Observation of a reverse ozone weekend effect in the South Coast Air Basin (SoCAB) during summer 2010

Sunil Baidar1,2,*, Hilke Oetjen2, Christoph Senff1,3, Raul Alvarez II, Michael Hardesty1,3, Andrew Langford3, Si-Wan Kim1,3, Michael Trainer*, and Rainer Volkamer1,2,*

1. Cooperative Institute for Research in Environmental Sciences, Boulder, CO 2. Dept. of Chemistry and Biochemistry, University of Colorado, Boulder, CO 3. Chemical Science Division, NOAA, Boulder, CO

Weekend Effect in Ozone

- Weekend effect in ozone (O_3) is a phenomenon in which a higher level of ambient O_3 is observed on the weekends compared to the weekdays.
- It has been observed in the South Coast Air Basin (SoCAB) since mid 1970s.
- Lower NO (NO + NO$_2$) emissions from heavy duty diesel trucks during the weekends is considered as the major reason for the increased O_3 concentration.
- Reduced NO emissions on weekends can affect O_3 levels via two processes:
 1. decreased O_3 loss by titration
 2. increased O_3 production due to higher volatile organic compounds (VOCs) to NO$_x$ ratio.
- The weekend effect provides ambient experimental evidence to evaluate how changes in NO$_x$ may affect O_3 response.

Instrumentation

Platform: NOAA Twin Otter
CU AMAX-DOAS: NO$_2$, HCHO, CHOCHO columns and profiles
NOAA TOPAZ lidar: O_3 and aerosol profiles, boundary layer height (BLH) O_3 vertical column: O_3 profile integrated to BLH
U. of Leeds Doppler lidar: wind profiles

One very hot weekend in July 2010

- Saturday, July 17, 2010 had very similar meteorological conditions in SoCAB.
- Flights with identical flight plans were flown on the two days (9:30-13:10 PST)

Higher O_3 was not observed on the weekend, despite the usual ~ 35% reduction in NO$_x$.
Higher temperature increases biogenic VOC emissions.
O_3 chemistry in SoCAB shifts to NO$_x$ limited regime during hot weekends.

O_3 Chemistry and NO$_x$ trends in SoCAB

- O_3 chemistry in SoCAB is currently in NO$_x$ suppressed regime.
 - reduction in NO$_x$ emission results in higher O_3 concentration
- NO$_x$ levels in SoCAB has been decreasing at a rate of ~7% per year for the last 5 years.
- Current regulations in California is expected to further reduce NO$_x$ emissions:
 1. greater than 50% during summer months from heavy duty diesel engines by 2015.
 2. 75% from cars and light duty vehicles from 2014 to 2025.

Conclusion

- A first case-study finds ‘reverse’ O_3 weekend effect during a hot weekend in July 2010 in SoCAB.
- The ‘regular’ O_3 weekend effect was observed by both column and in-situ measurements of O_3 and NO$_x$ in June 2010.
- Indication of O_3 chemistry transitioning towards NO$_x$ limited regime under hot summer conditions.
- Future reductions in NO$_x$ emissions are likely to result in fewer O_3 non attainment days in SoCAB during the ozone season (July-September).

References

Acknowledgements: This work is supported by California Air Resource Board (CARB) contract 09-217, and NSF-CAREER award ATM-0847703 (SV). SB is a ESRL-CIRES graduate fellow.