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Neuroscience Mini-course: Exercise Set 4 Solutions

1. Squared error distortion: We consider a continuous random variable
with mean zero and variance o2 of unknown distribution under squared-error
distortion, which can be written as

D= E[d(z,#)] = E [(z — &)*]

and which is, on average, the familiar concept of mean-squared error.
This time, instead of finding a single rate-distortion function, we are find-
ing upper and lower bounds on the rate-distortion function over all possible

sources.

We can begin by finding the lower bound, assuming that we have random
variables X and X such that E [(X - X)z} <D,
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For the upper bound, we consider the channel
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2. First, we verify that this channel operates with our desired distortion,
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because X and Z are independent
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Back to part 1. Next, we find the second moment of X,
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Now, using both of these and, again, leveraging the fact that the gaussian
maximizes entropy for a constrained variance, we can calculate our upper
bound on the mutual information,

I(X;X) = H(X)-H(X|X)
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see Theorem 8.6.4 in Cover & Thomas
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3. Now that we have shown both our upper and lower bounds, we can
observe (for the last part of the question) that, iff X is Gaussian, the lower
bound is equal to the upper bound — otherwise, the lower bound is strictly
less than the upper bound. Thus, the readout of a Gaussian X is “harder”
than the readout of an X with any other distribution, in the sense that the
R(D) function is greater for a Gaussian than for any other distribution (to
further clarify, more bits are required to describe a Gaussian at a particular
level of distortion than are required for any other distribution at the same
level of distortion).



4. Information bottleneck: Now, we want to explore an important prod-
uct of rate-distortion theory known as the information bottleneck. In par-
ticular, we want to minimize the function

r(nlln)ﬁ I(X; X) — BI(X;Y) ZA <Zp(m) - 1)
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where our distortion is now a somewhat more abstract quantity,
d(z, ) = —I(X;Y)

but has an easy interpretation: We want to minimize our information rate,
as before, but now we want to maximize the amount of information I(X;Y)
that we transmit about Y, some quantity that is encoded in X. Note that,
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To begin, we obtain
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and we will approach each of these terms in turn.
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First,
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due to fixed z, Z
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Putting these all together,
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Now, we observe that
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we can rewrite £, set it to zero, and solve for p(&|z):
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