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Abstract A system with many degrees of freedom can be characterized by a covariance
matrix; principal components analysis focuses on the eigenvalues of this matrix, hoping
to find a lower dimensional description. But when the spectrum is nearly continuous, any
distinction between components that we keep and those that we ignore becomes arbitrary;
it then is natural to ask what happens as we vary this arbitrary cutoff. We argue that this
problem is analogous to the momentum shell renormalization group. Following this analogy,
we can define relevant and irrelevant operators, where the role of dimensionality is played by
properties of the eigenvalue density. These results also suggest an approach to the analysis
of real data. As an example, we study neural activity in the vertebrate retina as it responds
to naturalistic movies, and find evidence of behavior controlled by a nontrivial fixed point.
Applied to financial data, our analysis separates modes dominated by sampling noise from a
smaller but still macroscopic number of modes described by a non-Gaussian distribution.

Keywords Renormalization group · Neural networks · Financial markets

1 Introduction

Many of the most interesting phenomena in the world around us emerge from interactions
amongmanydegrees of freedom. In the era of “big data,”we are encouraged to think about this
more explicitly, describing the state of a system as a point in a space with many dimensions:
the state of a cell is defined by the expression level of many genes, the state of a financial
market is defined by the prices of many stocks, and so on. One approach to the analysis
of such high dimensional data is to look for a linear projection onto a lower dimensional
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space. Quantitatively, the best projection is found by diagonalizing the covariance matrix,
which decomposes the variations into modes that are independent at second order; these
are the principal components (PCs), and the method is called principal components analysis
(PCA).1 In favorable cases, very few modes will capture most of the variance, but it is much
more common to find that the eigenvalues of the covariance matrix form a nearly continuous
spectrum, so that any sharp division between important and unimportant dimensions would
be arbitrary.

In the standard applications of PCA, the discussion focuses almost exclusively on the
covariance matrix and its spectrum. In this case the crucial question is whether the structure
that we see in the spectrum could have arisen at random, given that in analyzing real data we
have access only to a finite number of samples, and this leads us to problems in randommatrix
theory. But behind the covariance matrix stands the entire (joint) probability distribution over
themany variables in our system. Inmany cases it is the structure of this distribution that really
interests us. In a network of neurons, for example, we might be searching for a distribution
with many well resolved peaks, corresponding to the memories stored in a network with
Hopfield-like dynamics [3]. But precisely because the system has many degrees of freedom,
a direct visualization of this distribution is impossible. On the other hand, if PCA “works”
and we can project onto just a few degrees of freedom, then we can visualize the distribution
in this lower dimensional space. Is there any hope of getting at the structure of the full
distribution without this collapse of dimensionality?

For physical systems in thermal equilibrium, it again is the case that the most interesting
phenomena emerge from interactions among many degrees of freedom, but here we have a
quantitative language for describing this emergence. In the classical view, we make precise
models of the interactions on a microscopic scale, and then statistical mechanics is about
calculating the implications of these interactions for themacroscopic behavior ofmatter. In the
modern view, we admit that our microscopic description itself is approximate, incorporating
“effective interactions” mediated by degrees of freedom that we might not want to describe
explicitly, and that the distance scale at which we draw the boundary between explicit and
implicit description also is arbitrary. Attention shifts from the precise form of our model to
the way in which this model evolves as we move the boundary between degrees of freedom
that we describe and those that we ignore [4]; the evolution through the space of possible
models is described by the renormalization group (RG).

A central result of the renormalization group is that many detailed features of models
on a microscopic scale disappear as we coarse grain our description out to the macroscopic
scale, and that in many cases we are left with only a few terms in our models, the “relevant
operators.” Thus, some of the success of simple models in describing the world comes not
from an inherent simplicity, but rather from the fact thatmacroscopic behaviors are insensitive
to most microscopic details (irrelevant operators). This result usually is phrased in terms
of coupling constants in an effective Hamiltonian, but what we actually manipulate in the
course of an RG analysis is the probability distribution over all the degrees of freedom in
the system. Thus, the existence of a small number of relevant operators is the statement that
these distributions become simple as we average over short distance details. Our emphasis
on following the RG flow of distributions, rather than Hamiltonians, is in the spirit of a very
early discussion by Jona-Lasinio [5].

The RG approach to statistical physics suggests that systems in which PCA fails to yield a
clean separation between high variance and low variance modes may nonetheless be simpli-

1 The idea of PCA goes back at least to the start of the twentieth century [1]. For a brief modern summary,
see Ref. [2].
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fied. Indeed, in a system where the many degrees of freedom live on a lattice, with translation
invariant interactions, the principal components are Fourier modes, and typically we find
that the variance of each mode decreases monotonically but smoothly with decreasing wave-
length. In the momentum shell implementation of RG [6], we put a cutoff on the wavelength,
and ask what happens to the joint distribution of the remaining variables as we move this
cutoff, averaging over the short wavelength modes. In this language, the RG is about what
happens as we vary the arbitrary distinction between high variance PCs that we keep, and
low variance PCs that we ignore. The goal of this paper is to clarify this connection between
PCA and RG, so that we can construct RG approaches to more complex, high dimensional
systems.

2 Historical Note

This paper has been written for a volume dedicated to the memory of Leo Kadanoff. As has
been described many times, the modern development of the RG began with Leo’s intuitive
construction of “block spins,” in which he made explicit the idea of averaging over the fluc-
tuations that occur on short wavelengths [7]. Later in his life, Kadanoff worked on more
complex problems, from the dynamics of cities [8,9] to patterns [10], chaos [11], and singu-
larities [12,13] in fluid flows, and more [14,15]. Beyond his own work, he was a persistent
advocate for the physics community’s exploration of complex systems, including biological
systems. We have benefited, directly and indirectly, from his enthusiasm, as well as being
inspired by his example.

Among Leo’s last papers are a series of historical pieces reflecting on his role in the
development of the RG, and on statistical physics more generally [16–19]. Although much
can be said about these papers, surely one message is that the physicist’s persistent search
for simplification has been rewarded, time and again. We offer this paper in that spirit, as we
try to carry Kadanoff’s intuition about thinning out microscopic degrees of freedom away
from its origins in systems with local interactions.

3 Correlation Spectra and Effective Dimensions

Let us imagine that the system we are studying is described by a set of variables
φ1, φ2, . . . , φN ≡ {φi}, where the dimensionality N is large. For the purposes of this
discussion, “describing the system” means writing down the joint probability of all N vari-
ables, P({φi}). For simplicity we define these variables so that they have zeromean, andwe’ll
assume that positive and negative fluctuations are equally likely (though this is not essential).
We start with the guess that the fluctuations are nearly Gaussian, so we can write

P({φi}) = 1

Z
exp

⎡
⎣−1

2

∑
i,j

φiKijφj − 1

4!g
∑
i

φ4
i + · · ·

⎤
⎦ , (1)

where the coefficient g allow us to describe weak kurtosis of the random variables. It may be
useful to note that the probability distribution in Eq. (1) is the maximum entropy, and hence
least structured, model consistent with the full covariance matrix and the mean kurtosis of
all the variables; in this sense it is a minimal model. Much of what we will say here can
generalized to the case where each variable has a different kurtosis, so there is a distinct gi
associated with each term φ4

i .
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If g = 0, we are describing a system in which fluctuations are Gaussian, and in this limit
the matrix Kij is the inverse of the covariance matrix

Cij = 〈φiφj〉. (2)

In the conventional application of renormalization group ideas, we can classify non-Gaussian
terms as relevant or irrelevant: as we coarse grain our description frommicroscopic to macro-
scopic scales, do departures from a Gaussian distribution become more or less important?
Our first goal is to show how we can export this idea to the more general setting, where the
kernel Kij does not have any symmetries such as translation invariance. To do this, we start
near g = 0, and work in perturbation theory.

It is useful to write the eigenvalues λμ and eigenvectors {ui(μ)} of the matrix K ,
∑
j

Kijuj(μ) = λμui(μ), (3)

so that the variations in {φi} can be decomposed into modes {φ̃μ},
φi =

∑
μ

ui(μ)φ̃μ; (4)

if g = 0 then these modes are exactly the principal components. The Gaussian term becomes

1

2

∑
i,j

φiKijφj = 1

2

∑
μ

λμφ̃2
μ, (5)

and hence at g → 0 the variance of each mode is given by 〈φ̃2
μ〉 = 1/λμ. The average

variance of the individual variables is

1

N

∑
i

〈φ2
i 〉 = 1

N

∑
μ

1

λμ

→
∫ �

0
dλ ρ(λ)

1

λ
, (6)

where in the last step we introduce the distribution

ρ(λ) = 1

N

∑
μ

δ(λ − λμ), (7)

which becomes smooth in the limit of large N , and we note explicitly that there is a largest
eigenvalue �.2

The essential idea is to eliminate the modes that have small variance. This corresponds
to restricting our attention only to modes with λ less than some cutoff. Equivalently, it
corresponds to decreasing the limit � on the integral over eigenvalues, e.g. in Eq. (6). This
reduces the total variance, but it is natural to choose units in which the variance is fixed, and
this implies that as we change the cutoff � we have to rescale the values of φi. So we replace
φi → z�φi, and we can determine this scale factor by insisting that the mean variance stay
fixed. Again, we are working at small g, so we do this calculation at g = 0:

0 = d

d�

[
1

N

∑
i

〈(z�φi)
2〉

]
(8)

2 An alternative formulation treats the smallest eigenvalue separately, as with a mass term in field theory,
measuring all eigenvalues by their distance from this minimum. Then ρ(λ) would always have, as N → ∞,
support near λ = 0.
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= d

d�

[
z2�

∫ �

0
dλ

ρ(λ)

λ

]
(9)

⇒ d ln z�
d ln�

= −1

2
ρ(�)

[∫ �

0
dλ ρ(λ)

1

λ

]−1

. (10)

When we reduce the cutoff, we also reduce the number of degrees of freedom in the sys-
tem. The average of the quadratic term in the (log) probability distribution is automatically
proportional to this effective number of degrees of freedom,

Neff = N
∫ �

0
dλ ρ(λ), (11)

and this insures, for example, that the entropy of the probability distribution will be propor-
tional to Neff (extensivity). To be sure that this works also for the quartic terms, we write

Ng

[
1

N

∑
i

φ4
i

]
= Neff g̃

[
1

N

∑
i

(z�φi)
4

]
, (12)

which defines the effective coupling constant

g̃ = z−4
� g

N

Neff
. (13)

Now the scaling of the coefficient g̃ is given by

d ln g̃

d ln�
= ρ(�)

[
2∫ �

0 dλ ρ(λ) 1
λ

− �∫ �

0 dλ ρ(λ)

]
. (14)

Since this is the difference between two positive terms, we can find either sign for the result.
If the scaling function d ln g̃/d ln� is positive, then as we decrease the cutoff� any small

quartic term g̃ will become still smaller, and hence the distribution approaches a Gaussian.
This seems to make sense, since decreasing � corresponds to averaging over more and more
of the low variance modes, which means that each of the variables that remains is a weighted
sum of many of the original variables; under these conditions we might expect the central
limit theorem to enforce approximate Gaussianity of the resulting distribution. But if the
scaling function d ln g̃/d ln� < 0, then as we average over more and more of the lower
variance modes, the quartic term becomes more and more important to the structure of the
distribution. To use the language of the RG, under these conditions the quartic term is a
relevant operator.

If we consider the case where the density of eigenvalues is a power law, ρ = Bλα−1, we
find

d ln g̃

d ln�
= α − 2. (15)

Thus, the spectral density of eigenvalues determines the relevance of non-Gaussian terms in
the distribution.

In the conventional field theoretic examples, where the variables φ live at positions x in
a D dimensional Euclidean space, the correlations come from a “kinetic energy” term that
enforces similarity among neighbors,

1

2

∑
i,j

φiKijφj → 1

2

∫
dDx [∇φ(x)]2 . (16)
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The eigenvectors of K are Fourier modes, indexed by a wave vector k, with eigenvalues
λ = |k|2. If the original variables are on a lattice with linear spacing a, then there is a
maximum eigenvalue � ∼ (π/a)2, and the density

ρ(λ) ∝
∫

dDk δ
(
λ − |k|2) ∝ λD/2−1, (17)

corresponding to α = D/2. From Eq (15) we find

d ln g̃

d ln�
= D

2
− 2 = 1

2
(D − 4) . (18)

The quartic term is relevant if d ln g̃/d ln� < 0, which corresponds to D < 4, as is well
known from the conventional RG analysis [20,21]; the extra factor of 1/2 arises because �

is a cutoff on the eigenvalue, which is the square of the wavevector.
Everything that we have said here can be carried over to the case where each variable is

associated with a different coupling gi. This corresponds to a maximum entropy description
that captures the pairwise correlations among the variables and the kurtosis of each individual
variable. The relevance or irrelevance of each term is controlled, in the same way, by the
eigenvalue spectrum. If we include terms ∼φn

i , allowing us to match higher moments of the
marginal distributions for each φi, then as usual these terms are less relevant at larger n.
These results suggest that the renormalization group may provide, as we hoped, a path to
controlling the complexity of models, even outside the usual context of statistical field theory
with local interactions.

4 Can We Find Fixed Points?

Thus far our analysis has been confined to an analog of “power counting” in the conventional
applications of the renormalization group. The next step is to integrate out the low variance
degrees of freedom and compute corrections to the coupling constants that are beyond those
generated from the spectrum of eigenvalues itself. Here we give a sketch of this calculation,
following the conventional arguments as closely as possible.

We have a formulation in terms of discrete modes, so we can write φi → φi + uiψ ,
where ψ is the variable describing fluctuations in the “last mode” that we have kept in our
description. Our task is to average over the fluctuations in this last mode, and see how this
changes the distribution of the remaining variables:

exp

[
− g̃

4!
Neff

N

∑
i

(z�φi)
4

]
→

〈
exp

[
− g̃

4!
Neff

N

∑
i

z4�(φi + uiψ)4

] 〉
. (19)

In the limit of small g, ψ is Gaussian with 〈ψ2〉 = 1/�, and we find
〈
exp

[
− g̃

4!
Neff

N

∑
i

z4�(φi + uiψ)4

] 〉
(20)

= exp

[
− g̃

2

Neff

N

∑
i

z4�
u2i
�

φ2
i − g̃

4!
Neff

N

∑
i

(z�φi)
4

+1

2

(
g̃Neff

4!N
)2 ∑

i,j

z8�
�2

(
72φ2

i φ
2
j u

2
i u

2
j + 96φ3

i φjuiu
3
j

)
+ · · ·

⎤
⎦ . (21)
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The first term is a correction to the matrix K , analogous to a mass renormalization. In
the general case we not only get corrections to the coefficient of φ4

i , we also generate terms
∼φ2

i φ
2
j and∼φ3

i φj. As in the standard discussion, wewill assume that the fieldsφi are “slowly
varying” functions of their index.More precisely, we will expand the correction terms around
the point where φi = φj, and for nowwe drop the gradient-like terms∼(φi−φj),∼(φi−φj)

2,
…. In this approximation, we have

∑
i,j

φ2
i φ

2
j u

2
i u

2
j ≈

∑
i

φ4
i u

2
i

∑
j

u2j (22)

=
∑
i

φ4
i u

2
i ≈ 1

N

∑
i

φ4
i , (23)

where in the last step we again use the slow variation of φi to replace u2i with its average. In
the same approximation, the term ∼ uiu3j vanishes. The net result is that

g̃ → g̃ − 3

2
g̃2

Neff

N

z4�
N

1

�2 . (24)

This is the change in coupling associated with integrating out one mode, which corresponds
to a change in the cutoff such that −d�ρ(�)N = 1, so we can rewrite Eq (24) as

d ln g̃

d ln�
= 3

2
g̃
Neff

N
z4�

ρ(�)

�
. (25)

Combining with the scaling behavior in Eq (14), we find

d ln g̃

d ln�
= ρ(�)

[
2∫ �

0 dλ ρ(λ) 1
λ

− �∫ �

0 dλ ρ(λ)
+ 3

2

g̃

�

]
. (26)

In the case where ρ(λ) ∝ λα−1, this generates a fixed point g̃∗ ∝ 2− α, which is analogous
to the Wilson-Fisher fixed point g̃∗ ∝ 4 − D [20].

The calculation we have done here is aimed at showing that the conventional analysis of
fixed points can be carried over to this different setting, away from equilibrium statistical
physics with local interactions. We assume that this more complex setting allows for a richer
variety of fixed points, which need to be explored.

5 An Approach to Data Analysis?

These arguments suggest that, at least in perturbation theory, much of the apparatus of the
renormalization group for translation invariant systems with local interactions can be carried
over to more complex systems. We can define relevant and irrelevant operators, and there is a
path to identifying fixed points. The crucial role played by the dimensionality in systems with
local interactions is played instead by the spectrum of the matrix K . Perhaps most important
is that we can carry over the concept of renormalization.

Faced with real data on a systemwith many degrees of freedom, we don’t know the matrix
K . We do know that, if the system is close to being Gaussian, then K is close to being the
inverse of the covariance matrix C , which we can estimate from the data. In systems with
translation invariance, the eigenvectors of C and K are the same, which means that coarse
graining by eliminating the modes with large eigenvalues of K (momentum shells) is exactly
the same as eliminating the modes with small eigenvalues ofC . Although this can’t be true in
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general, we can nonetheless try to use the eigenvalues of C as a way of ordering the degrees
of freedom along an axis from the “details” that we want to ignore out to the macroscopic,
collective variables that we suspect are most important. We implement this in several steps:

(1) We examine the spectrum of the covariance matrix. If a small number of eigenvalues are
separated from the bulk, and capturemost of the variance, then the system is genuinely low
dimensional and we are done (PCA works). More commonly, we find a near continuum
of eigenvalues, with no natural separation.

(2) Power-law behavior in a rank-ordered plot of the eigenvalues is analogous to power-
law correlation functions in the usual field theoretic or statistical physics examples. In
practice, however, it may be difficult to verify power-law behavior over a very wide range
of scales.

(3) We coarse grain our description by projecting out a fraction of themodeswith the smallest
eigenvalues of C . In effect this replaces each variable φi by an average over low variance
details φi → ψi, in the spirit of the block spin construction.

More concretely, we start with variables {φi}, with i = 1, 2, . . . , N , as before, and
we take these to have zero mean. We construct the covariance matrix Cij, and find its
eigenvalues and eigenvectors,3

∑
j

Cijuj(μ) = λμui(μ). (27)

We put these eigenvalues in order from largest (μ = 1) to smallest (μ = N ). Coarse
graining is a projection onto the subsets of modes that make the largest contributions to
the total variance,

φi → ψi =
∑
j

P̂ijφj, (28)

where the projection operator is

P̂ij =
K∑

μ=1

ui(μ)uj(μ), (29)

and we can think of this either as function of the fraction of the modes that we keep
( f = K/N ) or of the cutoff on the eigenvalues of the inverse covariance matrix, which
connects more closely to our discussion above (� = 1/λK ).

(4) To follow the results of coarse graining, we can measure the moments of the local vari-
ables, 〈ψn

i 〉, or even their full distribution, as was done long ago for Monte Carlo data by
Binder [22].

Notice that from the traditional point of view in applications of PCA, “coarse graining”
is entirely trivial: we just keep some of the principal components and discard the others.
But what is happening to the joint probability distribution of the remaining variables in the
system need not be so trivial; indeed, this nontrivial evolution of the joint distribution, or
the effective Hamiltonian, is the whole point of the conventional RG analysis. While the
joint distribution is impossible to sample reliably in any realistic experiment or simulation,
the point of Binder’s construction is that we can see reflections of its changing structure

3 In the analytic discussion of model distributions, above, the natural quantities were the eigenvalues and
eigenvectors of the matrix Kij. As noted, we don’t have access to this matrix when we are confronted with
real data, so we analyze the matrix Cij instead. To emphasize that what we are doing with the data is in the
same spirit as the analysis of the models, we abuse notation slightly and recycle the symbols {λμ, ui(μ)}.
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by monitoring the distribution of the individual variables. In the classical case, the bimodal
distribution of a raw Ising variable evolves into the distribution of localmagnetizations, which
may be Gaussian away from a critical point or non-Gaussian at the critical point. Importantly,
we never try to estimate a distribution over multiple variables, and so we never suffer from
the curse of dimensionality.

5.1 A Network of Neurons

As a first example, we have analyzed an experiment on the activity of 160 neurons in a small
patch of the vertebrate retina as it responds to naturalistic movies [23]; a full description will
be given elsewhere, but here we focus on our ability to detect a nontrivial renormalization
group flow as we coarse grain this system. As in previous analyses of these data, we divide
time into small bins (width 
τ = 20ms), and in each bin a single neuron either generates
an action potential or remains silent, so that the natural local variables are binary before any
coarse graining.We can then take a state of the entire system to be the 160-dimensional vector
of these binary variables, but we can also consider T successive vectors in time, as in the
“time delayed embedding” analysis of dynamical systems [24]: increasing T compensates for
not observing directly all the relevant degrees of freedom in the system, and gives us access
to a higher dimensional description. The experiment runs for roughly one and one half hours
(5660s), and we estimate that this generates ∼105 independent samples [23]. Given this size
of the data set, we can use T = 8 without creating problems of undersampling, and this gives
us N = 1280 dimensions. Because the different neurons are different from one another, we
normalize each variable φi to have zero mean and unit variance, so the covariance matrix is
the matrix of correlation coefficients in the raw data.

As we can see at left in Fig. 1, the eigenvalues of the correlation matrix have an essentially
continuous spectrum, perhaps even showing hints of scale invariance.4 This spectral structure
is well outside the range that would be generated by an equally large random sample from
uncorrelated variables.

Because the raw variables of this system are binary, the normalized fourth moments
(〈ψ4

i 〉/〈ψ2
i 〉2) can be large and vary substantially from neuron to neuron. As we coarse grain,

eliminatingmodes corresponding to small eigenvalues of the covariancematrix, this variation
is reduced, as shown at right in Fig. 1. More strikingly, the normalized fourth moments are
hardly varying as we move our cutoff beyond the first ∼90% of the modes, and the median
value is stabilizing well above the value of 3 expected for a Gaussian distribution. It is inter-
esting that the range of scales (fraction of modes included) over which see an approximately
fixed fourthmoment is the same as the range over which see approximately power-law behav-
ior of the eigenvalue spectrum. These results suggest that the joint distribution of activity in
this neural network is close to a nontrivial fixed point of the renormalization group transfor-
mation. This is consistent with previous evidence that this system is close to a critical point
in the thermodynamic sense [25,26], but the renormalization group analysis connects more
fully to our understanding of criticality in equilibrium systems.

4 In some contexts it would be more natural to look at the distribution of eigenvalues, searching for modes
that emerge clearly from a “bulk” that might be ascribed to sampling noise. Plotting eigenvalues vs their rank,
as we do here, provides a representation of the cumulative distribution of eigenvalues, and does not require us
to make bins along the eigenvalue axis. Rather than plotting from smallest to largest, we plot from largest to
smallest, so that the spectra are more directly comparable to a plot of the susceptibility or propagator G(k) vs
momentum k in the usual statistical physics examples.
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Fig. 1 Analysis of neural activity in the retina. States are defined by the patterns of spiking and silence in
successive time bins from 160 neurons, as described in the text. Left The spectrum of eigenvalues of the
correlation matrix, with states constructed from different numbers of time bins, plotted versus fractional mode
number in descending order; results from randomized data shown for comparison. Right Normalized fourth
moments for each of the 8× 160 variables (cyan dots), as a function of the fraction of modes remaining after
the coarse graining procedure; blue circles show medians ± one quartile. More precisely, what we plot is
〈ψ4

i 〉/〈ψ2
i 〉2, with the coarse grained variables ψi defined by Eqs. (28, 29). The dashed line is the value of

this normalized moment for Gaussian random variables. The plot suggests that the fourth moments flow to a
non-trivial fixed value, well above the Gaussian prediction (Color figure online)

5.2 Daily Returns on the NYSE

As a second example,we consider a set of 4000 assets traded on theNewYorkStockExchange
[27,28]. In the data, spanning nearly ten years from 1 Jan 1990 through 30 Apr 1999, 2445
assets appear for more than 2300 days out of the total of 2356 trading days, and we focus on a
random subset of N = 2048 from this group. On each day t an asset i opens at price popeni (t)
and closes at price pclosei (t); we define the state of the system on day t by the vector of daily
returns {ri(t)}, with ri(t) = ln[pclosei (t)/popeni (t)]. At left in Fig. 2 we see the spectrum of
eigenvalues of the correlation matrix for these variables. In contrast to the neural data, the
number of samples here is comparable to the dimensionality of the system, so we expect
that the spectrum will be substantially affected by random sampling. Indeed, if we project
out the ten percent of modes with the largest variance (opposite to our RG procedure), the
resulting spectrum is very close to the predictions of the Marchenko–Pastur distribution for
covariance matrices constructed from samples of uncorrelated variables [29].

There is a large literature on the analysis of correlation matrices for financial data, with
more recent work emphasizing the use of random matrix theory as a null model or perhaps
even a tool for “cleaning” the inferences that can be drawn fromfinite data sets.As emphasized
at the outset, what stands behind the correlation matrix is the full joint distribution over the
many degrees of freedom in the system, and it is this distribution that we would like to
get at using RG ideas. The comparison of the eigenvalue spectrum with the predictions
of random matrix theory does suggest, however, that with the resolution available in these
data, integrating out many of the low variance degrees of freedom will correspond simply
to removing random noise, and only once this noise is removed will we see features of the
market itself.
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Fig. 2 Analysis of daily returns on N = 2048 assets in the NYSE for a period of T = 2356 days. Left
Eigenvalues of the correlation matrix, in descending order, as a function of fractional mode number; results
are shown for all the data (blue), as well as cases in which we remove the largest 1% (green), 4% (yellow), or
13% (red) of the eigenvalues. Solid lines are theoretical expectations from the Marchenko–Pastur distribution
[29]. Right The flow of the normalized fourth moments for each of the N = 2048 variables ψi when we
integrate out a fraction of high eigenmode. The normalization procedure after eingenmode integration is
described in the main text. Colors code different cases where we track all the modes, or first remove different
fractions of the large variancemodes, as in the analysis on the left. The dashed line is the prediction forGaussian
random variables. We see that the fourth moments have a nonmonotonic behavior when all eigenvalues are
included, while they flow rapidly to the Gaussian fixed point when the top 10% of eigenvalues are removed
(Color figure online)

If we apply our RG procedure to the raw data, we see a non-monotonic trajectory of the
fourth moments, first moving toward the Gaussian fixed point and then away (Fig. 2, right).
The turning point is roughly when we have integrated out all but the last ten percent of high
variance modes, which is consistent with the lower ∼ 90% of the eigenvalue spectrum being
well described by the Marchenko–Pastur distribution. Indeed, if we first exclude the top ten
percent of high variance modes, the fourth moments flow very quickly to the Gaussian fixed
point and the third moments flow to zero (not shown). The ten percent of high variance
modes clearly are not just noise, however, although it is not clear from the data whether their
distribution is described by a fixed point of the RG.We emphasize that the boundary between
noise-like and non-noise modes is a property not of the system, but of the finite sample of
data; it is possible that the RG analysis we propose here could be combined with denoising
[30,31] to give more insight.

6 Not Quite Conclusions

The idea that the RG might be useful in more complex systems is a widely held intuition.
In particular, there have been efforts to move from regular lattices to graphs [32], as well
as to construct a real space renormalization group for spin glasses [33–35]. What is new
here, we think, is that, at least in perturbation theory, we can free ourselves completely from
assumptions of locality, which seem so crucial to the usual notions of relevant and irrelevant
operators. Perhaps more importantly, connecting RG and PCA allows us to look at data in a
new way, with interesting results in two very different complex systems.
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PCA is a search for simplification. The hope is that a system with variables that live
in a high dimensional space can be captured by a projection of these variables into a low
dimensional space. Although the RG involves (repeated) projections onto lower dimensional
spaces, this dimensionality reduction is not the source of simplification. Indeed, when we
study models, the full renormalization group transformation involves expanding the system
back to restore the original number of degrees of freedom; admittedly, this is difficult to do
with real data. RG is a search for simplification, not in the space of the system variables but
in the space of models.

An interesting connection is to the question of how well different terms in a model are
determined by experimental data. Startingwithmodels for biological signaling networks [36],
Sethna and colleagues have argued that models for complex systems typically have a wide
range of parameter sensitivities, so that some directions in parameter space have coordinates
that are easily determined by data while other directions are almost never determined. This
pattern is quantified by the spectrum of eigenvalues in the Fisher information matrix (FIM),
and in many cases this spectrum is nearly uniform on a logarithmic scale [37,38], a property
termed “sloppiness.” Many of these models can be written so that parameter spaces are
compact, and simplification then is achievable by moving along the ill-determined directions
until reaching the edge of the space, leaving a model with one less parameter [39]. Recent
work has shown that conventional statistical physics models do not exhibit sloppiness if
experiments involve measurements on the microscopic scale, but that this pattern develops
when measurements are restricted to coarse grained variables [40]. The spreading of the FIM
eigenvalues is controlled by the RG scaling of the different operators out of which the model
is constructed, suggesting that the notions of simplification that are inherent to the RG are
equivalent to amore data-driven simplification inwhichwe keep onlymodel components that
are well determined by experiment. It is possible that there are even more direct connections
between the renormalization group and the learning of probabilistic models [41].

In the conventional implementations of the renormalization group, we put variables in
order by their length scale, with small length scales at one end and long length scales at the
other. The intuition is that, when interactions are local, smaller scales are less important, or
at least less interesting, and so we average over scales shorter than some distance �. The
RG then is the exploration of what happens as we change �. In more complex systems,
simplification requires us to find a natural coordinate system in state space, and then put
these coordinates in order of their likely importance, with fine-grained details at one end and
crucial collective degrees of freedom at the other. The spectrum of the covariance matrix
gives us one possible answer to these questions, which we have explored here, but surely
there are other possibilities, even in the two examples discussed above. The more significant
idea is that once we have identified an axis along which coarse graining seems to make sense,
rather than looking for the right place to put the boundary between what we include and what
we ignore, we should use the RG as inspiration to explore the evolution of our description as
we move this boundary.
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