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1 Introduction

Cells are amazing sensors. Rod cells in our visual system can detect single photons [1], olfactory cells [2] and
immune cells [3] can detect single molecules, and amoebae can respond to a difference of about ten molecules
between their front and back [4]. It makes sense for cells to be so good at this task, because successful
function relies on precise detection of signals in their environment. Plus, cells have had a long time to evolve
excellent biological mechanisms for sensing. Are cells “done” evolving in this realm? Have they reached the
limit?

To answer this question, one might think it necessary to investigate the sensory mechanisms of individual cell
types in great biological detail. However, it turns out that the the fundamental limits to sensory precision
are ultimately set by the basic physics of the environment and the sensory process itself, not the specific
biological details of the cell. After all, if cells truly do operate near the fundamental limits of sensory
precision, then at some point they are battling physics, not biology.

In these lectures I will review the physical limits to cellular sensing, including some of the main approaches,
techniques, insights, and applications to experiments. I will take a historical approach, starting with pio-
neering work on chemical sensing by single cells, and extending to modern-day results on collective sensing
by cell populations.

2 Limits to single-cell sensing

The physics of cellular sensing was first studied more than 40 years ago by Howard Berg and Edward Purcell
in the context of detecting a uniform chemical concentration [5]. Berg and Purcell reasoned that no matter
what the biological sensory mechanism is, the cell will essentially act like a device that counts molecules
entering its vicinity (Fig. 1). They began with a simple scaling argument for how the precision of sensing
should depend on the properties of the concentration and the cell.
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Figure 1: Concentration sensing.

If the chemical concentration is c0, and the cell has a lengthscale
a, then the average number of molecules within the cell’s volume
should scale like n̄ ∼ c0a3. Because the concentration molecules are
subject to diffusion, there will be fluctuations around this average,
and the precision can be characterized by the standard deviation
relative to the average itself, ε ≡ σ/n̄. Diffusion is a Poisson process,
meaning that the number of molecules within any volume is Poisson
distributed, and for a Poisson distribution the variance equals the
mean, σ2 = n̄ ∼ c0a3.

However, Berg and Purcell reasoned that the cell could reduce this
variance if it made multiple measurements of the molecule number,
so long as there is enough time between measurements to ensure
that they are statistically independent. This timescale is given by
a2/D, the approximate time for a molecule with diffusion coefficient
D to diffuse out of the cell volume. Therefore, in a total time T , the cell would make T/(a2/D) = DT/a2

independent measurements, reducing the variance to σ2
T ∼ c0a

3/(DT/a2) = c0a
5/DT . The ratio ε, the

square of which we will call the relative error, then scales like

ε2 ≡ σ2
T

n̄2
∼ c0a

5

DT

1

(c0a3)2
=

1

aTc0D
. (1)

We see that sensory precision increases if the cell is larger or measures for a longer time, or if the molecules
are more concentrated or diffuse faster.

As we will see, specific models of sensing give various numerical prefactors or additional terms, but the
scaling is always as in Eq. 1.

2.1 The perfect sink

Figure 2: The perfect sink.

The first specific model considered by Berg and Purcell is a
spherical cell of radius a that perfectly absorbs all molecules
that contact its surface (a perfect sink, Fig. 2). The concen-
tration c(~x, t) obeys the diffusion equation

ċ = D∇2c. (2)

In steady state, and with spherical symmetry, the diffusion
equation becomes

0 = Dr−2∂r(r
2∂rc), (3)

which is solved by

c(r) = −A
r

+B (4)

for some constants A and B. Perfect absorption at the surface
and a constant concentration c0 at infinity imply the boundary
conditions c(a) = 0 and c(∞) = c0, respectively, which determine A and B, giving

c(r) = c0

(
1− a

r

)
. (5)

The inward flux of molecules per area per time at any radius r is given by D∂rc. Therefore, the total flux
of molecules per time at the cell surface is

J = 4πa2 ×D∂rc|a = 4πaDc0. (6)
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In a time T , the cell absorbs
M̄ = 4πaDc0T (7)

molecules.

Of course, this number M̄ is an average, because the diffusion equation is a field equation that does not
account for the particulate nature of the molecules. However, under the assumption that each molecule is
independent from the others, we know that the statistics of M are Poissonian. Therefore, the variance equals
the mean, and the relative error is [6]

ε2 =
σ2
M

M̄2
=

1

M̄
=

1

4π

1

aTc0D
. (8)

The perfect sink recovers the scaling of Eq. 1 with a numerical prefactor of 1/4π.

2.2 The “perfect instrument”

Figure 3: The perfect instrument.

The second model considered by Berg and Purcell is a spherical
cell that is permeable to the molecules and counts the number of
molecules inside its volume (Fig. 3, top). Berg and Purcell called
this model the “perfect instrument” and derived its relative error
using the autocorrelation function [5]. Here we will derive the same
result using an alternative approach, Langevin dynamics, because it
is easier to extend this approach to multicellular problems later.

The perfect instrument imposes no boundaries because it is perme-
able to the molecules. Therefore the steady-state solution to the
diffusion equation (Eq. 2) is c(~x, t) = c0. There are equal fluxes of
molecules in and out of the cell, and therefore we cannot investigate
the precision using the net flux as above. How do we find the relative
error?

The approach we use here is to endow the diffusion equation with a
Langevin noise term that accounts for the particulate nature of the
molecules,

ċ = D∇2c+ η. (9)

Here η(~x, t) produces the molecular fluctuations, and we will give
its statistical properties later on. The consequence is that c now
acquires spatiotemporal fluctuations on top of the uniform background c0 (Fig. 3, bottom),

c(~x, t) = c0 + δc(~x, t). (10)

Our goal is to calculate how the fluctuations in c translate to fluctuations in the number of molecules n in
the cell volume V ,

n(t) =

∫
V

d3x c(~x, t), (11)

or more specifically to

nT =
1

T

∫ T

0

dt n(t), (12)

which is the average of n over a time T .
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The mean of nT is clearly the same as that of n,

n̄ = c0V =
4

3
πc0a

3. (13)

To find the variance of nT , we calculate the power spectrum of n(t),

Sn(ω) =

∫
dω′

2π

〈
δ̃n
∗
(ω′)δ̃n(ω)

〉
, (14)

where δ̃n(ω) is the Fourier transform of the fluctuations in n,

δ̃n(ω) =

∫
dt δn(t)eiωt =

∫
V

d3x

∫
d3k

(2π)3
δ̃c(~k, ω)e−i

~k·~x. (15)

The second step follows from Eq. 11 and the properties of the Fourier transform (see Appendix A). As long
as the cell’s integration time is much longer than the typical diffusion timescale, T � a2/D, the variance of
nT is given by the low-frequency limit of the power spectrum,

σ2
T =

1

T
Sn(ω → 0). (16)

Eq. 16 follows from the fact that the power spectrum is the Fourier transform of the autocorrelation function
and is proven in Appendix B.

To find the power spectrum Sn(ω), we insert Eq. 10 into Eq. 9,

δ̇c = D∇2δc+ η, (17)

Fourier transform it,
−iωδ̃c = −Dk2δ̃c+ η̃, (18)

and solve for δ̃c,

δ̃c =
η̃

Dk2 − iω
. (19)

We insert Eq. 19 into Eq. 15 and the result into Eq. 14,

Sn(ω) =

∫
V

d3xd3x′
∫
dω′

2π

d3k

(2π)3
d3k′

(2π)3
e−i

~k·~xei
~k′·~x′

(Dk − iω)(Dk′ + iω)

〈
η̃∗(~k′, ω′)η̃(~k, ω)

〉
. (20)

Now we need the statistics of η, which are given by

〈η(~x′, t′)η(~x, t)〉 = 2Dc0δ(t− t′)~∇x · ~∇x′δ(~x− ~x′). (21)

Eq. 21 can be derived by approximating diffusion as a discrete hopping process on a 3D lattice and taking
the continuum limit [7]. The hopping reactions are delta-correlated in time, but they are anti-correlated in
space because the loss of a molecule at one lattice site produces a gain of one molecule at a neighboring site;
these spatial correlations lead to the gradients in Eq. 21. In Fourier space, Eq. 21 reads〈

η̃∗(~k′, ω′)η̃(~k, ω)
〉

= 2Dc0 × 2πδ(ω − ω′)× k2(2π)3δ(~k − ~k′). (22)

Inserting Eq. 22 into Eq. 20, the low-frequency limit of the power spectrum becomes

Sn(0) =
2c0
D

∫
V

d3xd3x′
∫

d3k

(2π)3
e−i

~k·(~x−~x′)

k2
. (23)

These integrals are straightforward and are performed in Appendix A. The result is

Sn(0) =
16πc0a

5

15D
. (24)

4



Therefore, using Eqs. 13 and 16, the relative error is

ε2 =
σ2
T

n̄2
=

3

5π

1

aTcD
. (25)

This is the same result obtained by Berg and Purcell [5]. The perfect instrument recovers the scaling of Eq.
1 with a numerical prefactor of 3/5π. The precision of the perfect instrument is (3/5π)/(1/4π) = 2.4 times
worse than that of the perfect sink (Eq. 8) because the sink does not count any molecule more than once [6].

2.3 Including binding kinetics

Figure 4: Receptor binding.

Over the past 40 years, the above models have been extended to include
features that more realistically reflect cell biology. One of the most impor-
tant features is that cells detect molecules using receptors on their surface,
and if a receptor is already bound it cannot detect a second molecule (Fig.
4). The receptor must either release the molecule or be internalized by
the cell and replaced by another receptor. Berg and Purcell themselves
investigated the precision of a single receptor that binds and unbinds
molecules [5]. For a receptor with lengthscale s, they found, again using
the autocorrelation function, a relative error of

ε2 =
1

2(1− p)
1

sTc0D
, (26)

where p is the probability that the receptor is bound. Notice that error diverges in the limit p→ 1, because
then the receptor is saturated and can detect no new molecules.

In 2005, Bialek and Setayeshgar generalized the problem to account for the fluctuations in the binding and
unbinding kinetics of the receptor itself [8]. Using the fluctuation-dissipation theorem, they found

ε2 =
1

π

1

sTc0D
+

2

(1− p)kc0T
, (27)

where k is the binding rate. In 2014, Kaizu et al. improved upon this calculation to properly account for
diffusive rebinding events [9]. Using reaction-diffusion theory, they found

ε2 =
1

2π(1− p)
1

sTc0D
+

2

(1− p)kc0T
. (28)

In Eqs. 27 and 28, the second term comes from the additional noise of binding and unbinding. Importantly,
however, in all of Eqs. 26-28, there is a term that scales as Eq. 1. The prefactor or additional terms may
depend on the model, but the limit given by Berg and Purcell in Eq. 1 always sets the maximal precision.

2.4 Do actual cells approach the limit?

After deriving the limit to the precision of concentration sensing, Berg and Purcell then asked whether
actual cells were observed to reach this limit [5]. They focused on data from several types of single-celled
organisms, including the Escheria coli bacterium. Motility of E. coli has two distinct phases: the “run”
phase in which a cell swims in a fixed direction, and the “tumble” phase in which the cell randomly rotates
in order to begin a new run in a different direction (Fig. 5). The bacterium biases its motion toward
higher chemical concentrations by continually measuring the concentration and extending the time of runs
for which the change in concentration is positive. The change in concentration over a run time T depends
on the concentration gradient g = ∂c/∂x and the bacterium’s velocity v,

∆c = Tgv. (29)
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Figure 5: Run-and-tumble chemotaxis.

Berg and Purcell argued that for a
change in concentration to be de-
tectable, it must be larger than the
measurement error, ∆c > σc. Using
for the relative error the scaling in
Eq. 1,

σ2
c

c20
∼ 1

aTc0D
, (30)

we obtain a lower limit on the run
time,

Tmin ∼
[

c0
aDv2g2

]1/3
. (31)

Typical values for the sensory
threshold of E. coli are on the or-
der of c0 = 1 mM, g = 10 nM/µm,
a = 1 µm, v = 10 µm/s, and D = 103 µm2/s [5]. Using the fact that one nanomolar is about one molecule
per cubic micron, Eq. 31 evaluates to

Tmin ∼

[(
106 nM

1

)(
1

1 µm

)(
1 s

103 µm2

)(
1 s

10 µm

)2(
1 µm

10 nM

)2(
1 nM

1 µm−3

)]1/3
= 0.5 s. (32)

Actual run times are on the order of Tobs ∼ 1 s. The fact that Tobs > Tmin implies that the observed sensory
behavior of E. coli is consistent with the physical bound. However, the fact that Tobs is also very close to
Tmin implies, as Berg and Purcell concluded, that the design of the sensory machinery in E. coli is nearly
optimal. If the run times were much shorter, gradient tracking would be physically impossible.

3 Limits to multicellular sensing

Figure 6: Embryonic development.

No cell is an island. Cells exist in complex communities, and
within these communities they communicate. Can communi-
cation enhance the precision of sensing? Here I will present
some recent experiments investigating this question, and the-
oretical work by my group to extend the considerations above
to communicating cell populations.

3.1 Evidence for collective sensing

In a developing fruit fly embryo, cell nuclei determine their fate
by detecting molecules called morphogens, whose concentration
varies from one end of the embryo to the other (Fig. 6). In
one well-studied case [10], the concentration of a morphogen
called Bicoid decays exponentially with lengthscale Λ ≈ 100
µm. Nuclei that detect a Bicoid concentration above a thresh-
old of c0 ≈ 5 µm−3 express a particular gene, and the other
nuclei do not. Because nuclei are a ≈ 8 µm wide, this means
that nuclei near the expression boundary detect the Bicoid concentration with a precision of a/Λ ≈ 10%.
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How long would it take to achieve this precision? Bicoid has a diffusion coefficient in the embryo of D ≈ 1
µm2/s, and it is detected by a binding site along the nuclear DNA with lengthscale s ≈ 3 nm. Therefore,
according to the Berg-Purcell scaling (Eq. 1), a precision of ε = 10% would require

T ∼ 1

sc0Dε2
=

(
1

3× 10−3 µm

)(
1

5 µm−3

)(
1 s

1 µm2

)(
1

10−1

)2

= 7× 103 s, (33)

or almost 2 hours. The problem is that at this point the embryo has only existed for about two hours, and
the nuclei in their present locations have only just formed toward the end of this time period, during the
latest division cycle. Therefore it is likely that the nuclei perform their detection in a far shorter time period.
But then how do they achieve the necessary precision?

A possible answer, proposed by Gregor et al. [10] and later explored in more detail [11], is that the nuclei
communicate, e.g. by diffusively exchanging a messenger molecule. In principle, this communication could
allow nuclei to share measurement information and therefore achieve a desired precision within a time that
is less than if each nucleus relied only on its own measurements.

Indeed, more recent work has explicitly demonstrated that cell-cell communication improves the precision
of sensing. Epithelial cells can detect concentration gradients of 50 nM/mm but cannot detect gradients
one hundred times shallower [12]. However, groups of epithelial cells can detect the shallower gradients.
Importantly, when the gap junctions between these cells (portals that allow molecules to be exchanged
across cell membranes) are blocked with a drug, this detection ability vanishes [12]. This result demonstrates
explicitly that cells can use gap-junction communication to improve sensory precision.

3.2 Sensing with short-range communication

Figure 7: Sensing with short-range communication.

To explore theoretically how communica-
tion can improve the precision of concen-
tration sensing, we consider two ubiqui-
tous types of cell-cell communication [13].
The first is short-range communication
(also called juxtacrine signaling), where
cells pass molecules directly across their
membranes, e.g. via gap junctions (Fig.
7). We consider the simplest case of two
adjacent cells with radii a. As before we
assume that the cells are sensing a uni-
form concentration with average value c0.
Molecules bind to receptors on each cell’s
surface, leading to bound receptor num-
bers r1 and r2. Bound receptors produce messenger molecules, leading to m1 and m2 molecules in each cell,
respectively, and these are exchanged between cells at a rate γ to provide the communication. The dynamics
of the concentration, bound receptor numbers, and messenger molecule numbers are

ċ = D∇2c− δ(~x− ~x1)ṙ1 − δ(~x− ~x2)ṙ2 + η, (34)

ṙ1,2 = αc(~x1,2, t)− µr1,2 + ξ1,2, (35)

ṁ1,2 = βr1,2 − νm1,2 + γ(m2,1 −m1,2) + χ1,2, (36)

where |~x2−~x1| = 2a is the cell separation; α and µ are the receptor binding and unbinding rates, respectively;
and β and ν are the messenger production and degradation rates, respectively. Eq. 34 treats each cell as a
point, but the cell radius a can be reintroduced later in the Fourier analysis as a small-wavelength cutoff
[8, 13]. Eq. 35 neglects the effects of receptor saturation.
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As before, Eqs. 34-36 include Langevin noise terms η, ξi, and χi to account for the fluctuations in diffusion;
the binding and unbinding reactions; and the production, degradation, and exchange reactions, respectively.
Their statistics are

〈η(~x′, t′)η(~x, t)〉 = 2Dc0δ(t− t′)~∇x · ~∇x′δ(~x− ~x′), (37)

〈ξi(t)ξj(t′)〉 = 2µr̄δ(t− t′)δij , (38)

〈χi(t)χj(t′)〉 = 2m̄δ(t− t′) [(ν + γ)δij − γ(1− δij)] . (39)

Eq. 37 is the same as before (Eq. 21), while Eqs. 38 and 39 are proportional to the associated reaction
propensities [14]. Here, r̄ = αc0/µ and m̄ = βr̄/ν are the mean numbers of bound receptors and messenger
molecules in each cell, respectively. Note that the last term in Eq. 39 accounts for the anti-correlations
associated with messenger exchange. That is, communication is equivalent to diffusive hopping on a lattice,
and here the lattice has only two sites (the cells). Therefore, as above, the loss of a molecule in one cell
produces a gain of one molecule in the neighboring cell, leading to anti-correlations.

Eqs. 34-36 constitute a linear system, and therefore the power spectra can be calculated in the same way as
in Sec. 2.2 [13]. This allows one to obtain the relative error in the time-average of the messenger molecule
number in either cell. The result is

ε2 =
σ2
T

m̄2
=

[
ν2 + 3νγ + 3γ2

2π(ν + 2γ)2

]
1

aTc0D
+

[
2(ν2 + 2νγ + 2γ2)

(ν + 2γ)2

]
1

µT r̄
+

[
2(ν + γ)

ν + 2γ

]
1

νTm̄
. (40)

The first term is the Berg-Purcell limit, where now the prefactor depends on the communication via the ratio
of the exchange rate γ to the degradation rate ν of the messenger molecule. The last two terms come from
fluctuations in the bound receptor number and the messenger molecule number, respectively. They scale
inversely with the means, r̄ and m̄, as we would expect for Poisson statistics. They also scale inversely with
the numbers of independent measurements µT and νT that can be made in the time T given their turnover
rates, respectively. These last two terms can always be made small by the cell increasing the number or
turnover of its molecules, but the first term depends on the environment and is therefore unavoidable. We
focus only on the first term from here on.

In the limits of weak and strong communication, the first term of Eq. 40 becomes

ε2 =
1

πaTc0D
×

{
1/2 γ � ν

3/8 γ � ν.
(41)

The top case is equivalent to the single-cell limit in this model, because in this case the cells are not
communicating. The bottom case is the perfect-communication limit for the two cells. Surprisingly, because
3/8 is more than half of 1/2, we see that doubling the cell number has not halved the error, even for perfect
communication. Why not?

The reason is that the cells are adjacent to each other and are therefore sampling adjacent portions of the
environment. As a result, the molecules counted by the two cells are not independent, and we do not get
the error reduction we expect for independent variables.

In fact, this model can be generalized to N cells arranged in a sphere (Fig. 8, left) [13], and the relative error
also does not fall off like 1/N . Instead, it falls off less steeply due to the environmental cross-correlations
between cells, like ε2 ∼ 1/N1/3 (Fig. 9, left). We can understand this scaling immediately: the volume of
the N -cell cluster scales like Na3, and therefore its length scales like N1/3a. Thus, its relative error should
obey the Berg-Purcell limit, but with N1/3a in place of a, namely ε2 ∼ 1/(N1/3aTc0D), as indeed observed.

3.3 Sensing with long-range communication
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Figure 8: Many
cells.

Figure 9: Relative
error and nearest-
neighbor cell
separation.

Figure 10: Sensing with long-range communication.

The second type of com-
munication that we explore
is long-range communication
(also called autocrine sig-
naling), where cells secrete
the messenger molecules into
the environment, and the
molecules diffuse and are de-
tected by other cells or the
same cell (Fig. 10) [13]. In
this case the cells need not be
(and often are not) adjacent.
Therefore we may expect some
alleviation of the environmen-
tal cross-correlations suffered
by cells using short-range communication, although we also expect that if cells get too far apart they lose
the ability to communicate altogether.

Again we consider the simplest case of two cells, this time separated by a distance `. Because the diffusion
and binding of signal molecules to cell receptors remains the same as in the previous case, Eqs. 34 and 35 still
hold here. However, Eq. 36 is replaced by a secretion-and-diffusion equation for the messenger molecules,

ρ̇ = D′∇2ρ− νρ+ δ(~x− ~x1)(βr1 + ζ1) + δ(~x− ~x2)(βr2 + ζ2) + ψ, (42)

Here ρ (~x, t) is the messenger molecule concentration and D′ is the messenger molecule diffusion coefficient.

The noise terms obey [7, 14]

〈ζi(t)ζj(t′)〉 = βr̄δ(t− t′)δij , (43)

〈ψ(~x, t)ψ(~x′, t′)〉 = νρ̄(~x)δ(t− t′)δ(~x− ~x′) + 2D′δ(t− t′)~∇x · ~∇x′ [ρ̄(~x)δ(~x− ~x′)] , (44)
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where

ρ̄ (~x) =
βr̄

4πD′

(
e−|~x−~x1|/λ

|~x− ~x1|
+
e−|~x−~x2|/λ

|~x− ~x2|

)
(45)

is the average concentration profile of the messenger molecules in steady state, and the lengthscale of com-
munication is set by λ ≡

√
D′/ν. Eq. 45 illustrates that indeed the strength of communication falls off with

the distance from each source. Even in the perfect-communication limit (λ→∞), in which the exponential
terms in Eq. 45 go to unity, there is still a power-law falloff due to the inability of diffusion to fill 3D space.

To detect the messenger molecules, we imagine, as with the perfect instrument (Sec. 2.2), that each cell is
permeable to them and counts the number in its volume Vi,

mi(t) =

∫
Vi

d3xρ(~x, t). (46)

Once again, the power spectra can be calculated to obtain the relative error in the average of m over a time
T [13]. Keeping only the Berg-Purcell term and taking the perfect-communication limit λ → ∞, the result
is

ε2 =
σ2
T

m̄2
=

[
16a2 + 9`2

2π(2a+ 3`)2

]
1

aTc0D
. (47)

Eq. 47 has the following limits,

ε2 =
1

πaTc0D
×

{
1/2 `� a

2/5 ` = `∗ = 8a/3.
(48)

The top case corresponds to large cell separation. Here we expect communication not to play a role, and
indeed we recover the single-cell limit of Eq. 41 (top case). The bottom case reflects the fact that Eq.
47 has a minimum as a function of `. The minimum comes from the anticipated tradeoff: at large ` the
communication is too weak, but at small ` the cells are sampling adjacent regions of the environment leading
to cross-correlations in their measurements. The minimum occurs at `∗ = 8a/3 ≈ 2.7a, slightly more than a
diameter apart.

The optimal precision for two cells is similar for both short- and long-range communication (3/8 = 0.375 is
close to 2/5 = 0.4). This makes sense because the optimal separation in the long-range case is not much
more than a diameter. However, the situation changes as the number of cells N grows. Using numerical
optimization, it is straightforward to find the optimal cell positions in the long-range case for any N (Fig.
8, right) [13]. The resulting relative error then falls off more steeply than N−1/3 (Fig. 9, left). Indeed,
after our work was published, a different group proved that the scaling is N−2/3 [15]. Evidently, long-range
communication allows higher sensory precision than short-range communication for large cell populations.

Even more striking is that the average optimal separation 〈`∗〉 between nearest-neighbors in the long-range
case grows with N (Fig. 9, right). With a few hundred cells, nearest neighbors are separated by about five
cell diameters. This highlights the statistical advantage of spreading out in order to sample a larger portion
of the environment. Indeed, it is known that some tumor cells that communicate by autocrine signaling
actively spread themselves out by several cell diameters, and it has been shown that this strategy minimizes
fluctuations in the signals they detect [16].

4 Concluding remarks

The legacy of Berg and Purcell is long and continues to grow. Their original insights on the physical limits
to chemical sensing [5] have been refined [8, 9, 17] and extended to communicating cell populations [13],
to spatial gradient sensing by single cells [6, 18, 19, 20] and populations [21, 22], to temporal gradient
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sensing [23], to simultaneous sensing of multiple molecule types [24], and to sensing in different confinement
geometries [25]. These theoretical limits have been put to the test in bacteria [5, 8], amoebae [6], fruit flies
[10], epithelia [12], neurons [26], our immune system [24], and tumors [13], and in most cases one finds that
cells have evolved to approach the limits closely. Precise sensing is critical for cell survival, and evidently
cells will do everything physically possible to achieve it.

A Integral evaluations

The derivation of Eq. 15 proceeds as

δ̃n(ω) =

∫
dt δn(t)eiωt (49)

=

∫
dt

∫
V

d3x δc(~x, t)eiωt (50)

=

∫
dt

∫
V

d3x

∫
d3k

(2π)3
dω′

2π
δ̃c(~k, ω′)e−i

~k·~x−iω′teiωt (51)

=

∫
V

d3x

∫
d3k

(2π)3
δ̃c(~k, ω)e−i

~k·~x. (52)

where the first line is the definition of the Fourier transform, the second line follows from Eq. 11, the third
line inserts the inverse Fourier transform for δc(~x, t), and the last line employs the relation

∫
dt ei(ω−ω

′)t =
2πδ(ω − ω′) to evaluate the t integral and then collapse the ω′ integral.

The evaluation of Eq. 23,

Sn(0) =
2c0
D

∫
V

d3xd3x′
∫

d3k

(2π)3
e−i

~k·(~x−~x′)

k2
, (53)

proceeds as follows. We separate the ~x and ~x′ integrals into their radial and angular components,

Sn(0) =
2c0
D

∫
d3k

(2π)3
1

k2

∫ a

0

dx x2
∫
dΩx e

−i~k·~x
∫ a

0

dx′ x′2
∫
dΩx′ ei

~k·~x′
. (54)

Then we use the expansion of the plane wave in spherical Bessel functions and spherical harmonics to evaluate
the solid angle integrals,∫

dΩx e
±i~k·~x =

∫
dΩx

∞∑
`=0

∑̀
m=−`

j`(±kx)Y ∗`m(±k̂)Y`m(x̂) (55)

=

∞∑
`=0

∑̀
m=−`

j`(±kx)Y ∗`m(±k̂)

∫
dΩx

√
4πY ∗00(x̂)Y`m(x̂) (56)

=

∞∑
`=0

∑̀
m=−`

j`(±kx)Y ∗`m(±k̂)
√

4πδ`0δm0 (57)

= j0(±kx)Y ∗00(±k̂)
√

4π (58)

= 4πj0(kx), (59)

where the second line uses the fact that Y00 = 1/
√

4π, the third and fourth lines use the orthonormality of
the spherical harmonics to evaluate the integral and collapse the sums, and the fifth line uses the fact that

11



j0(u) = (sinu)/u is even. Applying Eq. 59 to Eq. 54 we obtain

Sn(0) =
2c0
D

∫
d3k

(2π)3
1

k2

[∫ a

0

dx x2 × 4πj0(kx)

]2
(60)

=
16c0
D

∫ ∞
0

dk

k6

[∫ ka

0

du u2j0(u)

]2
, (61)

where the second step separates the ~k integral into its radial and angular components and defines u = kx.
Now we make use of the following two properties of spherical Bessel functions,∫

du u2j0(u) = u2j1(u), (62)∫ ∞
0

du uv−1j2w(u) =

√
π

2(1− v)

Γ[1− (v/2)]Γ[(v/2) + w]

Γ[(1− v)/2]Γ[2− (v/2) + w]
(−2w < v < 2), (63)

where Γ is the Gamma function. The first property can be verified using integration by parts and the fact
that j1(u) = (sinu− u cosu)/u2. We apply the first property to Eq. 61 to obtain

Sn(0) =
16c0a

5

D

∫ ∞
0

du

u2
j21(u), (64)

where now u = ka. We apply the second property with v = −1 and w = 1 to Eq. 64 to obtain

Sn(0) =
16πc0a

5

15D
. (65)

as in Eq. 24, where we have used the facts that Γ(1/2) =
√
π, Γ(1) = 1, Γ(3/2) =

√
π/2, and Γ(7/2) =

15
√
π/8.

B Variance and the power spectrum

Here we show that the variance in the long-time average of a variable is given by the low-frequency limit of
its power spectrum.

First we show that the power spectrum and autocorrelation function are related by Fourier transform, since
we will use that result in the derivation. For a variable x(t) with zero mean, the power function reads

S(ω) =

∫
dω′

2π
〈x̃∗(ω′)x̃(ω)〉 (66)

=

∫
dω′

2π
dtdt′ 〈x(t′)x(t)〉 eiωte−iω

′t′ , (67)

where the second step inserts the Fourier transforms. The quantity C(t− t′) = 〈x(t′)x(t)〉 is the autocorre-
lation function. The ω′ integral evaluates to a delta function, which collapses the t′ integral,

S(ω) =

∫
dtdt′ C(t− t′)eiωtδ(t′) (68)

=

∫
dt C(t)eiωt. (69)

We see that the power spectrum is the Fourier transform of the autocorrelation function. Therefore

C(t) =

∫
dω

2π
S(ω)e−iωt (70)

12



is the inverse transform.

Now consider the variance in the time-average of x(t) over a time T ,

σ2
T =

〈
1

T

∫ T

0

dt x(t)× 1

T

∫ T

0

dt′ x(t′)

〉
(71)

=
1

T 2

∫ T

0

dtdt′ 〈x(t)x(t′)〉 (72)

=
1

T 2

∫ T

0

dtdt′ C(t− t′). (73)

We transform variables as τ = t− t′ and τ ′ = t+ t′. Eq. 73 becomes

σ2
T =

1

2T 2

∫ T

−T
dτ

∫ 2T−|τ |

|τ |
dτ ′ C(τ) (74)

where the extra factor of 1/2 comes from the Jacobian. This allows us to perform the τ ′ integration,

σ2
T =

1

T 2

∫ T

−T
dτ (T − |τ |)C(τ). (75)

We insert Eq. 70,

σ2
T =

1

T 2

∫ T

−T
dτ (T − |τ |)

∫
dω

2π
S(ω)e−iωτ , (76)

and perform the τ integration by breaking up the integral,

σ2
T =

1

T 2

∫
dω

2π
S(ω)

[∫ 0

−T
dτ (T + τ)e−iωτ +

∫ T

0

dτ (T − τ)e−iωτ

]
(77)

=
1

T 2

∫
dω

2π
S(ω)

[∫ T

0

dτ (T − τ)eiωτ +

∫ T

0

dτ (T − τ)e−iωτ

]
(78)

=
2

T 2

∫
dω

2π
S(ω)

∫ T

0

dτ (T − τ) cos(ωτ) (79)

=
2

T 2

∫
dω

2π
S(ω)

1− cos(ωT )

ω2
(80)

=
4

T 2

∫
dω

2π
S(ω)

sin2(ωT/2)

ω2
(81)

=
1

πT

∫ ∞
−∞

du S(2u/T )j20(u). (82)

Here the second line takes τ → −τ in the first integral in the brackets; the third line uses e−iωτ + e−iωτ =
2 cos(ωτ); the fourth line uses integration by parts; the fifth line uses the trigonometric identity 1− cos θ =
2 sin2(θ/2); and the sixth line defines u = ωT/2, recalls that j0(u) = (sinu)/u, and makes explicit the infinite
range of integration.

In the limit of large T we can take S(2u/T ) → S(0) and remove it from the integral. More precisely,
this action is valid when S(ω) is roughly constant for |ω| . T−1 because the presence of j20(u) in Eq. 82
gives the integral support only when |u| is order one. In general the power spectrum is constant below
the lowest characteristic frequency of the system, or equivalently the inverse of the longest characteristic
timescale. Thus, we must have T longer than the longest characteristic timescale of the system to take
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S(2u/T )→ S(0). Assuming this is true, Eq. 82 becomes

σ2
T =

S(0)

πT

∫ ∞
−∞

du j20(u) (83)

=
S(0)

T
, (84)

as in Eq. 16. The second step uses the following property of spherical Bessel functions,∫ ∞
0

du j2v(u) =
π

4v + 2
(v > −1/2), (85)

with v = 0, and the fact that j20(u) is even. We see in Eq. 84 that the variance in the long-time average of a
variable is the low-frequency limit of its power spectrum divided by the averaging time.
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