# HiBall Balloon Payload Workshop

#### Sensors Part 2





COLORADO SPACE GRANT CONSORTIUM



Partner



# Part 1 – Arduino Test Drive Sensors

- A. LED Visual Display
- **B.** Analog vs. Digital
- C. Balloon Shield Build
- **D.** Thermometer



# <u>Part 2 – Arduino Road Trip</u> <u>Sensors</u>

- A. Humidity Sensor
- **B.** Pressure Sensor
- C. Accelerometers
- D. External Temp Sensor



# <u>Part 2 – Arduino Road Trip</u> <u>Sensors</u>

- A. Humidity Sensor
- **B.** Pressure Sensor
- C. Accelerometers
- D. External Temp Sensor









- Humidity sensor (or the Darth Vader Sensor)
- It measures moisture in the air, which is great for balloon flights (condensation failures)







#### - First need to solder header to sensor







- Install header like shown and solder from top of board
- Short side through the bottom of the board
- Keep header perpendicular to board







Leave your Balloon Shield attached to Arduino

- Wire Arduino 5V to Breadboard
   (BB) 5V PWR Rail
- Wire Arduino GND to BB GND Rail
- Wire Sensor 5V to BB 5V Rail
- Wire Sensor GND to BB GND Rail



- Wire Sensor OUT to Arduino A2

Space Minor UNIVERSITY OF COLORADO BOULDER

Leave your Balloon Shield attached to Arduino

- Wire Arduino 5V to Breadboard
   (BB) 5V PWR Rail
- Wire Arduino GND to BB GND Rail
- Wire Sensor 5V to BB 5V Rail
- Wire Sensor GND to BB GND Rail
- Wire Sensor OUT to Arduino A2





Leave your Balloon Shield attached to Arduino

- Wire Arduino 5V to Breadboard
   (BB) 5V PWR Rail
- Wire Arduino GND to BB GND Rail
- Wire Sensor 5V to BB 5V Rail
- Wire Sensor GND to BB GND Rail



- Wire Sensor OUT to Arduino A2



#### - Modify sketch to read new sensor on A2





- Compile and Upload
- Start Serial Monitor
- Breathe on humidity sensor like Darth Vader



- Watch LEDs on Shield

|            |        | /dev/d  | cu.usbmodem |
|------------|--------|---------|-------------|
|            |        |         |             |
| ±15        | 501501 | yc      | 0.10        |
| 143        | Sensor | Voltage | 0.70        |
| 143        | Sensor | Voltage | 0.70        |
| 143        | Sensor | Voltage | 0.70        |
| 143        | Sensor | Voltage | 0.70        |
| 143        | Sensor | Voltage | 0.70        |
| 143        | Sensor | Voltage | 0.70        |
| 143        | Sensor | Voltage | 0.70        |
| 143        | Sensor | Voltage | 0.70        |
| 143        | Sensor | Voltage | 0.70        |
| 143        | Sensor | Voltage | 0.70        |
| 143        | Sensor | Voltage | 0.70        |
| 143        | Sensor | Voltage | 0.70        |
|            |        |         |             |
| 🗹 Autoscro | oll    |         | No lin      |

- Next, let's convert volts to % humidity

Space Minor UNIVERSITY OF COLORADO BOULDER

- Look at the data sheet to understand output of the sensor
- We know Vout and Vsupply so using algebra



| Voltage output (1 <sup>st</sup> order curve fit) | V <sub>OUT</sub> =(V <sub>SUPPLY</sub> )(0.0062(sensor RH) + 0.16), typical at 25 °C |
|--------------------------------------------------|--------------------------------------------------------------------------------------|
| Temperature compensation                         | True RH = (Sensor RH)/(1.0546 – 0.00216T), T in ⁰C                                   |
|                                                  |                                                                                      |



- % RH is a linear function of voltage
- 100% RH looks like ~3.7 V







- Here's the algebra and the equation to code







#### - Watch LEDs on Shield

#### **Humidity Sensor:**

- Verify and upload your code
- Launch serial monitor
- Breathe on humidity sensor like Darth Vader



| ••• |         | /de  | v/cu.usbm | nodem1451 (Arduino I |
|-----|---------|------|-----------|----------------------|
|     |         |      |           |                      |
|     |         | 1.00 | MILCO     |                      |
| 316 | voltage | 1.54 | units     | 24.02                |
| 316 | voltage | 1.54 | units     | 24.02                |
| 318 | voltage | 1.55 | units     | 24.33                |
| 318 | voltage | 1.55 | units     | 24.33                |
| 315 | voltage | 1.54 | units     | 23.86                |
| 314 | voltage | 1.53 | units     | 23.70                |
| 316 | voltage | 1.54 | units     | 24.02                |
| 313 | voltage | 1.53 | units     | 23.54                |
| 315 | voltage | 1.54 | units     | 23.86                |
| 316 | voltage | 1.54 | units     | 24.02                |
| 317 | voltage | 1.55 | units     | 24.17                |
| 315 | voltage | 1.54 | units     | 23.86                |



No line ending



- Play with your new sensor some to make sure you understand how it works!
- Also, look at the data sheet and determine the voltage at maximum humidity





#### **Balloon Shield Build Part 3:**



- Disconnect you Balloon Shield and add the Humidity Sensor



#### **Balloon Shield Build Part 2:**



- Reconnect your Balloon Shield to the Arduino
- Connect USB and reload code
- Verify same results

| • • • | /dev/cu.usbmodem1451 (Ardu |      |         | (Arduino I |  |
|-------|----------------------------|------|---------|------------|--|
|       |                            |      |         |            |  |
| /     |                            | 1.33 | MITE 00 |            |  |
| 316   | voltage                    | 1.54 | units   | 24.02      |  |
| 316   | voltage                    | 1.54 | units   | 24.02      |  |
| 318   | voltage                    | 1.55 | units   | 24.33      |  |
| 318   | voltage                    | 1.55 | units   | 24.33      |  |
| 315   | voltage                    | 1.54 | units   | 23.86      |  |
| 314   | voltage                    | 1.53 | units   | 23.70      |  |
| 316   | voltage                    | 1.54 | units   | 24.02      |  |
| 313   | voltage                    | 1.53 | units   | 23.54      |  |
| 315   | voltage                    | 1.54 | units   | 23.86      |  |
| 316   | voltage                    | 1.54 | units   | 24.02      |  |
| 317   | voltage                    | 1.55 | units   | 24.17      |  |
| 315   | voltage                    | 1.54 | units   | 23.86      |  |



# <u>Part 2 – Arduino Road Trip</u> <u>Sensors</u>

- A. Humidity Sensor
- **B.** Pressure Sensor
- C. Accelerometers
- D. External Temp Sensor





#### Pressure Sensors is fragile and \$\$\$

- A bit tricky to see the markings to install correctly
- Can use it to determine pressure/altitude of payload
- To be safe, please disconnect power from your Arduino



















- Connect GND to Pin 4, 5V to Pin 2, and Pin 3 to A3 on the Arduino

|       | <b>V</b> |         |       |
|-------|----------|---------|-------|
| Pin 1 | Pin 2    | Pin 3   | Pin 4 |
| NC    | Vsupply  | OUTPUT+ | GND   |
|       |          |         |       |





- Connect GND to Pin 4, 5V to Pin 2, and Pin 3 to A3 on the Arduino



|       | <u> </u> |         |       |
|-------|----------|---------|-------|
| Pin 1 | Pin 2    | Pin 3   | Pin 4 |
| NC    | Vsupply  | OUTPUT+ | GND   |





- Connect GND to Pin 4, 5V to Pin 2, and Pin 3 to A3 on the Arduino





- Look at the data sheet to understand output of the sensor
- Known: Vsupply = 5.0 V Pmax = 15.0 psi Pmin = 0.0 psi Output(V) = measured Pressure applied = solve



 $Output (V) = \frac{0.8 \text{ x } V_{supply}}{P_{max.} - P_{min.}} \text{ x (Pressure}_{applied} - P_{min.}) + 0.10 \text{ x } V_{supply}$ 





#### - Here's the algebra and the equation to code

$$Output(V) = \frac{\left(0.8 * V_{SUPPLY}\right)}{\left(P_{\max} - P_{\min}\right)} * (pressure_{applied} - P_{\min}) + 0.10 * V_{\sup ply}$$

$$Output(V) = \frac{\left(0.8 * 5.0\right)}{\left(15.0 - 0.0\right)} * (pressure_{applied} - 0.0) + 0.10 * 5.0$$

$$Output(V) = \frac{\left(4.0\right)}{\left(15.0\right)} * (pressure_{applied}) + 0.5$$

$$\frac{15.0}{4.0} * (-0.5 + Output(V)) = pressure_{applied}$$







- Build and Upload
- DO NOT BLOW or DO NOT APPLY PRESSURE; it will break the sensor
- Use solder sucker

| /dev/cu.usbmodem1451 (Arduino |                                                                                                                                             |                                                                                                                                                                                                                    |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                                                                                                             |                                                                                                                                                                                                                    |
| voltage                       | 3.67                                                                                                                                        | units 11.89                                                                                                                                                                                                        |
|                               | voltage<br>voltage<br>voltage<br>voltage<br>voltage<br>voltage<br>voltage<br>voltage<br>voltage<br>voltage<br>voltage<br>voltage<br>voltage | /d<br>voltage 3.67<br>voltage 3.67 |

Autoscroll Autoscroll PLEASE SAVE YOUR PLEASE SAVE FILE SKETCH FILE No line ending

- Play with your new sensor to get a feel for how it works
- Try to get your sensor to zero











#### - Install Pressure Sensor into headers





#### Autoscroll

#### **Pressure Sensor:**

- Reconnect your Balloon Shield to the Arduino

- Connect USB and reload code
- Verify same results

| 751 | voltage 3.67 | units 11.89 |
|-----|--------------|-------------|
| 751 | voltage 3.67 | units 11.89 |
| 751 | voltage 3.67 | units 11.89 |
| 751 | voltage 3.67 | units 11.89 |
| 751 | voltage 3.67 | units 11.89 |
| 751 | voltage 3.67 | units 11.89 |
| 751 | voltage 3.67 | units 11.89 |
| 751 | voltage 3.67 | units 11.89 |
| 751 | voltage 3.67 | units 11.89 |
| 751 | voltage 3.67 | units 11.89 |
| 751 | voltage 3.67 | units 11.89 |
| 751 | voltage 3.67 | units 11.89 |
| 751 | voltage 3.67 | units 11.89 |



/dev/cu.usbmodem1451 (Arduino


### <u>Part 2 – Arduino Road Trip</u> <u>Sensors</u>

- A. Humidity Sensor
- **B.** Pressure Sensor
- **C.** Accelerometers
- D. External Temp Sensor





- Accelerometers are used to detect forces acting on a payload
- This is a 3 axis accelerometer
- Measures g forces in X, Y, and Z directions
- Only have two analog channels left so X and Z













#### - Solder 6 pin header to board





- Solder 6 pin header to board
- Short side through the bottom of the board
- Keep header perpendicular to board





# - Wire accelerometer as shown

Accelerometer:

Vcc is to <u>3.3V</u> GND is to GND X is to A4 Z is to A5







- Wire accelerometer as shown

Vcc is to 3.3V GND is to GND X is to A4 Z is to A5





- Wire accelerometer as shown

Vcc is to 3.3V GND is to GND X is to A4 Z is to A5



#### The ADXL335 output is ratiometric, therefore, the output sensitivity (or scale factor) varies proportionally to the FUNCTIONAL BLOCK DIAGRAM supply voltage. At $V_s = 3.6$ V, the output sensitivity is typically 360 mV/g. At $V_s = 2$ V, the output sensitivity is typically 195 mV/g. The zero g bias output is also ratiometric, thus the zero g output is nominally equal to $V_s/2$ at all supply voltages. ONE TRADUCTORY WAR, P.O. BOX 9106, NOrWOOD, MR 02063 Tel: 701.329,4706 SENSITIVITY (RATIOMETRIC)<sup>2</sup> Fach axis Sensitivity at Xour, Your, Zour $V_s = 3V$ 270 300 mV/a330 Sensitivity Change Due to Temperature<sup>3</sup> $V_s = 3V$ %/°C $\pm 0.01$ ZERO g BIAS LEVEL (RATIOMETRIC) 0 g Voltage at Xour, Your $V_s = 3V$ 1.35 1.5 1.65 ۷ 0 g Voltage at Zour $V_s = 3V$ 1.2 1.5 1.8 V 0 g Offset vs. Temperature mq/°C $\pm 1$ NOISE PERFORMANCE

### Accelerometer:

- Looking at the data sheet... ADXL335













# - 3.3V/2 is what it should read at "zero G" orientation or 1.65V

#### - Then 330 mV for every G so...

### Gs = (Accelvoltage - 1.65 V) / (0.330 V)

#### ADXL335

The ADXL335 output is ratiometric, therefore, the output sensitivity (or scale factor) varies proportionally to the supply voltage. At  $V_s = 3.6$  V, the output sensitivity is typically 360 mV/g. At  $V_s = 2$  V, the output sensitivity is typically 195 mV/g.

The zero g bias output is also ratiometric, thus the zero g output is nominally equal to  $V_s/2$  at all supply voltages.





- Upload you code and launch your serial monitor (no LEDs this time)
- Rotate your breadboard and look for changes in both X and Z
- X up and X down
- Z up and Z down









- Upload you code and launch your serial monitor
- When Z up ~ 1.0G
- When Z down ~ -1.0G
- When X up ~ 1.0G
- When X down ~ -1.0G



|     | •     | /dev/cu.usbm |
|-----|-------|--------------|
|     |       |              |
| 'ny | 0.10  | -9           |
| Xg  | -0.13 | Zg 1.07      |
| Xg  | -0.11 | Zg 1.07      |
| Xg  | -0.13 | Zg 1.07      |
| Xg  | -0.11 | Zg 1.07      |
| Xg  | -0.13 | Zg 1.        |
| ~9  | 0.15  | -9           |

Autoscroll





# - Disconnect your Balloon Shield and add the Accelerometer





- Reconnect your Balloon Shield to the Arduino
- Connect USB and reload code
- Verify same results

| •         | •          | /dev/cu.usbm |
|-----------|------------|--------------|
|           |            |              |
| <u>~9</u> | 0.10       | -9           |
| Xg        | -0.13      | Zg 1.07      |
| Xg        | -0.11      | Zg 1.07      |
| Xg        | -0.13      | Zg 1.07      |
| Xg        | -0.11      | Zg 1.07      |
| Xg        | -0.13      | Zg 1.        |
|           | Autoscroll |              |



### <u>Part 2 – Arduino Road Trip</u> <u>Sensors</u>

- A. Humidity Sensor
- **B.** Pressure Sensor
- **C.** Accelerometers
- D. External Temp Sensor







# - Add Orange LED to D4 - Red wire to + and Black wire to -







# - Add Blue LED to D3 - Red wire to + and Black wire to -







# - Add Temp2 to Temp2- Note wire colors







#### - Open Temp1 Sketch; save as Temp2



int sensor;
float sensorVolt;
float sensorUnits;
float sensorUnitsC;

void setup() {
 // put your setup code here, to run once:

Serial.begin(9600);

| 11 | setup the LED         | Visual  | Disp | lav       |     |
|----|-----------------------|---------|------|-----------|-----|
| -  | <pre>pinMode(3,</pre> | OUTPUT) | ); / | ′/Blue LE | ED  |
|    | <pre>pinMode(4,</pre> | OUTPUT  | ); / | //Orange  | LED |
|    | pinMode(5,            | OUTPUT  | ); / | /Green l  | .ED |
|    | pinMode(6,            | OUTPUT  | ); / | //Purple  | LED |
|    | pinMode(7,            | OUTPUT  | ); / | /Red LED  | )   |
|    | pinMode(9,            | OUTPUT  | ); / | /Yellow   | LED |
| }  |                       |         |      |           |     |

### **Balloon Shield Build Part 6:**



| void | loop() {                                             |                                        |
|------|------------------------------------------------------|----------------------------------------|
| //   | put your main code here, to run repeatedly:          | <pre>if(sensorUnits &gt; 78.0) {</pre> |
|      | sensor = analogRea (A1);                             | <pre>digitalWrite(5, HIGH);</pre>      |
|      | sensorVolt = sensor( $5.0/1023$ );                   | }                                      |
|      | <pre>sensorUnitsC = (sensorVolt - 0.5)/(0.01);</pre> | <pre>if(sensorUnits &gt; 79.0) {</pre> |
|      | sensorUnits = (sensorUnitsC*( $9.0/5.0$ ) + 32);     | <pre>digitalWrite(6, HIGH);</pre>      |
|      | <pre>Serial.print(sensor);</pre>                     | }                                      |
|      | Serial.print("\t voltage ");                         | if(sensorUnits > 80.0) {               |
|      | Serial print(sensorvolt);                            | digitalWrite(7. HIGH):                 |
|      | Serial println(sensorUnits).                         | }                                      |
|      | Ser tut.pr theth(sensor on tes);                     | if(sensorUnits > 81 0) {               |
| 11   | Turn script running leds OFF at begining of l        | digitalWrite(9 HIGH)                   |
|      | <pre>digitalWrite(3, LOW); //Blue LED</pre>          | l                                      |
|      | <pre>digitalWrite(4, LOW); //Orange LED</pre>        | digitalWhite(3_HTCH):                  |
|      | <pre>digitalWrite(5, LOW); //Green LED</pre>         | digitalWrite(3, HIGH);                 |
|      | <pre>digitalWrite(6, LOW); //Purple LED</pre>        |                                        |
|      | digitalWrite(7, LOW); //Red LED                      | aelay(100);                            |
|      | algitalwrite(9, LOW); //Yellow LED                   |                                        |



- -Build and upload your sketch
- Temp2 will stick outside your BalloonSat
- LED 3 and 4, will also stick outside your BalloonSat

|         |         | /d   | ev/cu.usbmodem1451 ( | A |
|---------|---------|------|----------------------|---|
|         |         |      |                      |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 153     | voltage | 0.75 | units 76.60          |   |
| 🗹 Autos | croll   |      | No lin               | e |



- -Build and upload your sketch
- Temp2 will stick outside your BalloonSat
- LED 3 and 4, will also stick outside your BalloonSat





### <u>Part 2 – Arduino Road Trip</u> <u>Sensors</u>

- A. Humidity Sensor
- **B.** Pressure Sensor
- **C.** Accelerometers
- **D. External Temp Sensor**







### <u>Part 2 – Arduino Road Trip</u> <u>Sensors</u>

- A. Humidity Sensor
- **B.** Pressure Sensor
- **C.** Accelerometers
- **D. External Temp Sensor**



- Now let's integrate all the code and sensors together and test
- We will review code but you will use a pre-coded sketch
- Everything should look familiar
- Download code from spacegrant.colorado.edu
  - Statewide Programs
  - DemoSat Program



// Definitions
// Temperature Sensor #1
 int temp1;
 float temp1Volt;
 float temp1C;
 float temp1F;

// Temperature Sensor #2
 int temp2;
 float temp2Volt;
 float temp2C;
 float temp2F;

// Humidity Sensor
 int humidity;
 float humidityVolt;
 float RH;

// Presure Sensor
 int pressure;
 float pressureVolt;
 float psi;

// Accelerometer X
 int accelX;
 float accelXVolt;
 float accelXG;

// Accelerometer Z
 int accelZ;
 float accelZVolt;
 float accelZG;











void loop() {
 // put your main code here, to run repeatedly:

// Turn script running leds OFF at begining of loop digitalWrite(4, LOW); digitalWrite(5, LOW); digitalWrite(6, LOW); digitalWrite(7, LOW); digitalWrite(9, LOW);

delay(500); //Amount of time between samples (milliseconds)

// Log the time
 timeStamp = millis();
 Serial.print(timeStamp);



```
temp1 = analogRead(A0);
temp1Volt = temp1*(5.0/1023);
temp1C = (temp1Volt - 0.5)/(0.01);
temp1F = (temp1C^*(9.0/5.0) + 32);
Serial.print(",");
Serial.print (temp1F, 2);
digitalWrite(4, HIGH);
temp2 = analogRead(A1);
temp2Volt = temp2*(5.0/1023);
temp2C = (temp2Volt - 0.5)/(0.01);
temp2F = (temp2C*(9.0/5.0) + 32);
Serial.print("."):
Serial.print (temp2F, 2);
digitalWrite(5, HIGH);
```



```
humidity = analogRead(A2);
humidityVolt = humidity*(5.0/1023);
RH = (((humidityVolt/5.0)-0.16)/0.0062);
Serial.print(",");
Serial.print(RH, 2);
digitalWrite(6, HIGH);
```

```
pressure = analogRead(A3);
pressureVolt = pressure*(5.0/1023);
psi = (pressureVolt-0.5)*(15.0/4.0);
Serial.print(",");
Serial.print(psi, 2);
digitalWrite(7, HIGH);
```



```
accelX = analogRead(A4);
accelXVolt = accelX*(5.0/1023);
accelXG = (accelXVolt - (3.3/2))/(0.330);
Serial.print(",");
Serial.print(accelXG,3);
```

```
accelZ = analogRead(A5);
accelZVolt = accelZ*(5.0/1023);
accelZG = (accelZVolt - (3.3/2))/(0.330);
Serial.print(",");
Serial.print(accelZG,3);
digitalWrite(9, HIGH);
```

```
Serial.println();
```



# - Download code or get from desktop and run and verify it works....

| COLORADO SPACI                                                                                                                                           | EGRANT                                       | CONSORTIUM   |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------|--|--|--|--|--|
| Balloon Payload Workshop Scholarship Transfer Program                                                                                                    | COSGC Home                                   | Search COSGC |  |  |  |  |  |
| Hands-on How-to Balloon Payload Workshop 2017<br>University of Colorado Boulder                                                                          |                                              |              |  |  |  |  |  |
| Ja                                                                                                                                                       | January 6 - 7, 2017                          |              |  |  |  |  |  |
| Each team/school will need a laptop with the Arduino software downloaded and installed. You can download the software for free by clicking the link here |                                              |              |  |  |  |  |  |
| Below are links to the code and slides for the workshop. There is no need to download these files now.                                                   |                                              |              |  |  |  |  |  |
| Code Slides                                                                                                                                              | Data Sheets                                  | Agenda       |  |  |  |  |  |
| Code Checklist Photos                                                                                                                                    | Payload Acceptance Shee<br>Foam Core Documen | t Map<br>t   |  |  |  |  |  |
## Full Sensor Code Testing:



# - Download code or get from desktop and run and verify it works....

#### Index of /images/GatewayToSpace/Fall\_2017/Code

| Name                              | Last modified Size Description |
|-----------------------------------|--------------------------------|
| Parent Directory                  | -                              |
| Palloon Shield Test Code no SD.in | <u>o</u> 2017-01-04 14:33 3.2K |
| Balloon Shield Test Code no SD.in | o.zip 2017-08-16 16:06 1.3K    |

Apache/2.4.7 (Ubuntu) Server at spacegrant.colorado.edu Port 80

#### If .ino file doesn't work, try downloading the .zip version



#### - Should look like this





## Part 2 – Arduino Race Track Sensors

- A. OpenLog Integration
- **B.** OpenLog Code Integration
- C. Data Retrieval



## Part 2 – Arduino Race Track Sensors

- A. OpenLog Integration
- **B.** OpenLog Code Integration
- C. Data Retrieval

### MicroSD Card Shield:





## OpenLog:











- Solder 6 pin header to board
- Short side through the bottom of the board
- Keep header perpendicular to board



Similar to accelerometer shown here.

## Micro SD Card OpenLog:



#### - Insert MicroSD card as shown







#### **Place OpenLog in correct spot on Balloon Shield**



## **Open Log:**

#### - Reconnect USB and rerun same code







## Part 2 – Arduino Race Track Sensors

- A. OpenLog Integration
- **B.** OpenLog Code
- C. Data Retrieval

## **OpenLog Code:**



Now let's explore the code needed to record this data to the OpenLog



you stay in Wonderland, and I show you, how deep the rabbit-hole goes.

~ Morpheus' Warning To Neo (From The Film; "The Matrix") ~





- The super cool thing about **OpenLog** is that anything you serial print is written to the **OpenLog**
- A new file is created if power is removed
- A new file is created if sd card is removed and reinserted
- Can eject sd card while powered



## Part 2 – Arduino Race Track Sensors

- A. OpenLog Integration
- **B.** OpenLog Code
- C. Data Retrieval

#### - Rotate your accelerometer like...

4. X Down

Sensor Testing:



#### 5. X Up





## Sensor Testing:

#### 8. Z Down





9. Z UP





- Eject the SD card and re-insert.
- Then record data as follows:
- 1. Breath on your humidity sensor twice
- 2. Suck on pressure sensor twice
- 3. Touch both temp sensors for 5 seconds each
- 4. Orient your accelerometer (Z up/down, X up/down) 10 seconds each direction
- 5. Breath on your humidity sensor twice
- 6. Suck on pressure sensor twice
- 7. Disconnect USB from Arduino





- Remove microSD card from Uno and insert into SD card adapter







## - Remove microSD card from Uno and insert into SD card adapter





#### - Insert SD card adapter into your laptop





#### - Navigate to card and copy last LOG file to your desktop





#### - Graph all data minus the time stamp (Using Excel)

- Mac Users you must change tab name to remove "."





#### - Do you see your data markers?





#### - Re-plot just your accel data





#### - How can you use this data?





## Part 2 – Arduino Race Track Sensors

- A. OpenLog Integration
- **B.** OpenLog Code
- C. Data Retrieval



# SUCCESS

Because you too can own this face of pure accomplishment





- For balloon flight, need to power Arduino with 9V battery
- Do not connect USB and 9V ever













- Cut Red and Black wire to ~1 foot in length
- Cut barrel connector black wire in half
- Strip ends of cut wire back ~1/3 inch







- Splice red and black extensions into connector and solder







#### - Place heatsrink tube around solder joint and heat







- Place more heatsrink tube on black and red wiring
  - Move tubing away from ends of wire
- Splice red and black wires onto switch terminals and solder taking care not to shrink tubing







- After soldering...
- Take care not to overheat the switch







- Move heatshrink tubing over terminals and heat to shrink
- Take care not to overheat the switch







- Plug battery and switch into Arduino (Remove USB cable)
- Flip the switch ON






## - You are now recording data until power is lost





## Part 2 – Arduino Race Track Sensors

- A. SHIELD Integration
- **B. SD Card Code Integration**
- C. Data Retrieval



