BOULDER THEORETICAL BIOPHYSICS 2019

Neuroscience Mini-course: Exercise Set 3 solutions

1. Data processing inequality: This question based on problem 8.9 from MacKay. There, they use the mutual information chain rule, which is, for any ensemble XYZ,

$$I(X;Y,Z) = I(X;Y) + I(X;Z|Y)$$

. We will not appeal to that directly here, but it may be of general interest. We want to show that

$$I(S;R) \leq I(S;T)$$

given that

$$P(s,t,r) = P(s)P(t|s)P(r|t)$$

So,

$$\begin{array}{rcl} H(S|R,T) & = & H(S|T) \\ H(S|R) & \geq & H(S|T) \\ H(S) - H(S|R) & \leq & H(S) - H(S|T) \\ I(S;R) & \leq & I(S;T) \end{array}$$

From lecture: Capacity of a binary symmetric channel. Given some binary source distribution (p(x)) and bit-flip probability (f), we want to find the capacity of a binary symmetric channel. This is taken from problem 9.2 in MacKay.

That is, we want to find:

$$C = \max_{p(x)} I(X;Y)$$
$$= \max_{p(x)} H(Y) - H(Y|X)$$

and we can note now that H(Y) is maximized by p(y) = 1/2 and that, from the symmetry of the channel, this can be achieved by setting p(x) = 1/2.

However, we can also observe that,

$$I(X;Y) = H(Y) - H(Y|X)$$

= $H_2(p_0f + p_1(1-f)) - H_2(f)$

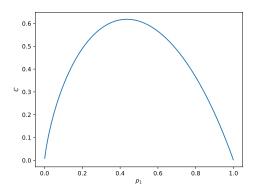


Figure 1: The capacity of a Z-channel with f = .2 as a function of p_1 .

and we know that $H_2(a)$ is maximal for a = 1/2. We can choose $p_0 = 1/2$ to ensure that the argument to the first H_2 will always be 1/2. So,

$$= H_2 \left(\frac{1}{2}f + \frac{1}{2}(1-f)\right) - H_2(f)$$

$$= H_2(1/2) - H_2(f)$$

$$C = \max_{p(x)} I(X;Y) = 1 - H_2(f)$$

2. The Z channel. This is similar to exercise 9.15 in MacKay. We want to find, for f = .2,

$$I(X;Y) = H(Y) - H(Y|X)$$

= $H_2(p_1(1-f)) - p_1H_2(f)$

Now, we can maximize this expression with respect to p_1 using the fact that

$$H_2' = -\log_2 \frac{p}{1-p}$$

$$0 = \frac{\partial I}{\partial p_1} = -(1-f)\log_2 \frac{p_1(1-f)}{1-p_1(1-f)} - H_2(f)$$

$$H_2(f) = (1-f)\log_2 \frac{1-p_1(1-f)}{p_1(1-f)}$$

$$2^{\frac{H_2(f)}{1-f}} = \frac{1-p_1(1-f)}{p_1(1-f)}$$

$$1 + 2^{\frac{H_2(f)}{1-f}} = \frac{1}{p_1(1-f)}$$

$$p_1 = \frac{1}{1-f} \left[1 + 2^{\frac{H_2(f)}{1-f}} \right]^{-1}$$

and with f = .2, we can see that $p_1^* = .436$ and C = .618.

The Z channel continued. This is similar to exercise 9.15 in MacKay.

There is no noise for the 0 symbol, and there is noise for the 1. Thus, $p_1 < p_0$ because while we are sacrificing some source entropy we are increasing our overall transmission reliability (we are injecting less noise entropy).

One must take the limit of the expression for $p_1^*(f)$ as f approaches 1. Using L'Hospital's rule, one can show that this becomes $\frac{1}{e}$.

3. The Gaussian channel. This is similar to exercise 11.5 in MacKay. As shown previously in the class, the capacity of a Gaussian channel (given that the variance of the source is constrained to be σ_s^2) is

$$C = \frac{1}{2} \log \left(1 + \frac{\sigma_s^2}{\sigma_n^2} \right)$$

4. If the input is binary, the capacity of the channel will be achieved by using both symbols with equal probability. Then,

$$C' = I(X;Y) = H(Y) - H(Y|X)$$

$$= -\int_{-\infty}^{\infty} dy Q(y) \log Q(y) + \int_{-\infty}^{\infty} dy N(y;0,\sigma_n) \log N(y;0,\sigma_n)$$

$$= -\int_{-\infty}^{\infty} dy Q(y) \log Q(y) + \frac{1}{2} \ln \left(2\pi e \sigma_n^2\right)$$

where

$$Q(y) = \frac{1}{2} \left[N(y; -\sigma_s, \sigma_n) + N(y; \sigma_s, \sigma_n) \right]$$

and

$$N(y;x,s) = \frac{1}{\sqrt{2s^2\pi}} \exp\left[(y-x)^2/2s^2\right]$$

5. If the output is thresholded, then the channel becomes equivalent to a binary symmetric channel with a transition probability determined by the level of noise. We can write this using the error function,

$$\phi(z) = \int_{-\infty}^{z} dz \frac{1}{\sqrt{2\pi}} \exp\left[-z^2/2\right]$$

So, now we have a binary symmetric channel with transition probability $f = \phi(\sigma_s/\sigma_n)$ and

$$C'' = 1 - H_2(f)$$

6. See Figure 2.

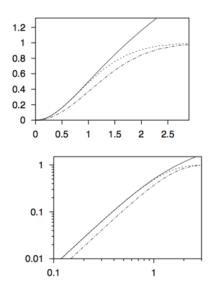


Figure 11.9. Capacities (from top to bottom in each graph) C, C', and C'', versus the signal-to-noise ratio (\sqrt{v}/σ) . The lower graph is a log-log plot.

Figure 2: Taken from MacKay.