

2 0 1 4 C O S G C R e s e a r c h S y m p o s i u m

Page 1

A.L.L.E.N.

Autonomous Logical Land-Based Electronic Navigator

Author: Camille Arnn

camillearnn@yahoo.com

Trinidad State Junior College

Faculty Advisor: Ms. Cindy Clements

Team Members: Hayden Alworth, Camille Arnn,

Mary Carpenter, Andrez Leyva, and Eric Perry

April 7
th
, 2014

Abstract

 Our main goal in creating our robot for the

Robotics Challenge was to create a small, enclosed

robot to successfully roam through any course

consisting of various obstacles that could be avoided

or climbed using a whisker/bumper sensor and a flexi

force sensor. We wanted to utilize our own original

ideas, but incorporated some past ideas that we

believed we could improve upon.

 For the robot’s shape we created a design

consisting of a dome sitting upon a trapezoidal box.

The dome enabled us to fulfill our goal of an

enclosed robot. The robot’s enclosure offered

protection from sand intrusion in the breadboards,

compass, beacon receiver, motors, and other small

parts that needed safeguarding. In the context of

climbing, we found the trapezoidal box to be superior

to the previous rectangular boxes of past years.

 With our chosen design, some obstacles

pose greater risks for us than others. Without much

clearance on the bottom of the robot, we had to

compensate for rocks that could possibly cause our

robot to high center through different sensors and

programming. We decided to incorporate a flexi

force sensor along the bottom of the robot body in

hopes of avoiding any obstacles that pose a possible

high centering threat. This small sensor that lies

against the front of the robot body measures the

amount of force being exerted on it.

Improving upon previous wheel designs and

utilizing 3D technology, we created a wheel with a

cleat-like design. After testing, we added pieces of

sensory balls with small, rubber knobs to the arches

of our wheels for the purpose of traction on different

surfaces to allow for the climbing of small obstacles

and even some obstacles comparable to its own size.

 After deciding to recycle the design of the

previous year’s bump sensor, we began looking for

areas of improvement. We recognized their error in

creating a sensor platform that extended too far past

the front of the robot; this proved to be a critical issue

mailto:camillearnn@yahoo.com

2 0 1 4 C O S G C R e s e a r c h S y m p o s i u m

Page 2

in downhill climbing. We recreated their design using

three trapezoidal shapes to act as the bumpers that

trigger the micro switches in place of their four

shapes. Our sensor platform is much closer to the

robot’s body and the platform is vertically adjustable

to allow for modification during the testing process

and in the field.

 Although pit avoidance was still something

we wanted to accomplish, we had tested and

determined we were pleased with A.L.L.E.N.’s

navigation and ability to avoid obstacles. The

remaining time we had prior to the challenge was

spent determining what it would take to develop a

working infrared navigation. Though it is no simple

task, A.L.L.E.N. is now capable of recognizing holes

in its path. Upon recognition of these holes, the robot

then begins navigating in a way that allows for

obstacle avoidance.

From the beginning of the design process,

and throughout the building and programming

process, we decided that instead of starting from

square one, we would take what past teams have

done, and build upon it, to create a robot more

technologically and mechanically advanced as to

outperform and outlast other robots.

Introduction

 Initially our design included four wheels, a

case of some sort used for sealing our robot from the

sand and other outdoor environmental issues that may

arise, and a dome to house our breadboard, compass,

switch and other components. This design was

partially altered, one step at a time as we continued to

work toward achieving the best robot possible. We

discontinued use of a wagon type design and opted

for a more functional design consisting of the dome

and trapezoidal box, figuring this would offer us the

most accommodation and flexibility to achieve our

goals in the least amount of material.

Design Process

Wheels

 Although we decided upon use of the same

motors, (the Vex 2 wire Motor 393), last year’s robot

design, C.A.T., used we hoped to have fixed the

problem the previous team had encountered with

internal overheating of the motors and a complete

shutdown by incorporating a design that did not have

tank like treads. We felt (because a wheel would

require less work to rotate than a tread needed)

recreating the original wheel design from two years

ago would prove to be more beneficial and eliminate

the problem of the internal temperature regulation

setting these motors are preprogrammed with that

caused the shutdown of the motors.

 Using the CAD software, Solidworks, we

were able to, initially, draw up what had been used in

previous years, and from this point find weaknesses

in the design and improve them to allow for the

wheel to conquer more obstacles. Our team

discontinued the use of hexagonal shaped wheels; we

added two more lobes to the center, not only

increasing the surface area contact with the ground,

but also providing for a much more stability.

2 0 1 4 C O S G C R e s e a r c h S y m p o s i u m

Page 3

 After the wheels were designed and printed

with the application of 3D printing technology, in

order to achieve our design of a cleat-like wheel, we

cut and glued pieces of sensory balls that provided

the small rubber knobs we envisioned. The addition

of these pieces of rubber allowed for a great

difference in the traction and ability to climb of our

robot, compared to only the use of the slick ABS

printed material.

Whiskers

 The previous team faced obstacles with their

design of a whisker using microswitches; this

malfunction crippled their ability to descend

downhill. The whiskers were designed in a way that

had them protruding out much too far in front of the

robot, causing them to trigger unnecessarily at

undesirable times. We incorporated a shorter whisker

design and improved upon sensitivity of each plate.

Once the design was finalized, a small

prototype was created on a Boebot (see below) and

run to test whether the new, more compact design

would function properly and as sensitively as desired.

Once this prototype worked accordingly, it was then

expanded into three plates that would later be

connected to the front of our robot.

Had last year’s whiskers not sat as low as

they did on the front of their design, the unnecessary

triggering on downhill descents could have been

avoided. This mistake led us to incorporate

adjustability in the design of our whiskers. We found

early in the testing process that high centering would

prove to be an issue for A.L.L.E.N. If we so chose,

the sensors are capable of placement along the

bottom of the robot. We found this placement would

be problematic and counterproductive because lower

placement makes the robot susceptible to

unnecessary triggering during downhill descent,

which was the issue we were trying to avoid

originally. Along with the lowest position possible,

there are two other potential placements of the

whiskers.

Flexiforce

 A flexiforce sensor was placed along the

bottom edge of our robot because, after much testing,

we found this sensor was the best fix for high

centering. When a certain amount of force is applied

to the acrylic strip that lies in front of the flexiforce

senor, the robot then assumes it has encountered an

obstacle and begins finding an alternative route. This

small sensor allows for the robot to successfully

roam, descend downhill, and prevents high centering,

without having to unnecessarily place the whiskers

along the bottom of the robot.

Sharp Infrared Sensors

In an effort to create a robot that

successfully detects pits or holes in the sand, infrared

sensors were crucial additions for the sensor platform

on A.L.L.E.N. Sharp IRs, we found, were the only

sensor that was able to give us accurate distance

measurements in both sand and sunlight. After circuit

2 0 1 4 C O S G C R e s e a r c h S y m p o s i u m

Page 4

adjustments, the Sharp IRs were tested using a test

program that allowed us to determine if holes existed

in the robot’s path using Sharp IR values. Our team

was challenged with much debugging before the

robot was able to successfully navigate based upon

the values it received.

Programming

 While there are a number of

microcontrollers, such as the Arduino and Basic

Stamp that can be used, our previous experience and

the partnership shared by Trinidad State and Parallax,

led us to use of the Parallax Propeller chip. We

decided that this propeller chip’s multifunction

capabilities and reliability was more suitable for our

robot’s brain. The Parallax Propeller chip is capable

of doing eight things simultaneously with its eight

cogs; this was a vital aspect our brain needed due to

the structure and complexity of our program.

 The initial steps writing the program that

would allow A.L.L.E.N.’s many features to work

properly and simultaneously, started with learning the

Propeller C language and writing a working whisker

sensor program. We then progressed toward adding

corner detection, compass, and accelerometer. These

were all added to the program separately and each

was tested until working properly. Accurate beacon

navigation was added next; many issues arose in the

process of a robot that, not only receives and reads

values from the beacon, but also properly reacts and

navigates systematically toward the designated

destination. In the final steps of putting together a

working program, sharp IR sensors were added to the

many features the program offers.

 The navigational goal of the program is to

successfully check all of the sensors; if all of the

sensors are undisturbed, the goal then becomes to

head north or toward the beacon. The robot will do

this until any of the sensors register that an obstacle

has been detected, in which case A.L.L.E.N. will

maneuver in whichever manner is indicated by the

sensor that detected the obstacle.

 With all of the sensors on the robot: the

whiskers, the Sharp Infrareds, the flexiforce sensor,

and the different navigational tools: Northern

navigation with the compass and navigation using the

beacon receiver, the program required the ability to

process all of this information quickly. Originally, the

program called on many different functions every

time values from the sensors were received. The

manner in which the robot performed during all of

this was not as fast as it needed to be. Once the entire

sensor reading code was placed in one of the

Propeller chip’s cogs, this portion of the code was

then allowed to run continuously. Placement of this

portion of the program in a separate cog allowed for

the main program to have these values readily

available as opposed to waiting on a function to

initialize the sensor then retrieve the reading,

allowing for access to up-to-date sensor readings

whenever necessary.

 There are a number of features that set this

program apart from past programs used by previous

teams. While the propeller chip was used last year,

the C language software was not fully developed.

Along with a more developed C language software,

we also had a programmer capable of writing his own

libraries.

One of the main features this program offers

is accessibility. Each of the many different features of

this robot can be enabled and disabled using the

whiskers and flexiforce sensor to communicate with

2 0 1 4 C O S G C R e s e a r c h S y m p o s i u m

Page 5

the program. Also, each portion of the program is

written so that variables can be adjusted simply and

quickly. This can be seen in the structure of the

program as a whole. After it was written and

working, the program was restructured in a way that

separated the navigational portion of the program

from the main event handling portion. This proved to

allow for quick changes of any of the values that

needed adjustment during the testing process.

Use of Technology

Logger Pro

In an attempt to fully optimize our robot’s

rotations per minute and speed, and also to compare

these results when the robot is climbing rocks and

maneuvering around other obstacles, we recorded the

robot’s movements while it was in a mock testing

sand pit, and loaded these videos into Logger Pro to

get exact readings. Logger Pro is a computer software

program that is generally used for data compilation

and analysis of this data. These computations and

much testing were then used to determine the best

value to be entered into our programs for the robot’s

RPMs. Since our programmer was writing the new

libraries for the motor drivers, Logger Pro also

allowed him to see if his program was sending the

right signals to the motor controller.

Maple

Because our original dome wasn’t the right

size for our robot, we used Maple, the computer

algebra software, to graph a model of the elliptical

dome we had bought, and the space curve created

when the dome was cut. Considering our tallest

object, the beacon receiver, we were able to plot the

intersecting plane with the dome that would represent

the cut that would be made on the dome to ensure

that a precise slice was made.

SolidWorks

Much of our designing process took place

on the computer, using the CAD software,

Solidworks. As well as quick and accurate designing,

everything printed using the 3D printer was drawn

using this software, so it was crucial for designing.

Because of the more complicated design of

our whiskers, it was easier, and more accurate to

draw them using 3D software to find exactly where

parts would line up. Our wheels, as previously

mentioned, were also designed and drawn using this

program. Solidworks allowed us to design and print

quickly and efficiently.

3D Printing

With the new addition of our 3D printer, we

were able to create parts of our robot that in past

2 0 1 4 C O S G C R e s e a r c h S y m p o s i u m

Page 6

years we had not been capable of creating. For

example, we had to rely on others to manufacture the

wheels and couplers we were able to produce

ourselves this year.

Although it helped immensely, we did

encounter issues with the printer. The printing

process for each wheel required 23 hours, increasing

the possibility of loss of power, and also occupied the

printer for an extended amount of time. When the

printer did lose power, it did not resume and

complete the print and the final product was what had

thus been printed up until power was lost.

We turned to the printer to help with small

measurements that needed to be very precise when it

came to aspects that needed to be exactly level. All of

the adjustability we had with our sensors was made

possible with brackets designed on the computer,

printed off, and attached to the side of the robot’s

body. This precision can also be seen in the small

parts that hold the pistons at their correct height on

the whiskers.

Every part of our program gives off readings

and values that allows us to see how the program is

interpreting the data it receives. In an effort to make

reading the LCD screen more accessible while it’s

located inside our enclosed robot, we designed an

LCD screen mount that form fits the screen and

allows for the screen to be held at the angle of our

choosing.

 Pitfalls found during testing

 Upon original placement of the wheels, we

found that the axles weren’t exactly aligned; this

caused instability in the wheels that foreshadowed the

possibility of more trouble later in the field. In an

effort to fix this defect, bushings were added inside

the main body of the robot to each of the axles,

creating a stable robot.

Testing was delayed greatly due to the

complicated circuit of our H Bridge Motor Driver

circuit where we found much of the wiring was

coming unplugged. This motor driver was replaced

with a Vex corporation model 29 and this Vex motor

controller was incorporated into the wiring; these

motor controllers helped to clean up the board greatly

and enhance our ability to keep the wiring tight and

the circuits complete. The inclusion of the motor

controllers proved to be crucial with the addition of

the IR sensors later in the design process. Had they

not been present on the board, there would not have

been room to include the necessary ADC chip for the

Sharp IR circuit.

The original ramping of speeds in our

program was too slow to allow the robot to gain

enough momentum to conquer obstacles. It wasn’t

until we completely eliminated this feature that we

were able to achieve our full potential and full speed

in the field. Logger Pro was used to track these

various speeds, and find the best speed for our

desired maneuverability.

We had a big issue with high centering

because the radius of our wheel allowed for a small

amount of clearance underneath the robot. Along

2 0 1 4 C O S G C R e s e a r c h S y m p o s i u m

Page 7

with the inclusion of the flexiforce sensor, a keel was

added to the bottom of the robot’s body to allow for

the robot to lean itself back on its wheels if the issue

of high centering did arise in the field.

We tested a different sensor in an attempt to

fix our high centering problem. Prior to adding the

keel, a small push sensor made by Vex robotics, was

added to the bottom of the robot body. This did not

perform to our expectations. It’s bulky design and

added weight did not seem worth what it offered so it

was not included in our final design.

 From the first day of designing, it was clear

the only route we wanted to go in our robot’s creation

was a completely enclosed design. When we received

the domes we had ordered from a company in

Canada, we were glumly displeased with the fit of the

dome on the top of the robot’s trapezoidal body.

Reordering the dome wasn’t an option due to time

constraints; we decided to alter what we had. Maple

was used to find the cut needed to have a dome that

fit our robot in the way we had imagined. After

cutting the dome, a rectangular flange was added to

the dome to allow for the dome to be removable.

When the 3D printer we had was in a long

print the chance for losing power was more likely,

also the printer wipes its memory when this happens.

We learned this when, in the 18th of a 23 hour wheel

print, the weather got unruly, and the building the

printer resides in lost power and we had a partial

wheel. This “skinnier wheel” was used as a test

wheel, and we were forced to begin the print later

when the weather wasn’t an issue.

After adding the attachments to make the

whisker sensor adjustable, we found the sensor was

susceptible to getting stuck at an angle not parallel to

the ground. We printed off triangular supports to be

added to the top and bottom of the plate to keep this

issue from occurring in the field when the robot was

roaming.

After evaluating the values given by the

flexiforce sensor, we found the sensor was being

triggered by obstacles that could have been

conquered by the wheels alone. Small rectangular

pieces were added to the left and right sides of the

acrylic used to push the sensor to lessen sensitivity.

In the development of getting the IRs

working mechanically as a pit sensor, we found when

they were facing directly forward, the IRs located on

the left and right sides were not picking up obstacles

in the way we wanted them to. We printed off a

detailed and tailored mount after finding which

angles the IRs needed be set at to work optimally.

This eliminated the problem we saw with the side IRs

not detecting pits.

 The circuitry of the Sharp IRs alone proved

to have many pitfalls. First off, the circuit had to be

adjusted from an RCTIME circuit for the test

program to one of our own making. This RCTIME

circuit would not have worked in the field due to the

inability it gave us to read any of the values received

below the Propeller chip’s threshold voltage of 1.65.

Not being able to access the full range of output

voltages offered by the Sharp IRs (from 3.3 V to .4)

would have kept us from being able to detect pits,

which was our entire reasoning for adding the IRs.

Because we could not find an ADC circuit

that was able to read voltages above and below the

Propeller chip’s threshold voltage, we decided to

build one that began with wiring the Sharp IR

sensor’s output wire directly into a Propeller I/O pin

2 0 1 4 C O S G C R e s e a r c h S y m p o s i u m

Page 8

and slowly adjusting the applied voltage from another

of the Propeller’s I/O pins to find the amount of

voltage coming from the IRs. This worked when

tested in the field but did not provide for values

stable enough for detecting holes.

After a few failed attempts, it was decided

an ADC chip was necessary for hole-detection.

Before its addition on the board, the chip needed to

be tested. Experienced to the difficulty of developing

a working IR, the first test program written with this

ADC chip did not function. It wasn’t until the

program was compared to one written in PBASIC

language were we able to find that a change in the bit

transfer modes would give us a working program.

Finally, we were able to simply read the voltages

from the Sharp IRs over their entire range and with

high accuracy.

We ran into the obstacle of not being able to

retrieve actual distances from the IR’s values. We

solved this issue through the observation of a Voltage

to Distance graph found in the Sharp IR

documentation (see below). Plotting the graph from

its peak and running a power regression modeled the

exact function that would allow for us to successfully

retrieve distances.

During the process of testing our IRs, the 5-

volt regulator on our circuit board began overheating.

Assuming a wiring issue, the board was quickly

turned off and the circuits were checked; everything

was right. After considering the amount of current

each of the three IR sensors required, 30 mA, we

found too much current must have been drawn

through the 5V regulator. Although the total 90 mA

of current drawn by the three IR sensors wouldn’t

have caused this overheating issue alone, we

concluded the total amount of current being drawn

from the circuit as a whole was too much for the

regulator. Overheating was a new issue for us mainly

because past years have never created a robot

possessing so many sensors. After adding another

5V regulator for the sharp IRs, this issue did not

reoccur.

With two regulators, no overheating,

successful distance readings and IR values, the

program should have been working flawlessly, but it

was still encountering issues. The program was

running normally and then it would freeze. This

strange behavior in the program occurred a number

of times. When each part of the program was tested

individually, it worked properly. The problem was

narrowed down to an issue residing in the portion of

the code that converted the Sharp IR voltages to

distances. After testing if the problem was a function

in the programming and not getting any behavioral

changes in the readings, we noticed the compass also

started giving off very suspicious readings.

We discovered the problem we had with the

program freezing and the compass giving off a

strange reading only occurred when the compass and

IR reading code were in different cogs. This

occurrence led us to believe these two floating point

2 0 1 4 C O S G C R e s e a r c h S y m p o s i u m

Page 9

operations could not be done simultaneously. After

our programmer developed two test programs to

observe the way different floating point operations

are able to perform while in different cogs. He found

when one cog caught up to the other cog, they both

corrupted the values and froze.

After Andy Lindsay, the author of the

Propeller C libraries for Parallax, was notified about

what was occurring within our program, he instructed

our programmer, Hayden Alworth, on how to fix the

problem within Lindsay’s own library source code.

Since fixing this code and placing both portions of

our code in one cog, the program has been free from

freezing and the compass has read properly.

A.L.L.E.N. has gone through very much

testing in the process of his creation. In our final days

leading up the Challenge at the Great Sand Dunes,

we found our rubber knobs added to the lobes of the

robot’s wheels had not held up as we as we had

hoped they would have; essentially, they had been

sanded smooth by the sand pit. Comparing

A.L.L.E.N.’s performance in videos taken at the

beginning of his tests proved we had lost traction and

grip through so much use in the sandpit. All of the

test runs had taken their toll on the wheels. We

printed off new wheels at the last minute before the

challenge in hopes this late change would give us

back the grip and ability to climb originally

possessed early in our tests.

Final Design

 In all, using past teams’ ideas and mistakes,

along with our own original designs, allowed us to

create a robot that successfully navigated around the

sandpit and avoided obstacles while staying true to

what we had originally hoped to achieve in the

creation of our robot, A.L.L.E.N.

Conclusion

The Robotics Challenge at the Great Sand

Dunes offered us the opportunity to face challenges

we had yet to even consider and also a starting place

for next year’s team to grow from. We quickly

learned clearance on the bottom of the robot is crucial

for success. Without a keel that kept the robot’s

weight maintained on its wheels when it got stuck on

an obstacle and also a program that compensated for

this issue when it arose in the field, A.L.L.E.N.’s

success would have been much more limited.

To start the challenge off, I n course 1 we

began with a beacon navigation that after properly

working for about ten feet, startlingly took a right

turn toward a path we had not anticipated. We

changed our battery in hopes the issue was a small

error in which we had overlooked an overused

battery. Although the quick change of the battery did

slightly improve our robot’s behavior, it did not

eliminate problems we had with navigating solely

using the beacon. After changing the method of

navigation, this course was completed without any

other malfunctions.

2 0 1 4 C O S G C R e s e a r c h S y m p o s i u m

Page 10

In order to successfully complete most

courses, the program was set to use the compass as its

navigator. It was decided at this course, after many

trials using the beacon, to traverse using the compass

navigation. Our robot maneuvered successfully with

the beacon navigation, until an undetermined point

where the beacon was transmitting inaccurate values

 typically, 0 or 270). These readings are what

caused the strange behavior in course 1.

Course two was our team’s opportunity to

learn that not every problem we had thus far faced

would be the only problems we could possibly face.

Completely bewildered when one side of our wheels

stopped working in the middle of a run, we found a

small pebble had been lodged in between the wheel

and the robot’s body. Due to the fact that we did not

have any small pebbles in our testing facility, we had

not had an experience like this. Thankfully, this was a

small issue in which we could simply remove the

pebble, replace the robot and begin maneuvering

through the field as we had been before. Had the

robot’s design allowed for more room where the

pebble had gotten stuck, it’s possible this problem

could have been avoided altogether.

The third course offered us a great deal of

trouble. The wall of rocks strategically placed

directly in front of the beginning of the course posed

a threat to our robot initially. Our program was

equipped with a tilt sensor that kept the robot from

mounting rocks that put A.L.L.E.N. at risk of flipping

the robot on its dome. Without the interference of the

tilt sensor, the robot was able to overcome the wall

by maneuvering directly at the wall and climbing

over it. Once past that obstacle, direct navigation was

possible. Although typically helpful, we found the tilt

sensor to be unnecessary for this particular course.

Due to the fact course 4 was very similar to

course 5 (these were not performed chronologically)

a simple change to the direction of our swiveling

compass allowed us to maneuver through this course

unscathed.

A certain congregation of rocks on the fifth

course repetitively triggered A.L.L.E.N.’s flexiforce

sensor. This continuous activation kept the robot

moving in a loop for quite some time. Eventually,

A.L.L.E.N. was able to move through a gap and out

of the circle of rocks to complete this course.

Course 6, being the most densely populated

with rocks, we anticipated much more trouble.

A.L.L.E.N. was able to successfully find a path

directly at the beacon, only pausing once on a mound

of sand.

In summary, A.L.L.E.N.’s whiskers, flexi

force, and Sharp IR sensors, along with its

programming performed as planned. The robot’s

ability to read the beacon continuously proved to be

our greatest obstacle. We also concluded the

oversensitivity of the tilt sensor was unnecessary.

While we found much success in the field, the

various obstacle courses set up at the Sand Dunes

offered us visual evidence of the importance of a

well-rounded robot capable of using various sensors

for obstacle detection.

