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Neuroscience Mini-course: Exercise Set 3 solutions

1. Data processing inequality: This question based on problem 8.9 from
MacKay. There, they use the mutual information chain rule, which is, for
any ensemble XYZ,

I(X;Y, Z) = I(X;Y ) + I(X;Z|Y )

. We will not appeal to that directly here, but it may be of general interest.
We want to show that

I(S;R) ≤ I(S;T )

given that
P (s, t, r) = P (s)P (t|s)P (r|t)

So,

H(S|R, T ) = H(S|T )

H(S|R) ≥ H(S|T )

H(S)−H(S|R) ≤ H(S)−H(S|T )

I(S;R) ≤ I(S;T )

From lecture: Capacity of a binary symmetric channel. Given some
binary source distribution (p(x)) and bit-flip probability (f), we want to find
the capacity of a binary symmetric channel. This is taken from problem 9.2
in MacKay.

That is, we want to find:

C = max
p(x)

I(X;Y )

= max
p(x)

H(Y )−H(Y |X)

and we can note now that H(Y ) is maximized by p(y) = 1/2 and that, from
the symmetry of the channel, this can be achieved by setting p(x) = 1/2.

However, we can also observe that,

I(X;Y ) = H(Y )−H(Y |X)

= H2(p0f + p1(1− f))−H2(f)
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Figure 1: The capacity of a Z-channel with f = .2 as a function of p1.

and we know that H2(a) is maximal for a = 1/2. We can choose p0 = 1/2
to ensure that the argument to the first H2 will always be 1/2. So,

= H2

(
1

2
f +

1

2
(1− f)

)
−H2(f)

= H2(1/2)−H2(f)

C = max
p(x)

I(X;Y ) = 1−H2(f)

2. The Z channel. This is similar to exercise 9.15 in MacKay.
We want to find, for f = .2,

I(X;Y ) = H(Y )−H(Y |X)

= H2(p1(1− f))− p1H2(f)

Now, we can maximize this expression with respect to p1 using the fact
that

H ′2 = − log2
p

1− p

0 =
∂I

∂p1
= −(1− f) log2

p1(1− f)

1− p1(1− f)
−H2(f)

H2(f) = (1− f) log2
1− p1(1− f)

p1(1− f)

2
H2(f)
1−f =

1− p1(1− f)

p1(1− f)

1 + 2
H2(f)
1−f =

1

p1(1− f)

p1 =
1

1− f

[
1 + 2

H2(f)
1−f

]−1



and with f = .2, we can see that p∗1 = .436 and C = .618.
The Z channel continued. This is similar to exercise 9.15 in MacKay.

There is no noise for the 0 symbol, and there is noise for the 1. Thus, p1 <
p0 because while we are sacrificing some source entropy we are increasing
our overall transmission reliability (we are injecting less noise entropy).

One must take the limit of the expression for p∗1(f) as f approaches 1.
Using L’Hospital’s rule, one can show that this becomes 1

e .

3. The Gaussian channel. This is similar to exercise 11.5 in MacKay.
As shown previously in the class, the capacity of a Gaussian channel (given
that the variance of the source is constrained to be σ2s) is

C =
1

2
log

(
1 +

σ2s
σ2n

)

4. If the input is binary, the capacity of the channel will be achieved by
using both symbols with equal probability. Then,

C ′ = I(X;Y ) = H(Y )−H(Y |X)

= −
∫ ∞
−∞

dyQ(y) logQ(y) +

∫ ∞
−∞

dyN(y; 0, σn) logN(y; 0, σn)

= −
∫ ∞
−∞

dyQ(y) logQ(y) +
1

2
ln
(
2πeσ2n

)
where

Q(y) =
1

2
[N(y;−σs, σn) +N(y;σs, σn)]

and

N(y;x, s) =
1√

2s2π
exp

[
(y − x)2/2s2

]
5. If the output is thresholded, then the channel becomes equivalent to a
binary symmetric channel with a transition probability determined by the
level of noise. We can write this using the error function,

φ(z) =

∫ z

−∞
dz

1√
2π

exp
[
−z2/2

]
So, now we have a binary symmetric channel with transition probability
f = φ(σs/σn) and

C ′′ = 1−H2(f)

6. See Figure 2.



Figure 2: Taken from MacKay.


