
Boulder Theoretical Biophysics 2019
Neuroscience Mini-course: Exercise Set 4 Solutions

1. Squared error distortion: We consider a continuous random variable
with mean zero and variance σ2 of unknown distribution under squared-error
distortion, which can be written as

D = E [d(x, x̂)] = E
[
(x− x̂)2

]
and which is, on average, the familiar concept of mean-squared error.

This time, instead of finding a single rate-distortion function, we are find-
ing upper and lower bounds on the rate-distortion function over all possible
sources.

We can begin by finding the lower bound, assuming that we have random

variables X and X̂ such that E
[
(X − X̂)2

]
≤ D,

I(X; X̂) = H(X)−H(X|X̂)

= H(X)−H(X − X̂|X̂)

≥ H(X)−H(X − X̂)

≥ H(X)−H
(
N
(
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[
(X − X̂)2
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= H(X)− 1

2
log
[
2πeE

[
(X − X̂)2

]]
I(X; X̂) ≥ H(X)− 1

2
log [2πeD]

For the upper bound, we consider the channel

X̂ =
σ2 −D
σ2

(X + Z)

where Z ∼ N
(

0, Dσ2

σ2−D

)
.

2. First, we verify that this channel operates with our desired distortion,
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]
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because X and Z are independent

=
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(
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=

(
D
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(
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Dσ2

σ2 −D
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Back to part 1. Next, we find the second moment of X̂,

E
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X̂2
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E
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(X + Z)2

]
=

(
σ2 −D
σ2

)2 (
E
[
X2
]

+ E
[
Z2
])

=
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Now, using both of these and, again, leveraging the fact that the gaussian
maximizes entropy for a constrained variance, we can calculate our upper
bound on the mutual information,

I(X; X̂) = H(X̂)−H(X̂|X)

= H(X̂)−H
(
σ2 −D
σ2

Z

)
= H(X̂)−H(Z)− log

σ2 −D
σ2

see Theorem 8.6.4 in Cover & Thomas
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2
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]
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2
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2
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]
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2
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]
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2
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2
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3. Now that we have shown both our upper and lower bounds, we can
observe (for the last part of the question) that, iff X is Gaussian, the lower
bound is equal to the upper bound – otherwise, the lower bound is strictly
less than the upper bound. Thus, the readout of a Gaussian X is “harder”
than the readout of an X with any other distribution, in the sense that the
R(D) function is greater for a Gaussian than for any other distribution (to
further clarify, more bits are required to describe a Gaussian at a particular
level of distortion than are required for any other distribution at the same
level of distortion).



4. Information bottleneck: Now, we want to explore an important prod-
uct of rate-distortion theory known as the information bottleneck. In par-
ticular, we want to minimize the function

min
p(x̂|x)

L = I(X; X̂)− βI(X̂;Y )−
∑
x

λ(x)

(∑
x̂

p(x̂|x)− 1

)

where our distortion is now a somewhat more abstract quantity,

d(x, x̂) = −I(X̂;Y )

but has an easy interpretation: We want to minimize our information rate,
as before, but now we want to maximize the amount of information I(X̂;Y )
that we transmit about Y , some quantity that is encoded in X. Note that,

I(X;Y ) ≥ I(X̂;Y )

To begin, we obtain

δp(x̂)

δp(x̂|x)
=

δ

δp(x̂|x)

[∑
x

p(x̂|x)p(x)

]
= p(x)

and

δp(x̂|y)

δp(x̂|x)
=

δ

δp(x̂|x)

[∑
x

p(x̂|x)p(x|y)

]
= p(x|y)

5. Next, we obtain

δL
δp(x̂|x)

=
δ

δp(x̂|x)

[
I(X; X̂)− βI(X̂;Y )−

∑
x

λ(x)
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p(x̂|x)− 1
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=
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δp(x̂|x)
I(X; X̂)− β δ

δp(x̂|x)
I(X̂;Y )

− δ

δp(x̂|x)

∑
x

λ(x)
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x̂

p(x̂|x)− 1

)

and we will approach each of these terms in turn.



First,

δ

δp(x̂|x)
I(X; X̂) =

δ

δp(x̂|x)

[
H(X̂)−H(X̂|X)

]
=

δ

δp(x̂|x)

[
−
∑
x̂

p(x̂) log p(x̂) +
∑
x

p(x)
∑
x̂

p(x̂|x) log p(x̂|x)

]
due to fixed x, x̂

=
δ

δp(x̂|x)
[−p(x̂) log p(x̂) + p(x)p(x̂|x) log p(x̂|x)]

using the product rule twice

= −p(x) log p(x̂)− p(x) + p(x) log p(x̂|x) + p(x)

= p(x) log
p(x̂|x)

p(x̂x)

Then,

δ

δp(x̂|x)
βI(X̂;Y ) = −β δ

δp(x̂|x)

∑
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p(x̂, y) log

[
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p(x̂)p(y)

]
= −β δ
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∑
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[p(x̂|y)p(y) log p(x̂|y)− p(y|x̂)p(x̂) log p(x̂)]
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[∑
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p(x̂|y)p(y) log p(x̂|y)− p(x̂) log p(x̂)
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= −β
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p(x|y)p(y) log p(x̂|y) + p(x|y)p(y)− p(x) log p(x̂)− p(x)

]
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∑
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Finally,
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∑
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p(x̂|x)− 1

)
= λ(x)



Putting these all together,

δL
δp(x̂|x)

= p(x) log
p(x̂|x)

p(x̂)
− β

∑
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= p(x) log
p(x̂|x)

p(x̂)
+ βp(x)

∑
y

p(y|x) log
p(x̂|y)

p(x̂)
− λ(x)

using Bayes rule

= p(x) log
p(x̂|x)

p(x̂)
+ βp(x)

∑
y

p(y|x) log
p(y|x̂)

p(y)
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[
log
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+ β

∑
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p(y|x) log
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p(y)
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]
Now, we observe that

log
p(y|x̂)

p(y)
= − log

p(y|x)

p(y|x̂)
+ log

p(y|x)

p(y)

and so, with

λ̃(x) =
λ(x)

p(x)
− β

∑
y

p(y|x) log
p(y|x)

p(y)

we can rewrite L, set it to zero, and solve for p(x̂|x):

0 =
δL

δp(x̂|x)
= p(x)

[
log

p(x̂|x)

p(x̂)
+ β

∑
y

p(y|x) log
p(y|x)

p(y|x̂)
− λ̃(x)

]

p(x̂|x) = p(x̂) exp

[
−β
∑
y

p(y|x) log
p(y|x)

p(y|x̂)
− λ̃(x)

]
p(x̂|x) = p(x̂) exp

[
−βDKL[p(y|x)||p(y|x̂)]− λ̃(x)

]
p(x̂|x) =

p(x̂)

Z(x, β)
exp [−βDKL[p(y|x)||p(y|x̂)]]

p(x̂|x) ∝ p(x̂) exp [−βDKL[p(y|x)||p(y|x̂)]]

using

DKL[Q(i)||P (i)] =
∑
i

Q(i) log
Q(i)

P (i)

and

Z(x, β) = exp(λ̃(x)) =
∑
x̂

p(x̂) exp(−βDKL[p(y|x)||p(y|x̂)])


