Medicinal Chemistry

MCDB 2171 - Discovery Lab

Agenda

- What's going on in labs
- New content
 - Medicinal chemistry

Labs

This Week

- Finish re-running compounds as needed and entering ALL data
- Do project proposal with your groups and submit by Friday at 5PM
- Submit your individual lab notebooks by Friday / per TA policies

Next Week

- Peer review project proposals
- Create group lab notebooks
- Plan your research project and make stock solutions

New Content: Medicinal Chemistry

Learning Objectives

- Explain the desirable and undesirable qualities of a drug
- Compare the ways that drugs can be classified
- Describe the purpose of chemically altering a compound's structure
- Identify the importance of functional groups in drug design and development
- Describe the mechanism of action of a chemotherapy or immunotherapy

Defining "Drug"

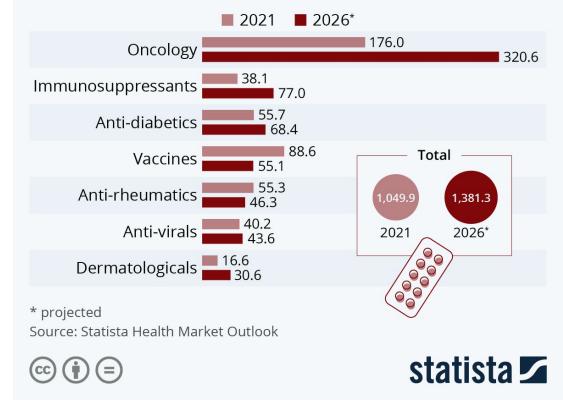
- Something that meets the following criteria:
 - Is a specific chemical compound
 - NOT a mixture
 - Has a physiological effect on the body
 - Does not include food or water

Desirability of Drugs

Desired

- Cures or treats condition
- Kills infectious pathogens
- Relieves pain / swelling
- Economical

Undesired


- Toxic to human cells
- Addictive
- Side effects
- Uneconomical

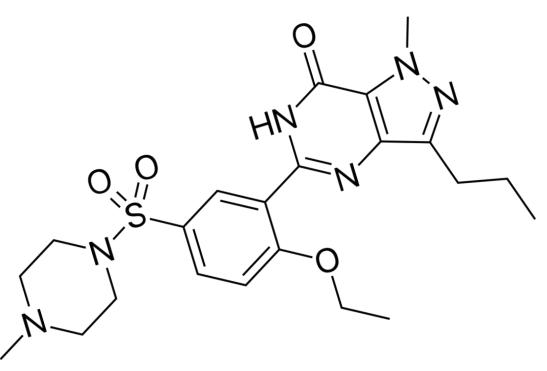
Drug Economics

- A drug is "economic" if it is cheap and easy to produce
 - This makes the drug cheaper on consumers and producers alike
- Chemotherapies are notoriously good investments
 - This incentivizes companies to invest in their research

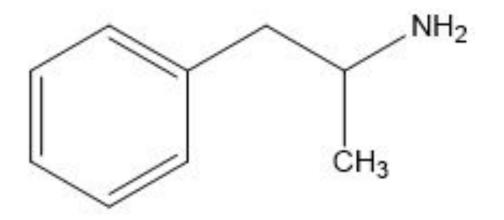
The Drugs That Bring in the Most Pharma Revenue

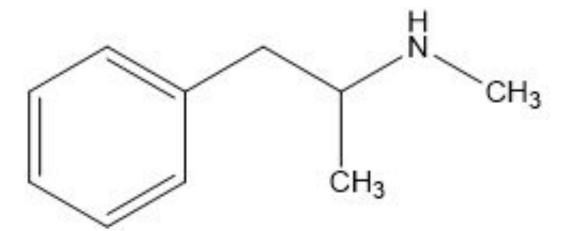
Worldwide sales of prescripion and over-the-counter drugs (in billion U.S. dollars)

Activity - Question 1


HН H-C-C-O-Hн Н

Classifying Drugs

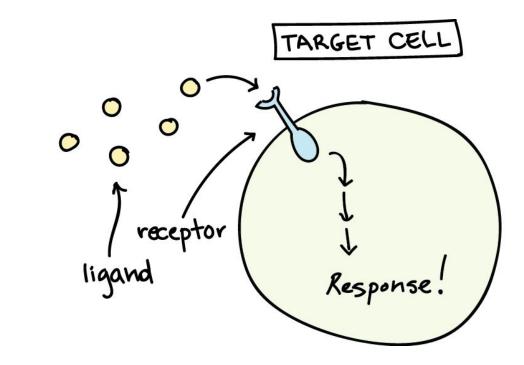

- How have you heard drugs classified? There are three
 - Physiological effect (e.g., antibiotics that kill bacteria)
 - Chemical structure (e.g., penicillin family drugs that disrupt bacterial membranes)
 - Physiological target (e.g., opioid pain meds that bind to opioid receptors in the brain)


By Physiological Effect

- Group drugs by what medicinal benefit they provide the patient
- Kill bacteria, relieve fever, reduce blood pressure, etc...
- Limitation to this characterization-
 - Exemplified by sildenafil
 - Originally treated high blood pressure

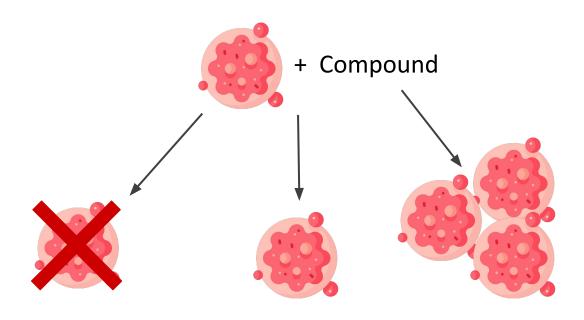
By Chemical Structure

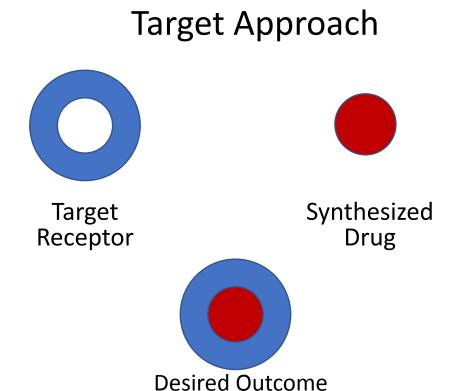
Adderall


Methamphetamine

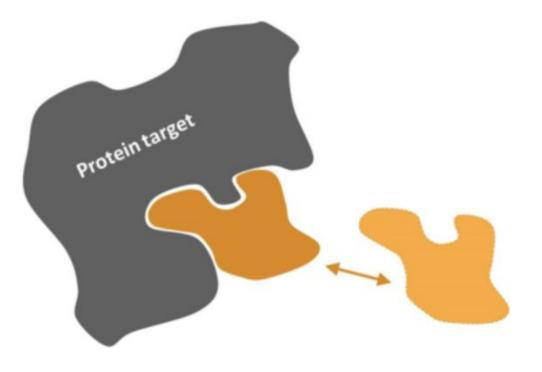
By Physiological Target

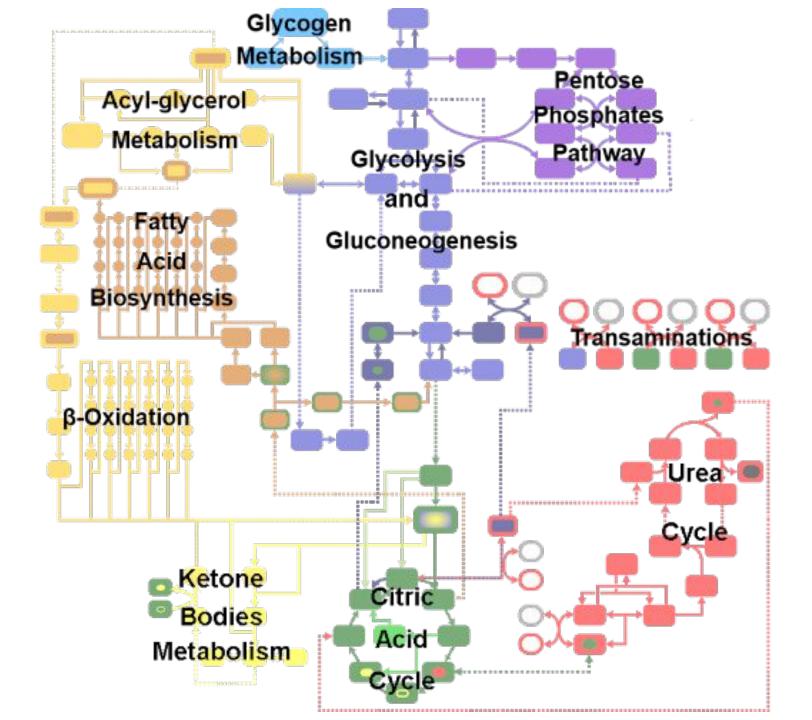
- Drugs can be classified by how they actually operate in the body
- Often, there is some target they will attempt to bind to
- These targets are called **receptors** and are specifically shaped
- Drugs act as something called a ligand
 - Ligands are compounds that can fit into complementary receptors
 - Ligand has another meaning in chemistry; they aren't the same
- We can categorize drugs by the type of receptor they act on


Reviewing Receptors


- Something in a living organism that can "dock" ligands
- Shaped a certain way; only fits specifically-shaped ligands
- When a ligand "docks":
 - The receptor sends a signal
 - Some biological response is triggered

Types of Drug Development

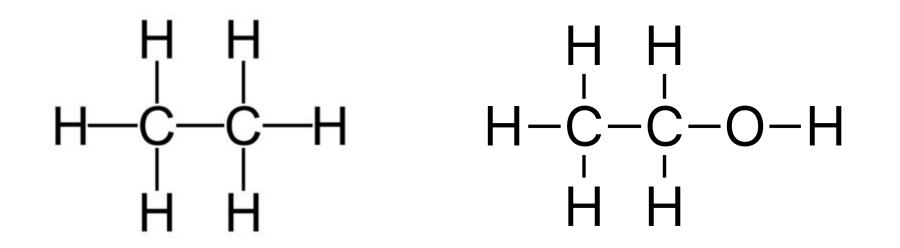

Phenotypic Screens


Target Approach

- Choose a molecular target
- Make a compound fit the receptor
 - Modifications to the chemistry
 - Get lucky, find something natural
 - Could use computational biology!
- Interacts and does something

The Problem: Metabolic Pathways

- Series of chemical reactions
 - From consumption to use
- Compound is transported through various body systems
 - Each with several processes
 - Can chemically alter the compound before it reaches target



The Solution

- Medicinal Chemistry: Field of chemistry that modifies drugs
 - Changes the formula of the drug
 - Makes it survive metabolism
 - Ensures it can still bind to the target
- Compound is transported through various body systems
 - Each with several processes

Functional Groups

- Functional Groups: Atoms that affect function of a molecule
 - -OH is an alcohol group, for example
- These small differences in atoms cause LARGE changes:

Tying Chemistry to Biology

- Similar compounds can all act on the same class of receptor
 - With vastly different affinities
- Affinity: The ability of a chemical to react with something else
 - Gibbs free energy of docking can describe this
 - Negative ΔG = higher affinity

Chemotherapies: Doxorubicin

- Topoisomerase II Inhibitor:
 - Human DNA is incredibly large and can get tangled
 - Topoisomerase II cuts and reshapes DNA to prevent tangles in replication
- Doxorubicin stabilizes this enzyme, leaving the DNA tangled up
 - The tangled DNA cannot properly replicate
 - Mitosis therefore cannot occur properly
 - The tangles sometimes induce harmful (to the cell) DNA breaks too

Immunotherapies: Rituximab

- CD20 Monoclonal Antibody:
 - CD20 is a protein found on the surface of B cells (white blood cells that produce antibodies to fight infection)
 - The binding of rituximab and CD20 proteins activate other immune cells
 - These immune cells then kill the CD20-positive B cells
- Useful for certain cancers such as lymphoma as well as certain autoimmune diseases

Lecture Wrap-Up

- I hope you enjoyed this lecture and learned a thing or two
- I would like to be a science educator as a career
- That being said, your feedback on my teaching is super valuable
- Please please provide it in this <u>short</u>, <u>anonymous</u> survey:

