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Abstract. Transport and superconductivity in weakly interacting metals are
governed by the long-lived quasiparticles near sharp electronic Fermi surfaces.
Motivated by empirical evidence for seemingly universal quantum bounds on transport
scattering rates and superconducting transition temperatures across strongly correlated
metals, T discuss “solvable” examples of correlated fermionic systems that provide
unique insights into these puzzling phenomena. In the first part, I survey a few distinct
examples of metallic phases exhibiting T—linear resistivity above a characteristic
temperature T, and discuss possible implications on transport bounds. In the second
part, I demonstrate how to formulate rigorous bounds on 7T, for two-dimensional
superconductors in the absence of a microscopic theory of superconductivity. The
examples raise fundamental questions about bounds in quantum many-body systems
that can provide new perspectives on unconventional transport and high-temperature
superconductivity in correlated electronic solids.
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1. Introduction

The investigation of electron propagation through quantum materials in response to
weak electric fields has been central to both experimental and theoretical condensed
matter and materials physics research for over a century. Nearly all major discoveries in
condensed matter physics — from superconductivity to the quantum Hall effect —have
relied on measuring dc electrical transport properties of materials. Low-temperature
transport studies enable bridging macroscopic material properties, namely electrical
conductivity, with the quantum mechanical properties of the interacting many-electron
Hamiltonian through its ground state and low-lying excitations in quantum solids.
However, for strongly correlated metals, it has been aptly observed that “... dc
transport is the first thing one measures, and the last thing one understands.” * The
theoretical description of transport in real materials presents a two-fold challenge:
First, constructing a minimal model that incorporates all “relevant” degrees of freedom
responsible for scattering is formidable — electrons scatter off nearly everything in
electronic solids. Second, even with a well-understood microscopic model, reliably
“solving” it, especially in the regime of strong interactions, to extract transport
coefficients can be even more challenging.

In the first part of these lectures, we will focus on transport in quasi-two-
dimensional systems, where resistivity is measured in units of Rg = h/e* T In the
absence of any microscopic theory of transport, one can speculate that the longitudinal
resistivity takes the form:

S T ¢ Ba (1)
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where T are characteristic temperature scales associated with the metal (e.g., Fermi
temperature, renormalized bandwidth, Bloch-Griineissen temperature, etc.), ¢ is a
characteristic length scale determined by disorder and/or interaction-induced mean-
free path relative to a microscopic length scale (e.g., lattice constant or Bohr radius),
Ba? is the magnetic flux relative to the flux quantum ®,, and so on. When 7" — 0 and
in exceptionally clean samples (i.e., in the absence of elastic scattering off impurities),
p — 0 in a translationally invariant metal and p — oo in an insulator. * Generically,
one might expect p ~ O(Rg) otherwise, as this is the only natural scale in the problem.
However, in “good” metals with a long mean-free path (kpl > 1), p < Rg; we will
address a puzzle inspired by experiments in a real material that is a good metal, but
where the T'—dependence of the resistivity is quite intriguing and raises a number
of interesting questions. In these lectures, we will be interested in the temperature
evolution of resistivity, p(7'), which in an ideal scenario can be backtracked to infer
the dominant scattering source for the electrons. For instance, in the vast majority of
“conventional” metals, the T'—dependence of resistivity is dominated by electron-phonon
*This quote has been attributed to a number of condensed matter experimentalists.

"In d—dimensions, this is instead Rg = (h/e?)[a]¢~2.
tOf course, p = 0 also in a superconductor regardless of these caveats, below the transition temperature.
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scattering, which is T'—linear above a characteristic temperature scale, crossing over to
a power-law T%*2 below that scale [1]. *

Our interest in these lectures will be on “unconventional” regimes of metallic
behavior, both of the “good” and “bad” variety, where the latter are characterized
by a short mean-free path (kpf ~ 1) and p 2 Rg. Transport in bad metals cannot be
understood in terms of any standard paradigm of scattering of long-lived quasiparticles
with long mean-free paths [2]. We shall be particularly interested in metals where
p(T) = po + AT, the problem of so-called “T'—linear resistivity,” inspired in part
by the ubiquity of this phenomenon [3]. Of course, such behavior is not necessarily
a sign of unconventional behavior since most conventional metals exhibit T'—linear
resistivity at intermediate (and room) temperatures due to electron-phonon scattering.
Our focus here will be on theoretical mechanisms that are not of this type, and on
materials where it is not a priori obvious that phonons are solely responsible for the
observed T'—linearity. Unfortunately, building a quantitative theory of transport from
first principles for materials can be quite challenging, since there is often no systematic
method to disentangle the effects of electron-electron and electron-phonon interactions
in an obvious fashion, as well as the contribution due to various forms of inhomogeneities
that are inevitably present spanning length scales. We will keep returning to various
elements of this interesting problem during the course of the first lecture.

The other quantum mechanical phenomenon that has captivated physicists since
its discovery is superconductivity, and it is safe to say that nearly all experimental
discoveries have been serendipitous. From a theoretical perspective, making predictions
for either the superconducting transition temperature 7. (and relatedly the mechanism)
is a notoriously difficult problem. Once again, the challenges are two-fold: First, building
an accurate microscopic model that incorporates the key material properties that
fundamentally control T, in an electronic solid. This is an issue even in “conventional”
superconductors where the Bardeen-Cooper-Schrieffer (BCS) theory, and its various
extensions, can be applied. Second, even when the starting microscopic model is
well understood and in the intermediate to strong-coupling regime (i.e., outside the
regime of validity of any weak-coupling BCS-like approach), a “controlled” theory for
superconductivity is typically unavailable.

In analogy with Eq. (1), and in the absence of a microscopic theory for 7., one
naively expects it to depend on the effective electron-electron and electron-phonon
interactions, some basic properties of the quantum-mechanical electronic wavefunctions,
on the nature of disorder, and so on. While there has been a great deal of progress
in combining first-principles-based computations with fully self-consistent Migdal-
Eliashberg theory, our interest here will be on formulating some general principles on
how to make concrete statements about the microscopic factors that fundamentally limit
T. in regimes where the above approaches do not necessarily work. In the second part
of these lectures, we will focus specifically on two-dimensional systems and scrutinize

*In most metals that are not “ultra-clean”, one does not encounter the phenomenon of “phonon-drag”.



what energy scales associated with sufficiently generic models of correlated electronic
solids must fundamentally limit 7, from above. Importantly, the goal here will not be
to predict T, or propose new mechanisms for superconductivity, but instead motivate
how one might be able to put strong constraints on how high 7, can be in principle
without any knowledge of the properties of the potential superconducting phase. We
will begin by demonstrating via explicit examples how many of the physically relevant
quantities that are widely believed to serve as (heuristic) upper bounds on T, are not
fundamental upper bounds. We will then end by formulating rigorous upper bounds on
T, by leveraging the power of optical sum-rules, which will also have some connections
to our previous discussion of transport.

The following material is primarily pedagogical and based on two lectures delivered
by the author at the Boulder Summer School for Condensed Matter and Materials
Physics on the Dynamics of Correlated FElectrons. The remainder of this article is
organized as follows: In Sec. 2, based on a large body of experimental work, we
make the case that in the regime of strong interactions, there are potentially quite
general and “universal” bounds that characterize both transport scattering rates and
superconducting T.’s regardless of microscopic details, and critically examine these
possibilities using different perspectives in subsequent sections. In Sec. 3 we discuss a
variety of examples of unconventional metallic transport, including 7T'—linear resistivity,
and place them in the context of our discussion on bounds on scattering rates.
Addressing these examples brings out a number of new and interesting questions that
deserve careful future study. In Sec. 4 we turn to the question of what energy scales do
not fundamentally limit 7,, and instead best serve as “heuristic” upper bounds, in the
absence of a microscopic starting point; we end by formulating how to rigorously bound
T, using optical sum-rules.

2. Quantum bounds on transport and superconductivity?

The study of electrical transport in interacting metals has a long and distinguished
history that predates the development of quantum mechanics. This journey traces back
to 1900, when Paul Drude related the motion of conduction electrons in metals —albeit
as a classical gas of free particles — to conductivity and Ohm’s law by introducing
the concept of a phenomenological electron momentum relaxation rate, or equivalently,
an inverse collision time (7) [1]. He wrote down Newton’s equation of motion for
individual electronic momenta: dp/dt = —p/7 + F, where t is time and F' is the
external force. Despite its simplicity and non-universal phenomenological nature, this
ultimately also leads to some basic understanding of the electrical conductivity at a
finite frequency, o(w) = 0¢/(1 —iwT). Here, oy depends on material parameters such as
electron density, electron charge, effective mass, and 7. In the original treatment, the
source of momentum relaxation was assumed to be due to the inevitable presence of
random impurities, which serves as a source of elastic scattering, leading to a residual
resistivity in the zero-temperature limit. In what follows, and in most of the present-day
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discussion of electrical transport in highly correlated metals, we focus on the inelastic
scattering mechanisms that control the temperature dependence of dc resistivity and
7(T), even when the Drude model itself might not be an accurate description of the
microscopic theory.

Since carrier densities and effective masses can vary dramatically between different
materials, direct comparisons of resistivity values across various substances often
lack meaningful interpretation. A more illuminating approach involves examining
the possibly “universal” relaxation timescales that characterize transport phenomena.
However, extracting transport scattering rate I'(= 77!) from dc resistivity measurements
presents significant challenges. Ideally, I' is best extracted from optical conductivity
measurements, for instance from the “width” of the Drude-like peak [5]. However, in
many materials of interest, this is not possible and so an alternative methodology has
been used to extract the temperature-dependent I' [3] that employs a Drude fitting
approach. The simplest approach is to express p = m,I'/n.e?, where m, is an effective
mass (often extracted from quantum oscillations or specific heat measurements) and
n. is the effective carrier density (typically extracted from Hall or quantum oscillation
measurements). In materials with complex fermiology and anisotropic Fermi velocities,
the above approximations need to be carefully scrutinized. * By further assuming that
m, and n. remain temperature-independent T and focusing only on the inelastic part of
the dc resistivity, p — po = AT, this yields:

kT h e*n,
N=a——- = — A 2
See Refs. [7, &] for a more in-depth discussion of some of the caveats and challenges

associated with this protocol. Despite some of the inherent uncertainties, it is striking
that numerous correlated metals, e.g. the cuprates, pnictides, ruthenates, organics,
and rare-earth element based compounds, displaying T'—linear resistivity with a finite
A—coefficient yield o ~ O(1) with the above “operational” definition of a transport
scattering rate [3, 9]. More recently, the same analysis has also been applied to transport
data in magic-angle twisted bilayer graphene (MATBG) near half-filling of the electron
and hole-like flat-bands [10] where a ~ O(1), and contrasted against older data in
monolayer graphene [11, 12] where a ~ 1072, The observation of a T'—linear resistivity
accompanied by a scattering rate with a ~ O(1) is commonly referred to as “Planckian”
scattering [13, 11]. Of course, as discussed in Sec. 1 and was noted by Peierls in 1934
[15], electron-phonon scattering above a characteristic temperature yields Planckian
scattering rates of the form in Eq. (2). Moreover, a similar Drude-analysis leads to
a ~ O(1) in many conventional metals (e.g. Cu, Au, Al, etc.).

However, one of the most striking aspects of the above analysis is the presence
of a single regime of T'—linear resistivity over an extended temperature range, at least

in some parameter regimes (e.g., in optimally doped cuprates [16] and over a range of
*See supplementary material of Ref. [3] for the analysis in multi-orbital systems.
fSee a recent optical conductivity analysis [6], which concludes that an effective T—dependent m,

conspires with a conventional I'(T') to yield a T'—linear resistivity in a specific compound (CeColns).
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fillings in MATBG [17]), where the A coefficient is constant and the scattering rate is
Planckian. This is surprising because in materials with complex unit cells that host
multiple optical phonon branches (see e.g. [18, 19] for discussion of phonons in these
materials), if the electrons scatter off these phonons with increasing temperature, one
would naively expect based on Matthiessen’s rule that there would be a sequence of
smooth crossovers leading to deviations from a single regime of T'—linear resistivity. *
This observation has inspired one of the central questions and the Planckian “conjecture
in the field T: Is there a fundamental bound on how large the inelastic transport scattering
rate can be in a gemeric correlated electronic system?

Part of the interest in correlated metals with seemingly “universal” Planckian
scattering rates is that a large fraction of them (e.g., cuprates, pnictides, ruthenates,
heavy-fermion compounds, organics, MATBG and so on) are also “high” temperature
superconductors with a largely unknown pairing mechanism. However, this statement
requires immediate scrutiny—how do we quantify “high”?  While for practical
applications one might be interested in the absolute value of T,., as theorists we are
typically interested in 7. relative to some intrinsic energy scales associated with the
material. In that sense, many heavy-fermion and moirsuperconductors with a relatively
“low” absolute value of T, are still considered to be “high” temperature superconductors.
Unfortunately, it is typically not immediately clear which of the microscopic energy
scales in a material directly influence T, or its maximum possible value. In the absence
of any fundamental understanding of these issues, one can once again turn to empirical
observations. In this regard, one of the most striking trends in 7, in correlated systems
was systematically analyzed and pointed out by Uemura and collaborators [22]. By
examining the ratio of T./Tr, where Tk represents a “proxy” for a Fermi temperature
in the parent metallic state, they observed that various unconventional superconductors
(including hole-doped cuprates as a function of underdoping) have relatively “large”
values of T,/Tr =~ 1072. More recently, twisted multilayer graphene superconductors
with partially filled nearly flat bands demonstrate an even higher ratio of T, /T ~ 107!
[23].  Importantly, such behavior is unexpected in the standard BCS-like regime of
conventional superconductors. Indeed, elemental metals (e.g. Al, Sn, Zn) exhibit much
smaller ratios of T../Tp =~ 10~*. Thus, empirically strongly correlated superconductors
appear to show values of T, that are much closer to Tr compared to their weakly
correlated counterparts. Of course, given the observed Planckian scattering rates in
the normal state and the relatively large ratios of T,./Tr across many of these systems,
one might wonder if there exist any fundamental close connections between the two
phenomena. This remains an open question at the moment.

However, there are several intriguing aspects associated with these observations.
First, accurately determining T from experiments can present significant challenges.

*In overdoped cuprates, it has been suggested that the slope does change and the higher-temperature
T—linear resistivity might arise from electron-phonon scattering [20].

tUnfortunately, there is no “universal” definition for a transport scattering rate, which complicates the
formulation of precise (conjectured) Planckian bounds [21].



The process often relies on measuring n. and m, through a combination of Hall
measurements and quantum oscillations, and then using the standard expression for Tr
for Galilean-invariant systems even in settings that are far removed from such a limit; in
moiré systems with a nearly diverging m, at the single-particle level (i.e., for flat bands),
interpreting the measurements in terms of such a T can be potentially problematic.
Second, within standard BCS theory (and away from any dilute limit), we do not expect
T, to be limited by T in the observed fashion at all. Interestingly, in a Galilean invariant
system, the zero-temperature superfluid stiffness of the superconductor is proportional
to the bare Tp [24], and does not depend on the interaction strength. This raises
the question of whether the observations by Uemura and coworkers are fundamentally
controlled by a bound on T, with respect to the zero-temperature stiffness. In light of
these observations, a long-standing question is: Are there any universal upper bounds
on superconducting T, in generic correlated electronic solids that do not rely on a precise
knowledge of the superconducting pairing mechanism?

3. A brief survey of IR-incomplete non-Fermi liquids

One of the cornerstones for describing conventional metals is Landau’s Fermi liquid
theory [25], developed originally for neutral He-3 atoms but which can be generalized
to electrons in a straightforward fashion [26]. A remarkable outcome of Landau’s
original treatment, which was beautifully clarified using a more modern Wilsonian
renormalization group perspective [27], is that the strongly interacting electrons at
the UV scale in a metal are effectively described in terms of low-energy renormalized
electronic “quasiparticle” excitations (i.e., carrying the same quantum numbers as the
bare electron). The lifetime for these quasiparticles becomes progressively longer as one
approaches the sharply defined Fermi surface in a Fermi liquid. Boltzmann had already
developed a powerful method to describe the dynamics of a density of particles, fp,
with momentum p, in a classical dilute gas of molecules in response to time-dependent
external forces [28] a few decades before Drude,

Oty _
S+ F -Vl =Clf]. 8

The right-hand-side of Eq. (3) describes collisions between the molecules, which
Boltzmann assumed to be statistically independent in a sufficiently dilute gas.
Remarkably, in a Landau Fermi liquid, as a result of the Pauli-blocking effect inside
the filled Fermi sea the Boltzmann treatment is applicable, but now the f,’s measure
the distribution of electronic quasiparticles and the collision term on the R.H.S. of
Eq. (3) is given by

C[f] O<_/ "'[fpfp1(1_fp2)(1_fp3>_fpzfpzs(l_fp)(l_fmﬂ ) (4)

where the additional (1 — f) factors ensure that the final states of collisions are not
occupied [26].



Our focus in these lectures will be on strongly interacting metallic phases that
display T—linear resistivity over an intermediate range of temperatures, i.e., for T' 2> T™*.
When the temperature drops below T™, there is a crossover to a metallic regime that
does not exhibit any T'—linear resistivity. Importantly, in the examples we discuss here,
T™* can not be pushed to zero by tuning any parameter. * The examples we discuss are
not stable “non-Fermi liquids” with a T'—linear resistivity down to zero temperature,
and thus are not described by a 7' = 0 infrared (IR) fixed point with a finite number
of relevant perturbations. We dub them as “IR-incomplete” phases of compressible
quantum matter [21]. Next we discuss a few examples of such behavior arising in a
variety of distinct settings.

3.1. FElectron-phonon scattering in equipartition regime

We have already encountered a familiar example of an IR-incomplete metallic state
that exhibits T'—linear resistivity — the electron-phonon problem where 7™ represents
the characteristic Debye or Bloch-Griineissen temperature [1, 15]. The origin of this
behavior arises from the high-temperature behavior of the collision integral in Eq. (4),
which depends on the phonon occupation number via the Bose-Einstein distribution,
ng(T) ~ T/T*. Thus in effect, the phonons with their unbounded Hilbert space act
as a source of quasi-elastic scattering at these high temperatures. Let us also note
in passing that while one might question whether the Boltzmann prescription is valid
in the above regime, where the single-particle self-energy Im>(w,T) ~ {w, T}, it was
pointed out in the seminal work of Prange and Kadanoff [29] in the context of the same
problem t hatapplying the Boltzmann equation does not rely on the existence of long-
lived quasiparticles, provided that the self-energy is primarily frequency dependent with
no (or rather weak) momentum dependence.

Why then is the ubiquitous T'—linearity of resistivity across correlated systems
not attributed to electron-phonon scattering (with some exceptions [30, 31])? Tt
has been widely argued that the non-Fermi liquid parent states of high-temperature
superconductors are not due to this mechanism [7, 8]. The arguments are based
primarily on three points: (i) The T'—linearity persists down to temperatures that
are significantly lower than T* ~ Cuvskr for acoustic phonons with velocity vg, or

* & Cwy for optical phonons with frequency wy, where C' < 1 is a numerical prefactor.
(ii) Matthiessen’s rule would suggest that coupling to multiple well-separated phonon
branches would lead to T'—dependent crossovers, which are typically not observed (at
least in special regions of the phase diagrams; see Ref. [32] for a counterexample).
(ili) Some of the most striking low-temperature 7T'—linearity is often restricted to
special points (suggestive of possible quantum critical points) or regions (suggestive
of a quantum critical phase) especially in heavy-fermion based compounds [33], which

*This is ignoring the obvious issue of superconducting instabilities that might interfere with the intrinsic
normal state properties; we assume here that 7, can be suppressed via other means to reveal the
metallic normal state.



highlights the importance of an electronic mechanism.

We will revisit the relevance of electron-phonon scattering and its more complex
generalizations in Sec. 3.4 below in the context of some intriguing experiments on a
real material. This will also lead us to speculate on potentially interesting scenarios
that could provide a way around each of these concerns by invoking strong (and
previously ignored) electron-phonon interactions that renormalize the phonon properties
themselves. However, we will first discuss examples of T'—linear resistivity in somewhat
unconventional and correlated metallic liquids with very short-distance correlations in
the next two sections.

3.2. Hot quantum matter in ultracold atom simulators

In this section, we will depart from the Landau-Boltzmann paradigm for describing
transport associated with low-energy excitations near an electronic Fermi surface.
Instead, we return to first-principles linear-response theory (i.e., the Kubo formula)
and obtain the generic form of the current-current correlation function and the optical
conductivity using the Lehmann representation [31],

1 — e P

T =
ow,T)=m —

> e Tuml? 6(Ey — By — huw). (5)
n,m

Here, the eigenstates of the general many-body Hamiltonian are represented using
indices n, m with energies F,, E,,, respectively. The total current operator, .J, has
matrix elements J,,, between states n, m. Finally, Z =) e PEn denotes the partition
function with 5~! = 7. Note that the S—dependence enters only via the Boltzmann
probabilities. One of the advantages of the above expression is that it can be applied,
in principle, to any problem provided the many-body eigenspectrum is available; this
includes problems with and without quasiparticles. Since the general framework for
computing transport does not depend on the presence of an underlying Fermi surface,
we will focus on interacting problems in regimes far from any renormalized Fermi-liquid-
like description in the remainder of this (and next) section. The highly correlated
metallic regimes we discuss will exhibit only short-ranged correlations in real space and
no associated sharp structure in momentum space.

Consider the regime where T represents the largest energy scale in the problem for
models with a bounded Hilbert space. In the dc limit (w — 0), the leading contribution
to a high-temperature (i.e., small §) expansion yields a deceptively simple expression
for the conductivity:

_mh 1
)" T Z

o(w, > [ uml* 6By — Eyy — hw). (6)
n,m

For generic non-integrable lattice models where the sum remains finite in the
thermodynamic limit, this immediately yields T-linear resistivity. The non-integrable
nature is crucial as it produces “random-matrix-like” matrix elements J,,, even without
explicit randomness [35]. The above program has been extended further on the
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theoretical side to incorporate corrections that are higher-order in 5 [36, 37], and on the
numerical side to evaluate the transport proxies using sophisticated numerical methods
38, 39, 40].

While Eq. (6) readily yields T'—linear resistivity, examining this behavior through
Einstein relations — which follow from local charge equilibration — proves instructive.

Ignoring thermoelectric effects [11], the dc conductivity o4, charge diffusion coefficient
D., and charge compressibility y. are related via,
on.
Ode — Xcha Xe = ) (7)
o

where n, represents the average density and p is the chemical potential. In the high-
temperature limit, when the electrons realize a “hot-soup”, or a non-degenerate liquid,
the 0. ~ 1/T behavior is controlled by the x. ~ 1/T piece, and a temperature
independent D, (or equivalently, scattering rate). Thus while this extremely high-
temperature regime is far from resembling any degenerate electronic liquid with sharp
spectral features in momentum-space, the T'—linear resistivity is not tied to any
Planckian scattering rate. However, this regime is characterized by “bad-metallic”
conduction with D, ~ a?/7y, where a is the lattice spacing and 7y is a timescale controlled
by the microscopic energy scales (that vanish when ¢ — 0). It is as if the diffusion
coefficient becomes bounded while the compressibility remains unbounded.

| _¢_ 5T ¢—¢; B
—0— >
0%
l l L ) l 0 1 | | 1
012 s 6 8 0 2 4 6 8
0 Temperature (t) Temperature (t)
Figure 1. Temperature-dependent measurement of (a) charge diffusion and

compressibility (inset) for a gas of ultra-cold °Li atoms in a quantum microscope
realizing a 2D Fermi-Hubbard model with U/t ~ 7.5 at a density n ~ 0.825. (b)
Inferred resistivity using Einstein relation. Grey horizontal dashed lines represent point
at which kgl ~ 1. Theoretical calculations using DMFT (in green) and the finite-7'
Lanczos method (in blue) are shown. Adapted from Ref. [12].

In traditional solid-state systems, this bad-metallic T'—linear resistivity regime
lacks practical relevance, particularly given their numerous phonon branches and their
unbounded spectra. However, ultracold atomic gases in optical lattices provide an
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excellent experimental platform for analyzing this regime. A recent experiment [12]
directly measured the diffusion constant and compressibility (Fig. 1a) to determine the
resistivity for a spinful two-dimensional Hubbard model quantum simulator across a
wide but relatively “hot” temperature window, 7'/t ~ 0.3 — 8. These measurements
confirm that the high-temperature regime (x. ~ 1/T, D. ~ const) is indeed observed.
Mysteriously, however, while both x. and D, exhibit T'—dependent crossovers with
decreasing temperature, p = [o.]”! retains its T'—linear behavior without noticeable
crossovers or slope changes (Fig. 1b). Although the microscopic origin of this robust
T'—linear behavior remains unclear, it can be reformulated as follows. Returning to
Eq. (5), one can formulate general conditions on the matrix element sum structure that
preserve the T'—linear resistivity slope [13]. This condition has been tested against
numerical exact diagonalization results across various lattice models for small system-
sizes. The fundamental question inspired by the cold-atom experiment is: What is the
underlying principle that connects the smooth evolution from the “high” temperature
regime (with a T—independent D.) to the “low” temperature regime (with D. ~ 1/T)
without any noticeable change in the magnitude of dp/dT ?

3.3. Charge frustrated bad metals

One might conclude that the aforementioned route to T—linear resistivity requires
temperature to be the largest energy scale in the problem. However, this constraint is
not necessary. As an explicit counterexample, we construct a “solvable” model at strong
interactions exhibiting a broad regime of intermediate temperatures with T —linear
resistivity driven byy. ~ 1/7. Consider a model of interacting spinless fermions on
the triangular lattice with a Hamiltonian,

H = H,+ Hy, (8a)
Hy = =t (cley +He) = pe Y ng, (8b)
(r,r’) r

(+-2) (1)

where ¢ is a nearest-neighbor hopping and V' is a nearest-neighbor repulsive interaction

HV:V
(

r,r

strength, respectively. The fermion density at 7 is, n¢ = cl.c, (= 0, 1), and the global
density can be tuned via the chemical potential, u.. It is worth pointing out that the
local Hilbert space dimension is 2 and the interaction-only limit (¢ = 0) is described
by the frustrated antiferromagnetic Ising model on the triangular lattice, for which a
number of exact results are known [14, 15, 46, 17], which will be useful when we solve
the model at strong-coupling.

At asymptotically weak coupling, \(= V/t) < 1, the ground state constitutes a
Fermi liquid with a sharply defined Fermi surface, and transport can be analyzed using
conventional Boltzmann equation approaches for low-energy Landau quasiparticles. In
the clean limit, Umklapp scattering degrades momentum, and for densities where the
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Fermi surface is sufficiently large (i.e., occupies a significant portion of the Brillouin
zone), we expect pac ~ (h/e2)V(T/Tr)?, where V represents a dimensionless interaction
strength and T denotes the Fermi temperature. The resulting state is a “good” metal
with pge < h/€?. In contrast, at strong coupling A > 1, the ground-state properties of
this Hamiltonian remain unknown; the model suffers from the infamous “sign- problem”
and is not amenable to quantum Monte Carlo methods. Nevertheless, inspired by
numerically exact studies of a hardcore boson version of the same model on the triangular
lattice [18, 19, 50], we can speculate that the ground state is likely (i) a renormalized
Fermi liquid over a wide range of A\, particularly away from commensurate fillings, and
(ii) exhibits additional charge density-wave correlations over a range of commensurate
fillings near 1/3 <n < 2/3.

We address the following question next: Consider the intermediate to high
temperature regime (i.e., temperatures exceeding any “coherence” scale associated with
a renormalized Fermi liquid). Let us analyze the problem perturbatively from the strong-
coupling limit (¢ = 0). Since the electron current operator scales as O(t), we observe
that o(w,T) o t? in Eq. (5). However, in this perturbative limit, thermal expectation
values can be evaluated within the purely classical theory at ¢ = 0. Thus, the 7" and
V' dependence of o(w,T) arises solely from the short-ranged correlators of the density
operators on nearest-neighbor sites connected by electron hops. The conductivity at a

finite frequency, w is then given by [51, 52], *
21— e~ __ o—BHizo({n}) o2 )
— _tz DI / Arrp/ 5 9
R T T M DI

where DF_, is the x component of the vector D,.., = r — 7’ for the longitudinal response
in the z—direction, and

Ay (W) = g (1 = ny) (I — el +€1)). (10)

Eq. (10) has an intuitive explanation: the n, (1 — n,) piece takes into account the
probability for an electron to hop between the two nearest-neighbor sites r and 7’
depending on their occupancies, and enumerates the number of excitations with energy
hw that can be generated via the hop. The energy difference corresponds to moving
an electron at ' with local energy e%, to a nearest neighbor site » with local energy
el. Relatedly, the expectation value in Eqn. 9 effectively amounts to computing the
histogram of Ae,,. = el —&l,.

Before examining the results for o, we discuss the charge compressibility y.. Across
a broad range of fillings, x. exhibits characteristic x. ~ 1/7 dependence at both
high (7" > V) and low temperatures (7' < V'), albeit with different prefactors. The
high—T7" limit parallels the results from the previous section. Additionally, in the ¢t = 0

*The t = 0 limit has a massive degeneracy and requires degenerate perturbation theory for a small
t. Instead, the degeneracy can be lifted by including e.g. a weaker longer-ranged screened Coulomb
interaction without affecting the transport properties in a qualitative fashion at the temperatures of
interest.
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Figure 2. Temperature-dependence of: (a) compressibility obtained from Monte-Carlo
computations showing distinct regimes of a 1/7" scaling connected by a smooth crossover.
The solid and dashed lines correspond to asymptotic expansions for y at high and low
temperatures, respectively. (b) dc resistivity for a few representative fillings. Adapted

from Ref. [51].

limit, the system maps onto the frustrated Ising spin model on the triangular lattice,
where the magnetic susceptibility in the spin representation directly corresponds to
the charge compressibility in the electronic description. Remarkably, at half-filling,
this correspondence yields an exact result for y. [53, 51]. The numerical simulations
reproduce this analytic result (see Fig. 2a), revealing a smooth crossover between the
high- and low-temperature 1/7" behavior at the characteristic scale T ~ V. Similar
qualitative trends emerge at other non-commensurate fillings, though with varying
slopes in the low-temperature regime. At commensurate fillings (e.g., n = 1/3), the
system undergoes a transition into an ordered phase with a precipitous drop in Y., as
expected in the strong-coupling limit.

Direct computation of the resistivity based on Eq. (9) in the w — 0 limit (see
Fig. 2b) reveals several interesting aspects. At commensurate filling (n = 1/3), the
high—T" metallic regime directly crosses over into the insulating crystal. For other
generic fillings, a smooth crossover occurs between two distinct regimes of T'—linear
resistivity, both largely dominated by the T'—dependent x.. However, given the
relatively smooth thermodynamic evolution as a function of filling, there exists a narrow
range of fillings (see e.g., data at n = 0.17) where, despite the relatively distinct
behaviors of x. at high and low T, the resistivity appears to exhibit no clear change
in its T-dependence over a wide temperature range. See Ref. [71] for more detailed
discussion of the additional structure in the data.

We conclude by noting that both the high to intermediate-temperature mechanisms
for T—linear and “bad” metallic resistivity are distinct from “Planckian” scattering-
dominated transport at low temperatures, that is ubiquitous across solid-state systems.
In the former, charge diffusivity saturates with increasing temperature and is bounded
by short-distance physics, while in the latter a sharp bound on the scattering rate (if
it exists) is presently unavailable. It is widely believed that the scattering rate in the
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correlated materials of interest is T'—linear rather than the compressibility; a recent
interesting exception has been observed in CeColn [6]. Establishing this distinction is
generally difficult without optical measurements. Remarkably, recent advances have
enabled direct measurements of electronic compressibility in two-dimensional gate-
tunable materials in the Planckian regime of MATBG [55]. Finally, we note that
the above models should not suggest that Planckian scattering rates are mutually
exclusive with bad metallicity (and short-ranged correlations), since there exist explicit
models (e.g., lattice constructions of Sachdev-Ye-Kitaev dots [56, 57, 21]) where the two
phenomena coexist. Given the difficulties in describing non-trivial regimes of Planckian
transport in real materials starting from first-principles, we turn to an interesting
example in the next section where such an attempt has been made successfully.

3.4. Bottom-up approach: Planckian transport in magnetic delafossites

As noted previously, electrons scatter off impurities, other electrons, lattice vibrations,
and collective excitations when propagating through even the cleanest quantum
materials. Isolating the contribution from electron-electron interactions while
maintaining detailed microscopic understanding of the electronic structure remains
challenging. This motivates studying materials that enable controlled investigation of
different scattering mechanisms. The delafossite compounds [58], PACoO4 and PdCrO,
provide an ideal controlled experiment, as they share an identical crystal structure (Fig.
3a) — alternating layers of highly conducting Pd sheets and insulating oxide layers
(CoOy or CrO,) arranged in triangular lattices — but exhibit dramatically different
transport properties. In PdCoO,, the CoO, layers form a conventional band insulator
with an O(eV) charge gap and no low-energy magnetic excitations. Conversely, in
PdCrO,, the CrOy layers form a Mott insulator with localized S = 3/2 magnetic
moments that undergo antiferromagnetic ordering below Ty =~ 37.5 K, highlighting
its strongly correlated nature. This material pair enables nearly perfect experimental
control: they possess virtually identical phonon spectra due to their shared structural
motif, * while their electronic spectra differ drastically. Both materials also exhibit
exceptional metallic conductivity with long mean-free paths (kgf > 1), confirming
their relatively clean nature.

Despite their structural similarities, transport measurements reveal striking
differences between these compounds [59]. While both are highly conducting metals,
PdCrO, exhibits significantly higher resistivity than PdCoO, across a wide temperature
range. Most remarkably, PdCrO, displays pronounced T'—linear resistivity extending
from approximately O(100) K up to the highest measured temperatures. The excess
resistivity A = p(7T) — p(T) grows linearly with temperature in this

PdCrOs PdCoOs
regime (Fig. 3b), and Drude analysis reveals the transport scattering rate has Planckian

form [61]. Empirically, PACrOy appears to provide an example of an IR-incomplete

*Except for the differences that arise from the weights of Co vs. Cr.
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Figure 3. (a) Structure of PdCrO,, consisting of alternating layers of triangular lattices
of conducting Pd planes (green) and Mott insulating CrOs planes (grey). The coupling
constants denoted in the figure are introduced in Eq. (11a) and Eq. (12¢). (b) The in-
plane resistivities of PdCrOy and PdCoOs taken from Ref. [59] along with their difference
Ap = papfcrOQ — pEﬁCOOQ > 0. Adapted from Ref. [(0)]

metallic phase where T'—linear resistivity does not extend to the lowest temperatures.
Controlled electron-irradiation experiments on PACrO, reveal that increased dosage only
increases the residual resistivity p(T" — 0), reflecting enhanced elastic scattering from
impurities, while the 7'—linear resistivity slope remains unchanged [01]. This highlights
the intrinsic origin of Planckian transport and demonstrates a Matthiessen-like behavior
in the transport scattering rates. This behavior mirrors similar experiments in electron-
irradiated cuprates [02], where T'—linear resistivity slope remains unchanged with dosage
while superconducting 7, and residual resistivity are affected as expected.Moreover, the
observations pose a fundamental question: given essentially identical phonon spectra
between the two compounds, such that traditional electron-phonon interactions cannot
account for this difference, what causes the enhanced T'—linear resistivity in PdCrO,?

The microscopic degrees of freedom and their couplings are well characterized
through spectroscopic measurements in both compounds [(63].  To understand
electrical transport in these layered metal/Mott-insulator systems, we construct a
minimal theoretical model capturing all relevant interactions and momentum-relaxation
scattering processes. The electronic dispersion, dominated by Pd electrons, has
been directly measured by ARPES in both compounds [61]. The Fermi surface is
approximately circular with area roughly half the Brillouin zone, readily modeled by
standard tight-binding with dispersion ¢, and chemical potential p. The magnetic
subsystem consists of localized Cr moments interacting via predominantly nearest-
neighbor antiferromagnetic Heisenberg exchange Jy. These interactions determine the
ordered state below Ty, but local moments exhibit significant dynamic fluctuations
above Ty that scatter conduction electrons. The coupling between conduction electrons
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and local moments has been directly extracted through spectroscopic measurements,
revealing antiferromagnetic Kondo exchange Jgx (Fig. 3a). To summarize, the low-
energy Hamiltonian is given by,

H = Hqg + Hs + H, (11a)

He = Z(ek — 11)DhaPha (11b)
k,a

Hy = JHZS S;, Hx=Jk me (S; - crag)pzﬁ, (11c)

(i,3)

The Kondo scattering mechanism alone cannot produce T'—linear resistivity. Previous
theoretical work shows that electrons scattering off fluctuating local moments in the
paramagnetic phase produce a scattering rate that grows sublinearly with temperature
before saturating to a temperature-independent value for 7' > Jg [65]. This behavior
reflects that magnetic correlations are bounded and become increasingly short-ranged
as temperature increases, unlike high-temperature phonons that occupy an unbounded
Hilbert space where occupation increases as ng(7T).

The crucial insight for resolving this puzzle involves recognizing a previously
ignored interaction term: an electron-magneto-elastic (EME) coupling [60]. Consider
the modified Hamiltonian starting from Eq. (11a), H — (H + Hp, + He—ph + Hemg),
where (Fig. 3a)

7y |2 MW&
By = 3 z(q 0 128

l=I.,1,,0 q
Hea-pn = Z (aav% pwpw + 040901( 0)pjopw) (12b)
Heve = o Z @(O)Pja S o'aﬁ)pzﬂ‘ (12¢)

Physically, this coupling arises because the interlayer distance directly affects the
hybridization between Pd and Cr electronic states, i.e. of the form p;racjg(l — aXjj),
which in turn controls the effective Kondo coupling strength. When the lattice
vibrates in the out-of-plane direction, it periodically strengthens and weakens this
magnetic interaction, creating a new channel for electron scattering that combines
phononic and magnetic degrees of freedom. Note that when Jgy = Jx = a = 0,
the above model essentially describes the theory for PdCoOy (except for the slight
differences in the values of wy). Given the long mean-free paths and a relatively detailed
understanding of the (weak) couplings between the distinct degrees of freedom, apart
from the EME coupling, we can employ the Landau-Boltzmann framework to calculate
the total scattering rate according to Matthiessen’s rule. In PdCoQO,, this would be
1/Tee = 1/Tepn, while in PdCrO,, due to the additional sources of scattering this
amounts to, 1/7, = 1/Tepn + 1/7x + 1/TeME.

Let us first consider the scattering rate in the asymptotic limit of high-temperatures.
The conventional acoustic electron-phonon scattering produces the familiar, 1/7 pn .
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MelphaT’, where the dimensionless coupling constant Aeppna. = voa2/(Mc?) depends
on the density of states vy, the electron-phonon coupling «,, the ionic mass M, and
the sound velocity ¢. The optical phonons contribute a more complex temperature
dependence, 1/Tepho, depending on the ratio wy/7T, starting from an exponentially
suppressed behavior at asymptotically low temperatures to the standard T'—linear
behavior at high temperatures. As noted above, the Kondo scattering off the fluctuating
Cr-local moments leads to a saturation of the rate at high temperatures. Finally, let
us turn to the EME scattering mechanism. Unlike conventional electron-phonon or
electron-magnetic scattering, the EME process involves a three-body interaction where
an electron simultaneously scatters off independent magnetic moments and out-of-plane
phonons. However, at the relatively high temperatures of interest, the former does not
contribute any temperature dependence while the latter provides the usual quasi-elastic
T—linear scattering rate. This leads to a scattering rate, 1/mgmE < Agmr?’, where the
effective coupling strength is Apyg = vo@%S(S + 1)/(M&2). Thus the enhancement in
the slope of the T'—linear resistivity in PdCrOs is directly affected by the total scattering
cross-section provided by the Cr-local-moments.

The EME interaction mechanism exhibits several distinctive features that enhance
its effectiveness. First, the out-of-plane phonon frequency @y is naturally softer than
in-plane modes due to weaker interlayer bonding, increasing the scattering cross-section.
The magnetic enhancement factor S(S+1) = 15/4 for S = 3/2 Cr moments significantly
amplifies the scattering rate coefficient even when the bare dimensionless coupling is
weak. Most importantly, unlike conventional electron-phonon scattering constrained by
small-angle processes, EME enables large momentum transfer because interacting local
moments with short correlation length can absorb momentum, effectively functioning as
a bath. Finally, experimental support for this proposal comes from the observation of
Wiedemann-Franz law k /0T ~ L/Ly — 1 in the T—linear resistivity regime, confirming
a quasielastic scattering source consistent with the EME mechanism [01].

A striking observation emerges from a detailed Boltzmann computation of
scattering rates using the known couplings and our conjectured EME coupling (treated
as a fit parameter). As shown in Fig. 4(b), neither electron-phonon, Kondo, nor
EME contributions are individually linear — each exhibits a non-trivial T'—dependence.
Nevertheless, their sum produces a Planckian form with an O(1) coefficient. The deeper
question of why these scattering rates sum to a Planckian form remains an open question.
Is this a coincidence or does it reflect some underlying fundamental bound? A recent
idea inspired by a study of the Holstein model suggests a “stability-bound” on the
dimensionless coupling constant [(0], before the metallic state becomes unstable to
competing orders. However, in the above system this putative bound appears to apply
to a total scattering rate, not just the electron-phonon contributions. The generalization
of such a bound to coupling constants that induce an inelastic scattering rate is presently
unknown.

As we conclude this section, it is worth asking whether this material provides
insights into similar mechanisms for T'—linear resistivity in other systems. The above
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Figure 4. (a) Comparison of in-plane resistivity between experiments [59] (dotted lines)

and the model in Eq. (11a) and (12¢) (solid lines). The free fit-parameters are the out-
of-plane phonon frequency and bare el-ph and EME couplings. All other parameters
are fixed; see Ref. [(1]. For the phonon data, we have used wp = 29meV, wy = 120meV,
Wo = 40meV, Aa—pna = 0.04, Aej—pho = 0.02, Agye = 0.05 and S = 3/2. (b) Rate of
change of scattering rate from fit (obtained from Boltzmann theory) and experiments.

Adapted from Ref. [60].

mechanism demonstrates that phonons can intertwine with correlated electronic degrees
of freedom to produce unexpected behavior. Notably, specific heat measurements show
that local moments cause relative phonon softening (and reduced Debye temperature) in
PdCrO, compared to the non-magnetic PACoO, [61]. Returning to the key criticism that
phonons cannot produce T'—linear resistivity in strange metals, consider the following
possibilities: while the bare phonon energy scales are presumably too high for low—T
linearity, coupling to electronic degrees of freedom could induce a non-trivial softening.
Simultaneously, the electron-phonon coupling could be enhanced up to some putative
stability bound producing Planckian scattering rates. Finally, couplings to different
phonon branches need not have equal strength, getting around Mathiessen’s rule.
Investigating these questions in concrete, solvable settings remains an exciting frontier.

4. Superconductivity is not boundless

All superconductors, regardless of their microscopic mechanism or pairing symmetry,
exhibit two fundamental properties: zero electrical resistance and diamagnetism. These
properties are intrinsically linked. Consider the universal form of their longitudinal

optical response,
2

Re[o(w)] = %DS 5(w) + s (13)

where the coefficient of the d—function response at zero frequency, Dy, is referred to
as the superfluid stiffness. The symbols

¢

..., denote corrections that depend on the
low-energy spectrum in the superconductor, which is determined by factors such as
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the energy gap (or its absence in nodal systems or due to disorder-induced bound
states), collective modes, and other phenomena. Here we focus primarily on (quasi)
two-dimensional superconductors, a category encompassing many intriguing and poorly
understood systems including cuprates and moiré materials. The dominant contribution
to the long-wavelength fluctuations in two-dimensional superconductors is governed by
a free energy, F', associated with a complex order-parameter ¥ = |Wg|e?, where,

F = Ds/d2r(V6’ —2eA)’ + ... (14)

Here e is the electron charge and A is the external vector potential that couples
minimally to the charge—2e Cooper-pair represented by W. The symbols ‘..." include
higher order contributions to the free energy from the fluctuations of the order
parameter. In general, Dy(7T) exhibits a non-trivial temperature dependence that
inherently measures the strength of phase-fluctuations, and can be a sensitive probe
of the interplay of the density of states associated with the low-energy Boguliobov
excitations and disorder. In two-dimensional systems, D, has dimensions of energy, and
the superconducting transition follows the Berezinskii-Kosterlitz-Thouless universality
class, where T, = 2Dy (T;)/m [67]. Any universal understanding of T, in (quasi) two-
dimensional systems must therefore focus on the microscopic ingredients that limit D,
making this a question of fundamental importance and far-reaching significance.

The above discussion reveals a crucial distinction between the energy scales limiting
T.. While D, governs phase-ordering, there exists (generically) an independent energy
scale associated with amplitude-ordering. Consider a two-dimensional Galilean invariant
electron system with parabolic dispersion (with mass m and density n). The zero-
temperature superfluid stiffness D (T = 0) = 4ne®/m relates to the Fermi temperature
— a large energy scale independent of the pairing gap and interaction strength.
Conversely, the amplitude ordering scale in the weak-coupling BCS limit starting from
a Fermi liquid normal state determines T, ~ woe™"/9(< wy), where wy is a characteristic
energy scale (e.g., phonon mode) with dimensionless attraction strength g < 1. An
uncontrolled extrapolation to g — oo might suggest that T, is limited by wy, the
only relevant energy scale that provides the attraction. However, beyond the weakly
interacting limit in the absence of an a priori obvious Cooper instability of a Fermi liquid
and potentially competing orders, one must reconsider which energy scale controls T,.. As
we will see in the next section, optimizing one energy scale (e.g., pairing) to enhance T,
often degrades the other (e.g., phase-coherence) scale, fundamentally limiting achievable
values of T,.

4.1. Raising T, — an optimization problem

We illustrate the competing tendencies of amplitude versus phase-ordering in a
superconductor with increasing interaction strength using the attractive—U Hubbard
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model with nearest-neighbor hopping on the square lattice,

H= Y (—t—pdy)l,c;, |U|Z (15)

(3,3),0

where n; = EU Ci.0Ci o and o is the chemical potential. The dimensionless interaction
strength can be considered to be g = |U|/t. For g < 1, we expect a mean-field like
transition to superconductivity with 7M¥T ~ |U|e=**IVl where « is an O(1) number.
To go beyond the weak-coupling limimt, where perturbation theory in |U|/t is likely to
fail and the fate of the metallic state above a putative superconducting 7. is a priori
unclear, one can employ the numerically exact quantum Monte-Carlo (QMC) method
[68]. The absence of the infamous “sign-problem” is due to time-reversal symmetry at
any band filling and enables an exact solution. With increasing |U|/t, T, reaches a
maximum value around t ~ |U|, and then decreases (Fig. ba). Interestingly, the spin-
gap scale from spin susceptibility increases monotonically [09], indicating pair-formation
at high temperatures without any onset of superconductivity at the same scale. This
imples that while pair-formation leads to a finite local expectation value for |¥y|, long-
range phase-coherence is absent. In order to understand the suppressed 7., one can
start from the strong-coupling limit (i.e., ¢ = 0) where the ground state is a massively
degenerate liquid of fully localized Cooper-pairs. Turning on a finite ¢ reveals a finite
energy scale associated with the hopping of Cooper-pairs, t?/|U|, which is precisely the
Dy scale (phase-stiffness relates directly to Cooper-pair kinetic energy). Thus in the
strong-coupling limit, 7 is no longer limited by the gap-size, |U|, but by D,. Moreover,
the transition is highly non-BCS-like since the normal state above T is not a Fermi liquid
with a sharp Fermi surface, but a phase-incoherent liquid of gapped Cooper pairs.
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Figure 5. (a) Numerically exact solution for 7. obtained using QMC (blue) for the
model in Eq. (15), along with the BCS prediction for TM¥T at weak-coupling and #2/|U|
at strong-coupling. Adapted from Ref. [69] (b) Schematic illustration of the model
in Eq. (16a), along with the dispersions and momentum distribution functions for the
bosons. Adapted from Ref. [70].

This analysis illustrates a fundamental principle underlying the challenge of
increasing 7. in models with two separate energy scales (e.g., t and |U]): enhancing
the pairing scale by increasing attraction strength comes at the cost of degrading the
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phase-stiffness. This raises two important questions: (i) What sets T, in the limit of
a vanishing bandwidth, as in “flat” bands central to tunable moiré materials, when
interactions provide the only energy scale? (ii) Does D serve as a fundamental upper
bound on 71,7

Let us briefly address both questions before elaborating in the next two sections. In
the limit ¢ — 0, Dy — 0 in the above example. However, this limit is pathological as the
lattice becomes disconnected, making the resulting classical model non-superconducting.
Conversely, flat bands relevant to isolated bands in moiré materials arise from
subtle quantum mechanical interference effects. The (de-)localization properties of
any Wannier function constructed for the flat band are determined by their Bloch
wavefunctions (quantum geometry) [71]. In the extreme limit of a completely quenched
kinetic energy, interactions provide the only relevant low-energy scale. If the ground
state is superconducting, T, and Dg must be set by the interaction scale [72]. Explicit
“solvable” examples show that one of the ingredients determining 7, (and Dy) is the
integrated Fubini-Study metric [73, 74, 75, 76, 77]; however, a non-zero metric with
attractive interactions does not guarantee superconducting ground states as competing
orders can arise generically [73, 77]. For superconducting states that arise in models
with topologically trivial flat bands, T./|Ws| — 0 can be realized in an “atomic”
limit. Fundamentally, no lower bound exists on superconducting 7, under generic
circumstances. This raises the question of what sets possibly tight upper bounds on
T,., both in generic electronic models and in low-energy models relevant for moiré
superconductivity.

4.2. Reuisiting upper bounds on T,/ D4(0)

The empirical observation of a seeming bound on 7, in terms of a “proxy” for Eg
[22] suggests that the zero-temperature superfluid stiffness D4(0) plausibly serves
as a fundamental upper bound on superconducting 7, [78]. This reasoning stems
from the BKT relation T, = wD4(T.)/2, combined with the assumption that D4(T)
decreases monotonically with temperature, yielding Ds(0) > Dy(7.). The zero-
temperature phase stiffness can be extracted experimentally from London penetration
depth A2 (0) oc 1/D,(0) or low-frequency optical conductivity measurements [79]. While
this reasoning applies to many stiffness-limited superconductors, no fundamental bound
exists on T,./D4(0) [70]. The physical inspiration for violating such bounds connects,
e.g. to experimental observations in Zn-doped cuprates [30], highlighting fundamental
limitations of phase-stiffness-based bounds on superconductivity.

As an explicit example, consider a two-dimensional lattice model with two species
of complex bosons b, (o = 1,2), with a Hamiltonian [70]

H = HO + Hint; (16&)
Hy= Y ca(k) bl bos: Hime =) %nw(na,r —1). (16b)
ak «

Let us assume that e9(k) has a large bandwidth W5, and e, = e2(0) — ¢ forms a
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completely flat and trivial band at energy gy below the bottom of the g5 band (see
Fig. 5b). We have included an on-site Hubbard interaction of strength U, for the
b, bosons. The interaction term Hj, includes an on-site Hubbard interaction with
strengths U 5 for the b; o bosons. Consider the limit U, < Wy and U; — oo, imposing
a hard-core constraint on the b;—bosons. Consider the total boson filling per unit cell
to be n, > 1. For the remainder of our discussion, we can simplify the problem by
approximating e5(k) ~ k?/(2m;) near the bottom of the broad band.

At temperatures near T, the chemical potential lies slightly above the bottom of
the broad band. Assuming T > &, the average occupation associated with the b,
bosons on the localized sites approaches 1/2, since they behave as hard-core bosons at
effectively infinite temperature. The remaining (n, — 1/2) bosons per unit cell occupy
the broad band, leading to (upto additional logarithmic corrections) [31, 82, 83],

ny — 1/2

T, ~
me

(17)

On the other hand, at T" = 0 the localized sites associated with the b; bosons are fully
filled with one boson. The density of bosons in the broad band now becomes (n, — 1),
such that

ny — 1
DL(0) ~ . 18
0)~ B (18)
From Egs. (17) and (18), the ratio becomes:

DS(O) N nb—l .

Thus we immediately note that this ratio can be made arbitrarily large as n, — 1. In
fact, when 1/2 < n;, < 1, the ground state is not a superconductor (i.e. D4(0) = 0), while
T. > 0; the physics involves “reentrant” superconductivity where the system becomes
superconducting upon heating. The physical mechanism underlying this violation is
that at high temperatures, the flat band is only half-filled on average, leaving more
particles available for the dispersive band and enhancing 7,.. At low temperatures,
complete filling of the flat band depletes the dispersive band, suppressing D¢(0). Thus,

*

as a matter of principle, we can not have a fundamental upper bound on T,./D(0).

4.8. Fundamental upper bounds from optical sum-rules

To address which energy scales fundamentally bound 7., we examine the origin of the
spectral weight contained in the Ds6(w) piece. Across a superconducting transition, a
large fraction of the spectral weight contained in w € [0,2A] (where A is the largest SC
gap-scale) is transferred to §(w). However, as is well-known, the total optical spectral-
weight is constrained and determined by only a few microscopic properties of the many-
body Hamiltonian [85, 86], as we will now demonstrate by revisiting Egs. (5) and (13).

*In a similar vein, any putative upper bound on T./Er (with an appropriately defined Fr) can also
be violated by an arbitrary amount in explicit examples [70], highlighting that no such fundamental
bound exists oustide of the Galilean-invariant limit [84].
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Thus, we can use optical sum-rules to constrain D4(0) [31]. Recall that the current
operator J, = —ie[X, H], where the many-body position operator, X = > . micjci.
Then, the expression for the integrated longitudinal conductivity starting from Eq. (5)
becomes,

S = /0 " i Refo(w)] = O </3[X, X, H]]), (20a)

where p is a density matrix associated with either a thermal state, or ground-state
projector. Focusing on T' = 0, we can bound D,(0) < S.

As a first simple application of this sum-rule, consider a theory for ¢« = 1,.., N
charged electrons with a many-body Hamiltonian,

H = Z ;;lc;facw + Z U(ri)n(r;) + % ; V(ri—rjn(r)n(r;), (21)

where we have assumed a Galilean-invariant dispersion with bare mass, m, an onsite

potential, U(r;), and density-density interaction, V(r; — r;). Computing the detailed
w dependence of o(w) for this theory can be quite complicated, as it depends on the
many-body phase, which is determined by the hierarchy of energy scales, filling, and
other parameters. However, if we are interested in the total integrated optical spectral
weight S, we can evaluate it simply by computing the double commutators in Eq. (20a),
and we find S = me?n/m (which is again related to Tr up to an overall prefactor). Note
that the result here applies regardless of the specific many-body phase. This is simply
the classic optical f—sum-rule [35]. The simplicity of the sum-rule stems partly from
the purely local interaction terms V' that do not couple to the external vector potential.
We will return to this point shortly, as this formulation is not accurate for low-energy
models of moiré materials.

While powerful and rigorous, the above statement is not necessarily “useful” in
generic electronic solids, where the full optical spectral weight S is O(eV) and thus
bounds T, by the same energy scale. In special situations with low electronic density
where T is small, this can serve as a tight upper bound. More generally, the model
can be deformed at the single-particle level, starting from a non-trivial bandstructure
(instead of parabolic bands) while preserving interaction terms. The external probe
gauge field still couples only to the kinetic energy piece, and the sum-rule can still
be evaluated straightforwardly, though it appears more complicated [$1]. However,
since this sum-rule examines the entire spectral weight out to infinity and includes all
“inter-band” transitions, the spectral weight remains O(eV). This prompts the question
whether one can do better using partial sum-rules that extend over a lower range of
energy scales to place tighter bounds on T, [36, 87, 88, 89].

An ideal and non-trivial example of using partial sum-rules is provided by moiré
systems, where one can potentially bound 7. in the absence of a microscopic mechanism
for superconductivity. In the regime of interest, the physics is determined only by a
subset of lowest energy bands, isolated from higher energy bands by a bandgap Eyand,
as in MATBG; see Fig. 6. At a partial filling of low-energy bands, if interactions do
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Figure 6. Restricted sum-rule, S = f Re[oeg(w)] dw associated only with the “intra-

band” transitions within the low-energy active bands.

not couple degrees of freedom across the gap (V' < Epang), we can ask for the analog
of Eq. 20a when restricting attention to the low-energy theory up to frequency scale
IR, i.6., S = fOAIR Reloeg(w)] dw. This leads to several interesting conceptual subtleties.
First, integrated optical response associated only with low-energy theory should involve
only low-energy degrees of freedom, but the microscopic current operator generically
mixes low and high energy degrees of freedom. Second, once the interactions are
projected to the low-energy theory in settings where the bands carry non-trivial quantum
geometry, interactions need not remain local and can couple directly to the external
vector potential. This is expected since interactions generate single-particle bandwidth
and other interaction-induced terms (such as pair-hopping), which can couple directly
to the external vector potential. Conceptually, given the projected low-energy effective
theory Hey = PHP, where P is the projector to “active” bands (constructed from their
Bloch wavefunctions [71]), how should one introduce minimal coupling to the low-energy
degrees of freedom? Properly addressing these questions and carefully “integrating-out”
the remote degrees of freedom requires using a Schrieffer-Wolff transformation [90, 87].

There is an elegant route that directly yields the correct expression for the partial
sum-rule. Note that the double-commutator structure in Eq. (20a) can be rewritten as

limg, 0 02 Tr (ﬁemX He—ieX > , which effectively encodes minimal coupling and computes

the second-order response, §°H/§A?, in the presence of an infinitesimal external vector
potential. The form of the minimal coupling is fixed by the microscopic U(1) charge
conservation tied to all of the electrons in the problem. In the projected limit, given an
emergent U(1) conservation law associated with only the density in the active bands,

the appropriate quantity to evaluate is lim,_,o 92Tr (ﬁeiapf( PP [fPe—ioPX P) , which yields
_ Ar T N R R
S = / Re[oo(w)] diw = — 2 Tr (p[PXP, PXP, ]P’H]P’]]). (22)
0

It can be explicitly verified that this addresses all of the previously raised subtleties
about the low-energy response. However, while deceptively simple to write down, this
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expression is quite complicated to evaluate exactly for interacting theories since it
also involves four-fermion expectation values [87] (for reasons explained previously).
Nevertheless, there are several non-trivial and strongly interacting “solvable” limits
where the partial sum-rule can be evaluated exactly [39], and has been used to place
strong constraints on 7T, for MATBG due to screened Coulomb interactions [91].

5. Outlook

These lectures have attempted to formulate general principles, explore non-trivial theo-
retical mechanisms, and raised open questions in the pursuit of unconventional transport
and superconductivity in strongly correlated electron systems. The approach has relied
partly on the possible existence of “quantum bounds”, which serves two goals: ven-
turing beyond classic textbook descriptions of Fermi liquids and their well-understood
instabilities (e.g. to pairing) into uncharted territories of interacting quantum matter,
and attempting to resolve specific puzzles inspired by experiments in quantum materials
where a partial microscopic understanding enables possible resolution. The frontier of
strongly correlated systems continues to reveal unexpected phenomena that challenge
our fundamental understanding and promise exciting discoveries in quantum many-body
physics.
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