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Summary

Adaptation is a widespread phenomenon in nervous
systems, providing flexibility to function under varying
external conditions. Here, we relate an adaptive prop-
erty of a sensory system directly to its function as a
carrier of information about input signals. We show
that the input/output relation of a sensory system in
a dynamic environment changes with the statistical
properties of the environment. Specifically, when the
dynamic range of inputs changes, the input/output
relation rescales so as to match the dynamic range of
responses to that of the inputs. We give direct evi-
dence that the scaling of the input/output relation is
set to maximize information transmission for each dis-
tribution of signals. This adaptive behavior should be
particularly useful in dealing with the intermittent sta-
tistics of natural signals.

Introduction

One of the major problems in processing the complex,
dynamic signals that occur in the natural environment
is providing an efficient representation of these data.
More than 40 years ago, Attneave (1954) and Barlow
(1961) suggested that steps in the neural processing of
information could be understood as solutions to this
problem of efficient representation. This idea was later
developed by many groups, especially in the context of
the visual system. Efficient representation requires a
matching of the coding strategy to the statistical struc-
ture of incoming signals. At early stages of the visual
pathway, for example, lateral inhibition or center-sur-
round organization of receptive fields can be seen as a
strategy for reducing redundancy among signals carried
by neighboring neurons. At higher levels of processing,
a description of images in terms of objects is more
efficient than is a representation of light intensity in the
pixels of the photoreceptor array (Attneave, 1954).
Much of the work that followed Attneave’s and Bar-
low’s ideas has focused on the matching of neural per-
formance to global statistical properties of natural sig-
nals. Such a matching is likely to have taken place on
the long timescales of evolution or development. While
this approach has been successful in some cases (Laugh-
lin, 1981; Atick, 1992), it should be kept in mind that
the statistical properties of natural signals are highly
variable as we move in the world and as time passes.
The mean light level, for example, changes by orders of
magnitude as we leave a sunny region and enter a forest.
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Adaptation to mean light level ensures that our visual
responses are matched to the average signal in real
time, thus maintaining sensitivity to the fluctuations
around this mean. But the fluctuations themselves are
intermittent, such that periods of large fluctuations are
interspersed with periods of relative “quiet.” Recent ob-
servations indicate that the intermittency of natural sig-
nals is of a special form: statistics such as the variance
and correlation function are stationary over some re-
gions, with slowly modulated parameters over larger
regions (Ruderman and Bialek, 1994; Nelken et al., 1999).
The principle of efficient coding suggests that the ner-
vous system should adapt its strategy to these local
statistical properties of the stimulus. Evidence for such
statistical adaptation in the early stages of vision has
been found in the fly (van Hateren, 1997) and in the
vertebrate retina (Smirnakis et al., 1997), where mecha-
nisms of gain control are well known (Shapley and Victor,
1979a, 1979b, 1980). From a more functional point of
view, one would like to observe directly the changes
in processing strategy and to demonstrate that these
changes in fact enhance the efficiency of coding in re-
sponse to changes in the statistics of visual inputs.

Here, we investigate the coding of dynamic velocity
signals in a motion-sensitive neuron of the fly’s visual
system. Previous work has shown that this system
adapts to constant velocity signals (Maddess and Laugh-
lin, 1985; de Ruyter van Steveninck et al., 1986), to the
variance of spatial image contrast (de Ruyter van Ste-
veninck et al., 1996), and to the timescales in the stimu-
lus (Borst and Egelhaaf, 1987; de Ruyter van Steveninck
and Bialek, 1996). In this work, we focus on adaptation
to the distribution from which velocity signals are drawn.
We find a dramatic adaptive rescaling of the system’s
input/output relation with the standard deviation of the
signal distribution. Further, we find that the magnitude
of the rescaling selected by the adaptation process opti-
mizes information transmission. Identical adaptive ef-
fects occur in response to signals that differ by orders
of magnitude in timescale, suggesting that the molecular
and cellular mechanisms underlying these adaptive ef-
fects span a similar range of timescales.

Results

We use as an experimental test case the H1 neuron in
the visual system of the blowfly, which is sensitive to
horizontal motion across the visual field. H1 responds
by generating action potentials to motion in its preferred
direction andis inhibited by motion in the opposite direc-
tion. The spike trains of H1 carry information about the
time-dependent horizontal velocity (Strong et al., 1998).
We record from H1 extracellularly to obtain a sequence
of spike times (see Procedures). The high degree of
stimulus control and the stability of recordings from this
neuron have made it a well-studied system for problems
of real time coding of time-varying signals (Rieke et al.,
1997).

Here, we focus on how the system deals with changes
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in the dynamic range of motion signals, such as might
occur in the transition from straight flight to chasing
behavior. As a simplified version of this situation, we
consider the encoding of horizontal velocity signals that
are drawn from a distribution with zero mean, using the
variance as a control parameter. We first describe the
phenomenology of adaptive rescaling of input/output
relations and the accompanying invariance of statistics
of spike trains. Then, we relate this property to function-
ality, showing that adaptive rescaling enables the sys-
tem to maximize information transmission.

Phenomenology: Adaptive Rescaling

In this section, we describe the phenomenology of adap-
tive rescaling of input/output relations. The experiment
is designed as follows. Several stimulus ensembles are
presented to the fly that differ only in their velocity vari-
ance; all other stimulus properties (for example, image
contrast) are held fixed. Once the adaptation processes
have reached a steady state, we construct the input/
output relations and compare these relations as they
are found with different ensembles. We focus on two
types of stimulus dynamics, one with slowly, the other
with rapidly, varying stimuli. These cases show very
similar forms of adaptive rescaling, although the techni-
calities involved in constructing the input/output relation
are different.

Consider first an ensemble of horizontal velocity stim-
uli, s(t), with a time variation much slower than the typical
time between spikes. The value of the stimulus is then
encoded by the local, slowly varying firing rate; this is
a quasistatic extension of the classic rate code sug-
gested by Adrian (1928). Figure 1a shows the firing rate
as a function of time together with the slowly varying
stimulus s(t). The velocity stimulus in this experiment
had a correlation time of = 1 s and a Gaussian distribu-
tion with standard deviation of 2.3°/s. A 20 s sample
from this ensemble was presented repeatedly to the fly
(180 repeats), and the firing rate r(t) was obtained by
averaging over the presentations. The firing rate follows
the velocity stimulus s(t), with rectification due to the
direction selectivity of the neuron, and we may define
an instantaneous relation r(s) between stimulus and fir-
ing rate. Figure 1b shows this function, which represents
the input/output relation of the neuron when stimuli are
drawn from the “context” provided by the distribution

Figure 1. Response to Slowly Varying Inputs

The neural response function of H1 for a
slowly varying stimulus ensemble.

(a) Open circles (left-hand axis), firing rate as
a function of time, r(t), estimated by counting
spikes in bins of 10 ms and averaging over
180 repeated presentations of the velocity
stimulus s(t). Solid line (right-hand axis), stim-
ulus velocity.

(b) The neural response r(s) is constructed by
reading the firing rate at each time bin and
plotting it as a function of the stimulus veloc-
ity 30 ms earlier. Open circles, scatter plot of
rate versus velocity; closed circles, average
response function, obtained by discretizing
velocities in bins and averaging the corre-
sponding rates.

of signals, P[s(t)], used in this experiment. We emphasize
that the firing rate as a function of image velocity is
measured not by suddenly moving an image that was
previously stationary; rather, the image motion is an
ongoing random process, sometimes slower and some-
times faster, such that stimuli always are in their statisti-
cal context.

As seen from the scatter plotin Figure 1b, the instanta-
neous relation between rate and velocity is not perfectly
unique; the scatter results from dependencies on other
signal properties, such as acceleration. For the slowly
varying stimuli considered here, this dependence on
acceleration is negligible, while in other cases, it must
be separated out (see below).

The stimulus in this experiment is changing so slowly
that to keep track of its statistical properties requires
processes on the timescale of many seconds. Although
the encoding of velocity by H1 is characterized by inte-
gration times that range from 20 to 300 ms, there are
also adaptation processes with timescales of many sec-
onds, so it is reasonable to ask if “adaptation to statis-
tics” exists. To see whether this is the case, we compare
the neural response in Figure 1 with that measured in a
similar stimulus ensemble, but with different standard
deviation. In practice, we use the same long stimulus
segment and multiply its amplitude by a constant, thus
keeping the timescales in the stimulus the same. Figure
2 shows the time-dependent firing rates in two experi-
ments, where the standard deviations were o, = 2.3°/s
and o, = 4.6°/s. While the velocity stimulus was doubled
between the two experiments, the response is very simi-
lar, as observed also for retinal neurons (Meister and
Berry, 1999). This suggests that spikes are not gener-
ated by the same fixed rule in these two cases and that
the system does keep track of the overall structure of
the stimulus ensemble.

Figure 3a shows the input/output relations of the same
neuron in two experiments, obtained as in Figure 1b.
These curves are similar in shape but have different
scales. Normalizing the stimulus by its standard devia-
tion, and the rate by the average rate, the two curves
overlap, as shown in Figure 3b. The input/output relation
represents average responses; Figure 3c shows the trial-
to-trial variability in the response, represented by the
standard deviation of the spike rate in 10 ms bins. This
variability is small and weakly dependent on the rate.
Moreover, Figure 3d shows that the variability in the
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Figure 2. Rescaled Inputs Elicit the Same Responses

Time-dependent firing rates of H1 for two stimulus ensembles, with
standard deviations of o; = 2.3°/s and o, = 4.6°/s. The short segment
of the normalized stimulus s(t), shown by a solid line, is identical in
shape in the two experiments but has different scales. Although this
scale was doubled, the response was almost identical, implying
adaptation to the range of stimuli in the distribution from which they
are drawn.

normalized rate (rate relative to the average over the
experiment) also rescales among the two experiments.

The adaptive rescaling of the mean and variance of
the neural response suggests that the system encodes
stimulus fluctuations in units of the stimulus ensemble
standard deviation. If the system is characterized by
a nonlinear response function, then adaptive rescaling
means it has an additional degree of freedom, a “stretch
factor”: the response function can be stretched or com-
pressed by a constant factor to allow forincoming stimu-
lus distributions of different widths. The rescaling breaks
down for very large variances, in which the velocities
are too rapid for the cell to follow, and the response
drops dramatically.

If the neuron encodes its inputs in a normalized fash-
ion, effectively scaling away the standard deviation or
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Figure 4. Interval Distributions with Slowly Varying Inputs
Cumulative distribution of intervals between successive spikes,
measured in dimensionless units, r,, - t, where r,, is the mean firing
rate, and t is the interval between spikes. Data are presented from
two experiments, where the stimulus distribution has standard devi-
ations of o = 2.3°/s (solid line) and o = 4.6°/s (dashed line).

dynamic range of the input ensemble, then the statistical
properties of the spike train—not just the time-depen-
dent rates—should be invariant under changes of this
standard deviation. This is a prediction about the struc-
ture of spike trains, independent of any assumptions
about the nature of the code and its elementary symbols.
Figure 4 shows the interspike interval distributions mea-
sured in the two steady states, plotted together in di-
mensionless time units. While the average firing rate
changes from 69 to 75 spikes/s upon doubling the input
standard deviation, the relative fluctuations are the same
to high accuracy over several decades of probability.
Next, we consider an ensemble of horizontal velocity
stimuli, s(t), with a time variation that is fast relative to
the typical neural integration times. In this case, one
cannot expect to find a simple relation between the
momentary stimulus and the firing rate, since the tempo-
ral width of neural filtering becomes noticeable. The
neural response is then determined by the local value
of the filtered signal, and in general there can be more
than one such filter. One would like to be able to uncover

1 b Figure 3. Signals and Noise

Average response functions and response
variability in the two stimulus ensembiles, o, =
2.3%/s (closed circles) and o, = 4.6°/s (open
circles).

(a) Response in physical units, rate (spikes/s)
as a function of stimulus velocity (degrees/s).
(b) Response in dimensionless units. The rate
is normalized by the time-averaged firing rate
and the velocity stimulus by the ensemble
standard deviation.

(c) Variability in rate over trials as a function
of average rate. The standard deviation in the
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|d firing rate was computed over the 180 trials
for each 10 ms time bin and plotted as a
function of the average rate in the bin.

(d) Variability in dimensionless units. The rate
is normalized by the time-averaged rate.
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b Figure 5. Velocity and Acceleration Sensi-
tivity
The two dominant stimulus features that con-
trol the response of the H1 neuron (a and b)
and the corresponding nonlinear neural re-
sponse functions (c and d).
(a) The dominant filter is a smoothing filter,
implying that H1 is sensitive to a smoothed
version of the time-dependent velocity.
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0 (b) The second filter is approximately the de-

rivative of the first, implying that H1 is also
sensitive to the smoothed acceleration. The
two filters are normalized to units appropriate

normalized rate
normalized rate

d to their interpretation as velocity and acceler-
ation. The firing rate is a nonlinear function
of both stimulus dimensions, s, and s,, and
the one-dimensional projections of this func-
tion are shown in (c) and (d).
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the relevant filters from the data, rather than to postulate
them a priori, and this can indeed be done (see Proce-
dures). By an extension of the reverse correlation
method, we can show that the response of H1 is domi-
nated by the time-dependent signal, as seen through
two filters. Figures 5a and 5b depict the two filters, and
they correspond to our intuition: the first filter smoothes
the velocity signal over a window of about 50 ms, and
the second filter is approximately the derivative of the
first, corresponding to a smoothed acceleration.
Constructing the input/output relation (see Proce-
dures), we describe the spike rate in H1 as a function
of the two dominant stimulus dimensions, s, and s,
corresponding to velocity and acceleration. For simplic-
ity, we discuss here the two projections of this function
separately; then, we have two input/output relations,

50

100

r(s;) and r(s,), shown in Figures 5c and 5d. Note that
although the filters defining s; and s, were found by
linear analysis, the response functions are nonlinear.
Consistent with the interpretation of s; as the smoothed
velocity, the function in Figure 5c is qualitatively similar
to that in the slowly varying limit (Figure 1b).

We performed experiments using rapidly varying stim-
uli with Gaussian statistics; the correlation time was 10
ms, and the standard deviation took four values, ranging
from o = 18°s to o = 180°/s. Since the two filters are
derived from the data in each case, there are generally
some differences in the details of these filters for the
different stimulus ensembles; however, they always
have similar form and correspond to smoothed velocity
and acceleration. Measuring the stimulus component s,
in units of velocity, that is, degrees/s, we find that the
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Figure 6. Rescaling of Responses to Dy-
namic Inputs

Adaptive rescaling of the input/output rela-
tions along the two leading dimensions.

(a and c) Response as a function of stimulus
velocity as seen through the first (a) and sec-
ond (c) filter (see Figure 5).

(b and d) Response as a function of stimulus
projections, each normalized by its standard
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Figure 7. Interval Distributions with Rapidly Varying Inputs

Cumulative distribution of intervals between successive spikes,
measured in dimensionless units, in two stimulus ensembles. Here,
the stimulus varied rapidly—much faster than the typical interspike
time. Data are presented from two experiments with stimulus stan-
dard deviations of o = 90°/s (solid line) and 180°/s.

input/output relations are very different, as shown in
Figure 6a. Normalizing s; by its standard deviation, and
the rate by its mean, these curves overlap (Figure 6b).
The adaptive rescaling of the response function seen
here is analogous to the effect described previously for
the slowly varying stimulus. Because of better sampling,
here we can observe the effect over ~3 decades in the
response. A similar result is found for the input/output
relation in the second dimension, r(s,), although the
range of response variation along this dimension is
smaller. Again, in physical units, the response functions
look rather different (Figure 6c), but in normalized units,
all of the curves from different ensembles overlap (Fig-
ure 6d).

Once again, adaptive rescaling predicts that higher
order statistics of the spike trains are also invariant to
changes in the dynamic range of the inputs. As a test
of this, Figure 7 shows the interval distribution in two
of the experiments. In dimensionless time units, the two
interval distributions overlap across several decades of
probability.

Functionality: Maximizing Information Transmission

Once we know that the neural input/output relation has
the flexibility to rescale, a natural question is how the
system “chooses” the stretch factor in response to the
distribution of stimuli. Intuitively, stretching the input/
output relation allows the system to match its limited
dynamic range to the dynamic range of the inputs, as
indicated schematically in Figure 8. This intuition is
quantified by searching for coding strategies—in this
case, stretching factors—that maximize the entropy of
the distribution of outputs, as suggested by Laughlin
(1981). More generally, one expects to find a matching
that maximizes the information carried by the output
about the input. This includes, in addition to output sym-
bol entropy, the effect of the noise entropy or response
variability (de Ruyter van Steveninck et al., 1997; Strong
et al., 1998). While there has been much interest in opti-
mization principles for neural coding and computation,
there are few examples in which we can check directly
that something is being optimized. Within the space
of input/output relations parameterized by the stretch

—— response function
—— stimulus distribution
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Figure 8. Optimizing Information Transmission

Information as a function of the stretch factor \. The input/output
relation measured in the experiment was artificially stretched or
contracted by a factor \, simulating the rescaling that occurs during
adaptation. This is illustrated schematically in the three panels on
top. For each value of \, the stretched input/output relation and the
distribution of stimuli used in the experiment determine a distribution
of rates, which in turn determines the information with Equation 2.
The point A = 1 corresponds to the stretch factor measured in the
experiment. The maximum at this point indicates that the process
of adaptation selects a stretch factor that maximizes the information
transmission.

factor, however, we can test for optimization using only
quantities that are measured in experiments.

The analysis of information requires identifying the
elementary symbols of the code and their distribution
in any given ensemble; this is straightforward for a rate
code, and we present the results here for this case.
Identifying the symbols is, however, more subtle for the
case of rapidly varying stimuli (Brenner et al., 2000). A
simplified analysis can be done in that case which leads
to a similar conclusion. The elementary symbols of a
quasistatic rate code are the momentary values of the
firing rate, and we can find the entropy of these symbols
from the distribution of signals in the experiment and
the response function r(s), shown in Figure 3. We can
also find what this entropy would be if the stretch factor
were chosen differently, artificially stretching the re-
sponse function by a factor of \, and thus simulating
the input/output relation observed when the system is
adapted to alarger or smaller variance. A similar analysis
can be done for the noise entropy, and in this way we
can compare the transmitted information in the experi-
ment (\ = 1) with the information that would be transmit-
ted with a different choice of stretch factor (\ # 1) under
the same stimulus ensemble (see Procedures, Equation
2). Figure 8 shows the information of the rate distribution
obtained from this computation as a function of the
stretch factor N. The information exhibits a clear maxi-
mum at A = 1, the value chosen by the system. These
results demonstrate unambiguously the implementation
of a maximum information principle in a sensory system.
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Discussion

The idea that efficient signal processing systems must
take into account properties of the distribution of incom-
ing signals goes back many years (Wiener, 1949). One
naturally expects to find this principle implemented in
neural signal processing systems. In particular, the inter-
mittent structure of natural signals suggests that the
nervous system should adapt its strategies for coding
and computation to local changes in the low order statis-
tical properties of the sensory environment. Here, we
characterized the neural response by a steady-state
nonlinear input/output function and observed how this
function changes among stimulus ensembles with dif-
ferent variances.

The nonlinear input/output relation used here is analo-
gous to the velocity tuning curve widely used in the
study of motion-sensitive visual neurons—it describes
the probability of spiking (or spike rate) as a function
of the relevant stimulus features. At present, there is
considerable interest in situations in which the tuning
curve or its spatial analog, the receptive field, is altered
by the context in which stimuli are presented. The H1
neuron provides a clear and understandable example:
the system stretches or compresses its tuning curve
to match the dynamic range of incoming stimuli. This
example suggests that, more generally, the tuning curve
can change with the statistical properties of the distribu-
tion from which stimuli are drawn. In this picture, there
is no single tuning curve characterizing the neuron but
rather a set from which the neuron can choose the most
suitable tuning curve for each context.

The stretching of the input/output relation effectively
rescales or normalizes the inputs by their standard devi-
ations. There is at least an intuitive connection between
this phenomenon and the appearance of “normaliza-
tion” in mammalian visual cortex (Carandini and Heeger,
1994), and it has been suggested that cortical normaliza-
tion helps to provide an efficient code for natural sensory
inputs (Simoncelli and Schwartz, 1999). Here, we have
provided direct evidence that adaptive rescaling is used
to maximize information transmission: among the set of
available response functions, the “most suitable” is the
one for which the information conveyed about the sen-
sory stimulus is the highest.

The most important difference between differently
scaled input/output functions is the distribution of the
output symbols they determine under a given stimulus
distribution. More specifically, the entropy of these sym-
bolsis sensitive to the stretching and compressing of the
response. For the conditions explored here, the noise
seems to be much less sensitive to the stretching and
compression of the response, such that optimizing infor-
mation transmission is almost equivalent to maximizing
the entropy of the output symbols.

The principle of maximizing the entropy of the output
symbols to enhance the information capacity of a neuron
was discussed by Laughlin (1981) in connection with
the responses of large monopolar cells in the fly visual
system. In Laughlin’s work, the input/output relation was
characterized by measuring peak voltage responses to
contrast steps, and matching was to the distribution of
contrasts found in a natural scene. Presumably, this
matching to global statistical properties of the visual

world would have occurred over evolutionary or devel-
opmental timescales. Although these results have pro-
vided considerable inspiration for work on optimal visual
coding, there have been few other examples in which
such a direct test of optimization itself has been pos-
sible.

The present work adds to Laughlin’s results in several
ways. First, we are able to characterize input/output
relations under more natural dynamic stimulus condi-
tions. Second, we can measure directly the noise in the
response and hence test for the optimization of informa-
tion rather than the maximization of entropy. Finally, the
results presented here pertain to adaptive processes
that take place on much shorter timescales, of the order
of seconds or minutes. Such adaptation to the local
conditions in the laboratory implies that the system can
“learn” a parameter of the signal distribution. This helps
it to optimize its operation locally, providing a flexibility
to alter its code as the environment changes.

An important issue is the timescale of the adaptation
process: how long does it take to adapt to a distribution
with a new variance? With rapidly varying signals, we
can estimate this timescale by an experiment in which
the variance is switched between two values. We find
the adaptation time to be several seconds, with an asym-
metry between increasing and decreasing variance, as
seen also in the vertebrate retina (Smirnakis et al., 1997).
Adaptation to the stimulus variance or other statistics
requires that the nervous system estimate these statis-
tics, atleastimplicitly, and reliable estimation takes time;
it has been suggested that the dynamics of adaptation
are connected with the dynamics of this estimation pro-
cess (DeWeese and Zador, 1998). Preliminary experi-
ments suggest that there may not be one single time-
scale for the adaptation process and that the connection
of these dynamics to the estimation problem may be
more subtle (A. Fairhall et al., personal communication).

The idea that there are multiple timescales for adapta-
tion is supported by the absence of simple exponential
recovery even in the earliest experiments on the adapta-
tion of H1 to constant velocity input (de Ruyter van
Steveninck et al., 1986) and by the fact that such similar
phenomenology is seen for adaptation to the variance of
both fast and slow stimuli. This multiplicity of timescales,
like the rescaling phenomenon itself, may be another
adaptation to the statistics of signals in the natural
world.

Procedures

Neural Recording

A female blowfly was immobilized, and a small hole was cut in the
back of the head, close to the midline on the right side. Through
this hole, a tungsten electrode was advanced into the lobula plate.
This area, which is several layers back from the compound eye,
includes a group of large motion detector neurons with wide re-
ceptive fields and strong direction selectivity. We recorded spikes
extracellularly from one of these, the contralateral H1 neuron (Fran-
ceschinietal., 1989; Hausen and Egelhaaf, 1989). A simple threshold
discriminator converted the spikes into spike times digitized at a
10 ps resolution.

Stimulus Generation
The stimulus was a rigidly moving bar pattern of average intensity,
about 100 mW/(m? - sr), displayed on a Tektronix 608 high brightness
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display. The bars were oriented vertically, with intensities chosen
at random to be one of two values. The fly viewed the display through
a round 80 mm diameter diaphragm showing ~30 bars. Frames of
the stimulus pattern were refreshed every 2 ms, and with each new
frame, the pattern was displayed at a new position. This resulted
in an apparent horizontal motion of the bar pattern that is suitable
for exciting the H1 neuron. The pattern position was defined by a
pseudorandom sequence simulating a motion trajectory drawn from
a probability distribution. The sequence was then multiplied by a
different constant in each experiment to give a different value of the
standard deviation. Filtering was used to obtain the slowly varying
stimulus ensemble.

Information Estimates and Optimality Test

The information that a neuron transmits about the sensory input
can be computed by finding the entropy of the distribution of output
symbols and subtracting the entropy of the noise or, equivalently,
the entropy of the output, given that the input is fixed. In the limit
that noise is small (as suggested by the results in Figure 3), the distri-
bution of output symbols can be found by taking the distribution of
inputs P(s) and passing it through the input/output relation r(s),

P = SE,P(S)’ (Y]
where the sum runs over all signals, s, that are mapped into the
response r through r(s). To compute the noise entropy, we need
more than the standard characterization of response variance (as
in Figures 3c and 3d); we need the entire distribution of the response
variability. Since the input/output relation r(s) is invertible, it doesn’t
matter if we view the distribution of noise as being dependent on
s oronr, and so we can write the transmitted information as

I'=S[P()] — XP(NS[P(nIn)], @

where S[P] is the entropy of the distribution P, and P(nlr) is the
distribution of the noise given the mean response. Note that the
distribution of signals P(s) is controlled in our experiment, whereas
the response function r(s) is measured, as in Figure 1b, and similarly
we measure the distribution P(n|r). Since none of these distributions
have any simple analytic form, the entropies were estimated directly
by binning the experimental data rather than by any analytic approxi-
mation. Our data sets were sufficiently large that we could make
small bins and verify that changes in binning had a negligible effect
on the results.

We have found that the response function r(s) has the flexibility
to change the stimulus scale by a stretch factor, \; choosing different
values for \ results in a differently scaled response function, and
this, in turn, affects the value of the entropies in Equation 2. We
used the empirical forms of r(s) and P(s) and simulated the stretch
factor \ artificially, as illustrated in Figure 8, by the replacement
r(s)—(\s). The measured response function corresponds to A\ = 1;
stretching the response by \ and using Equations 1 and 2, we can
find the entropy that would result from a different choice of A. In
Figure 8, the squeezed response functions were extrapolated to a
constant at the high end of firing rate, and it was checked that a
linear extrapolation gives similar results in the optimality test. As
noted in the text, the variation of | with \ is dominated by the entropy
of responses, with the noise entropy nearly constant, such that
optimizing information transmission is almost the same as maximiz-
ing the output entropy.

Stimulus Dimensionality Reduction

Once adaptation processes have reached a steady state, neural
responses depend on the history of the stimulus in a finite fixed time
window. Previous experience with H1 suggests that, in response to
rapidly varying velocity signals, spiking is correlated with velocity
signals within an integration time of 100 ms or less. In our experi-
ments, a new velocity is defined every 2 ms, and so in principle, the
firing rate could depend on 50 different parameters describing the
details of the motion trajectory within one integration time. Taking
into account the correlation time of 10 ms, the firing could still
depend on as many as 10 parameters. We would like to identify a
small number of features, or stimulus dimensions, that are most
relevant to the neural responses.

In the simplest model, the spike rate depends on the velocity
trajectory, as seen through a filter. We can think of the many parame-
ters describing the motion trajectory as being the dimensions of a
vector space, such that each possible stimulus trajectory is a vector.
Then, the simplest model is that the firing rate depends only on the
projection of this vector along one single direction in space. This
special direction corresponds to the form of the filter that the system
uses for smoothing or averaging. If this simplest model is correct,
then the reverse correlation technique (de Boer and Kuyper, 1968;
Rieke et al., 1997) can find the one special direction in stimulus
space. More precisely, if we choose input signals from a distribution
corresponding to Gaussian white noise, then the average stimulus
preceding a spike (spike-triggered average stimulus) “points” in the
special direction that describes the smoothing filter. This analysis
assumes a priori that only one projection is important; it therefore
cannot provide any evidence for or against this hypothesis. Further-
more, if two projections are important—smoothed versions of veloc-
ity and acceleration, for example—the reverse correlation method
confounds these different stimulus dimensions.

If spiking is related not only to one but to a few stimulus dimen-
sions, then this reduced dimensionality may be found by character-
izing the shape of the region in stimulus space that a spike “points
to.” A strategy for quantitating this intuition was suggested in earlier
work (de Ruyter van Steveninck and Bialek, 1988). Instead of comput-
ing the average stimulus that precedes a spike, we compute the
covariance matrix of the fluctuations around the average, defined as

Csp\ke (7,7")
= (S(tspie — ) * S(tspice — T')) = (S(tspie — 7)) * (S(tspike — 7))

= Cpnor (7, 7') + AC(s, '), ®3)
where
Corio(T,7') = (st — IXs(t — 7)) )

is the correlation matrix of the visual stimulus itself. If the stimulus
is Gaussian, and if the firing rate is determined by a small number,
K, of its projections, then the matrix AC(r,’) has rank K. Moreover,
the eigenvectors of this matrix, which are associated with the non-
zero eigenvalues, correspond to linear combinations of the relevant
vectors (filters). Identifying these directions provides us with a coor-
dinate system that spans the set of relevant projections. Note that
these directions are not the principal components either of Cy, or
of Cgpie-

In practice, we collected 120 ms segments of the stimulus wave-
form surrounding each spike in the experiment, sampled at the 2
ms resolution of the experiment. From these samples, we computed
Cpier @and by sampling the distribution of stimuli without reference
to spiking events, we computed C,, and then formed the difference
AC. This has units of (stimulus)?, so if we normalize by the stimulus
variance, AC is dimensionless. For a typical experiment (o = 90°/s),
we find that the second largest eigenvalue of AC is 14% of the
leading one in magnitude, while the third is only 3%, and the rest
are <0.6%. The emergence of only two dominant dimensions from
the data provides strong evidence that the spiking of H1 is sensitive
to only two projections of the time-dependent velocity signal.

As mentioned in the text, we interpret the two leading stimulus
projections as smoothed velocity and smoothed acceleration. Ac-
cordingly, we normalize the first filter such that for a constant veloc-
ity, the value of the filtered signal is the same constant. We normalize
the second filter such that for a velocity growing with a constant
acceleration, the filtered signal is the constant acceleration.

Constructing the Nonlinear Input/Output Relations

The input/output relation gives the spike rate, or probability of spik-
ing, as a function of the stimulus value. In the case of a rapidly
varying stimulus, we have seen that there are two stimulus values
relevant for spiking in H1, the projections s; and s,. Defining
P(spikels,) as the probability of spiking conditional on the first pro-
jection of the stimulus having the value s,, it follows from Bayes’s
rule that
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P(spikels)) _ P(s:Ispike) 5)
P(spike) P(s)

Recalling that the spike rate is proportional to this probability,
r(s;) = P(spikelsy), (6)
we find

1(s1) _ P(siIspike)
Tav P(sy)

@

where r,, is the average spike rate. The conditional probability distri-
bution P(s,|spike) describes the stimulus projection, s,, that a spike
“points to” (de Ruyter van Steveninck and Bialek, 1988). To sample
this distribution directly from the data, we look back at the stimulus
every time that we observe a spike and find the value of the stimulus
projection on the first filter. The distribution P(s,) is known: it is the
distribution of stimuli presented in the experiment. Finally, having
estimated the two distributions, P(s,|spike) and P(s,), we form the
ratio as in Equation 7 to give the nonlinear input/output relation.
The same procedure can be followed in the two-dimensional space
(s1,82), resulting in a two-dimensional input/output relation r(s,,s,).
In this work, we considered for simplicity the two projections of this
function, r(s;) and r(s,).
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