David Nesbitt
Adjoint Professor

Office: JILA A805
Lab: JILA B212, B214, B217, B219, B221, X120
Lab Phone: 303-492-1453,303-492-1454, 303-735-5825, 303-735-6172, 303-492-7777, 303-492-6409
Fax: 303-735-1424


Ph.D.: University of Colorado, 1981
Postdoctoral Fellow: National Research Fellow at National Bureau of Standards, 1981-82

Areas of Expertise

Instrument Development, Bioanalytical Chemistry, Molecular Biophysics, Atmospheric/Astrochemistry, Biophysics, Kinetics/Thermochemistry

Awards and Honors

Fellow, American Academy of Arts and Sciences, 2013; Fellow, American Chemistry Society, 2010; Presidential Rank Award, Department of Commerce, 2009; Fellow, Royal Society of Chemistry (UK), 2005; NIST Fellow, National Institute of Standards and Technology, 2005; Bourke Medal, Royal Society of Chemistry, Faraday Division, 2002; Alexander von Humboldt Fellowship, 1999; William F. Meggers Award, Optical Society of America, 1999; Earle K. Plyler Prize, 1997; Edward Uhler Condon Award, 1995; Department of Commerce Silver Medal, 1992; Arthur S. Fleming Award, 1991; Fellow, American Physical Society, 1991; Wilson Prize Lecture (Harvard University) , 1989; Alfred P. Sloan Fellow, 1987; Dreyfus Foundation Grant for Newly Appointed Faculty in Chemistry, 1984; ACS Nobel Laureate Signature Award, 1983

Laser Studies of Spectroscopy, Reaction Dynamics and Single Molecule Microscopy: Chemical Physics, Nanomaterials and Biophysics

The Nesbitt Laboratory pursues research in four main areas:

  1. High resolution laser spectroscopy of radicals, ions and molecular ion clusters
  2. Chemical Reaction Dynamics: Gas Phase and Interfaces
  3. Quantum nanostructures and photonic nanomaterials
  4. Single Molecule Biophysics: Microscopy, Kinetics and Thermodynamics


The group's work involves extensive use of state-of-the art cw and ultrafast pulsed laser technology, nonlinear generation of tunable mid and near-infrared laser light, fast analog electronics, scan probe methods, confocal microscopy, servo-loop control, shaped supersonic expansions, plasma discharges, kinetic analysis and ab initio quantum theoretical calculations. A central unifying goal of the research program is the elucidation of fundamental kinetics and dynamics of elementary chemical/biophysical processes from both experimental and theoretical perspectives.

Professor Nesbitt is a Fellow of JILA, a Physicist at the National Institute of Standards and Technology (NIST), a Full Professor in the Department of Chemistry and Biochemistry and a Lecturer in the Department of Physics.

N. F. Dupuis, E. D. Holmstrom and D. J. Nesbitt, “Molecular crowding effects on single molecule RNA folding/unfolding thermodynamics and kinetics,” Proc. Nat. Acad. Sci, 111, 8464-8469, DOI: 10.1073/pnas.1316039111  (2014).

E. D. Holmstrom and D. J. Nesbitt, “Single-molecule fluorescence resonance energy transfer studies of the human telomerase RNA psuedoknot: Temperature/urea dependent folding kinetics and thermodynamics,” J. Phys. Chem. B 118, 3853-3863, DOI: 10.1021/jp501893c (2014).

E. D. Holmstrom, J. T. Polaski, R. T. Batey, and D. J. Nesbitt, “Single-molecule conformational dynamics of a biologically functional hydroxocobalamin riboswitch,” J. Am. Chem. Soc. 136, 16832-16843 DOI: 10.1021/ja5076184 (2014).

Y. Liu, E. Holmstrom, J. Zhang, P. Yu, J. Wang, M. A. Dyba, D. Chen, J. Ying, S. Lockett, D. J. Nesbitt, A. Ferre-D’Amare, R. Sousa, J. R. Stagno, and Y.-X. Wang, “Synthesis and applications of RNAs with position-selective labelling and mosaic composition,” Nature 522, 368-372, DOI:10.1038/nature14352 (2015)

E. D. Holmstrom, N. F. Dupuis, and D. J. Nesbitt, “Kinetic and thermodynamic origins of osmolyte-influenced nucleic acid folding,” J. Phys. Chem. B. 119, 3687–3696, DOI: 10.1021/jp512491n (2015)

C.-H. Chang and D. J. Nesbitt, “Spectroscopy and dynamics of jet cooled polyynes in a slit supersonic discharge: Sub-Doppler infrared studies of diacetylene HCCCCH,” J. Phys. Chem. A. 119, 7040 -7950, DOI:10.1021/acs.jpca.5b02310 (2015).

C.-H. Chang and D. J. Nesbitt, “Sub-Doppler Infrared Spectroscopy of Propargyl

Radical (H2CCCH) in a Slit Supersonic Expansion,” J Chem Phys. 142, 244313, DOI:10.1063/1.4922931 (2015).

E. D. Holmstrom and D. J. Nesbitt, “Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer,” Ann. Rev. Phys.Chem.67, 1-747, DOI: 10.1146/annurev-physchem-040215-112544 (2016).

C.-H. Chang, J. Agarwal, W. D. Allen, and D. J. Nesbitt, “Sub-Doppler infrared spectroscopy and reaction dynamics of triacetylene in a slit supersonic expansion,” J. Chem. Phys. 144, 074301, DOI: 10.1063/1.4940905 (2016)

J. T. Polaski, E. D. Holmstrom, D. J. Nesbitt, and R. T. Batey, “Mechanistic Insights into Cofactor-Dependent Coupling of RNA Folding and mRNA Transcription/Translation by a Cobalamin Riboswitch,” Cell Reports 15, 1100-1110, DOI: 10.1016/j.celrep.2016.03.087 (2016).

A.  L. Efros and D. J. Nesbitt, “Origin and control of blinking in quantum dots,” Nature Nanotech. 11, 661-671, DOI: 10.1038/nnano.2016.140 (2016).

C. H. Hoffman and D. J. Nesbitt, “Quantum State Resolved 3D Velocity Map Imaging of Surface-Scattered Molecules: Incident Energy Effects in HCl + Self-Assembled Monolayer Collisions,” J. Phys. Chem. C. 120, 16687–16698, DOI: 10.1021/acs.jpcc.6b03973 (2016).

A. Sengupta, H.-L. Sung and D. J. Nesbitt, “Amino Acid Specific Effects on RNA Tertiary Interactions: Single-Molecule Kinetic and Thermodynamic Studies,” J. Phys. Chem. B 120, 10615-10627, DOI: 10.1021/asc.jpcb.6b05840 (2016).

A. Zutz and D. J. Nesbitt, “Angle-Resolved Molecular Beam Scattering of NO at the Gas- Liquid Interface,” J. Chem. Phys. 147, 054704 https://doi-org.colorado.idm.oclc.org/10.1063/1.4995446 (2017).

M. P. Ziemkiewicz, C. Pluetzer, J. Loreau, A. van  der Avoird, and D. J. Nesbitt, “Nuclear Spin/Parity Dependent Spectroscopy and Predissociation Dynamics in vOH = 2 <— 0 Overtone Excited Ne-H2O clusters: Theory and Experiment,” J. Chem. Phys. (2017).

A. Kortyna, A. J. Samin, T. A. Miller and D. J. Nesbitt “Sub-Doppler infrared spectroscopy of resonance-stabilized hydrocarbon intermediates: ν3 (b2) and ν4 (a1) CH stretch modes and CH2 rotor tunneling dynamics of benzyl radical,” Phys. Chem. Chem. Phys. 19, 29812-298821 (2017).