Arthur Nozik
Research Professor
303-384-6603(NREL), 303-735-5703 (CU)

Office: Ekeley W145A and SEEC 364
Lab: National Renewable Energy Laboratory
Lab Phone: 303-384-6603
Fax: 303-384-6655
Email: or


Ph.D.: Yale University, Physical Chemistry, 1967
B.ChE.: Cornell University, Chemical Engineering, 1959

Areas of Expertise

Physical Chemistry, Chemical Physics, Renewable Energy, Nanotechnology/Materials

Awards and Honors

Two publications related to the 2016 University of Colorado Honorary Symposium:  M.C. Beard, J.L. Blackburn, J.C. Johnson, and G. Rumbles “Status and Prognosis of Future-Generation Photoconversion to Photovoltaics and Fuels, ACS Energy Lett 1, 344-347 (2016); and P.V. Kamat, “A Conversation with Art Nozik”, ACS Energy Lett 1, 420-423 (2016); Establishment at NREL of new Director’s Fellowship call the Nozik Postdoctoral Director’s FellowshipYale University Graduate School, Wilbur Cross Medal, 2016; University of Colorado, Honorary Symposium in Recognition of Lifetime Achievement in Solar Photoconversion, 2016; Thomas Reuters 2014 Highly Cited Researcher; Heinz Gerischer Award, European Divison of the Electrochemical Society, 2013Fellow of the Royal Society Of Chemistry (2013)ACS Esselen Award for Science in the Public Interest, NE Section, Harvard Univ, 2011; Intergovernmental Renewable Energy Organization, U.N., Research Award, 2009; Eni Award for Science and Technology (Italy), 2008; Midwest Research Institute Director's Award (2007); Honorary Festschrift Issue of The Journal of Physical Chemistry, Dec. 21, 2006; Fellow of the American Association for the Advancement of Science, 2003; Research Award, Energy Technology Division, Electrochemical Society, 2002; Distinguished Lecturer, Frontiers in Chemistry Series, Case Western Reserve Univ., 2002; Fellow of the American Physical Society, Chemical Physics Division, 1999; NREL Director's Award, 1993; MRI Hubbard Award, 1992; American Western Universities-U.S. DOE Distinguished Lectureship, 1990; MRI Van Morris Award, 1985SERI Outstanding Achievement Award, 1984.

Size Quantization Effects in Semiconductors, Nanoscience,  and Future Generation Solar Photon Conversion to Photovoltaics and Solar Fuels

Professor Nozik is a Research Professor  in the Department of Chemistry and Biochemistry and a Senior Research Fellow Emeritus at the National Renewable Energy Laboratory (NREL) in Golden, Colorado; NREL is one of the National Laboratories of the U.S. Department of Energy.   He maintains an active interaction and collaboration with his colleagues at NREL in the following areas of research: (1) basic phenomena at semiconductor-molecule interfaces; (2) the dynamics of electron relaxation and transfer across these interfaces; (3) size quantization effects in ultra-small (2 - 25 nm) semiconductor nanocrystals (called quantum dots (QDs), quantum rods, and quantum wells) and nanostructures; (4) basic and applied science of future generation solar cells based on the unique properties of quantum dots and rods (such as multiple exciton generation (MEG) from single photons) incorporated into these cells,  as well as singlet fission in unique dye molecules; and (5) the role of nanoscience for advancing progress and performance of devices for the conversion of solar photons to solar electricity and solar fuels.  Graduate students working with Professor Nozik conduct their research in the NREL laboratories and also work closely with prominent senior scientists at NREL.  These areas are discussed further below:

Electron Relaxation Dynamics

Photoconversion of light to electricity or fuels (e.g., hydrogen, alcohols, or hydrocarbons) depends upon the efficient generation, spatial separation and subsequent transport and/or interfacial charge transfer of electrons and positively charged holes (the two charges carriers that are created upon the absorption of photons in the photoactive semiconductors (called excitons in semiconductor QDs) or by unique molecules at semiconductor-molecule interfaces that create two triplets from a singlet via singlet fission. The separated electrons and holes can produce electrical power in a photovoltaic device or drive electrochemical oxidation-reduction reactions with redox molecules at the semiconductor surfaces in a photoelectrochemical device.  A critically important fundamental issue is the dynamics of relaxation of the photogenerated charge carriers. The relaxation processes include multiple exciton (ie, coupled electron-hole pairs) generation (MEG) from single photons, charge carrier or molecule cooling, and radiative and non-radiative recombination. Systems of interest include and electron and hole transport in QD arrays or charge transfer across semiconductor-molecule interfaces.  These dynamics are studied theoretically and experimentally. The experimental studies utilize ultrafast time-resolved transient laser spectroscopy in the fs to ns time regime, includings fs visible to mid-IR transient absorption spectroscopy, fs luminescence up-conversion spectroscopy, fs terahertz spectroscopy, and time-correlated (ps to ns) single photon counting measurements, steady-state electrochemical impedance spectroscopy, photocurrent spectroscopy, and photomodulation spectroscopy.

Semiconductor Quantum Dots/Nanocrystals and Nanostructures

When electrons and holes in semiconductors are confined to ultra-small regions of space (typically 1-25 nm), the semiconductor structure enters the regime of size quantization, wherein the electronic energy levels of the system become discrete rather than quasi-continuous, and the optical and electronic properties of the semiconductor become strongly size-dependent. Such structures are called quantum dots or nanocrystals, quantum rods, or quantum wells depending upon their shape and dimensionality of the quantum confinement. We produce and study these quantization effects in colloidal semiconductor nanocrystals produced via chemical synthesis, as well as in quantized

semiconductor structures produced via epitaxial growth.  Group IV, II-VI, IV-VI, and III-V semiconductors are typically the materials we study. Quantum dots and nanostructures are of great scientific interest and also have many important potential applications in quantum dot lasers, as photocatalysts, and in solar energy conversion. They show remarkable properties such as absorption and emission spectra that can shift by several eV as a function of quantum dot size, photoluminescence blinking, longrange energy transfer, enhanced non-linear optical effects, enhanced photoredox properties, and enhanced utilization of hot electrons via multiple exciton generation (MEG) or hot electron transport, interfacial transfer, and conversion.  A current focus is to understand and develop future generation photoconversion /photovoltaic cells that maximize MEG to greatly increase their theoretical solar conversion efficiency to electrical power and solar fuels.  Singlet fission is a molecular analog of MEG and this process and its application to solar cells is also under study, in collaboration with the group of Professor Michl at CU.

 h factor = 82; total citations: 29,431 (Google Scholar, September 2016)                             

  • Smith, B.B. and A.J. Nozik, “A Wave Packet Model for Electron Transfer and Its Implications for the Semiconductor-Liquid Interface,” J. Phys. Chem. B 103, 9915–9932 (1999).
  • Menoni, C.S., L. Miao, D. Patel, O.I. Mićić and A.J. Nozik, “Three-Dimensional Confinement in the Conduction Band Structure of InP,” Phys. Rev. Lett. 84, 4168–4171 (2000).
  • Mićić, O.I., B.B. Smith and A.J. Nozik, “Core-Shell Quantum Dots of Lattice-Matched ZnCdSe2 Shells on InP Cores: Experiment and Theory,” J. Phys. Chem. B 104, 12149–12156 (2000).
  • Smith, B.B. and A.J. Nozik, “Theoretical Studies of Electronic State Localization and Wormholes in Silicon Quantum Dot Arrays,” Nano Lett.1, 36–41 (2001).
  • Nozik, A.J.,“Spectroscopy and Hot Electron Relaxation Dynamics in Semiconductor Quantum Wells and Quantum Dots,” Ann. Rev. Phys. Chem. 52,193–231 (2001).
  • Mićić, O.I., S.P. Ahrenkiel and A.J. Nozik, “Synthesis of Extremely Small InP Quantum Dots and Electronic Coupling in Their Disordered Solid Films,” Appl. Phys. Lett. 78, 4022–4024 (2001).
  • Mićić, O.I., A.J. Nozik, E. Lifshitz, T. Rajh, O.G. Poluektov and M.C. Thurnauer, “Electron and Hole Adducts Formed in Illuminated InP Colloidal Quantum Dots Studied by Electron Paramagnetic Resonance,” J. Phys. Chem. 106, 4390–4395 (2002).
  • Langof, L., E. Ehrenfreund, E. Lifshitz, O.I. Mićić and A.J. Nozik, “Continuous-Wave and Time-Resolved Optically Detected Magnetic Resonance Studies of Non-Etched/Etched InP Nanocrystals,” J. Phys. Chem. B 106, 1606–1612 (2002).
  • Ellingson, R.J., J.L. Blackburn, P. Yu, G. Rumbles, O.I. Mićić and A.J. Nozik, “Excitation Energy Dependent Efficiency of Charge Carrier Relaxation and Photoluminescence in Colloidal InP Quantum Dots,“ J. Phys. Chem. B 106, 7758–7765 (2002).
  • Nozik, A.J., “Quantum Dot Solar Cells,” Physica E 14, 115–120 (2002).
  • Ellingson, R.J., J.L. Blackburn, J. Nedeljković, G. Rumbles, M. Jones, H. Fu and A.J. Nozik, “Experimental and Theoretical Investigation of Electronic Structure in Colloidal Indium Phosphide Quantum Dots,” Phys. Status Solidi C, 1229–1232 (2003).
  • Seong, M.J., O.I. Mićić, A.J. Nozik, A. Mascarenhas and H.M. Cheong, “Size-Dependent Raman Study of InP Quantum Dots,” Appl. Phys. Lett. 82, 185–187 (2003).
  • Blackburn, J.L., R.J. Ellingson, O.I. Mićić and A.J. Nozik, “Electron Relaxation in Colloidal InP Quantum Dots with Photogenerated Excitons or Chemically Injected Electrons,“ J. Phys. Chem. B 107, 102–109 (2003).
  • Ellingson, R.J., J.L. Blackburn, J. Nedeljković, G. Rumbles, M. Jones, H. Fu and A.J. Nozik, “Theoretical and Experimental Investigation of Electronic Structure and Relaxation in Colloidal Nanocrystalline Indium Phosphide Quantum Dots,” Phys. Rev. B. 67, 075308 (2003)
  • Ahrenkiel, S.P., O.I. Mićić, A. Miedaner, C.J. Curtis, J.M. Nedeljković and A.J. Nozik, “Synthesis and Characterization of Colloidal InP Quantum Rods,” Nano Lett. 3, 833–837 (2003).
  • Beard, M.C., G.M. Turner, J.E. Murphy, O.I. Mićić, M.C. Hanna, A.J. Nozik and C.A. Schmuttenmaer, “Electronic Coupling in InP Nanoparticle Arrays,” Nano Lett. 3, 1695–1699 (2003).
  • Blackburn, J.L., D.C. Selmarten and A.J. Nozik, “Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in Situ Chemical Bath Deposition,” J. Phys. Chem. B 107, 14154–14157 (2003).
  • Hanna, M.C., O.I. Mićić, M.J. Seong, S.P. Ahrenkiel, J.M. Nedeljković and A.J. Nozik, “GaInP2 Overgrowth and Passivation of Colloidal InP Nanocrystals Using Metalorganic Chemical Vapor Deposition,” Appl. Phys. Letts. 84, 780–782 (2004).
  • Nedeljković, J.M., O.I. Mićić, S.P. Ahrenkiel, A. Miedaner and A.J. Nozik, “Growth of InP Nanostructures via Reaction of Indium Droplets with Phosphide Ions: Synthesis of InP Quantum Rods and InP-TiO2 Composites,” J. Am. Chem. Soc. 126, 2632–2639 (2004).
  • Yu, P., J.M. Nedeljković, P.A. Ahrenkiel, R.J. Ellingson and A.J. Nozik, “Size Dependent Femtosecond Electron Cooling Dynamics in CdSe Quantum Rods,” Nano Lett. 4, 1089–1092 (2004).
  • Langof, L., L. Fradkin, E. Ehrenfreund, E. Lifshitz, O.I. Mićić and A.J. Nozik, “Colloidal InP/ZnS Core-Shell Nanocrystals Studied by Linearly and Circularly Polarized Photoluminescence,” Chem. Phys. 297, 93–98 (2004).
  • Dimitrijević, N.M., T. Tajh, S.P. Ahrenkiel, J.M. Nedeljković, O.I. Mićić and A.J. Nozik, “Charge Separation in Heterostructures of InP Nanocrystals with Metal Particles,” J. Phys. Chem. B 109, 18243–18249 (2005).
  • Blackburn, J.L., D.C. Selmarten, R.J. Ellingson, M. Jones, O.I. Mićić and A. J. Nozik, “Electron and Hole Transfer from Indium Phosphide Quantum Dots,” J. Phys. Chem. B 109, 2625–2631 (2005).
  • Yu, P., M.C. Beard, R.J. Ellingson, S. Ferrere, C. Curtis, J. Drexler, F. Luiszer and A. J. Nozik, “Absorption Cross Section and Related Optical Properties of Colloidal InAs Quantum Dots,” J. Phys. Chem. B 109, 7084–7087 (2005).
  • Nozik, A. J., “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency  Solar Photon Conversion,” Inorg. Chem. (Forum) 44, 6893–6899 (2005).
  • Ellingson, R.J., M.C. Beard, J. Johnson, P. Yu, O.I. Mićić, A.J. Nozik, A.J. Shaebev and Al.L. Efros,“ Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots,” Nano Lett. 5, 865–871 (2005).
  • Murphy, J.E., M.C. Beard, A.G. Norman, S.P. Ahrenkiel, J.C. Johnson, P. Yu, O.I. Mićić, R.J. Ellingson and A.J. Nozik, “PbSe Colloidal Nanocrystals: Synthesis, Characterization, and Multiple Exciton Generation,” J. Am. Chem. Soc. 128, 3241–3247 (2006).
  • Hanna M.C. and A.J. Nozik, “Solar Conversion Efficiency of Photovoltaic and Photoelectrolysis Cells with Carrier Multiplication Absorbers,” J. Appl. Phys. 100, 074510, 8 pages (2006).
  • Paci, I., J.C. Johnson, X. Chen, G. Rana, D. Popovic, D.E. David, A.J. Nozik, M.A. Ratner and J. Michl,“ Singlet Fission for Dye Sensitized Solar Cells: Can a Suitable Sensitizer be Found,” J. Amer. Chem. Soc. 128, 16546–16553 (2006).
  • Yu, P., K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank and A.J. Nozik, “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots,” J. Phys. Chem. B 110, 25451–25454 (2006).
  • Murphy, J.E., M.C. Beard and A.J. Nozik, “Time-Resolved Photoconductivity of PbSe Nanocrystal Arrays,” J. Phys. Chem. B 110, 25455–25461 (2006).
  • Shabaev, Al.L. Efros and A.J. Nozik, “Multi-Exciton Generation by a Single Photon in Nanocrystals,” NanoLett. 6, 2856–2863 (2006).
  • Ellingson, R., M. Beard, J. Johnson, J. Murphy, K. Knutsen, K. Gerth, J. Luther, M. Hanna, O. Mićić, A. Shabaev, A.L. Efros and A.J. Nozik, “Nanocrystals Generating >1 Electron per Photon May Lead to Increased Solar Cell Efficiency,” Article No. 10.1117/2.1200606.0229, SPIE Newsroom, 4 pages (2006).
  • Luque, A., A. Martí and A.J. Nozik, “Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands,” MRS Bull. 32, Special Issue on Photovoltaics, 236–241 (2007).
  • Luther, J.M., M.C. Beard, Q. Song,, M. Law, R.J. Ellingson, and A.J. Nozik, “Multiple Exciton Generation in Films of Electronically Coupled PbSe Quantum Dots,” Nano Lett. 7, 1779–1784  (2007).
  • Beard, M.C., K.K. Knutsen, P. Yu, J. Luther, Q. Song, R.J. Ellingson, and A.J. Nozik, “Multiple Exciton Generation in Colloidal Silicon Nanocrystals,” Nano Lett. 7, 2506–2512 (2007).
  • Johnson, J.C., Gerth, K.A., Song, Q., Murphy, J.E., Nozik, A.J., “Ultrafast Exciton Fine Structure Relaxation Dynamics in Lead Chalcogenide Nanocrystals” NanoLetters 8 1374-1381 (2008).
  • Luther, J.M., Law, M., Song, Q., Perkins, C.L., Beard, M.C., Nozik, A.J. “Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-ethanedithiol, ACS Nano 2, 271 (2008)
  • Nozik, A.J.,  “Multiple Exciton Generation in Semiconductor Quantum Dots”, Chem. Phys. Letters, Frontiers in Chemistry, 457, 3 – 11 (2008)
  • Law, M., . Luther, J.M.  Song, Q., Perkins, C.L.,Nozik, A.J.  “The Structural, Optical and Electrical Properties of PbSe Nanocrystal Solids Treated Thermally and with Simple Amines” JACS,  130,  5974-5985 (2008).
  • Luther,J.M., Law, M., Beard, M.C., Song, Q., Reese, M.O., Ellingson, R.J., Nozik, A.J., “Schottky Solar Cells Based on Colloidal Nanocrystal Films”, Nano Lett   8, 3488 (2008)
  • Law, M., Beard, M.C.; Choi, S.; Luther J.M., Hanna, M., Nozik, A.J., “Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cells with the Aid of an Optical Model”, Nano Lett 8, 3904 (2008).
  • Beard, M.C.,  Midgett, A., Law, M., Semonin, O., Ellingson, R., Nozik, A.J., “Variations in the Quantum Efficiency of Multiple Exciton Generation for a Series of Chemically-treated PbSe Nanocrystal Films” Nano Lett  9, 836 (2009)
  • Nozik, A.J. “Making the Most of Photons”, Nature Nanotechnology,  4, 548 (2009)
  • Nozik, A.J. Perspective Article :Nanoscience and Nanostructures for Photovoltaics and Solar Fuels, Nano Lett 10, 2735 (2010)
  • Beard, M.C., Midgett, A.G., Hanna, M.C., Luther, J.M., Hughes, B.K., Nozik, A.J. “ Comparing Multiple Exciton Generation in Quantum Dots to Impact Ionization in Bulk Semiconductors: Implications for Enhancement of Solar Energy Conversion” Nano Lett, 10, 3019-3027 (2010)
  • Midgett, A.G.; Hillhouse, H.W., Hughes, B.S., Nozik, A.J., Beard, M.C., “Flowing and Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots”, J. Phys. Chem. C          114, 6873 (2010)
  • Semonin, O.E., Johnson, J.C., Luther, J.M., Midgett, A.G., Nozik, A.J., Beard, M.C., “Absolute Photoluminescence Quantum Yields of IR-26 Dye, PbS, and PbSe Quantum Dots, J. Phys. Chem  (2010)
  • Johnson, J.C., Nozik, A.J., Michl, J. “High Triplet Yield from Singlet Fission in a Thin Film of 1,3-Diphenylisobenzofuran, J. Amer. Chem. Soc.   132, 16302 (2010)
  • Nozik, A.J.Beard, M.C., Luther, J.M., Law, M., Ellingson, R.J., Johnon, J.C., “Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of MEG to 3rd Generation PV Solar Cells”, Chemical Reviews, Thematic Issue, 110, 6873 (2010)
  • Schwerin, A.F., Johnson, J.C., Smith, M.B, Sreerunothai, P., Popovic, D, Cerny, J., Havlas, Z., Paci, I., Akdag, A., MacLeod, M. K., Chen, X. D., David, D. E., Ratner, M.A., Miler J. R., Nozik, A. J., Michl, J. “Toward Designed Singlet Fission: Electronic States and Photophysics of 1, 3-Diphenylisobenzofuran.” J. Phys. Chem A, 114, pp. 1457-1473 (2010)
  • Greyson, E.C., Stepp, B.R., Chen, X., Schwerin, A. F., Paci, I., Smith M.B., Akdag,A., Johnson, J.C., Nozik, A.J., Michl, J., Ratner, M., “Singlet Fission for Solar Cell Applications: Energy Aspects of Interchromophore Coupling,” J. Phys. Chem. B, 114 (45) pp. 14223-14232 (2010)
  • Nozik A.J., Miller, J., “Introduction to Solar Photon Conversion,” Chemical Reviews, Thematic  Issue, 110, 6443, (2010)
  • Luther, J.M.; Gao, J.;  Lloyd, M.T.; Semonin, O.E.; Beard, M.C.; Nozik, A.J., “Stability    Assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell”,  Adv. Mat., 33, 3704, (2010)
  • Smith, D.K.; Luther, J.M.; Semonin, O.E.; Nozik, A.J.; Beard, M.C. “Tuning the synthesis of   ternary lead chalocogenide quantum dots by balancing precursor reactivity”, ACS Nano, 5 (1), 183, (2011)
  • Gao, J.;  Luther, J.M.;  Semonin, O.E.;  Ellingson, R.J.;  Nozik, A.J.;  Beard, M.C., “Quantum dot size dependent JV characteristics in heterjunction ZnO/PbS quantum dot solar cells”, Nano Letters, 11 (3), 1002, (2011)
  • Blackburn, J.L.; Chappell, H.; Luther, J.M.;  Nozik, A.J.;  Johnson, J.C., “Correlation between Photooxidation and the Appearance of Raman Scattering Bands in Lead Chalcogenide Quantum Dots”, JPCL, 2(6), 599, (2011)
  • Chappell, H.E.; Hughes, B.K.; Beard, M.C.; Nozik, A.J.; Johnson, J.C., “Emission Quenching in PbSe Quantum Dot Arrays by Short-Term Air Exposure”, JPCL, 2, 889, (2011)
  • Blankenship, W. Tiede, Moore, Nozik, et al.. “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement” , Science  332, 805, (2011)
  • Klimov, Victor I.; Stewart, John Tom; Padilha, Lazaro A.; Qazilbash, Mumtaz; Pietryga, Jeffrey M.; Midgett, Aaron G.; Luther, Joseph; Beard, Matthew C.; Nozik, Arthur , “Comparison of carrier multiplication yields in PbS and PbSe nanocrystals: The role of competing energy-lossprocesses “
  • Gao, Jianbo; Perkins, Craig L.; Luther, Joseph M.; Hanna, Mark C.; Chen, Hsiang-Yu; Semonin, Octavi E.Nozik, Arthur J.; Ellingson, Randy J.; Beard, Matthew C.  “n-Type Transition Metal Oxide as a Hole Extraction Layer inPbS Quantum Dot Solar Cells” ,  Nano Letters (2011),  3263-3266.
  • Effect of surface passivation on dopant distribution in Si quantum dots. The case of B and P doping Ma, Jie; Wei, Su-Huai; Neale, Nathan R.; Nozik, Arthur J. Applied Physics Letters (2011), 98(17), 173103/1-173103/3
  • Chappell, Helen E.; Hughes, Barbara K.; Beard, Matthew C.; Nozik, Arthur J.; Johnson, Justin C.  “Emission Quenching in PbSe Quantum Dot Arrays by Short-Term Air Exposure “,Journal of Physical Chemistry Letters (2011), 2(8), 889-893.
  • Correlation between Photooxidation and the Appearance of Raman Scattering Bands in Lead Chalcogenide Quantum Dots Blackburn, Jeffrey L.; Chappell, Helen; Luther, Joseph M.; Nozik, Arthur J.; Johnson, Justin C. Journal of Physical Chemistry Letters (2011), 2(6), 599-603.
  • Anomalous Independence of Multiple Exciton Generation on Different Group IV-VI Quantum Dot Architectures Trinh, M. Tuan; Polak, Leo; Schins, Juleon M.; Houtepen, Arjan J.; Vaxenburg, Roman; Maikov, Georgy I.; Grinbom, Gal; Midgett, Aaron G.; Luther, Joseph M.; Beard, Matthew C.; et al Nano Letters (2011), 11(4), 1623-1629.
  • Quantum Dot Size Dependent J-V Characteristics in Heterojunction ZnO/PbS Quantum Dot Solar Cells, Gao, Jianbo; Luther, Joseph M.; Semonin, Octavi E.; Ellingson, Randy J.; Nozik, Arthur J.; Beard, Matthew C. Nano Letters (2011), 11(3), 1002-1008.
  • Semonin, O.E.; Luther, J.M.; Choi,S.; Chem, Hsiang-Yu; Gao, J,; Nozik, A.J., Beard, M. “Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell”, Science, 334, 1530, ( 2011).
  • Hanna, M. and Nozik, A.J. "Effect of Solar Concentration on the Thermodynamic Efficiency of Quantum Dot Solar Cells Exhibiting Multiple Exciton Generation" J. Phys. Chem. Letts. 3, 2857 (2012)
  • Nozik, A.J., "Separating Multiple Excitons", Nature 6, 271 (2012).
  • Beard, M.C., Luther, J.M.; Semonin, O.E., Nozik, A.J., "Third Generation Photovoltaics based on Multiple Exciton Generation in Quantum Confined Semiconducters", Accounts of Chemical Research 46, 1242 (2013).
  • Johnson, J.C., Nozik, A.J., and Michl, J., The Role of Chromophore Coupling in Singlet Fission" Accounts of Chemical Research 46, 1290 (2013)
  • B. K. Hughes, J.L. Blackburn, D. Kroupa, A. Shabaev, S.C. Erwin, Al. Efros, A.J. Nozik, J.M. Luther, M.C. Beard, "Synthesis and Spectroscopy of PbSe Fused Quantum-Dot Dimers", JACS 136, 4670 (2014)
  • C.C. Mercado, A. Zakutayev, C.J. Flynn, J.F. Cahoon. A.J. Nozik, “Sensitized Zinc-Cobalt-Oxide Spinel p-Type Photocathode”, J. Phys. Chem. C 118, 25340 (2014)
  • Jing Zhang, Jason Tolentino, E. Ryan Smith, Jianbing Zhang, Matthew C. Beard, Arthur J. Nozik, Matt Law, and Justin C. Johnson, “Carrier Transport in PbS and PbSe QD Films Measured by Photoluminescence Quenching” J. Phys. Chem. C, 11, 16228–16235 (2014).
  • Joseph L. Ryerson, Joel N. Schrauben, Andrew J. Ferguson, Subash Chandra Sahoo, Panče Naumov, Zdenĕk Havlas, Josef Michl , Arthur J. Nozik, and Justin C. Johnson, “Two Thin Film Polymorphs of the Singlet Fission Compound 1,3-Diphenylisobenzofuran”, The Journal of Physical Chemistry C, 118 , 19608-19617 (2014).
  • J. Ryerson, J.N. Schrauben, A.J. Ferguson,S.C. Erwin,Z. Havlas, J. Michl, A.J. Nozik, J.C. Johnson, “Two Thin Film Polymorphs of the Singlet Fission Compound 1,3 Diphenylisobenofuran” J. Phys. Chem. C. 118, 12121 (2014).
  • M.C. Beard, J.M. Luther, and A.J. Nozik, Nature Nanotech, “The promise and challenge of nanostructured solar cells”, 9, 951 (2014).
  • D.M. Sager, J.M Atkin, P.K.B. Palomaki, N.R. Neale, J.L. Blackburn, J.C. Johnson, A.J. Nozik, M.B. Raschke, and M.C. Beard. "Quantum Confined-Electron Phonon Interaction in Silicon Nanocrystals", Nano Letts, 15, 1511-1516 (2015).
  • S.M. McCullough, CJ Flynn, CC Mercado, AJ Nozik, and JF Cahoon, “Compositional-tunable mechanochemical synthesis ZnxCo3-xO4 nanoparticles for Mesoporous p-type Photocathodes”, J. Materials Chem. A3, 21990 (2015). 
  • M.C. Beard, J.C.  Johnson, J.M. Luther, and A.J. Nozik, “Multiple Exciton Generation in Quantum Dots vs Singlet Fission in MolecularChromophores for Solar Photon Conversion”, Phil. Trans. Royal Soc. A, 373, 20140412 (2015).
  • A. R. Marshall, M.R. Young, A.J. Nozik, M.C. Beard, and J.M. Luther, “Exploration of Metal Chloride Uptake for Improved Performance Characteristics of PbSe Quantum Dot Solar Cells”. J. Phys. Chem 6, 2892 (2015).
  • C.J. Flynn, S.M. McCullough, E.B.E. Oh, L.  Li, C.C. Mercado, B.H. Farnum,  W.  Li, “Size-Selective Passivation of Defects  in NiO Solar Photocathodes by Targeted Atomic Deposition, ACS Appl. Mats. and Interfaces, 2016




  • Advanced Concepys in Photovoltaics (edited with Gavin Conibeer and Matt Beard), Royal Society of Chemistry, 2014, 608 pages
  • Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion (edited with M.D. Archer), Vol. 3 of Series on Photoconversion of Solar Energy, Imperial College Press, 2008, 700 pages.
  • Surface Electron Transfer Processes (with R.J.D. Miller, G. McLendon, W. Schmickler and F. Willig), VCH Publishers, 1995, 370 pages.
  • Photoelectrochemistry and Electrosynthesis on Semiconducting Materials, Electrochemical Society Symposium Series (edited with D. S. Ginley, N. Armstrong, K. Honda, A. Fujishima, T. Sakata, and T. Kawai), 1987, 516 pages.
  • Photoeffects at Semiconductor-Electrolyte Interfaces, ACS Symposium Series Vol. 146 (American Chemical Society, Washington, DC, 1981), 416 pages.
  • Photoelectrochemistry: Fundamental Processes and Measurement Technique (edited with W.W. Wallace, S. K. Deb, and R. Wilson), Electrochemical Society Symposium Series, 1982, 723 pages.


  • Editorial Advisory Board, Journal of Renewable and Sustainable Energy, 2016 – present)
  • Guest Editor, Thematic Issue of Chemical Reviews on "Solar Photon Conversion," Nov. 2010
  • Editorial Board of Dataset Papers in Nanotechnology (online) (2012 - present)
  • Editorial Advisory Board, Journal of Energy and Environmental Science (2014 - present)
  • Editorial Advisory Board, CRC Press Sustainable and Energy Development Book Series (2016 - present)
  • Editorial Board, Journal of Energy and Environmental Science (2008 – 2014)
  • Editorial Advisory Board, Nano Energy (new Elsevier Journal , 2012 - present)
  • Advisory Board, Wiley Series on New Materials for Sustainable Energy and Development, (2008- present)
  • Senior Editor of The Journal of Physical Chemistry (1993 - 2005)
  • Editorial Board, Journal of Solar Energy Materials (1985 - 2013)