BOULDER THEORETICAL Biroruysics 2019

Neuroscience Mini-course: Exercise Set 3 solutions

1. Data processing inequality: This question based on problem 8.9 from
MacKay. There, they use the mutual information chain rule, which is, for
any ensemble XYZ,

I(X:Y,2)=I(X;Y) + I(X; Z|Y)

. We will not appeal to that directly here, but it may be of general interest.
We want to show that

I(S;R) < I(S;T)

given that
P(s,t,r) = P(s)P(t|s)P(rl|t)
So,
H(S|R,T) = H(S|IT)
H(S|R) > H(S|T)
H(S)—H(S|R) < H(S)—H(S|T)
I(S;R) < I(S;T)

From lecture: Capacity of a binary symmetric channel. Given some
binary source distribution (p(x)) and bit-flip probability (f), we want to find
the capacity of a binary symmetric channel. This is taken from problem 9.2
in MacKay.
That is, we want to find:
C = maxI(X;Y)
p(z)
= maxH(Y)—- H(Y|X)
p(z)

and we can note now that H(Y') is maximized by p(y) = 1/2 and that, from
the symmetry of the channel, this can be achieved by setting p(x) = 1/2.
However, we can also observe that,

I(X;Y) = H(Y)- H(Y|X)
= Ha(pof +p1(1 - f)) — Ha(f)
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Figure 1: The capacity of a Z-channel with f = .2 as a function of p;.

and we know that Hy(a) is maximal for a = 1/2. We can choose pg = 1/2
to ensure that the argument to the first Ho will always be 1/2. So,

C =maxI(X;Y)
p(z)

(31 +50-0) - 1)

Hy(1/2) — Ha(f)
1 — Hs(f)

2. The Z channel. This is similar to exercise 9.15 in MacKay.

We want to find, for f = .2,

I(X;Y)

H(Y)-H(Y|X)
Hy(p1(1 = f)) — p1Ha(f)

Now, we can maximize this expression with respect to p; using the fact

that
H2——log21
o1 pd-f)
0_57}71 = -1 f)10g21 o= F) Hy(f)
_ 1—pi(1—f)
P _ 1—pi(1-f)
pi(1—f)
DS ©
pi(1—f)
Hy(n] !
P o= [1+21f}



and with f = .2, we can see that p] = .436 and C' = .618.

The Z channel continued. This is similar to exercise 9.15 in MacKay.
There is no noise for the 0 symbol, and there is noise for the 1. Thus, p1 <

po because while we are sacrificing some source entropy we are increasing

our overall transmission reliability (we are injecting less noise entropy).
One must take the limit of the expression for pi(f) as f approaches 1.

Using L’Hospital’s rule, one can show that this becomes %

3. The Gaussian channel. This is similar to exercise 11.5 in MacKay.
As shown previously in the class, the capacity of a Gaussian channel (given
that the variance of the source is constrained to be o2) is

1 o2
C:210g<1—|—0‘;>

n

4. If the input is binary, the capacity of the channel will be achieved by
using both symbols with equal probability. Then,

C'=I(X;Y) = H(Y)-H(Y|X)

S / Q) log Qy) + / YN (y:0,00) log N(y0,0,)

—0o0 —0o0

S / AQ(y) 108 Q(y) + 5 I (2rea?)

where
[N(y; —0s, Un) + N(:U; Os, Un)]

N =

Qy) =

and
1

V282w
5. If the output is thresholded, then the channel becomes equivalent to a

binary symmetric channel with a transition probability determined by the
level of noise. We can write this using the error function,

N(y;z,s) =

exp [(y — 1‘)2/252]

o(z) = /_Z dz\/%exp [-22/2]

So, now we have a binary symmetric channel with transition probability

f = ¢(Us/0n) and
C" =1— Hy(f)

6. See Figure 2.
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Figure 11.9. Capacities (from top
to bottom in each graph) C, C’,
and C”, versus the signal-to-noise
ratio (y/v/o). The lower graph is
a log-log plot.

Figure 2: Taken from MacKay.



