Fall 2025 Syllabus CHEN 3210 Heat & Mass Transfer

Instructors

Faculty: Robert H. Davis Ritu Raj

Office: JSCBB D127 JSCBB D1B12

E-mail: robert.davis@colorado.edu ritu.raj@colorado.edu

Graduate Teaching Assistant and Undergraduate Course Assistants

Advanced TA: Madelyn Bennett, madelyn.bennett-1@colorado.edu

Lead CA: Arianna McCarty, <u>arianna.mccarty@colorado.edu</u> Ugrad CA: Ethan Coleman, <u>ethan.coleman@colorado.edu</u> Ugrad CA: Jess Connell, jessica.connell@colorado.edu

Ugrad CA: Sam Dy, aditya.dey@colorado.edu

Ugrad CA: Aslan DeWitt, aslan.dewitt@colorado.edu

Ugrad CA: Andrew Hickman, <u>andrew.hickman@colorado.edu</u> Ugrad CA: Elizabeth Perkins, <u>elizabeth.perkins-1@colorado.edu</u>

Please contact the Advanced TA with any questions about homework and its grading and solutions

Class Times and Information

In-person Lectures: MW 10:40–12:30 (& F 12/5) BIOT 108

Course Website: https://canvas.colorado.edu/

Lecture Postings: Lecture notes will be posted afterwards on the Canvas site.

Announcements: Announcements concerning assignments, exams, clarification of course notes, etc.

will be made on Canvas and/or by email. To ensure you receive announcements,

please be sure to check or forward your colorado.edu email accordingly.

Office Hours (Help Sessions)

Tuesdays 4:30 - 6:30 pm, Wednesdays 3:15 - 5:15 pm, and Thursdays 4 - 6 pm in BIOT E1B11 (no W or Th OH on midterm weeks).

Professor Davis (9:30 am - 10:30 am most Mondays) will hold non-homework, private office hours by appointment (signups via Google sheets shared on Canvas). Ritu Raj will hold drop-in office hours for homework help or other matters 8:30-10 am on most Tuesdays.

Textbook

Required: Fundamentals of Momen., Heat and Mass Transfer. 7th Ed. Welty, Rorrer & Foster, Wiley, 2019

Prerequisites

CHEN 3200 Chemical Engineering Fluid Mechanics, or equivalent (minimum grade C-)

Course Requirements and Grading Scheme

The breakdown of course grades is as follows:

The grading scale is:

Midterm Exams (two)	40%	A (or A-)	85 - 100%
Class questions (see Policies)	0%	B (or B-, B+)	75 - 85%
Homework	20%	C (or C-, C+)	65 - 75%
Quizzes	10%	D (or D-, D+)	55 - 65%
Final Exam	30%	F	0 - 55%

Course Policies

Homework. Homework assignments will normally be posted on the course website at least one week in advance and <u>due via Gradescope at 11:59 pm</u> on Thursdays, unless notified otherwise. Solution sets must be turned in individually and not be copied from another person or source, although you are encouraged to consult your classmates as needed. Homework loaded on Gradescope 10 – 60 min late will be marked down 10%; homework loaded on Gradescope 61 – 120 min late will be marked down 20%. Later homework will not be accepted, except for special circumstances such as cases of illness or approved travel, in which case the student should contact Professor Davis before 6 pm on the due date to make alternative arrangements (usually an extension can be granted until 4 pm that Saturday). The lowest homework score will be dropped, accounting for both excused and unexcused absences. There will be no homework due during fall break and midterm weeks.

Quizzes/Participation. There will be four quizzes done remotely on Fridays 9/19/25, 10/03/25, 11/07/25, and 12/05/25; these quizzes may be done individually or in small groups. The quizzes will assess your knowledge of material covered in homework and lectures, and they will help prepare you for the midterms and final exams. There will also be short, clicker-type participation questions done during class time (and only by students attending class) on most days. These questions will not be a weighted component of the course grade, but an incentive is provided for them: If a student's % score on the final exam is greater than their average % score on the midterms, then a bonus of 7.5% multiplied by the fraction of participation questions done correctly will be added to the combined midterm score, with a maximum of the midterm % score equaling the % score of the final exam.

Exams. There will be two midterms and a final (dates below). Note that the final exam will be cumulative and thus serve as a gauge of your overall understanding of the course material. Missed exams can be made up in extreme cases only, including, among others, illness that requires medical attention, University-related approved travel, or death of a family member. If you know you will miss an exam, please contact an instructor *in advance* for your options to make up the exam.

Classroom and Behavior. It is requested that students make every effort to arrive on-time to class, such that class can be started as scheduled without interruption, and that safe and professional behavior be exhibited at all times. Also, <u>any discovered incidents of academic dishonesty will be reported</u> to the CU Honor Code Council. Consequences will include receiving a failing grade in the course.

The instructors, assistants and students in this course affirm the value of all individuals and agree to treat one another with equity and respect. Please see the college webpage for our commitment to diversity, equity and inclusion: https://www.colorado.edu/engineering/about/diversity-equity-and-inclusion.

Policies on Missing and Late Assignments: Please review separate document posted on Canvas

Exam Dates

Midterm Exam #1: Tuesday 10/07/2025, 7 – 9 pm, BIOT A108, B115 Midterm Exam #2: Tuesday 11/11/2025, 7 – 9 pm, BIOT A108, B115

Final Exam: Friday 12/12/2025, 10:30 am – 1:00 pm, BIOT A108, B115

Required Syllabus Statements: Please visit https://www.colorado.edu/academicaffairs/policies-customs-guidelines/required-syllabus-statements and see the statement placed on Canvas.

LearnChemE Videos: There are many short videos/screen casts on heat and mass transfer created for LearnChemE, which originated in our department and now used world-wide. The following link is to heat-transfer screencasts: www.learncheme.com/screencasts/heat-transfer. We also created screencasts with embedded quiz questions for our heat-transfer intensive course: www.learncheme.com/screencasts/heat-transfer-quiz-screencasts and for mass transfer (see Canvas site). Students are encouraged to use these supplemental materials to reinforce the concepts of this course.

Course Purpose and Goals

The purpose of this course is for students to gain knowledge and understanding of the transfer of thermal energy ("heat") and molecular species ("mass") from one location to another. These skills will allow students to analyze and design processes to accomplish desired heat and mass transfer in engineering applications. Specific learning goals include:

1. Heat Transfer

- Knowledge of the three primary modes of heat transfer: conduction, convection and radiation
- Ability to perform microscopic and macroscopic thermal energy balances for various situations
- Ability to solve 1D-steady heat conduction problems in flat, cylindrical and spherical geometries, and 2D steady and 1D-transient heat conduction problems in flat geometries
- Understanding of boundary-layer flow and heat transfer
- Knowledge and use of scaling and order-of-magnitude analysis for conduction and convection
- Ability to use heat-transfer correlations for forced and free convection
- Understanding of heat radiation and the ability to determine radiation exchange for black and gray surfaces
- Ability to apply resistance models for insulation design and energy balances for heating or cooling rates of objects
- Ability to analyze and design single-tube, double-tube, and crossflow or shell-and-tube heat exchanges, with and without phase change

2. Mass Transfer

- Knowledge of the two primary modes of mass transfer: diffusion and convection
- Ability to perform species mass balance and flux calculations for various situations
- Ability to solve 1D steady and unsteady diffusion problems, with and without chemical reaction
- Understanding of boundary-layer mass transfer and scaling and order-of-magnitude analysis of diffusion and convection
- Ability to use mass-transfer correlations for forced convection
- Understanding of mass transfer between phases and ability to analyze two-phase mass-transfer problems

Lecture Schedule for CHEN 3210 – Fall 2025

Note: The lectures are given on Mondays and Wednesdays from 10:40-12:30, with a short break.

Day	Date	Lect. No.	Instructor	Topic (Chapter in Text)
M	8/25	1a, b	RD, RR	Introduction, Heat Conduction Basics (15,16)
W	8/27	2a, b	RR	Steady, 1D Conduction: Flat Walls (17)
M	9/1			No Class (Labor Day)
W	9/3	3a, b	RD, RR	Steady, 1D Conduction: Curved Walls (17)
M	9/8	4a, b	RD	Steady Conduction with Generation (17)
W	9/10	5a, b	RD	Extended Surfaces; Steady, 2D & 3D Conduction (17)
M	9/15	6a, b	RD	Transient Heat Conduction & Scaling (16,18)
W	9/17	7a, b	RD	Transient Example; Introduction to Convection (19)
M	9/22	8a, b	RD	Thermal Energy Equation; Dimensional Analysis (16,19)
W	9/24	9a, b	RD	Forced Convection; Boundary-layer Flow & HT (19)
M	9/29	10a, b	RD, RR	Heat-transfer Correlations and Examples (19,20)
W	10/1	11a, b	RD	Free Convection & Correlations (20)
M	10/6	12a, b	RR	Review for MT #1; Introduction to Radiation (23)
W	10/8	13a, b	RR	Emission of Radiation (23); Radiation Exchange (23)
M	10/13	14a, b	RR, MB	Discussion of MT #1; Radiation Exchange (23)
W	10/15	15a, b	RD	Heat-transfer Design; Insulation (15,17,20,23)
M	10/20	16a, b	RD	Transient Cooling; Single-tube Heat Exchangers (18,22)
W	10/22	17a, b	RR	Double-tube Heat Exchangers & Examples (22)
M	10/27	18a, b	RR	Phase Change; Shell-and-Tube Heat Exchangers (21,22)
W	10/29	19a, b	RR	NTU Method for Heat Exchangers & Examples (22)
M	11/3	20a, b	RD - record	Intro to Mass Transfer & Flux Eq (24); Random Motion/Diff.
W	11/5	21a, b	RD	Convection-diffusion Equation (24,25); Review for MT #2
M	11/10	22a, b	RR	Conv-diff Eq. Approach & Examples: Equimolar Diff. (25)
W	11/12	23a, b	RR	Steady & Pseudo-steady Diffusion and Reaction (26)
M	11/17	24a, b	RD	Ethics, Comm. & Leadership; Diffusion with Reaction (26, 27)
W	11/19	25a, b	RD	Unsteady Diffusion without Reaction; Evaporation (26. 27)
M	11/24			No Class (Fall Break)
W	11/26			No Class (Fall Break)
M	12/1	26a, b	RD	Forced Convection; Mass-Transfer Correlations (28, 30)
W	12/3	27a, b	RD	Adsorption; Mass-transfer Between Phases (29)
F	12/5	28a, b	RD	Absorption (30); Course Wrap-up and Prep for Final Exam

RD = Robert Davis, RR = Ritu Raj, MB = Madelyn Bennett

Midterms: 7 – 9 pm on T 10/7 and T 11/11 in A108 and B115 Final Exam: 10:30 am – 1 pm on F 12/12 in A108 and B115 Review for Final Exam: 1:30 – 2:30 pm on T 12/9 in A108