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Abstract 

  Our main goal in creating our robot for the 

Robotics Challenge was to create a small, enclosed 

robot to successfully roam through any course 

consisting of various obstacles that could be avoided 

or climbed using a whisker/bumper sensor and a flexi 

force sensor. We wanted to utilize our own original 

ideas, but incorporated some past ideas that we 

believed we could improve upon. 

 For the robot’s shape we created a design 

consisting of a dome sitting upon a trapezoidal box. 

The dome enabled us to fulfill our goal of an 

enclosed robot. The robot’s enclosure offered 

protection from sand intrusion in the breadboards, 

compass, beacon receiver, motors, and other small 

parts that needed safeguarding. In the context of 

climbing, we found the trapezoidal box to be superior 

to the previous rectangular boxes of past years.    

 With our chosen design, some obstacles 

pose greater risks for us than others. Without much 

clearance on the bottom of the robot, we had to 

compensate for rocks that could possibly cause our 

robot to high center through different sensors and 

programming. We decided to incorporate a flexi 

force sensor along the bottom of the robot body in 

hopes of avoiding any obstacles that pose a possible 

high centering threat. This small sensor that lies 

against the front of the robot body measures the 

amount of force being exerted on it.  

Improving upon previous wheel designs and 

utilizing 3D technology, we created a wheel with a 

cleat-like design. After testing, we added pieces of 

sensory balls with small, rubber knobs to the arches 

of our wheels for the purpose of traction on different 

surfaces to allow for the climbing of small obstacles 

and even some obstacles comparable to its own size.  

 After deciding to recycle the design of the 

previous year’s bump sensor, we began looking for 

areas of improvement. We recognized their error in 

creating a sensor platform that extended too far past 

the front of the robot; this proved to be a critical issue 
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in downhill climbing. We recreated their design using 

three trapezoidal shapes to act as the bumpers that 

trigger the micro switches in place of their four 

shapes. Our sensor platform is much closer to the 

robot’s body and the platform is vertically adjustable 

to allow for modification during the testing process 

and in the field.  

 Although pit avoidance was still something 

we wanted to accomplish, we had tested and 

determined we were pleased with A.L.L.E.N.’s 

navigation and ability to avoid obstacles. The 

remaining time we had prior to the challenge was 

spent determining what it would take to develop a 

working infrared navigation. Though it is no simple 

task, A.L.L.E.N. is now capable of recognizing holes 

in its path. Upon recognition of these holes, the robot 

then begins navigating in a way that allows for 

obstacle avoidance.   

From the beginning of the design process, 

and throughout the building and programming 

process, we decided that instead of starting from 

square one, we would take what past teams have 

done, and build upon it, to create a robot more 

technologically and mechanically advanced as to 

outperform and outlast other robots.    

Introduction 

 Initially our design included four wheels, a 

case of some sort used for sealing our robot from the 

sand and other outdoor environmental issues that may 

arise, and a dome to house our breadboard, compass, 

switch and other components. This design was 

partially altered, one step at a time as we continued to 

work toward achieving the best robot possible. We 

discontinued use of a wagon type design and opted 

for a more functional design consisting of the dome 

and trapezoidal box, figuring this would offer us the 

most accommodation and flexibility to achieve our 

goals in the least amount of material.  

 

Design Process 

Wheels 

 Although we decided upon use of the same 

motors, (the Vex 2 wire Motor 393), last year’s robot 

design, C.A.T., used we hoped to have fixed the 

problem the previous team had encountered with 

internal overheating of the motors  and a complete 

shutdown by incorporating a design that did not have 

tank like treads. We felt (because a wheel would 

require less work to rotate than a tread needed) 

recreating the original wheel design from two years 

ago would  prove to be more beneficial and eliminate 

the problem of the internal temperature regulation 

setting these motors are preprogrammed with that 

caused the shutdown of the motors.  

 Using the CAD software, Solidworks, we 

were able to, initially, draw up what had been used in 

previous years, and from this point find weaknesses 

in the design and improve them to allow for the 

wheel to conquer more obstacles. Our team 

discontinued the use of hexagonal shaped wheels; we 

added two more lobes to the center, not only 

increasing the surface area contact with the ground, 

but also providing for a much more stability.  
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 After the wheels were designed and printed 

with the application of 3D printing technology, in 

order to achieve our design of a cleat-like wheel, we 

cut and glued pieces of sensory balls that provided 

the small rubber knobs we envisioned. The addition 

of these pieces of rubber allowed for a great 

difference in the traction and ability to climb of our 

robot, compared to only the use of the slick ABS 

printed material.  

Whiskers 

 The previous team faced obstacles with their 

design of a whisker using microswitches; this 

malfunction crippled their ability to descend 

downhill. The whiskers were designed in a way that 

had them protruding out much too far in front of the 

robot, causing them to trigger unnecessarily at 

undesirable times. We incorporated a shorter whisker 

design and improved upon sensitivity of each plate.   

Once the design was finalized, a small 

prototype was created on a Boebot (see below) and 

run to test whether the new, more compact design 

would function properly and as sensitively as desired. 

Once this prototype worked accordingly, it was then 

expanded into three plates that would later be 

connected to the front of our robot.  

Had last year’s whiskers not sat as low as 

they did on the front of their design, the unnecessary 

triggering on downhill descents could have been 

avoided. This mistake led us to incorporate 

adjustability in the design of our whiskers. We found 

early in the testing process that high centering would 

prove to be an issue for A.L.L.E.N. If we so chose, 

the sensors are capable of placement along the 

bottom of the robot. We found this placement would 

be problematic and counterproductive because lower 

placement makes the robot susceptible to 

unnecessary triggering during downhill descent, 

which was the issue we were trying to avoid 

originally. Along with the lowest position possible, 

there are two other potential placements of the 

whiskers.  

Flexiforce 

 A flexiforce sensor was placed along the 

bottom edge of our robot because, after much testing, 

we found this sensor was the best fix for high 

centering. When a certain amount of force is applied 

to the acrylic strip that lies in front of the flexiforce 

senor, the robot then assumes it has encountered an 

obstacle and begins finding an alternative route. This 

small sensor allows for the robot to successfully 

roam, descend downhill, and prevents high centering, 

without having to unnecessarily place the whiskers 

along the bottom of the robot.   

Sharp Infrared Sensors 

In an effort to create a robot that 

successfully detects pits or holes in the sand, infrared 

sensors were crucial additions for the sensor platform 

on A.L.L.E.N. Sharp IRs, we found, were the only 

sensor that was able to give us accurate distance 

measurements in both sand and sunlight. After circuit 
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adjustments, the Sharp IRs were tested using a test 

program that allowed us to determine if holes existed 

in the robot’s path using Sharp IR values. Our team 

was challenged with much debugging before the 

robot was able to successfully navigate based upon 

the values it received.  

Programming 

 While there are a number of 

microcontrollers, such as the Arduino and Basic 

Stamp that can be used, our previous experience and 

the partnership shared by Trinidad State and Parallax, 

led us to use of the Parallax Propeller chip. We 

decided that this propeller chip’s multifunction 

capabilities and reliability was more suitable for our 

robot’s brain. The Parallax Propeller chip is capable 

of doing eight things simultaneously with its eight 

cogs; this was a vital aspect our brain needed due to 

the structure and complexity of our program.  

 The initial steps writing the program that 

would allow A.L.L.E.N.’s many features to work 

properly and simultaneously, started with learning the 

Propeller C language and writing a working whisker 

sensor program. We then progressed toward adding 

corner detection, compass, and accelerometer. These 

were all added to the program separately and each 

was tested until working properly. Accurate beacon 

navigation was added next; many issues arose in the 

process of a robot that, not only receives and reads 

values from the beacon, but also properly reacts and 

navigates systematically toward the designated 

destination. In the final steps of putting together a 

working program, sharp IR sensors were added to the 

many features the program offers.  

  The navigational goal of the program is to 

successfully check all of the sensors; if all of the 

sensors are undisturbed, the goal then becomes to 

head north or toward the beacon. The robot will do 

this until any of the sensors register that an obstacle 

has been detected, in which case A.L.L.E.N. will 

maneuver in whichever manner is indicated by the 

sensor that detected the obstacle.   

 With all of the sensors on the robot: the 

whiskers, the Sharp Infrareds, the flexiforce sensor, 

and the different navigational tools: Northern 

navigation with the compass and navigation using the 

beacon receiver, the program required the ability to 

process all of this information quickly. Originally, the 

program called on many different functions every 

time values from the sensors were received. The 

manner in which the robot performed during all of 

this was not as fast as it needed to be. Once the entire 

sensor reading code was placed in one of the 

Propeller chip’s cogs, this portion of the code was 

then allowed to run continuously. Placement of this 

portion of the program in a separate cog allowed for 

the main program to have these values readily 

available as opposed to waiting on a function to 

initialize the sensor then retrieve the reading, 

allowing for access to up-to-date sensor readings 

whenever necessary.  

 There are a number of features that set this 

program apart from past programs used by previous 

teams. While the propeller chip was used last year, 

the C language software was not fully developed. 

Along with a more developed C language software, 

we also had a programmer capable of writing his own 

libraries.   

One of the main features this program offers 

is accessibility. Each of the many different features of 

this robot can be enabled and disabled using the 

whiskers and flexiforce sensor to communicate with 
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the program. Also, each portion of the program is 

written so that variables can be adjusted simply and 

quickly. This can be seen in the structure of the 

program as a whole. After it was written and 

working, the program was restructured in a way that 

separated the navigational portion of the program 

from the main event handling portion. This proved to 

allow for quick changes of any of the values that 

needed adjustment during the testing process.  

Use of Technology 

Logger Pro 

In an attempt to fully optimize our robot’s 

rotations per minute and speed, and also to compare 

these results when the robot is climbing rocks and 

maneuvering around other obstacles, we recorded the 

robot’s movements while it was in a mock testing 

sand pit, and loaded these videos into Logger Pro to 

get exact readings. Logger Pro is a computer software 

program that is generally used for data compilation 

and analysis of this data.  These computations and 

much testing were then used to determine the best 

value to be entered into our programs for the robot’s 

RPMs. Since our programmer was writing the new 

libraries for the motor drivers, Logger Pro also 

allowed him to see if his program was sending the 

right signals to the motor controller.  

 

 

 

 

 

Maple 

Because our original dome wasn’t the right 

size for our robot, we used Maple, the computer 

algebra software, to graph a model of the elliptical 

dome we had bought, and the space curve created 

when the dome was cut. Considering our tallest 

object, the beacon receiver, we were able to plot the 

intersecting plane with the dome that would represent 

the cut that would be made on the dome to ensure 

that a precise slice was made.  

SolidWorks 

Much of our designing process took place 

on the computer, using the CAD software, 

Solidworks. As well as quick and accurate designing, 

everything printed using the 3D printer was drawn 

using this software, so it was crucial for designing.  

Because of the more complicated design of 

our whiskers, it was easier, and more accurate to 

draw them using 3D software to find exactly where 

parts would line up. Our wheels, as previously 

mentioned, were also designed and drawn using this 

program. Solidworks allowed us to design and print 

quickly and efficiently.  

3D Printing 

With the new addition of our 3D printer, we 

were able to create parts of our robot that in past 
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years we had not been capable of creating. For 

example, we had to rely on others to manufacture the 

wheels and couplers we were able to produce 

ourselves this year.  

Although it helped immensely, we did 

encounter issues with the printer. The printing 

process for each wheel required 23 hours, increasing 

the possibility of loss of power, and also occupied the 

printer for an extended amount of time. When the 

printer did lose power, it did not resume and 

complete the print and the final product was what had 

thus been printed up until power was lost. 

We turned to the printer to help with small 

measurements that needed to be very precise when it 

came to aspects that needed to be exactly level. All of 

the adjustability we had with our sensors was made 

possible with brackets designed on the computer, 

printed off, and attached to the side of the robot’s 

body. This precision can also be seen in the small 

parts that hold the pistons at their correct height on 

the whiskers.  

Every part of our program gives off readings 

and values that allows us to see how the program is 

interpreting the data it receives. In an effort to make 

reading the LCD screen more accessible while it’s 

located inside our enclosed robot, we designed an 

LCD screen mount that form fits the screen and 

allows for the screen to be held at the angle of our 

choosing.   

 Pitfalls found during testing 

 Upon original placement of the wheels, we 

found that the axles weren’t exactly aligned; this 

caused instability in the wheels that foreshadowed the 

possibility of more trouble later in the field. In an 

effort to fix this defect, bushings were added inside 

the main body of the robot to each of the axles, 

creating a stable robot.  

Testing was delayed greatly due to the 

complicated circuit of our H Bridge Motor Driver 

circuit where we found much of the wiring was 

coming unplugged. This motor driver was replaced 

with a Vex corporation model 29 and this Vex motor 

controller was incorporated into the wiring; these 

motor controllers helped to clean up the board greatly 

and enhance our ability to keep the wiring tight and 

the circuits complete. The inclusion of the motor 

controllers proved to be crucial with the addition of 

the IR sensors later in the design process. Had they 

not been present on the board, there would not have 

been room to include the necessary ADC chip for the 

Sharp IR circuit.   

The original ramping of speeds in our 

program was too slow to allow the robot to gain 

enough momentum to conquer obstacles. It wasn’t 

until we completely eliminated this feature that we 

were able to achieve our full potential and full speed 

in the field. Logger Pro was used to track these 

various speeds, and find the best speed for our 

desired maneuverability.  

We had a big issue with high centering 

because the radius of our wheel allowed for a small 

amount of clearance underneath the robot. Along 
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with the inclusion of the flexiforce sensor, a keel was 

added to the bottom of the robot’s body to allow for 

the robot to lean itself back on its wheels if the issue 

of high centering did arise in the field.  

We tested a different sensor in an attempt to 

fix our high centering problem. Prior to adding the 

keel, a small push sensor made by Vex robotics, was 

added to the bottom of the robot body. This did not 

perform to our expectations. It’s bulky design and 

added weight did not seem worth what it offered so it 

was not included in our final design.  

 From the first day of designing, it was clear 

the only route we wanted to go in our robot’s creation 

was a completely enclosed design. When we received 

the domes we had ordered from a company in 

Canada, we were glumly displeased with the fit of the 

dome on the top of the robot’s trapezoidal body. 

Reordering the dome wasn’t an option due to time 

constraints; we decided to alter what we had.  Maple 

was used to find the cut needed to have a dome that 

fit our robot in the way we had imagined. After 

cutting the dome, a rectangular flange was added to 

the dome to allow for the dome to be removable.  

When the 3D printer we had was in a long 

print the chance for losing power was more likely, 

also the printer wipes its memory when this happens. 

We learned this when, in the 18th of a 23 hour wheel 

print, the weather got unruly, and the building the 

printer resides in lost power and we had a partial 

wheel. This “skinnier wheel” was used as a test 

wheel, and we were forced to begin the print later 

when the weather wasn’t an issue.  

After adding the attachments to make the 

whisker sensor adjustable, we found the sensor was 

susceptible to getting stuck at an angle not parallel to 

the ground. We printed off triangular supports to be 

added to the top and bottom of the plate to keep this 

issue from occurring in the field when the robot was 

roaming.  

After evaluating the values given by the 

flexiforce sensor, we found the sensor was being 

triggered by obstacles that could have been 

conquered by the wheels alone. Small rectangular 

pieces were added to the left and right sides of the 

acrylic used to push the sensor to lessen sensitivity.  

In the development of getting the IRs 

working mechanically as a pit sensor, we found when 

they were facing directly forward, the IRs located on 

the left and right sides were not picking up obstacles 

in the way we wanted them to.  We printed off a 

detailed and tailored mount after finding which 

angles the IRs needed be set at to work optimally. 

This eliminated the problem we saw with the side IRs 

not detecting pits.  

 The circuitry of the Sharp IRs alone proved 

to have many pitfalls. First off, the circuit had to be 

adjusted from an RCTIME circuit for the test 

program to one of our own making. This RCTIME 

circuit would not have worked in the field due to the 

inability it gave us to read any of the values received 

below the Propeller chip’s threshold voltage of 1.65. 

Not being able to access the full range of output 

voltages offered by the Sharp IRs (from 3.3 V to .4) 

would have kept us from being able to detect pits, 

which was our entire reasoning for adding the IRs.  

Because we could not find an ADC circuit 

that was able to read voltages above and below the 

Propeller chip’s threshold voltage, we decided to 

build one that began with wiring the Sharp IR 

sensor’s output wire directly into a Propeller I/O pin 
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and slowly adjusting the applied voltage from another 

of the Propeller’s I/O pins to find the amount of 

voltage coming from the IRs. This worked when 

tested in the field but did not provide for values 

stable enough for detecting holes.  

After a few failed attempts, it was decided 

an ADC chip was necessary for hole-detection.  

Before its addition on the board, the chip needed to 

be tested. Experienced to the difficulty of developing 

a working IR, the first test program written with this 

ADC chip did not function. It wasn’t until the 

program was compared to one written in PBASIC 

language were we able to find that a change in the bit 

transfer modes would give us a working program. 

Finally, we were able to simply read the voltages 

from the Sharp IRs over their entire range and with 

high accuracy.   

We ran into the obstacle of not being able to 

retrieve actual distances from the IR’s values. We 

solved this issue through the observation of a Voltage 

to Distance graph found in the Sharp IR 

documentation (see below). Plotting the graph from 

its peak and running a power regression modeled the 

exact function that would allow for us to successfully 

retrieve distances. 

 

During the process of testing our IRs, the 5-

volt regulator on our circuit board began overheating. 

Assuming a wiring issue, the board was quickly 

turned off and the circuits were checked; everything 

was right. After considering the amount of current 

each of the three IR sensors required, 30 mA, we 

found too much current must have been drawn 

through the 5V regulator. Although the total 90 mA 

of current drawn by the three IR sensors wouldn’t 

have caused this overheating issue alone, we 

concluded the total amount of current being drawn 

from the circuit as a whole was too much for the 

regulator. Overheating was a new issue for us mainly 

because past years have never created a robot 

possessing so many sensors.  After adding another 

5V regulator for the sharp IRs, this issue did not 

reoccur.  

With two regulators, no overheating, 

successful distance readings and IR values, the 

program should have been working flawlessly, but it 

was still encountering issues. The program was 

running normally and then it would freeze. This 

strange behavior in the program occurred a number 

of times. When each part of the program was tested 

individually, it worked properly. The problem was 

narrowed down to an issue residing in the portion of 

the code that converted the Sharp IR voltages to 

distances. After testing if the problem was a function 

in the programming and not getting any behavioral 

changes in the readings, we noticed the compass also 

started giving off very suspicious readings.  

We discovered the problem we had with the 

program freezing and the compass giving off a 

strange reading only occurred when the compass and 

IR reading code were in different cogs. This 

occurrence led us to believe these two floating point 
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operations could not be done simultaneously. After 

our programmer developed two test programs to 

observe the way different floating point operations 

are able to perform while in different cogs. He found 

when one cog caught up to the other cog, they both 

corrupted the values and froze. 

After Andy Lindsay, the author of the 

Propeller C libraries for Parallax, was notified about 

what was occurring within our program, he instructed 

our programmer, Hayden Alworth, on how to fix the 

problem within Lindsay’s own library source code.  

Since fixing this code and placing both portions of 

our code in one cog, the program has been free from 

freezing and the compass has read properly.   

A.L.L.E.N. has gone through very much 

testing in the process of his creation. In our final days 

leading up the Challenge at the Great Sand Dunes, 

we found our rubber knobs added to the lobes of the 

robot’s wheels had not held up as we as we had 

hoped they would have; essentially, they had been 

sanded smooth by the sand pit. Comparing 

A.L.L.E.N.’s performance in videos taken at the 

beginning of his tests proved we had lost traction and 

grip through so much use in the sandpit. All of the 

test runs had taken their toll on the wheels. We 

printed off new wheels at the last minute before the 

challenge in hopes this late change would give us 

back the grip and ability to climb originally 

possessed early in our tests.  

Final Design 

 In all, using past teams’ ideas and mistakes, 

along with our own original designs, allowed us to 

create a robot that successfully navigated around the 

sandpit and avoided obstacles while staying true to 

what we had originally hoped to achieve in the 

creation of our robot, A.L.L.E.N.  

 

Conclusion 

The Robotics Challenge at the Great Sand 

Dunes offered us the opportunity to face challenges 

we had yet to even consider and also a starting place 

for next year’s team to grow from. We quickly 

learned clearance on the bottom of the robot is crucial 

for success. Without a keel that kept the robot’s 

weight maintained on its wheels when it got stuck on 

an obstacle and also a program that compensated for 

this issue when it arose in the field, A.L.L.E.N.’s 

success would have been much more limited.  

To start the challenge off, I n course 1 we 

began with a beacon navigation that after properly 

working for about ten feet, startlingly took a right 

turn toward a path we had not anticipated. We 

changed our battery in hopes the issue was a small 

error in which we had overlooked an overused 

battery. Although the quick change of the battery did 

slightly improve our robot’s behavior, it did not 

eliminate problems we had with navigating solely 

using the beacon. After changing the method of 

navigation, this course was completed without any 

other malfunctions.  
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In order to successfully complete most 

courses, the program was set to use the compass as its 

navigator. It was decided at this course, after many 

trials using the beacon, to traverse using the compass 

navigation. Our robot maneuvered successfully with 

the beacon navigation, until an undetermined point 

where the beacon was transmitting inaccurate values 

 typically,  0  or 270 ). These readings are what 

caused the strange behavior in course 1.  

Course two was our team’s opportunity to 

learn that not every problem we had thus far faced 

would be the only problems we could possibly face. 

Completely bewildered when one side of our wheels 

stopped working in the middle of a run, we found a 

small pebble had been lodged in between the wheel 

and the robot’s body. Due to the fact that we did not 

have any small pebbles in our testing facility, we had 

not had an experience like this. Thankfully, this was a 

small issue in which we could simply remove the 

pebble, replace the robot and begin maneuvering 

through the field as we had been before. Had the 

robot’s design allowed for more room where the 

pebble had gotten stuck, it’s possible this problem 

could have been avoided altogether.   

The third course offered us a great deal of 

trouble. The wall of rocks strategically placed 

directly in front of the beginning of the course posed 

a threat to our robot initially. Our program was 

equipped with a tilt sensor that kept the robot from 

mounting rocks that put A.L.L.E.N. at risk of flipping 

the robot on its dome. Without the interference of the 

tilt sensor, the robot was able to overcome the wall 

by maneuvering directly at the wall and climbing 

over it. Once past that obstacle, direct navigation was 

possible. Although typically helpful, we found the tilt 

sensor to be unnecessary for this particular course.  

Due to the fact course 4 was very similar to 

course 5 (these were not performed chronologically) 

a simple change to the direction of our swiveling 

compass allowed us to maneuver through this course 

unscathed.  

A certain congregation of rocks on the fifth 

course repetitively triggered A.L.L.E.N.’s flexiforce 

sensor. This continuous activation kept the robot 

moving in a loop for quite some time. Eventually, 

A.L.L.E.N. was able to move through a gap and out 

of the circle of rocks to complete this course.  

Course 6, being the most densely populated 

with rocks, we anticipated much more trouble. 

A.L.L.E.N. was able to successfully find a path 

directly at the beacon, only pausing once on a mound 

of sand.  

In summary, A.L.L.E.N.’s whiskers, flexi 

force, and Sharp IR sensors, along with its 

programming performed as planned. The robot’s 

ability to read the beacon continuously proved to be 

our greatest obstacle. We also concluded the 

oversensitivity of the tilt sensor was unnecessary. 

While we found much success in the field, the 

various obstacle courses set up at the Sand Dunes 

offered us visual evidence of the importance of a 

well-rounded robot capable of using various sensors 

for obstacle detection.  


