex (top two) and SDW

vertex (bottom). The couplings gi’s here are running couplings in RG sense.

dΓ++

dL
= (g4 + g3)Γ++

dΓ+−

dL
= (g4 − g3)Γ+−

(5.16)

where Γ++ ≡ ΓSC
h + ΓSC

e and Γ+− ≡ ΓSC
h − ΓSC

e . The first one is for s++ pairing, the

second is for s+− pairing. We have seen in the previous section that the running couplings

g3,4 diverge at some critical RG scale Lc. The flow equation near Lc is in the form ġ ∼ g2,

hence

gi = αi

Lc − L
. (5.17)

Substituting this into Eq. 5.16 and solving the differential equation for Γ we find that the

two SC three legged vertices behave as

Γs++ ∝ 1
(Lc − L)−α3−α4

, Γs+− = 1
(Lc − L)α3−α4

, (5.18)

The requirement for the divergence of Γs+− is α3 > α4, which is obviously the same as

g3 > g4 (see (5.17)).

We follow the same procedure for an SDW vertex Γ⃗SDW . We introduce a particle-hole

vertex with momentum transfer Q and spin factor σ⃗αβ, as shown in Fig 21, and obtain the

equation for dΓ⃗SDW (L)/dL in the same way as we did for SC vertices. We obtain (see Fig.

57



22)

dΓ⃗SDW

dL
= d1(g1 + g3)Γ⃗SDW

(5.19)

Using Eq. 5.17 and following the same steps as above we obtain at L ≈ Lc

Γ⃗SDW ∝ 1
(Lc − L)d1(α1+α3) (5.20)

For CDW vertex (the one with the overall factor δαβ instead σαβ), the flow equation is

dΓCDW

dL
= d1(g1 + g3 − 2g3 − 2g2)ΓCDW

= d1(g1 − g3 − 2g2)ΓCDW (5.21)

Using the same procedure as before we obtain

ΓCDW = 1
(Lc − L)d1(α1−α3−2α2) (5.22)

The exponents αi can be easily found by plugging in the asymptotic forms in Eq. 5.17

into the RG equations. This gives the following set of non linear algebraic equations in αi

α1 = d1(α2
1 + α2

3)

α2 = 2d1α2(α1 − α2)

α3 = 2d1α3(2α1 − α2) − 2α3α4

α4 = −α2
3 − α2

4

(5.23)

Consider first the case of perfect nesting, d1 = 1. The solution of the set of equations

is α1 = 1
6 , α2 = 0, α3 =

√
5

6 and α4 = −1
6 ; Combining α’s, we find that the exponents for

superconducting and spin density wave instabilities and positive and equal:

αs± ≡ α3 − α4 = 1 +
√

5
6

≈ 0.539

αSDW ≡ α1 + α3 = 1 +
√

5
6

≈ 0.539

(5.24)
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while the exponent for CDW and s+ + vertices are negative

αCDW = α1 + α3 = 1 −
√

5
6

≈ −0.206

αs++ = −α3 − α4 = 1 −
√

5
6

≈ −0.206 (5.25)

We see that the superconducting (s + −) and SDW channels have equal susceptibilities

in this approximation, while CDW channel is not a competitor.

The analysis can be extended to d1 < 1. We define β ≡ α4/α1, γ ≡ α3/α1 and obtain

γ2 =

√
16d4

1 − 4d2
1 + 4 + 2 − d2

1

d2
1

β = d1

2
(
3 − γ2

)
α1 = 1

d1

1
1 + γ2 (5.26)

In Fig23 we plot αs± = α3 − α4, αSDW = α1 + α3, and αCDW = α1 − α3, We clearly

see that (i) CDW channel is never a competitor, and (ii) as d1 decreases (the nesting gets

worse), the pairing vertex diverges with a higher exponent that SDW channel, hence s+−

superconductivity becomes the leading instability, overshooting the channel which helped

SC vertex to change sign in the first place.

In real systems, pRG equations are only valid up to some distance from the instability

at Lc. Very near Lc three-dimensional effects, corrections from higher-loop orders and other

perturbations likely affect the flow of the couplings. Besides, in pocket models, the pRG

equations are only valid for E between the bandwidth W and the Fermi energy EF . At

E < EF , internal momenta in the diagrams which account for the flow of the couplings

become smaller than external kF , and the renormalization of gi start depending on the

interplay between all four external momenta in the vertices84,134. The calculation of the flow

in this case is technically more involved, but the result is physically transparent – SDW and

s+− SC channels stop talking to each other, and the vertex evolves according to Eqs. (5.18)

and (5.19), with gi taken at the scale EF (or LF = log Λ/EF ). If LF > Lc, the presence of

the scale set by the Fermi energy is irrelevant, but if LF < Lc (which is the case for the Fe-

pnictides because superconducting Tc and magnetic TSDW are much smaller than EF ), then

one should stop pRG flow at LEF
. At perfect nesting, the SDW combination g1 +g3 is larger

than s+− combination g3 − g4 at any L < Lc, hence SDW channel wins, and the leading
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instability upon cooling down the system is towards a SDW order. At non-zero doping,

Πph(Q) is cut by a deviation from nesting, what in our language implies that d1 < 1. If bare

g3 and g4 are not to far apart, there exists a critical d1 at which g3 − g4 crosses d1(g1 + g3)

at LF , and at larger d1 the crossing occurs before LF . In this situation, s+− SC becomes

the leading instability upon cooling off the system.

The comparison between different channels can be further extended by considering current

SDW and CDW vertices (imaginary ΓSDW and ΓCDW ) and so on. We will not dwell into

this issue because for all three cases we consider the real competition is between SDW and

SC vertices.
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FIG. 23: Exponents (αs±, αSDW and αCDW ) for different values of the nesting parameter d1

calculated near the critical RG scale, where the couplings diverge. The state with the largest

exponent wins. SDW and SC are degenerate when d1 = 1 (perfect nesting) and superconductivity

wins for all other values of d1. CDW is not a competitor.

Before moving on, we need to clarify one more point. So far we found that the vertices ΓSC

and ΓSDW diverge and compared the exponents. However, to actually analyze the instability

in a particular channel one has to compute fluctuation correction to susceptibility

χi
fl(L) ∼

∫ L

dL′
(
Γi(L′)

)2
(5.27)

where Πi is either ΠSDW = Πph or ΠSC = Πpp (see Fig 24)
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FIG. 24: (Left) The fluctuation correction to SC pairing susceptibility. (Right) The fluctuation

correction to SDW susceptibility.

The fully renormalized susceptibility in a given channel is

χ−1(L) = r0 − χi
fl(L) (5.28)

where r0 is some bare value of order one. The true instability occurs at L∗ when χi
fl(L∗) = r0.

At weak coupling, the critical L∗ is close to Lc, and, indeed, the instability occurs first in the

channel with the largest exponent for Γi. However, we need χi
fl(L) to diverge at Lc, otherwise

there will no instability at weak coupling137. This requirement sets the condition that the

exponent for the corresponding Γ must be larger than 1/2. Fortunately, this condition is

satisfied in the two-pocket model. For d1 = 1, this is evident from (5.24). For d1 < 1, the

exponent for the SC channel only increases, while the one in SDW channel decreases but

still remains larger than 1/2 as it is evidenced from Fig23 where we plotted the exponents

for SC and SDW vertices as a function of d1. In the limit d1 → 0,

αSDW ≈ 1
2

+ d1

4
(5.29)

.

The fact that both αSC and αSDW are larger than 1/2 implies that in Landau-Ginzburg

expansion in powers of SC and SDW order parameters (∆ and M , respectively), not only

the prefactor for ∆2 changes sign at Tc, but also the prefactor for M2 term changes sign and

becomes negative below some Tm < Tc. This brings in the possibility that at low T SC and

SDW orders co-exist. The issue of the co-existence, however, requires a careful analysis of

the interplay of prefactors for fourth order terms M4, ∆4, and M2∆2. We do not discuss

this specific issue. For details see 138,139.
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2. Multi-pocket models

The interplay between SDW and SC vertices is more involved in more realistic multi-

pocket models Fe-pnictides, with several electron and hole pockets. We recall that weakly

doped Fe-pnictides have 2 electron pockets and 2-3 hole pockets. In multi-pocket models one

needs to introduce a larger number of intra-and inter-pocket interactions and analyze the

flow of all couplings to decide which instability is the leading one. This does not provide any

new physics compared to what we have discussed, but in several cases the interplay between

SC and SDW instabilities becomes such that superconductivity wins already at perfect

nesting. In particular, in 3-pocket models (two electron pockets and one hole pockets) the

exponent for the SC vertex gets larger than the exponent for the SDW vertex already at

d1 = 1. We show the flow of SC an SDW couplings for 3-pocket model in Fig.25. Once d1

becomes smaller than one, SC channel wins even bigger compared to SDW channel.

FIG. 25: The flow of the SC and SDW vertices with the RG scale. Both diverge at a critical scale,

Lc, but the SC vertex diverges stronger. Taken from Ref. 134.

Superconductivity right at zero doping has been detected in several Fe-pnictides, like

LaOFeAs and LiFeAs, and it is quite possible that this is at least partly due to the specifics

of pRG flow.
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FIG. 26: The exponents for various instabilities computed for different nesting parameters d1. At

perfect nesting (d1 = 1) the SDW and SC channels have the same exponent, for d1 < 1. The larger

exponent is in the superconducting channel. Compare with Fig. 23. (Taken from Ref. 34.)

C. Patch models

The analysis of the patch model show a very similar behavior – SDW and d-wave SC

vertices compete, and which one wins depends on the number of patches and (for n = 2) on

the value of d1.

For 2-patch model, the equations and the results are the same as in 2-pocket model:

SDW wins at perfect nesting and SC winds at non-perfect nesting (see Fig 26).

For 3-patch model we have

dΓSC

dL
= 2(g3 − g4)ΓSC

dΓSDW

dL
= 2d1(g1 + g3)ΓSDW (5.30)

and gi = αi/(Lc − L), so which channel wins depends on the interplay between αSC =

2(α3 − α4) and αSDW = 2d1(α1 + α3)
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Substituting gi = αi/(Lc − L) into the set of pRG equations (5.13) we obtain

α1 = d1(α2
1 + α2

3)

α2 = 2d1α2(α1 − α2)

α3 = −α2
3 − 2α3α4 + 2d1α3(2α1 − α2)

α4 = −α2
4 − 2α2

3 (5.31)

For d1 = 1, the solution is

α1 ≈ 0.14, α2 = 0, α3 = 0.35, α4 ≈ −0.4. (5.32)

Hence

αSC = 0.74; αSDW ≈ 0.48 (5.33)

We see that already at perfect nesting SC vertex has a larger exponent, i,e superconduc-

tivity is the first instability of a system upon cooling. The same result has been obtained

in fRG approach121. Observe that αSC > 1/2, i.e., the divergence of the SC three legged

vertex does indeed lads to a SC instability (which, we recall, leads to a d + id or d − id

state, each breaks time-reversal symmetry). However, αSDW < 1/2 what implies that in

Ginzburg-Landau expansion the prefactor for the M2
SDW remains positive, at least around

superconducting Tc. This generally makes the possibility that SC and SDW states co-exist

below Tc less likely140.

When d1 < 1, αSC gets larger and αSDW gets smaller, i.e, SC instability becomes even

more dominant. We show the behavior of αSC and αSDW at different d1 in Fig27.

To summarize the results of pRG analysis:

• The SC vertex starts out as repulsive, but it eventually changes sign at some RG scale

(L0). This happens due to the "push" from SDW channel, which rives rise to upward

renormalization of the inter-pocket/inter-patch interaction g3.

• Both SDW and SC vertices diverge at RG scale Lc which is larger than L0. The leading

instability is in the channel whose vertex diverges with a larger exponent. At perfect

nesting, SDW instability occurs first in 2-pocket and two-patch models, however in

3-patch model (and in some multi-pocket models) SC vertex has a larger exponent

that the SDW vertex and SC becomes the leading instability.
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FIG. 27: Plot of αSC and αSDW in 3-patch model vs d1. Observe that αSC is larger already at

d1 = 1. In this respect, the flow in 3-patch model is different from that in two-patch model (Fig

23), where αSDW and αSC were degenerate (to leading) order for d1 = 1.

• Deviations from perfect nesting (quantified by d1 < 1) act against SDW order by

reducing the corresponding exponent. At sufficiently small d1 SC instability becomes

the leading one in all models which we considered

• The necessary condition for the instability is the diverges of the fluctuating component

of the susceptibility. This sets up a condition α > 1/2, where α is the exponent for

the corresponding vertex. For the leading instability, we found α > 1/2 in all cases.

For the subleading instability, α can be either larger or smaller than 1/2. This affects

potential co-existence of the leading and subleading orders at a lower T .

D. Pairing mediated by collective spin fluctuations

Like we said before, when the interaction and the bandwidth are of the same order, one can

foresee a situation in which strong fluctuations in the SDW channel develop already at energy

scales comparable to the bandwidth, in which case the KL component of the interaction is

large already at the onset of low-energy description and can be viewed as the effective

interaction mediated by spin fluctuations. The spin-mediated pairing interaction can be
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obtained either within RPA82,83,95 or, using one of several advanced numerical methods

developed over the last decade like dynamical cluster approximation141, cluster DMFT142,

or just introduced semi-phenomenologically. The semi-phenomenological model is often

called the spin-fermion model36.

The question which we pose for this case is somewhat different from the one we addressed

in the previous section. There, our primary interest was to understand how the initially re-

pulsive pairing interactions gets converted into an attractive one, and under what conditions

superconductivity wins over SDW order. For the case we consider in this section, we essen-

tially postulate that (i) the pairing interaction is attractive, at least in one channel, (ii) the

feedback from pairing fluctuations on the SDW channel is weak, and (iii) in the parameter

range where we want to analyze superconductivity, SDW fluctuations are strong but the

SDW order is not yet developed, i.e., there is a large but finite correlation length ξ.

In the following, we discuss the pairing at large ξ in the framework of spin-fermion model

for the cuprates with the FS as in Fig. 12. The new aspect which we will explore is the effect

of spin fluctuations on fermionic properties in the normal state. We show that spin-mediated

interaction destroys fermionic coherence in some portions of the FS, if ξ is large enough,

and discuss novel quantum-critical pairing, in which incoherent fermions are attracted to

each other by the interaction mediated by a near-massless collective boson. As another

complication, this spin-mediated interaction has a strong dynamical part due to Landau

damping – the decay of a spin fluctuation into a particle-hole pair. This dynamics also has

to be included into consideration, which makes the solution of the pairing problem in the

quantum-critical regime quite involved theoretical problem.

FIG. 28: The spin-fermion model is an effective low energy model resulting from integrating out

fermions with higher energies, ranging from the the bandwidth, W , to the upper boundary of the

spin-fermion, Λ, which is usually a fraction of the bandwidth.

We re-iterate the two crucial aspects of the spin-fluctuation approach - first, static mag-

netic fluctuations are assumed to develop at energies much larger than the ones relevant for
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the pairing, typically at energies comparable to the to the bandwidth W . The static mag-

netic susceptibility is considered as an input for the low-energy theory, for which we set the

upper boundary at a scale Λ, which is a fraction of the bandwidth. (see Fig. 28). The Lan-

dau damping of spin fluctuations, on the other hand, comes from low-energy fermions and

is not an input. Rather, it is obtained self-consistently within the spin-fermion model itself.

It is crucial for the spin-fluctuation approach that SDW magnetism is the only instability

which develops at such high energies. There may be other instabilities (e.g., charge order),

but the assumption is that they develop at small enough energies and can be captured within

the low-energy model with spin fluctuations already present107,108,143.

Second, spin-fluctuation approach is fundamentally not a weak coupling approach. In

the absence of nesting, Πph(Q) and Πpp(0) are generally of order 1/W , and Πph(Q) is only

larger numerically. Then the interaction G3, required to get a strong magnetically-mediated

component of the pairing interaction, must be of order W . One way to put calculations

under control, at least partially, in this situation is to assume that, while the interaction

at large energies is of order W , the interaction between low-energy fermions, which we

label as ḡ, is smaller than W and do controlled low-energy analysis treating ḡ/W as a

small parameter36,107,108,143. This is what we will do. There are several ways to make the

assumptions ḡ ≪ W and G ∼ W consistent with each other, e.g., if microscopic interaction

has length Γ0 and Γ0kF/~ ≫ 1, then ḡ is small in 1/(Γ0kF

~ ) compared to G (Refs.144,145).

Also, the analysis of the pairing in the spin-fermion model does not crucially depend on

the ratio ḡ/W , so the hope is that, even if the actual ḡ is of order W , the analysis based

on expansion in ḡ/W captures the essential physics of the pairing system behavior near an

SDW instability in a metal. The only real assumption here is that the truly strong coupling

Mott Physics does not develop.

E. The spin-fermion model

Like we said, we assume that the effective interaction between fermions can be approxi-

mated by the RPA-type expression, Eq. (4.2), and that only spin component of the inter-

action with large momentum transfer is relevant. We further assume that spin fluctuations

are peaked at Q = (π, π). Quite generally, such an effective interaction can be expressed
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as36

Γαβ;δγ(k, k′; p, k + k′ − p) = −V (k − p)σ⃗αδ · σ⃗βγ (5.34)

where spin components α and δ belong to fermions with momenta k and p, respectively, and

V (q) = ḡ

ξ−2 + |q − Q|2
, (5.35)

where ξ is the magnetic correlation length.

The model Hamiltonian can be written as

H =
∑
k⃗,α

v⃗F,⃗k · (k⃗ − k⃗F )c†
k⃗,α
ck⃗,α + V (k − p)c†

k⃗,α
c†

k⃗′,β
ck⃗+k⃗′−p⃗,γcp⃗,δσ⃗αδ · σ⃗βγ (5.36)

where v⃗F,⃗k is the Fermi velocity. Its value generally depends on the location of k⃗ along

the FS. For simplicity, we assume that this dependence is rather weak and neglect it i.e.,

set vF,k = vF . The effective 4-fermion interaction can be viewed as the pairing vertex, if

k′ = −k, or as the interaction which gives rise to fermionic self-energy at one-loop order, if

k′ = p.

Let’s quickly look at energy scales involved in the problem. There are three parameters

in this low energy theory- (i) the Fermi velocity vF ; (ii) the correlation length ξ, and (iii)

the effective coupling ḡ. Another parameter is the bandwidth, W , but for ḡ ≪ W , the low-

energy sector is separated from high-energy sector and W does not appear in the formulas.

Out of three remaining parameters, one can construct a dimensionless quantity

λ ≡ 3ḡ
4πvF ξ−1 (5.37)

(the numerical factor is for later convenience). We will see that λ determines the strength

of the mass renormalization and the renormalization of the quasiparticle residue in the hot

regions on the FS, where both kF and kF + Q are near the FS. At λ ≪ 1, these renormal-

izations are weak and fermions behave almost as free particles with static d-wave attraction

provided by spin-mediated interaction in (5.36). However, at large enough ξ, λ is necessarily

large, and fermions in hot regions acquire a strong mass renormalization. Simultaneously,

Landau damping of collective spin excitations becomes relevant (see below), which in turn

gives rise to a strong imaginary part of the propagator of a hot fermion. Specifically, when

λ is larger, there appears a wide range of frequencies between ḡ and ḡ/λ2, where fermions

behave as diffusive rather than propagating quasiparticles. The spin-mediated interaction
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still provides a d−wave attraction between these incoherent quasiparticles, but whether this

attraction will lead to pairing is a’priori unclear.

To set the stage for the analysis of the pairing problem, we first summarize the results of

the normal state analysis of the spin-fermion model.

1. Normal state properties at strong coupling (λ ≫ 1)

The normal state properties of the spin-fermion model have been analyzed in series of

publications36,107,108,143,146–151 and we just briefly summarize the results. The most relevant

issue is that λ = O(1) sets the boundary not only between weak-coupling and strong coupling

regions, but also between the regime where bosonic damping is irrelevant and fermionic self-

energy depends on momentum much stronger than it depends on frequency (λ < 1) and

the regime of self-generated locality, where the Landau damping plays the central role and

fermionic self-energy depends on frequency much stronger than it depends on momentum

(λ > 1). In the latter regime, the effective 4-fermion interaction V (k − p) is dynamic and

has the form

V (q,Ω) = ḡ

ξ−2 + |q − Q|2 − iγ|Ω|
(5.38)

where γ = (4π sin θ)ḡ/v2
F and θ is the angle between Fermi velocities in hot regions around

kF and kF + Q (see Fig. 29).

The self-energy of a hot fermion is given by (see Fig. 30)

Σ(ω) = 2λω

1 +
√

1 − i |ω|
ωsf

(5.39)

where ωsf = ξ−2/γ =
(

9 sin θ
64π

)
ḡ

λ2 . With this self-energy, fermionic propagator evolves

between three different regimes. At the lowest frequencies ω < ωsf , the self-energy (5.39)

retains a FL form

Σ′(ω) = λω

Σ′′(ω) = λ
ω2

4ωsf

(5.40)
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FIG. 29: A schematic picture of the Brillouin Zone for the cuprates. The arcs are the boundaries

of the open electron FS. The dark spots are the hot spots. The arrows indicate the fermionic

velocities at the two hot spots separated by Q, at which the spin fluctuations are enhanced. θ is

the angle between these velocities.

k-q, -k, k,σαβ σβα

V(q, )

αβ βα

k-q, -k, k,σαβσαβ σβασβα

V(q, )

αβ βα

FIG. 30: Diagrammatic representation of 1-loop fermionic self energy, Σ(k, ω). V (q, Ω) is the

spin-fluctuation propagator. σ̄ are Pauli matrices.

At larger frequencies, the self-energy has a non-FL, quantum-critical form (as if ξ was

infinite)

Σ′(ω) = Σ′′(ω) =
(

|ω|ω̄
2

)1/2

sgn(ω) (5.41)

where ω̄ = 9ḡ
16π

(we use this scale instead of simply ḡ to simplify the formulas in the

next subsection). In this situation, Σ′(ω) and Σ′′(ω) both scale as ω1/2. There is also

a relatively wide intermediate regime ω ≥ ωsf where Σ′′(ω) is well approximated by a

linear dependence36. The true quantum-critical regime with non-FL behavior holds when

Σ(ω) > ω. This is satisfied when ω < ω̄. At larger frequencies, ω > ω̄, the self-energy still

has the form of Eq. (5.41), but the self-energy is a small correction to a bare ω term in the

fermionic propagator, i.e., hot fermions behave as almost free quasiparticles. We sketch the
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behavior of the fermionic self-energy in Fig.31

FIG. 31: Behavior of self energy Σ(ω, k) at different energies. The characteristic energy scales

in the spin-fermion model are ω̄ ∼ ḡ, below which the self energy exceeds a bare ω term in the

fermionic propagator, and a smaller scale, ωsf ∼ ω̄
λ2 , that separates the Fermi liquid behavior at

smaller frequencies from the non Fermi liquid behavior at higher frequencies.

The frequency ωsf also sets the crossover behavior in V (k − p). At frequencies smaller

than ωsf , the Landau damping term is irrelevant and V (k − p) is well approximated by

its static form, Eq. (5.35). At frequencies larger than ωsf , ξ−2 can be neglected in the

denominator of Eq. (5.38), and the effective interaction becomes

V (q,Ω) ≈ 1
(q − Q)2 − iγ|Ω|

(5.42)

To analyze the pairing, we will need the effective "local" interaction between particles at

the FS, averaged over the deviations from hot spots along the FS. This amounts to setting

q − Q along a particular direction and averaging over q − Q along this direction. We have

Vl(Ω) = 1
2π

∫ dx

x2 − i|Ω|
= 1

2
1

(−i|Ω|)1/2 (5.43)

For fermions outside hot regions, FL behavior with Σ′ ∝ ω and Σ′′ ∝ ω2 holds even

when ξ = ∞. The formulas for the fermionic self-energy for these fermions are presented

in36,107,146,148,150,152. In particular, for lukewarm fermions, Σ′(k, ω) ∼ ḡω
vF δk

, where δk is a

deviation from a hot spot along the FS.
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F. Pairing near the quantum critical point

We now use normal state results and consider the pairing at large ξ. The full analysis of

the pairing is rather involved as both hot fermions and lukewarm fermions give comparable

contributions to the pairing. We use the result of a recent analysis148 that Tc obtained in

calculations with the full self-energy is of the same order as Tc obtained by approximating the

self-energy of relevant fermions by the expression at a hot spot, Eq. (5.39), as a justification

to simplify the problem and neglect the dependence of the self-energy on the momenta along

the FS.

To make the story shorter and discuss the main issue, consider the system right at ξ = ∞.

Here we have fermions with the self-energy Σ(ω) ∝ ω1/2, coupled by the dynamical pairing

interaction V (k,Ω) given by (5.42). We know that the interaction is attractive in a d−wave

channel, the issue is whether this attraction is sufficient for the pairing when the fermionic

propagator has a non-FL form.

k,
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V(k-q, - )

-q,-

-k,-

σ

σ
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k,

-k,-
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q,

V(k-q, - )

-q,-

-k,-

σσ

σσ

k,

-k,-

i y

k,

-k,-

= +

i y i y

FIG. 32: Diagrammatic representation of the equation for the pairing vertex Γp. The wavy line is

the spin-fluctuation propagator V (q, ω), σ̄ are Pauli matrices.

We follow the same reasoning as in the previous sections and construct the linearized

equation for the superconducting order parameter (the pairing vertex) Γp(k,Ω) (see Fig.32).

Γp(k, ω) = −3ḡT
∑
ω′

∫ d2q

(2π~)2 Γp(q, ω′)G(q, ω′)G(−q,−ω′)V (k − q, ω − ω′) (5.44)

The overall factor 3 comes from spin summation. If this equation has a solution at a

nonzero T = Tc, one should expect a pairing instability below this temperature (at least,

in the absence of pairing fluctuations). It is more convenient to analyze the equation for

Tc in Matsubara frequencies, and we convert fermionic self-energy and bosonic propagator

to Matsubara axis. The negative sign reflects the fact that spin-mediated interaction is a
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repulsive interaction, and the only reason it gives rise to the pairing is because it is peaked

at a finite momentum (= Q in our case) and has attractive d−wave component.

Since both k and q have to be near the FS, and V (q,Ω) is strongly peaked at q = Q,

only the regions near hot spots are relevant to the pairing as the pairing is a low-energy

phenomenon (we recall that the coupling ḡ is set to be much smaller than the bandwidth

W ). This last observation reduces the "hot spot" model to effective two-patch model, for

which d−wave pairing simply implies that the pairing vertex Γp(k,Ω) changes sign when

k ≈ kF is shifted by Q. Once we build this information into (5.44), the dependence on

the momenta remains only in the Green’s functions and in the bosonic propagator, and

the momentum integration can be done exactly. As one further simplification, we factorize

the momentum integral – integrate transverse to the FS in the fermionic propagators and

along the FS in the bosonic propagator. This factorization is a signature of the Eliashberg

theory of superconductivity14,19,20, and it is rigorously justified when bosons are slow modes

compared to fermions. In our case, typical momenta for bosons and dressed fermions scale

as
√
ω and this justification is not well justified. However, it works well numerically36 and

we just use it.

Factorizing the integration in the above manner, we obtain 1D integral equation for

Γp(k, ω) = −Γp(k +Q,ω) = Γp(ω).

Γp(ω) = πT
∑
ω′

Γp(ω′) Vl(ω − ω′)
|ω′|1/2

(
1 + (|ω′|/ω̄)1/2

) (5.45)

where Vl(Ω) is given by (5.43) after the conversion to Matsubara frequencies. Substituting

the form of Vl, we obtain

Γp(ω) = 1
2
πT

∑
ω′

Γp(ω′)
|ω′|1/2|ω − ω′|1/2

1
1 + (|ω′|/ω̄)1/2 (5.46)

The remarkable nature of this formula is that there is no overall coupling around which

a perturbation treatment can be performed. The pairing problem near a quantum critical

point is in this sense a universal problem. The only dimensional parameter in this equation

is ω̄, which sets the upper scale of the quantum-critical behavior. Hence, if this equation

has a solution at a nonzero Tc, this temperature must be of order ω̄. But, like we said, one

needs to analyze the integral equation to see whether or not it has a solution.
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To proceed, let’s return momentarily to the case when ξ−1 is non-zero and consider the

pairing problem in the frequency regime where the system is a FL. Like we said, in this

regime, the frequency dependence of the pairing interaction can be neglected. Integrating

over momentum, we then obtain that Γp does not depend on ω and is the solution of

Γp ≈ λ

1 + λ
πT

ωsf∑
ω

Γp

|ω|
(5.47)

We can solve this equation either directly, or perturbatively, order-by-order, if we add to

the r.h.s. of this equation some bare pairing vertex Γp,0. In the last case, one can sum up

geometric series of logarithmical terms, like in BCS theory, and obtain

Γp = Γp,0

1 + λ

1 + λ
ln
ωsf

T
+
(

λ

1 + λ
ln
ωsf

T

)2

+ ...


= Γp,0

1 − λ
1+λ

ln
ωsf

T

(5.48)

The transition temperature is determined by the condition that the pairing susceptibility

χp = Γp/Γp,0 diverges:

Tc ∼ ωsfe
− 1+λ

λ (5.49)

At ξ = ∞, ωsf = 0 and FL range vanishes. Let’s, however, export the reasoning and

compute the pairing susceptibility in the quantum-critical case. Adding Γp,0 to the r.h.s. of

(5.46) and formally computing χp in an order-by-order expansion we again obtain the series

of logarithmical terms. Collecting only the terms with the highest power of the logarithm

at each order, we obtain

Γp(ω) = Γp,0

1 + 1
2

log
(

ω̄

max(ω, T )

)
+ 1

2

(
1
2

log
(

ω̄

max(ω, T )

))2

+ ..

 (5.50)

However, in our case, the series of logarithms are not geometrical and sum up into a

power-law form

Γp(ω) = Γp,0

(
ω̄

max(ω, T )

)1/2

(5.51)

We see that χp(ω) = Γp(ω)/Γp,0 does not diverge at any finite T and/or ω, hence summing

up series of logarithms does not lead to the pairing instability. This is one distinction between

quantum-critical pairing and BCS pairing.
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That logarithmical series does not lead to Tc does not necessary imply that there is no

superconductivity. One has to go back to Eq. (5.46) without Γp,0 term and try to solve it.

Because the kernel obviously drops at ω > ω̄, and Matsubara frequencies hold in quanta

of T , it is natural to expect that the solution of Eq. (5.46), if it exists, is determined

by frequencies ω′ such that, T ≪ ω′ ≪ ω̄. For such frequencies, one can safely replace

summation over frequencies by integration, i.e., rewrite (5.46) as

Γp(ω) = 1
4

∫ ω̄

T
dω′ Γp(ω′)

|ω′|1/2

(
1

|ω − ω′|1/2 + 1
|ω + ω′|1/2

)
(5.52)

We can further simplify this equation by replacing it with

Γp(ω) = 1
4

∫ ∞

0
dω′ Γp(ω′)

|ω′|1/2

(
1

|ω − ω′|1/2 + 1
|ω + ω′|1/2

)
(5.53)

and requesting that Γp(ω) vanishes at the two original boundaries. [One can do a more

accurate analysis here153, but the outcome is the same as using our approximation].

The kernel in (5.53) has dimension 1/ω and it is natural to search for the solution in the

power-law form. We choose

Γp(ω) ∼ ω−( 1
4 −2β) (5.54)

Substituting this back into Eq. 5.53 we get,

1 = 1
4

∫ ∞

0
dx

x2β

|x|3/4

(
1

|1 − x|1/2 + 1
|1 + x|1/2

)
≡ Ψ(β) (5.55)

The function Ψ(β) is plotted for real β in Fig. 33(left). A solution consistent with a formal

(and approximate) order-by-order expansion would be β = −1/8. However, we clearly see

that the situation is even worse – there is actually no solution, as the minimal value of Ψ(β)

is 4.48 at β = 0.

Does this prove that Tc vanishes at the critical point. Actually not. To see this check

what happens if we choose β to be purely imaginary. The plot of Ψ(β) along imaginary axis

is shown in Fig. 33(right). We clearly see that there are two solutions of Ψ(β = iβ̃) = 1,

one at β̃ = β̃0, another at β̃ = −β̃0, where β̃0 = 0.27 Substituting these two solutions with

some complex prefactors into Γp(ω) and choosing the prefactors such that Γp(ω) is real, we

obtain

Γp(ω) = C
1

|ω|1/4 cos
(
2β̃0 lnω + ϕ0

)
(5.56)
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FIG. 33: (Left)Plot of Ψ(β) along the real axis. Ψ(β) has a minimum value of 4.48 at β = 0, and

hence cannot reach the desired value of 1. (Right) Ψ(β) along the imaginary axis. Ψ(β = iβ̃) now

has a maximum at β̃ = 0 and falls off for larger |β̃|. There are two solutions to Ψ(iβ̃) = 1, at

β̃0 = ±0.27.

where C is an overall constant that does not matter as we are solving the linearized gap

equation, and ϕ0 is a phase which at this stage is a free parameter. We emphasize that we

have this free phase because there are two solutions of Ψ(iβ̃) = 1.

Now we have to satisfy the two "boundary conditions"

Γp(ω = T ) = 0

Γp(ω = ω̄) = 0 (5.57)

Substituting the solution we obtain two equations

2β̃0 ln ω̄ + ϕ0 = π

2
+ nπ

2β̃0 lnT + ϕ0 = π

2
+mπ,m ̸= n (5.58)

The phase can be chosen up to nπ (not 2nπ because changing Γp to −Γp is equivalent to

change the sign of the prefactor), hence we can incorporate nπ into ϕ0. Once this is done,

the two equations determine ϕ0 and that largest temperature at which the second equation

in (5.58) is satisfied. Elementary analysis shows that this temperature (= Tc) satisfies

2β̃0 ln ω̄

Tc

= π (5.59)

Hence, the linearized equation on the superconducting order parameter has a solution at a
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non-zero Tc given by (in this approximation)

Tc = ω̄e−π/2β̃0 (5.60)

We emphasize again that to obtain this solution we had to go beyond logarithmical

approximation and solve the full integral equation on the pairing vertex Γp. Just summing

up logarithms does not lead to a solution for Tc. From a generic perspective this implies

that the pairing at the quantum-critical point is a threshold phenomenon. Indeed, if we

formally add a factor of ϵ to the l.h.s. of Eq. (5.53), we find that the solution for Tc exists

only for ϵ > ϵcr = 0.22 (Ref.151). On the other hand, like we said, the quantum-critical

pairing problem is universal, with no adjustable overall factor in front of the integral. From

this perspective, the existence of a formal threshold may not be that important.

FIG. 34: Plot of Tc (in units of ω̄) versus λ−1 ∼ ξ−1. As λ−1 → 0, the Tc calculated from the

McMillan formula, which only picks contribution from the Fermi liquid region, vanishes (blue line).

But Tc calculated by taking the contributions from the non-Fermi liquid region (red line), tends to

a finite value as ξ−1 → 0 (taken from Ref. 151).

The linearized equation on Γp has been solved numerically148,150,151, and the result is not

very different from Eq. (5.60). In Fig. 34. we show the numerical solution of this equation

at a finite ξ. We see that Tc gradually evolves as ξ increases and tends to a finite value

Tc ≈ 0.17ω̄ at ξ = ∞. A more sophisticated analysis, which includes the dependence of

the self-energy on the momentum along the FS gives Tc of the same order of ω̄, but with

somewhat smaller prefactor: Tc ∼ 0.04ω̄ (Ref.148).
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1. Other models of quantum-critical pairing

The quantum-critical pairing problem is not restricted to systems with the FS as in Fig.

12 near the antiferromagnetic Q = (π, π) instability but can be applied to other systems in

which interaction between fermions is mediated by gapless or near-gapless bosonic modes.

A generic problem of this kind contains Vl(Ω) ∝ 1/Ωγ and the corresponding Σ(ω) ∝ ω1−γ.

The case we considered above corresponds to γ = 1/2.

For a generic γ, the linearized equation for the pairing vertex is

Γp(ω) = (1 − γ)πT
∑
ω′

Γp(ω′)
|ω′|1−γ|ω − ω′|γ

1
1 + (1 − γ)(|ω′|/ω̄γ)γ

(5.61)

The same reasoning as we applied for γ = 1/2 works for all 0 < γ < 1, and, with some

modifications, for γ > 1. Namely, summing up the leading logarithms does not lead to

superconductivity, but one can go beyond logarithmical approximation, search for a power-

law solution at frequencies T ≪ ω ≪ ω̄, and then check whether one can verify the boundary

conditions at the lower and the upper limit. As for the case of γ = 1/2, the power-law

solution that satisfies Eq. (5.61) has a complex exponent and arbitrary phase. Choosing the

phase to satisfy one boundary condition, one is left with only one other boundary condition,

which is satisfied by choosing a particular T = Tc. (see Refs. 151,153–156 for details). A

special care is needed to study the cases of small γ, γ ≈ 1, and γ > 1. The result, which

we just cite without going into details, is that Tc monotonically decreases as γ increases and

smoothly passes between γ < 1 and γ > 1.

The BCS problem corresponds to γ = 0, although in this case one needs to impose by

hand the upper limit in frequency summation. The case γ = 1
3 describes pairing in double-

layer composite fermion metals157 and the pairing near an Ising ferromagnetic quantum-

critical point158–160. The case γ = +0 (which implies that ωγ is replaced by log ω) de-

scribes pairing near antiferromagnetic and Ising ferromagnetic quantum-critical point in 3D

also color superconductivity155,156,161. The case γ = 0.7 describes fermions with dirac cone

dispersion162, and γ = 1 describes the pairing mediated by undamped, propagating bosons.

Finally, γ = 2 describes the pairing mediated by near-gapless phonons163. The case of γ

varying with doping and the pairing in the presence of density-wave order has been con-

sidered in Refs. 155,164. The quantum-critical pairing problem has been discussed from

a slightly different perspective in Refs. 165 and 166. The pairing problems with singular
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dependence of the interaction on momentum rather than frequency have been considered in

Ref. 167,168.

The issue which is not fully addressed in the literature is whether the quantum-critical

pairing at Tc implies a true superconductivity, or only signals the development of the energy

scale associated with the superconducting gap, while the actual Tc is lower due to strong

superconducting fluctuations. This issue is currently under investigation by several groups,

and we refrain from speculating on it.

To summarize:

• In this section we considered the pairing under the assumption that fluctuations in

the density-wave channel, which favors KL- type superconductivity, develop already

at high energies, comparable to the fermionic bandwidth. In this situation, the domi-

nant pairing interaction between low-energy quasiparticles can be thought of as being

mediated by the corresponding density-wave fluctuations.

• By construction, the pairing interaction is attractive in the channel favored by density-

wave fluctuations. However, the same interaction also gives rise to strong fermionic

self-energy which destroys fermionic coherence at least in some parts of the FS. The

issue we addressed is whether the lack of coherence prevents fermions from pairing.

We argued that incoherent fermions can still pair, and the onset temperature of the

pairing remains finite even when the range of the FL behavior shrinks to zero.

• The quantum-critical pairing problem is quite universal as the effective coupling is a

number, of O(1), and Tc is the universal number, when measured in units of the upper

boundary of the quantum-critical behavior.

• Whether the Tc obtained by solving the linearized "gap equation" is close to the actual

Tc, or superconducting fluctuations prevents superconducting coherence to develop

down to a substantially smaller T is an open issue.

VI. SUMMARY

The goal of this review was two-fold. First, to discuss electronic mechanism of supercon-

ductivity in systems with nominally repulsive interaction, and, second, to provide a guideline
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how to perform calculations to analyze SC instability and its interplay with other potential

instabilities, most notably SDW instability. This is by no means a comprehensive review of

the electronic mechanism of superconductivity, and we apologize if we have missed some of

the viewpoints and references. We have presented how KL ideas, originally developed for

isotropic systems, can be used to describe not only superconductivity in lattice systems but

also the interplay between superconductivity and competing density-wave orders.

We started with a brief review of KL mechanism of superconductivity in isotropic systems.

We demonstrated that the pairing problem decouples between pairing channels with different

angular momentum l, and to get SC, it is enough to have attraction for just one value of l. We

then presented the KL arguments that Friedel oscillations of the screened repulsive fermion-

fermion interaction give rise to the appearance of attractive components of the pairing

interaction at large odd l, no matter how the screening affects the regular (non-oscillating)

part of the interaction potential. Mathematically, the attraction is due to non-analyticity

of the screened interaction at the maximum momentum transfer 2kF between particles on

the FS. We applied KL reasoning to weak coupling and showed that in 3D the attraction

persists down to l = 1, and the partial component with l = 1 is the largest by magnitude.

The outcome is that an isotropic 3D system with weak repulsive electron-electron interaction

is unstable towards a p−wave pairing. The p−wave pairing is the leading pairing instability

also in 2D case, but to get it one has to go to third order in the perturbation, while in 3D

systems the attraction emerges already at second order.

Such a decomposition into decoupled angular momentum harmonics is, however, not

possible in lattice systems due to reduced symmetry. We discussed how KL ideas can be

applied to lattice systems, particularly to the ones in which either the density of states is

the largest in particular patches along the FS, or there are several different Fermi pockets

in the Brillouin zone. We showed that KL reasoning can be applied to lattice cases as well

and considered, as examples, three 2D models: a two-pocket model with small electron and

hole pockets separated by Q = (π, π), a two-patch model with one large FS on which there

are two distinct regions with large density of states, and a three-patch model, with three

such regions. We argued that the first model is applicable to Fe-pnictides, the second one to

optimally doped and overdoped cuprates, and the third one to graphene doped to a vicinity

of a topological transition from multiple small FSs sheets to a single large FS. For each model

we found that superconductivity is possible if the interaction at large momentum transfer
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Q exceeds the interaction at a small momentum transfer (G3 > G4 in our notations). The

emerging pairing state has s+− symmetry for the Fe-pnictides, dx2−y2 symmetry for the

cuprates, and d + id symmetry for doped graphene. In the latter case, superconductivity

breaks time-reversal symmetry.

We found that KL renormalization, taken to order G2, does produce an attractive compo-

nent of the interaction. If bare G3 (the interaction at large momentum transfer) and bare G4

(the interaction at small momentum transfer) are identical, as in the case of the momentum-

independent Hubbard-like interaction, KL mechanism is sufficient to explain the emergence

of the attractive pairing interaction. However, in a more realistic case, G4 is larger than

G3. In this situation, KL attraction has to overcome bare repulsion, and this is generally

not possible, particularly at weak coupling. As a result, a lattice system can, in principle,

remain in the normal (non-SC) state down to T = 0.

We discussed two scenarios for superconductivity even when G4 > G3. First, we consid-

ered the situation when the when the FS is nested and the renormalization in particle-hole

channel is almost as strong as the renormalization in the particle-particle (Cooper) channel.

We argued that the nesting case can be studied beyond second-order by applying a par-

quet renormalization group technique. This is a fully controlled weak coupling theory which

neglects higher terms in the dimensional couplings Gi but keeps corrections in GiΠpp(0)

and GiΠph(Q) to all orders. We found that in all three examples which we considered, RG

flow of the couplings is such that the system self-generates an attraction below some energy

scale. Specifically, we demonstrated that at some RG scale the initially repulsive pairing

interaction changes sign and beyond this scale (at smaller energies) becomes attractive. We

argued that this conversion of repulsion into attraction is a universal phenomenon which

does not depend on the details of the underlying model, as long as particle-hole bubble is

comparable to particle-particle bubble and RG analysis is applicable.

We also analyzed the interplay between superconductivity and other orders. The compe-

tition with SDW order is a particularly relevant issue because SDW fluctuations are respon-

sible for the appearance of an attraction in the SC channel. We argued that in some cases

of near-perfect nesting SDW order occurs first, but at deviations from nesting SC instability

eventually occurs prior to a magnetic instability. In other cases, SC instability comes first

even at perfect nesting, overshooting the interaction which made attraction in the pairing

channel possible.
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We then considered another scenario, in which density-wave fluctuations develop at much

larger energies than the ones relevant to superconductivity. We argued that in this situation

the pairing interaction is enhanced already at high-energies, and the pairing interaction

can be viewed as mediated by collective density-wave modes. We showed that the KL

interaction term can be viewed as the first term in the series which gives rise to effective

interaction mediated by collective spin fluctuations. We speculated how one can get SC

by going beyond weak coupling and discussed the spin-fermion model in this context. We

argued that the interplay between strong attraction and strong fermionic self-energy gives

rise to a new concept of quantum-critical pairing, when incoherent fermions gets attracted

by the interaction mediated by a near-gapless boson. We showed that the pairing problem

in this limit is different rom BCS, but, nevertheless, there is a finite Tc even when fermions

which contribute to the pairing are fully incoherent and display a non-FL behavior.

We hope to have fairly addressed the phenomenon of superconductivity in systems with

repulsive interactions, but we fully understand that we left a near-infinite amount of inter-

esting physics that comes along with it. Our main hope is that the readers, particularly

graduate students, will find this subject interesting and worth studying in more detail and

depth.
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