A.L.L.E.N.

Autonomous Logical Land-Based Electronic Navigator

Author: Camille Arnn

camillearnn@yahoo.com

Trinidad State Junior College

Faculty Advisor: Ms. Cindy Clements

Team Members: Hayden Alworth, Camille Arnn,

Mary Carpenter, Andrez Leyva, and Eric Perry

April 7", 2014

Abstract

Our main goal in creating our robot for the
Robotics Challenge was to create a small, enclosed
robot to successfully roam through any course
consisting of various obstacles that could be avoided
or climbed using a whisker/bumper sensor and a flexi
force sensor. We wanted to utilize our own original
ideas, but incorporated some past ideas that we

believed we could improve upon.

For the robot’s shape we created a design
consisting of a dome sitting upon a trapezoidal box.
The dome enabled us to fulfill our goal of an
enclosed robot. The robot’s enclosure offered
protection from sand intrusion in the breadboards,
compass, beacon receiver, motors, and other small
parts that needed safeguarding. In the context of
climbing, we found the trapezoidal box to be superior

to the previous rectangular boxes of past years.

With our chosen design, some obstacles

pose greater risks for us than others. Without much

clearance on the bottom of the robot, we had to
compensate for rocks that could possibly cause our
robot to high center through different sensors and
programming. We decided to incorporate a flexi
force sensor along the bottom of the robot body in
hopes of avoiding any obstacles that pose a possible
high centering threat. This small sensor that lies
against the front of the robot body measures the

amount of force being exerted on it.

Improving upon previous wheel designs and
utilizing 3D technology, we created a wheel with a
cleat-like design. After testing, we added pieces of
sensory balls with small, rubber knobs to the arches
of our wheels for the purpose of traction on different
surfaces to allow for the climbing of small obstacles

and even some obstacles comparable to its own size.

After deciding to recycle the design of the
previous year’s bump sensor, we began looking for
areas of improvement. We recognized their error in
creating a sensor platform that extended too far past

the front of the robot; this proved to be a critical issue

mailto:camillearnn@yahoo.com

in downhill climbing. We recreated their design using
three trapezoidal shapes to act as the bumpers that
trigger the micro switches in place of their four
shapes. Our sensor platform is much closer to the
robot’s body and the platform is vertically adjustable
to allow for modification during the testing process
and in the field.

Although pit avoidance was still something
we wanted to accomplish, we had tested and
determined we were pleased with A.L.L.E.N.’s
navigation and ability to avoid obstacles. The
remaining time we had prior to the challenge was
spent determining what it would take to develop a
working infrared navigation. Though it is no simple
task, A.L.L.E.N. is now capable of recognizing holes
in its path. Upon recognition of these holes, the robot
then begins navigating in a way that allows for

obstacle avoidance.

From the beginning of the design process,
and throughout the building and programming
process, we decided that instead of starting from
square one, we would take what past teams have
done, and build upon it, to create a robot more
technologically and mechanically advanced as to

outperform and outlast other robots.

Introduction

Initially our design included four wheels, a
case of some sort used for sealing our robot from the
sand and other outdoor environmental issues that may
arise, and a dome to house our breadboard, compass,
switch and other components. This design was
partially altered, one step at a time as we continued to
work toward achieving the best robot possible. We
discontinued use of a wagon type design and opted

for a more functional design consisting of the dome

and trapezoidal box, figuring this would offer us the
most accommodation and flexibility to achieve our

goals in the least amount of material.

— L -
ALLE.N. Design: Day 1 s

Design Process

Wheels

Although we decided upon use of the same
motors, (the Vex 2 wire Motor 393), last year’s robot
design, C.A.T., used we hoped to have fixed the
problem the previous team had encountered with
internal overheating of the motors and a complete
shutdown by incorporating a design that did not have
tank like treads. We felt (because a wheel would
require less work to rotate than a tread needed)
recreating the original wheel design from two years
ago would prove to be more beneficial and eliminate
the problem of the internal temperature regulation
setting these motors are preprogrammed with that

caused the shutdown of the motors.

Using the CAD software, Solidworks, we
were able to, initially, draw up what had been used in
previous years, and from this point find weaknesses
in the design and improve them to allow for the
wheel to conquer more obstacles. Our team
discontinued the use of hexagonal shaped wheels; we
added two more lobes to the center, not only
increasing the surface area contact with the ground,

but also providing for a much more stability.

After the wheels were designed and printed
with the application of 3D printing technology, in
order to achieve our design of a cleat-like wheel, we
cut and glued pieces of sensory balls that provided
the small rubber knobs we envisioned. The addition
of these pieces of rubber allowed for a great
difference in the traction and ability to climb of our
robot, compared to only the use of the slick ABS

printed material.
Whiskers

The previous team faced obstacles with their
design of a whisker using microswitches; this
malfunction crippled their ability to descend
downhill. The whiskers were designed in a way that
had them protruding out much too far in front of the
robot, causing them to trigger unnecessarily at
undesirable times. We incorporated a shorter whisker

design and improved upon sensitivity of each plate.

Once the design was finalized, a small
prototype was created on a Boebot (see below) and
run to test whether the new, more compact design
would function properly and as sensitively as desired.
Once this prototype worked accordingly, it was then

expanded into three plates that would later be

Had last year’s whiskers not sat as low as
they did on the front of their design, the unnecessary
triggering on downhill descents could have been
avoided. This mistake led us to incorporate
adjustability in the design of our whiskers. We found
early in the testing process that high centering would
prove to be an issue for A.L.L.E.N. If we so chose,
the sensors are capable of placement along the
bottom of the robot. We found this placement would
be problematic and counterproductive because lower
placement makes the robot susceptible to
unnecessary triggering during downhill descent,
which was the issue we were trying to avoid
originally. Along with the lowest position possible,
there are two other potential placements of the

whiskers.
Flexiforce

A flexiforce sensor was placed along the
bottom edge of our robot because, after much testing,
we found this sensor was the best fix for high
centering. When a certain amount of force is applied
to the acrylic strip that lies in front of the flexiforce
senor, the robot then assumes it has encountered an
obstacle and begins finding an alternative route. This
small sensor allows for the robot to successfully
roam, descend downhill, and prevents high centering,
without having to unnecessarily place the whiskers

along the bottom of the robot.
Sharp Infrared Sensors

In an effort to create a robot that
successfully detects pits or holes in the sand, infrared
sensors were crucial additions for the sensor platform
on A.L.L.E.N. Sharp IRs, we found, were the only
sensor that was able to give us accurate distance

measurements in both sand and sunlight. After circuit

adjustments, the Sharp IRs were tested using a test
program that allowed us to determine if holes existed
in the robot’s path using Sharp IR values. Our team
was challenged with much debugging before the
robot was able to successfully navigate based upon

the values it received.
Programming

While there are a number of
microcontrollers, such as the Arduino and Basic
Stamp that can be used, our previous experience and
the partnership shared by Trinidad State and Parallax,
led us to use of the Parallax Propeller chip. We
decided that this propeller chip’s multifunction
capabilities and reliability was more suitable for our
robot’s brain. The Parallax Propeller chip is capable
of doing eight things simultaneously with its eight
cogs; this was a vital aspect our brain needed due to

the structure and complexity of our program.

The initial steps writing the program that
would allow A.L.L.E.N.’s many features to work
properly and simultaneously, started with learning the
Propeller C language and writing a working whisker
sensor program. We then progressed toward adding
corner detection, compass, and accelerometer. These
were all added to the program separately and each
was tested until working properly. Accurate beacon
navigation was added next; many issues arose in the
process of a robot that, not only receives and reads
values from the beacon, but also properly reacts and
navigates systematically toward the designated
destination. In the final steps of putting together a
working program, sharp IR sensors were added to the

many features the program offers.

The navigational goal of the program is to

successfully check all of the sensors; if all of the

sensors are undisturbed, the goal then becomes to
head north or toward the beacon. The robot will do
this until any of the sensors register that an obstacle
has been detected, in which case A.L.L.E.N. will
maneuver in whichever manner is indicated by the

sensor that detected the obstacle.

With all of the sensors on the robot: the
whiskers, the Sharp Infrareds, the flexiforce sensor,
and the different navigational tools: Northern
navigation with the compass and navigation using the
beacon receiver, the program required the ability to
process all of this information quickly. Originally, the
program called on many different functions every
time values from the sensors were received. The
manner in which the robot performed during all of
this was not as fast as it needed to be. Once the entire
sensor reading code was placed in one of the
Propeller chip’s cogs, this portion of the code was
then allowed to run continuously. Placement of this
portion of the program in a separate cog allowed for
the main program to have these values readily
available as opposed to waiting on a function to
initialize the sensor then retrieve the reading,
allowing for access to up-to-date sensor readings

whenever necessary.

There are a number of features that set this
program apart from past programs used by previous
teams. While the propeller chip was used last year,
the C language software was not fully developed.
Along with a more developed C language software,
we also had a programmer capable of writing his own

libraries.

One of the main features this program offers
is accessibility. Each of the many different features of
this robot can be enabled and disabled using the

whiskers and flexiforce sensor to communicate with

the program. Also, each portion of the program is
written so that variables can be adjusted simply and
quickly. This can be seen in the structure of the
program as a whole. After it was written and
working, the program was restructured in a way that
separated the navigational portion of the program
from the main event handling portion. This proved to
allow for quick changes of any of the values that

needed adjustment during the testing process.
Use of Technology

Logger Pro

In an attempt to fully optimize our robot’s
rotations per minute and speed, and also to compare
these results when the robot is climbing rocks and
maneuvering around other obstacles, we recorded the
robot’s movements while it was in @ mock testing
sand pit, and loaded these videos into Logger Pro to
get exact readings. Logger Pro is a computer software
program that is generally used for data compilation
and analysis of this data. These computations and
much testing were then used to determine the best
value to be entered into our programs for the robot’s
RPMs. Since our programmer was writing the new
libraries for the motor drivers, Logger Pro also
allowed him to see if his program was sending the

right signals to the motor controller.

-
1
+
1
|

.
PSS

o /e N/ . = g.

o/ e [%

RICEENE N SRS

e) 4
1 N :

. ﬁ . . b4 l *

SER L

Maple

Because our original dome wasn’t the right
size for our robot, we used Maple, the computer
algebra software, to graph a model of the elliptical
dome we had bought, and the space curve created
when the dome was cut. Considering our tallest
object, the beacon receiver, we were able to plot the
intersecting plane with the dome that would represent
the cut that would be made on the dome to ensure

that a precise slice was made.

SolidWorks

Much of our designing process took place
on the computer, using the CAD software,
Solidworks. As well as quick and accurate designing,
everything printed using the 3D printer was drawn

using this software, so it was crucial for designing.

Because of the more complicated design of
our whiskers, it was easier, and more accurate to
draw them using 3D software to find exactly where
parts would line up. Our wheels, as previously
mentioned, were also designed and drawn using this
program. Solidworks allowed us to design and print
quickly and efficiently.

3D Printing

With the new addition of our 3D printer, we

were able to create parts of our robot that in past

years we had not been capable of creating. For
example, we had to rely on others to manufacture the
wheels and couplers we were able to produce

ourselves this year.

Although it helped immensely, we did
encounter issues with the printer. The printing
process for each wheel required 23 hours, increasing
the possibility of loss of power, and also occupied the
printer for an extended amount of time. When the
printer did lose power, it did not resume and
complete the print and the final product was what had

thus been printed up until power was lost.

We turned to the printer to help with small
measurements that needed to be very precise when it
came to aspects that needed to be exactly level. All of
the adjustability we had with our sensors was made
possible with brackets designed on the computer,
printed off, and attached to the side of the robot’s
body. This precision can also be seen in the small
parts that hold the pistons at their correct height on

the whiskers.

Every part of our program gives off readings
and values that allows us to see how the program is
interpreting the data it receives. In an effort to make
reading the LCD screen more accessible while it’s
located inside our enclosed robot, we designed an
LCD screen mount that form fits the screen and
allows for the screen to be held at the angle of our

choosing.
Pitfalls found during testing

Upon original placement of the wheels, we
found that the axles weren’t exactly aligned; this
caused instability in the wheels that foreshadowed the

possibility of more trouble later in the field. In an

effort to fix this defect, bushings were added inside
the main body of the robot to each of the axles,

creating a stable robot.

Testing was delayed greatly due to the
complicated circuit of our H Bridge Motor Driver
circuit where we found much of the wiring was
coming unplugged. This motor driver was replaced
with a Vex corporation model 29 and this Vex motor
controller was incorporated into the wiring; these
motor controllers helped to clean up the board greatly
and enhance our ability to keep the wiring tight and
the circuits complete. The inclusion of the motor
controllers proved to be crucial with the addition of
the IR sensors later in the design process. Had they
not been present on the board, there would not have
been room to include the necessary ADC chip for the

Sharp IR circuit.

The original ramping of speeds in our

program was too slow to allow the robot to gain
enough momentum to conquer obstacles. It wasn’t
until we completely eliminated this feature that we
were able to achieve our full potential and full speed
in the field. Logger Pro was used to track these
various speeds, and find the best speed for our

desired maneuverability.

We had a big issue with high centering
because the radius of our wheel allowed for a small

amount of clearance underneath the robot. Along

with the inclusion of the flexiforce sensor, a keel was
added to the bottom of the robot’s body to allow for
the robot to lean itself back on its wheels if the issue

of high centering did arise in the field.

We tested a different sensor in an attempt to
fix our high centering problem. Prior to adding the
keel, a small push sensor made by Vex robotics, was
added to the bottom of the robot body. This did not
perform to our expectations. It’s bulky design and
added weight did not seem worth what it offered so it

was not included in our final design.

From the first day of designing, it was clear
the only route we wanted to go in our robot’s creation
was a completely enclosed design. When we received
the domes we had ordered from a company in
Canada, we were glumly displeased with the fit of the
dome on the top of the robot’s trapezoidal body.
Reordering the dome wasn’t an option due to time
constraints; we decided to alter what we had. Maple
was used to find the cut needed to have a dome that
fit our robot in the way we had imagined. After
cutting the dome, a rectangular flange was added to

the dome to allow for the dome to be removable.

When the 3D printer we had was in a long
print the chance for losing power was more likely,
also the printer wipes its memory when this happens.
We learned this when, in the 18th of a 23 hour wheel
print, the weather got unruly, and the building the
printer resides in lost power and we had a partial
wheel. This “skinnier wheel” was used as a test
wheel, and we were forced to begin the print later

when the weather wasn’t an issue.

After adding the attachments to make the
whisker sensor adjustable, we found the sensor was

susceptible to getting stuck at an angle not parallel to

the ground. We printed off triangular supports to be
added to the top and bottom of the plate to keep this
issue from occurring in the field when the robot was

roaming.

After evaluating the values given by the
flexiforce sensor, we found the sensor was being
triggered by obstacles that could have been
conquered by the wheels alone. Small rectangular
pieces were added to the left and right sides of the

acrylic used to push the sensor to lessen sensitivity.

In the development of getting the IRs
working mechanically as a pit sensor, we found when
they were facing directly forward, the IRs located on
the left and right sides were not picking up obstacles
in the way we wanted them to. We printed off a
detailed and tailored mount after finding which
angles the IRs needed be set at to work optimally.
This eliminated the problem we saw with the side IRs

not detecting pits.

The circuitry of the Sharp IRs alone proved
to have many pitfalls. First off, the circuit had to be
adjusted from an RCTIME circuit for the test
program to one of our own making. This RCTIME
circuit would not have worked in the field due to the
inability it gave us to read any of the values received
below the Propeller chip’s threshold voltage of 1.65.
Not being able to access the full range of output
voltages offered by the Sharp IRs (from 3.3 V to .4)
would have kept us from being able to detect pits,

which was our entire reasoning for adding the IRs.

Because we could not find an ADC circuit
that was able to read voltages above and below the
Propeller chip’s threshold voltage, we decided to
build one that began with wiring the Sharp IR

sensor’s output wire directly into a Propeller 1/O pin

and slowly adjusting the applied voltage from another
of the Propeller’s I/O pins to find the amount of
voltage coming from the IRs. This worked when
tested in the field but did not provide for values

stable enough for detecting holes.

After a few failed attempts, it was decided
an ADC chip was necessary for hole-detection.
Before its addition on the board, the chip needed to
be tested. Experienced to the difficulty of developing
a working IR, the first test program written with this
ADC chip did not function. It wasn’t until the
program was compared to one written in PBASIC
language were we able to find that a change in the bit
transfer modes would give us a working program.
Finally, we were able to simply read the voltages
from the Sharp IRs over their entire range and with

high accuracy.

We ran into the obstacle of not being able to
retrieve actual distances from the IR’s values. We
solved this issue through the observation of a VVoltage
to Distance graph found in the Sharp IR
documentation (see below). Plotting the graph from
its peak and running a power regression modeled the
exact function that would allow for us to successfully
retrieve distances.

Fig. 2 Example of distance measuring characteristics(output)

35 T T T T
White paper (Reflectance ratio 90%)
3 I N E— Gray paper (Reflectance ratio 18%)
II ‘\‘
\ " =746
25| F(x)=11.5683x
f'
s K \
P \
£ 1sH
E
S S
| ~——
05| = e
|
|
0
0 10 20 30 40 50 60 70 80

Distance to refleciive object L{cm)

During the process of testing our IRs, the 5-
volt regulator on our circuit board began overheating.
Assuming a wiring issue, the board was quickly
turned off and the circuits were checked; everything
was right. After considering the amount of current
each of the three IR sensors required, 30 mA, we
found too much current must have been drawn
through the 5V regulator. Although the total 90 mA
of current drawn by the three IR sensors wouldn’t
have caused this overheating issue alone, we
concluded the total amount of current being drawn
from the circuit as a whole was too much for the
regulator. Overheating was a new issue for us mainly
because past years have never created a robot
possessing so many sensors. After adding another
5V regulator for the sharp IRs, this issue did not

reoccur.

With two regulators, no overheating,
successful distance readings and IR values, the
program should have been working flawlessly, but it
was still encountering issues. The program was
running normally and then it would freeze. This
strange behavior in the program occurred a number
of times. When each part of the program was tested
individually, it worked properly. The problem was
narrowed down to an issue residing in the portion of
the code that converted the Sharp IR voltages to
distances. After testing if the problem was a function
in the programming and not getting any behavioral
changes in the readings, we noticed the compass also

started giving off very suspicious readings.

We discovered the problem we had with the
program freezing and the compass giving off a
strange reading only occurred when the compass and
IR reading code were in different cogs. This

occurrence led us to believe these two floating point

operations could not be done simultaneously. After
our programmer developed two test programs to
observe the way different floating point operations
are able to perform while in different cogs. He found
when one cog caught up to the other cog, they both

corrupted the values and froze.

After Andy Lindsay, the author of the
Propeller C libraries for Parallax, was notified about
what was occurring within our program, he instructed
our programmer, Hayden Alworth, on how to fix the
problem within Lindsay’s own library source code.
Since fixing this code and placing both portions of
our code in one cog, the program has been free from

freezing and the compass has read properly.

A.L.L.E.N. has gone through very much
testing in the process of his creation. In our final days
leading up the Challenge at the Great Sand Dunes,
we found our rubber knobs added to the lobes of the
robot’s wheels had not held up as we as we had
hoped they would have; essentially, they had been
sanded smooth by the sand pit. Comparing
A.L.L.E.N.’s performance in videos taken at the
beginning of his tests proved we had lost traction and
grip through so much use in the sandpit. All of the
test runs had taken their toll on the wheels. We
printed off new wheels at the last minute before the
challenge in hopes this late change would give us
back the grip and ability to climb originally

possessed early in our tests.
Final Design

In all, using past teams’ ideas and mistakes,
along with our own original designs, allowed us to
create a robot that successfully navigated around the

sandpit and avoided obstacles while staying true to

what we had originally hoped to achieve in the

creation of our robot, A.L.L.E.N.

Conclusion

The Robotics Challenge at the Great Sand
Dunes offered us the opportunity to face challenges
we had yet to even consider and also a starting place
for next year’s team to grow from. We quickly
learned clearance on the bottom of the robot is crucial
for success. Without a keel that kept the robot’s
weight maintained on its wheels when it got stuck on
an obstacle and also a program that compensated for
this issue when it arose in the field, A.L.L.LE.N.’s

success would have been much more limited.

To start the challenge off, | n course 1 we
began with a beacon navigation that after properly
working for about ten feet, startlingly took a right
turn toward a path we had not anticipated. We
changed our battery in hopes the issue was a small
error in which we had overlooked an overused
battery. Although the quick change of the battery did
slightly improve our robot’s behavior, it did not
eliminate problems we had with navigating solely
using the beacon. After changing the method of
navigation, this course was completed without any

other malfunctions.

In order to successfully complete most
courses, the program was set to use the compass as its
navigator. It was decided at this course, after many
trials using the beacon, to traverse using the compass
navigation. Our robot maneuvered successfully with
the beacon navigation, until an undetermined point
where the beacon was transmitting inaccurate values
(typically, 90° or 270). These readings are what

caused the strange behavior in course 1.

Course two was our team’s opportunity to
learn that not every problem we had thus far faced
would be the only problems we could possibly face.
Completely bewildered when one side of our wheels
stopped working in the middle of a run, we found a
small pebble had been lodged in between the wheel
and the robot’s body. Due to the fact that we did not
have any small pebbles in our testing facility, we had
not had an experience like this. Thankfully, this was a
small issue in which we could simply remove the
pebble, replace the robot and begin maneuvering
through the field as we had been before. Had the
robot’s design allowed for more room where the
pebble had gotten stuck, it’s possible this problem

could have been avoided altogether.

The third course offered us a great deal of
trouble. The wall of rocks strategically placed
directly in front of the beginning of the course posed
a threat to our robot initially. Our program was
equipped with a tilt sensor that kept the robot from
mounting rocks that put A.L.L.E.N. at risk of flipping
the robot on its dome. Without the interference of the
tilt sensor, the robot was able to overcome the wall
by maneuvering directly at the wall and climbing
over it. Once past that obstacle, direct navigation was
possible. Although typically helpful, we found the tilt

sensor to be unnecessary for this particular course.

Due to the fact course 4 was very similar to
course 5 (these were not performed chronologically)
a simple change to the direction of our swiveling
compass allowed us to maneuver through this course

unscathed.

A certain congregation of rocks on the fifth
course repetitively triggered A.L.L.E.N.’s flexiforce
sensor. This continuous activation kept the robot
moving in a loop for quite some time. Eventually,
A.L.L.E.N. was able to move through a gap and out

of the circle of rocks to complete this course.

Course 6, being the most densely populated
with rocks, we anticipated much more trouble.
A.L.L.E.N. was able to successfully find a path
directly at the beacon, only pausing once on a mound

of sand.

In summary, A.L.L.E.N.’s whiskers, flexi
force, and Sharp IR sensors, along with its
programming performed as planned. The robot’s
ability to read the beacon continuously proved to be
our greatest obstacle. We also concluded the
oversensitivity of the tilt sensor was unnecessary.
While we found much success in the field, the
various obstacle courses set up at the Sand Dunes
offered us visual evidence of the importance of a
well-rounded robot capable of using various sensors

for obstacle detection.

