The Wild Tupper 2

Team Talk Nerdy To Me CSU

Raxius Bloom, Kelli Demny, Dylan Mcnamara, Taylor Morton, Marshall Rawley

Introduction

- Based on a preexisting, six-wheel, all-terrain robot
- After analyzing the faults in last year's design, the team made revisions and proposed a more durable and adaptable robot.
- The primary differences in the designs were the motors and the types of sensors

Improvements

- Improving the suspension design to provide stiffer suspension
- Redesigning the motor housings to fit the new lower torque motors

- Altering and reprinting the design of the chassis
- Using an entirely new electrical and sensor system

Suspension

- 3D Printing
 - o ABS Plastic
 - o 35 hours for 21 parts
- Custom Suspension
 - 3 sets of independent twist suspension
 - torsion springs
 - o chains

Sensors

- Wild Tupper 1
 - o Sonar
- Infrared
 - Primary Sensor for Obstacle Detection
- Touch
 - o Later not implicated

Electronics & Programming

- Sensors Implementation
- Autonomous Navigation
- Integration

Testing

Volleyball courts

Beacon simulator

Mechanical Test Run: CSU Volleyball Courts

Challenges

- Sensor Mounts
 - o Touch Sensor Failure
- Circuit Failure
 - o Two compasses, 2 touch sensors, one IR sensor, and a transceiver

Space Grant Challenge:

- Power Supply
 - o 9.6 V Batteries
- IR Detection
 - Sand Craters

Competition

Conclusion

"Best Demonstration of Beacon Navigation"