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Introduction 

The BioStrider robot was developed to take part in the Colorado Space Grant Consortium 

Robotics Challenge. The challenge requires participants to design and build a robot analogous to 

a Mars rover type of robot. The BioStrider robot was designed to meet the constraints of that 

challenge, namely autonomous navigation in sandy and rocky terrain and limitations in weight 

(less than 4kg) and cost (less than $500). The project was also constrained by available time. The 

BioStrider team had 6 months to design, build, and test the rover.  

The project goals unique to the BioStrider robot development team were to gain insight 

into insect biomechanics and locomotion and to use them to model mechanical, structural, and 

electronic systems using original and proven designs, including those from nature. The problems 

we intended to solve are navigation in varying environments to efficiently traverse complex 

environments and integrating those systems using sensors to support autonomous insect-like 

locomotion. The design could be scaled and utilized for various environments that humans and 

wheeled rovers may have difficulty crossing. In addition, the project design could be scaled for 

use in many other activities, such as disaster relief and rescue, military, surveillance, and wildlife 

management, and was inspired by some of the goals of the Elevate walking car concept under 

development by Hyundai Motors [1]. 

 Throughout our research on insect locomotion, we observed how insects utilize their 

unique muscle physiology to walk and how we could use this same process of locomotion to aid 

us in our project. The standard explanation of insect walking is that they utilize a tripod gait, or 

three feet on the ground at any one time, to optimize stability [2], [3]. With the front and hind 

legs on one side of the body and the middle leg on the other side of the body on the ground, the 

other three are lifted, creating a triangular, or tripod, stance [4, Fig. 1]. The tripod is very stable. 
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It is hypothesized that the prevalence of the tripod gait in insect locomotion is related to its 

ability to traverse challenging terrain rapidly [4, p. 2].  In addition, this stability minimizes the 

central nervous system processing required concerning balance [2].  

 The prey chasing response to visual stimulus is examined in [5]. The mechanisms for 

chasing prey were considered similar to avoiding obstacles for the BioStrider robot. The “vision” 

for BioStrider was achieved through a time-of-flight sensor.  The tiger beetle uses the 

measurement of the elevation angle of the prey to determine the distance, which can be 

determined by a compound eye [5]. This idea was used in the combination of a time-of-flight 

sensor and motion in both horizontal and vertical directions through two servos, as described in 

more detail in the following sections. 

 

Methodology 

Structural Design 

The overall structure of the rover consists of a body section where the 6 legs are mounted 

and where all of the electronic components are housed. Leg segments consist of linkages to allow 

movement similar to how muscles would move an insect leg, and the rover could utilize various 

foot designs to address the varying terrain. An exploded diagram of the assembly of these 

components is shown in Fig. 1.  
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Fig. 1. Exploded view of leg assembly, servo housing, and body attachment 

These components were modeled in Fusion 360 and then 3D printed using PLA (Polylactic 

Acid), PETG (Polyethylene Terephthalate Glycol), and TPU (Thermoplastic Polyurethane) 

filaments where appropriate. 

A mixture of PETG and PLA, along with stainless steel hardware, was used for the 

rover’s legs and body pieces, allowing for both structural stability and the ability to modularly 

replace pieces if necessary. The first iteration of the legs was unsuccessful as they were too large, 

and the motor connections were flimsy and quite weak, necessitating that they be connected in a 

Y shape instead of two separate pieces that didn't connect. Upon further examination, there were 

concerns about friction and precision with the 3D printed fasteners and how precise they had to 

be to work as intended. The second iteration of the legs was also unsuccessful as the legs were 

smaller, and the mechanical design for the lower half of the leg would not work the way it was 

intended due to excessive movement, as well as not being tall enough to allow for greater 

clearance from the ground. Issues pertaining to the motor housing, along with strength concerns 

with the connective braces, required that they be made thicker and printed with a stronger 
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material. The third iteration was successful after many components of the leg were modified to 

respond to what was learned from the previous iterations. From then on, we continued to make 

minor adjustments to this design as needed and added more metal fasteners at the joints to 

minimize friction and handle greater torque from overall movement. 

Given the sand dunes’ variations in temperature and terrain, PETG and TPU were used 

for the feet of the rover. PETG has a heat deflection temperature of 70℃ or 160℉, mimicking the 

Great Sand Dunes Tiger Beetle’s ability to withstand the variations in temperature of its habitat 

[6]. TPU was used for the bottoms or “shoes” of several iterations of the feet, allowing for grip 

on harder, uneven surfaces like tires would for a wheeled vehicle.   

The initial foot designs for the rover were inspired conceptually by science fiction media, 

particularly the AT-AT (All-Terrain Armored Transport) vehicles from the Star Wars franchise 

[7]. These fictional vehicles, although made real through miniature models used for the movies, 

exhibit wide, flattened, and articulated feet perfect for distributing weight across varied terrain. 

These design characteristics were implemented along with a textured bottom for grip on several 

iterations of the feet, allowing for better stability on the sand.  

The use of TPU with 95A shore hardness, or the material’s resistance to indentation, was 

a challenge in itself, proving to be difficult to print with and even harder to make flexible enough 

for a tire-like grip that was the desired result for the bottom of the feet.  

 
Mechanical / Electrical Design 

The rover has six legs with two degrees of freedom per leg. The legs are aligned in two 

linear rows, one on each side of the robot. While this design is simple, it presented several 

challenges for turning the rover and making room for each leg’s horizontal movement. For any 

future designs, a hexagonal arrangement would be preferable. 
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The legs can be adjusted independently in the vertical and horizontal directions and 

independently of each other, utilizing two servos for each leg. The reason for using two degrees 

of freedom as opposed to three is the reduced number of servos. Three degrees of freedom would 

require eighteen servos, as opposed to the twelve required for two degrees of freedom. This 

reduces power consumption, weight, and complexity. Originally, the servo controlling the 

vertical movement of a leg was going to be placed in the knee to distribute the weight throughout 

the legs instead of condensing it all into the main body. This was problematic because it resulted 

in the knees being very wide, which severely limited the usable horizontal range of each leg. For 

this reason, the servos in the knees were moved to the hip, resulting in a more gimbal-like 

design. 

Individually controllable legs are intended to give the robot tighter control and better 

footing in rough terrain, but this brings with it several issues. The legs need to be able to identify 

when they are grounded since they are meant to form to the ground. The robot also needs to be 

able to balance itself since the legs will often be at different elevations. The robot will also need 

to maintain a proper body elevation so that the legs are always able to reach the ground while 

also being high enough to step over objects. 

To solve the issue of detecting the ground, each leg’s lower section is divided into two 

parallel, vertical parts. They are attached by short linkages that allow a slight vertical variation 

between the segments while keeping them parallel. An IR sensor is then mounted to the inner 

segment, facing the outer segment. The foot of the leg is attached to the bottom of the outer 

segment. A strip of black electrical tape across from the IR sensor on the outer segment is 

positioned so that when the outer leg segment moves up or down, the sensor passes over the edge 

of the tape. Black tape was used since the IR sensor does not detect black but can detect the 
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material of the leg. This allows the sensor to detect the position of the lower segment by whether 

it senses the leg material or not. Tape was used to allow for fine-tuning the position that results in 

the leg being grounded. There is a rubber band attached in such a way that when the leg is not 

grounded, the lower segment of the leg will be pulled to its lowest position, resulting in the 

sensor being completely blocked by the tape and thus not sensing anything. When the leg is 

grounded, the weight of the robot overcomes the strength of the rubber band, and the lower 

segment of the leg moves to its uppermost position, resulting in the sensor detecting the material 

at the edge of the tape. This mechanism is shown in Fig. 2. This approach works regardless of 

the shape or size of the foot or what part of the foot is grounded. This also allows for simpler feet 

designs and modular feet. 

 Fig. 2. Exploded view of lower leg and ground detection mechanism 

For the robot to maintain its balance, it requires an IMU (Inertial Measurement Unit) to 

determine its orientation. With the help of the IMU, the robot can detect its roll and pitch and 

adjust its leg heights accordingly to compensate for any imbalance. The IMU uses I2C 

(Inter-Integrated Circuit) to communicate with the controller. I2C is a protocol used to 

communicate with multiple devices connected on the same bus, consisting of two wires. The 

IMU, however, only works if it is the only device on the I2C bus. Even including multiplexers, 

which are devices used to turn one I2C bus into several separate buses that can be selected 

individually to isolate different components. This is due to the way the IMU violates common 
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I2C rules to fit its own implementation. Because of this, the IMU is connected to a separate 

controller that then relays the IMU readings to the main controller via serial, another 

communication method. 

The desired elevation of the robot is calculated based on the average vertical position of 

the legs. All the legs can be adjusted equally to change the average height. The average is usually 

kept around half of the legs’ vertical range. Using this method, the robot body will always be 

positioned in a way that should allow each leg enough vertical range of motion. This should also 

prevent the body of the robot from moving too close to the ground. 

The robot will detect objects to the front and front sides, using a time-of-flight (ToF) 

sensor or optional ultrasonic sensor mounted on a servo gimbal, allowing for vertical and 

horizontal adjustment. This allows for a wide range of view without the need to implement 

multiple sensors. A ToF sensor is used due to its speed, accuracy, small footprint, and ability to 

detect surfaces at a steeper angle than an ultrasonic sensor can. Support for an ultrasonic sensor 

was still included as a backup, however, since the ToF sensors may work poorly in some 

environments. 

The servos are all controlled via a servo driver that supports up to 16 servos. The servo 

driver and ToF sensor are connected to the main Arduino using I2C and a multiplexer since they 

do not work well when on the same I2C bus. All the servos combined create a power-hungry 

robot, so it is operated off a 5200mAh 3S LiPo battery. This provides ample battery power for 

the rover to operate for several hours. An issue with using these batteries is that the voltage of 

the batteries is higher than the operating voltage of the servos, so a buck converter was used to 

decrease the voltage to the correct level. 
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Code 

The code is structured using an object-oriented approach to simplify the structure and 

separate the different systems. This results in the code being more organized and manageable. 

Making iterations faster and changes easier. A UML diagram can be found in the Appendix. 

A class is used for interacting with the IMU sensor. The IMU sensor itself is connected to 

a second Arduino so that it can have its own dedicated I2C bus. This second Arduino reads the 

IMU data and sends it over to the main Arduino via a Serial connection. The IMU class uses a 

custom data type (struct) for working with status, yaw, pitch, and roll data received from the 

IMU. An initialization method initializes the serial connection with the second Arduino and 

configures a pin to reset the second Arduino when needed. 

Another method reads the data sent from the second Arduino and returns it as an instance 

of the struct mentioned earlier. The second Arduino sends the data as the status, yaw, pitch, and 

roll, each followed by an ‘s’, ‘y’, ‘p’, and ‘r’ respectively. The method obtains these values by 

reading data from the second Arduino until there is no more data to read. Each character read 

from the second Arduino is stored in a data value. When a letter is encountered, the data value is 

converted to a float and stored in the correct struct value, corresponding with the letter 

encountered. The data value is then reset to pick up new data. Once there is no more data to read, 

the latest readings have been acquired, and the method returns the struct containing the data. 

The IMU sensor is rather unstable and can sometimes crash, causing it to send incorrect 

data and resulting in the rover losing the ability to level itself or correct its heading. To fix this, a 

method is used to reset the second Arduino when the IMU crashes. The IMU class controls a pin 

connecting a GPIO (general purpose input output) pin on the main Arduino to the reset pin on 

the second Arduino. During normal operation, the GPIO pin is turned on, resulting in the second 

8 



Arduino functioning as normal. When the main Arduino needs to reset the second Arduino, it 

turns the GPIO pin off for a moment and then turns it on again. This causes the reset pin to be 

triggered on the second Arduino, resulting in the IMU sensor rebooting and fixing itself. 

The second Arduino is reset when garbage values are read from the IMU. The values that 

normally indicate a crash are 0 for the status, 0 for the yaw, -1 to 3 for the pitch, and 0 or a very 

large number for the roll. Whenever this pattern is detected, the method for reading data will 

reset the Arduino and recursively call itself until it gets a valid value. Once a valid value is read, 

it is returned. There is a chance that a valid value will match the garbage code, specifically if the 

status, yaw, and roll are all zero, but this is rare enough to not pose an issue with the intended 

application. 

Whenever the IMU is reset, it sometimes results in the yaw measurements shifting. To 

account for this, each time there is a successful reading, it stores the yaw value measured. When 

a reset occurs, it adds the difference between the last yaw value read and the new yaw value to a 

yaw offset variable. Which can then be acquired by other classes to adjust the desired heading. 

To avoid multiple corrections for the same offset, the method that returns the yaw offset resets 

the offset value when it is called after it returns the yaw offset. This implementation is rather 

messy and has many potential bugs, but it was a quick solution that fit within the time constraints 

and worked well enough for the application. 

Another class is used for handling and abstracting away the nuances of dealing with the 

servo driver. The driver can control the servos by being told to send a certain PWM (pulse width 

modulation) frequency to each servo to tell it what angle to adjust to. This class has fields that 

define the minimum, maximum, and offset frequencies for each servo. An initialization method 

is used to initialize the servo driver component. 
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Each servo’s corresponding minimum and maximum frequencies are tuned to allow close 

to 180 degrees of rotation. The offset of each servo is to align it more precisely to the other 

servos. A method is used to set a servo’s position, It takes two arguments, the servo number and 

the angle to set that servo to.  This method converts the input angle to a frequency by getting the 

percentage that the input angle is of 180 degrees and taking that percentage of the specified 

servo’s range of frequencies. The calculated frequency information is then sent to the driver to 

adjust the specified servo’s angle. This allows for easily controlling the servo positions using 

angles instead of frequencies. 

Another class handles interacting with the sensor mounted on the front of the rover. The 

sensor is mounted on a servo gimbal, allowing for vertical and horizontal rotation. This class 

defines two different struct types to simplify working with it. The vector3 struct stores the x, y, 

and z coordinates of a position, usually relative to the center of the servo gimbal. X represents 

horizontal position, y represents vertical, and z represents depth. The box struct contains two 

vector3s to define the minimum corner and the maximum corner of an area. 

The scanner class has three modes, allowing it to work with one of two different ToF 

sensors or an ultrasonic sensor. This diversity is to allow for the rover to be adapted to different 

scenarios. The ToF sensors used do not work well in some environments, so ultrasonic support is 

included, though it is much slower. This class contains several methods for looking at a position, 

scanning an area, reading distance data from the sensor, and setting the gimbal’s angles. An 

initialization method is used to initialize the distance sensor; it initializes the correct sensor based 

on a mode parameter passed to the method when it is called, and the mode is saved to a class 

field for later use. The area scanning method takes an area and checks if it contains an object or 

not by looking at points spread throughout the area and taking distance measurements. The 
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method that gets a distance measurement from the distance sensor uses the stored mode to 

interface with the correct sensor. Several readings are taken, and the average is returned to help 

filter out bad values. 

The method for looking at a position uses trigonometry to find the correct angles to set 

the servos to, as well as find the expected distance to the inputted position. The angle of the 

horizontal servo is acquired using Equation (1). 

θ = atan(x / z) + 90° (1) 

Where θ is the target angle, and x and z are coordinates from the input position. Ninety degrees 

are added because the servos are centered at ninety degrees instead of zero. The vertical servo 

angle is determined using Equations (2) and (3). 

θ = atan(x / z) (2) 

θ₂ = atan(y, z / cos(θ)) + 90° (3) 

Where θ₂ is the target angle, and x, y, and z are coordinates from the input position. Again, ninety 

degrees are added for correct servo alignment. The expected distance is determined using 

Equations (2), (4), and (5). 

θ₂ = atan(y, z / cos(θ)) (4) 

m = z / cos(θ) / cos(θ₂) (5) 

 Where m is the expected distance, and x, y, and z are coordinates from the input position. After 

computing the target angles and expected distance, the method sets the servo angles and returns 

the expected distance. This distance can be used to detect an obstacle by taking a distance 

measurement after looking at a position. If the measurement is less than the expected distance, 

that position is blocked by an object. 
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Another class is used to represent a single leg in the code. Each leg is mounted onto a 

servo gimbal, allowing for horizontal and vertical movement. This class has methods to adjust, 

set, and get the gimbal angles and check if the leg is grounded. The methods used to set the 

gimbal angles set the leg’s position by passing in a percentage that is interpreted as a position at 

that percentage of the leg’s range of positions along the respective axis. The ground check 

method returns whether the leg is grounded or not. It checks the signal from the IR sensor 

mounted on the leg to determine if the leg is grounded or not. 

The methods that set the gimbal angles use trigonometry to determine the correct 

positioning of the legs. This uses positions instead of angles to compensate for the change in 

travel per degree while rotating around the pivot point. The target horizontal angle is determined 

using Equations (6) and (7). 

h = cos(90° - θ) * h₂ (6) 

θ₂ = asin(x / h) + 90° (7) 

Where θ₂ is the target angle, x is the target horizontal position, θ is the current vertical angle, and 

h₂ is the length of the linkage connecting the vertical servo to the ‘knee’ of the leg. θ is 

subtracted from ninety degrees to convert from the servo angle, centered around ninety degrees, 

to an angle centered around zero degrees. The vertical angle is determined using Equation (8). 

θ = asin(y / h) + 90° (8) 

 

Where θ is the target angle, y is the target vertical position, and h is the length of the linkage 

connecting the vertical servo to the ‘knee’ of the leg. 
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Another class is used to coordinate movements with multiple legs. It stores a list of legs 

and works with all of them simultaneously. It has all the same methods as a leg object for setting 

and adjusting a leg's position, just for all legs in the set, at the same time. It also has methods to 

get the minimum, maximum, and average horizontal and vertical positions, a method for 

grounding all its legs, and a method to check if all its legs are grounded or not. The grounding 

method moves down any non-grounded legs in the set until all the legs are grounded. 

Another class is used to handle things like walk cycles, turn cycles, levelling, and course 

correction. An initialization method is used to initialize the leg positions and assign the initial 

heading for course correction. 

The levelling method first reads data from the IMU to get the current pitch and roll 

values. If the pitch and roll are within a certain threshold, the method will end without executing 

any further logic. If the pitch or roll is not within a certain threshold, the code will go on to level 

the rover. First, the middle leg on each side of the robot is raised to allow for easier levelling. 

Then, while the pitch is out of the acceptable range, the pairs of legs at the front and back will be 

moved up or down to adjust the pitch. After the pitch is corrected, the same is done for the roll, 

using the left and right sets of legs. Once the levelling is complete, the front and back legs are 

adjusted so that the rover body is parallel to the ground. This is accomplished by taking the 

difference in minimum height between the back and front sets of legs and adjusting the back and 

front sets up or down until they have the same minimum height. This was added since the rover 

had difficulty climbing slopes and would just detect them as obstacles. After this is finished, the 

middle legs are returned to the ground, and the method ends. To be made more efficient, the 

section that levels the pitch could be removed since the pitch is adjusted later anyway to be 

parallel to the ground. 

13 



The method for correcting the heading begins by getting the yaw data from the IMU. If 

the current heading is beyond a certain angle from the initial heading, the rover will turn towards 

its initial heading until it is facing within a certain angle from the initial heading. Before each 

comparison with the initial heading, the heading variable is updated by getting the yaw offset 

from the IMU handler class. This ensures that any IMU crashes encountered when reading the 

current yaw value are accounted for. 

An adjust height method is used to move the rover to a certain height, relative to the 

positions of its legs. This method takes in a percentage and adjusts all legs equally to where the 

average leg height is at the specified percentage of the legs’ vertical range. 

The step method uses a tripod gait so that there are always at least three legs on the 

ground to maintain balance. It can step forward or backward based on an input direction. The 

method first checks whether the last action taken was a step; if it was not, the legs are recentered, 

and the step phase is reset before taking a step. To take a step, the code works with two sets of 

legs, one set with the front and back legs on one side and the middle leg on the other side. The 

other set is the other three legs. Based on the phase that the step cycle is on, one set will be 

assigned as the up set, and the other as the down set. First, the up set is raised, then the down set 

is moved either forward or backward, based on the input direction. The up set is simultaneously 

moved in the opposite direction. Then the up set is set back on the ground, leaving the legs in the 

correct position for the next step phase, which is the same thing, just with the up and down sets 

switched. 

The turn method takes a direction argument to specify either right or left. First, all legs 

are centered and grounded. Then, depending on the direction input, all legs on one side are 

moved back while all legs on the other side are moved forward. This method is rather inefficient; 
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however, due to the linear mounting of the legs, a tripod turning method does not work well. 

Given enough time, a better algorithm could have been developed, such as a tripod method that 

accounts for the nuances presented by the linear alignment. 

The main navigation code ties all this together. A setup function is called by the Arduino 

when the program begins. In this method, it initializes the servo driver, scanner, IMU, and 

platform objects. In addition to the Serial and I2C connections. The rover is then leveled and 

adjusts its height to around half height. 

There are three modes that the rover can be in: standard, blind, and test. Standard is the 

normal navigation mode. Blind is a fallback mode where the rover just walks forward and does 

not attempt to detect or avoid obstacles. Test mode varies depending on what is being tested but 

is mainly used so that the standard navigation code does not need to be modified to test anything. 

The mode is selected using a potentiometer before powering on the rover. 

In blind mode, the rover will just walk forward. First, it takes a step forward, then levels 

itself if needed, then adjusts its height if needed, and this sequence is repeated. In standard mode, 

the robot will use more advanced features, such as obstacle avoidance, course correction, and 

getting itself out of corners in which it is “stuck”. First, the rover will check if it has turned left 

and right at least three times each, using left and right turn-counting variables. Since the turn 

count variables are reset each time a successful step is taken, if the rover has been turning left 

and then right repeatedly, it is most likely stuck. In this case, it will take several steps backward, 

then turn several times in the direction of the last turn. After each step or turn, the rover is 

leveled and adjusted to the correct height. The left and right turn counting variables are then reset 

to zero. 
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If the rover is not stuck, it will try to detect obstacles. First, the rover will check its left, 

and then its right. If either side detects an obstacle, the sensor stops, and the rover steps 

backward and turns away from the detected object. After each step and turn, the rover is leveled 

and adjusted to the correct height. The last turn direction and left/right turn counting variables 

are then updated accordingly. If both the left and right areas are clear, the rover will check the 

forward area. If there is an object detected, it will go through the same sequence as when an 

obstacle is detected on the left or right, except that the rover will turn in the same direction as the 

last turn. If no obstacles are detected, the rover will take two steps forward, levelling and 

adjusting height after each step. Then, the rover corrects its course if needed. Finally, the left and 

right turn counting variables are reset to zero, and the method repeats. 

 

Results 

A photo of the final design as tested in the robotics challenge courses is shown in Fig. 3. 

 

 

 

 

 

 

 

Fig. 3. Front view of BioStrider robot while navigating a challenge course 

 
Overall, the rover performed well, though it was a bit slow. Several minor adjustments 

were made in the code to account for issues encountered in the courses. The areas scanned by the 

rover were adjusted to better account for ground clearance, the distance measuring code was 

sped up by decreasing the readings taken for filtering, and the turning code was modified to get 
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more angular travel between obstacle detection cycles. The levelling code was modified to allow 

for the rover to adjust correctly to traversing steep inclines instead of just levelling its pitch. An 

obscure bug was corrected where specific legs would not correctly ground themselves in certain 

situations.  

Ultimately, the rover met design constraints and goals. It weighed 3 kg, the components 

and printer filament totaled about $400, and the design was completed and tested in sufficient 

time to perform at the challenge. The unique goals of implementing insect-inspired locomotion 

and navigation were also realized by this design. 

 

Recommendations 

A hexagonal layout for the legs would have made turning easier to execute and would 

have left more legroom without needing to extend the body quite so much. The array of different 

sensors presented many challenges with system integration using just an Arduino, so a more 

powerful controller, such as a Raspberry Pi, could have made things easier. The added benefit of 

using a Pi over an Arduino is the ability to use Python instead of C++ for programming. Python 

is a high-level language with many quality-of-life features and is generally easier to work with 

than C++, which is a lower-level language requiring more manual implementation. 

The modular feet performed well, but using granular feet similar to those developed by 

students at the Jacobs School of Engineering at UC San Diego [8] would have provided the rover 

with more traction on rougher surfaces and in tricky areas, such as when it was trapped inside 

one of the pits on course two of the challenge. Additionally, its turning time could be reduced 

and, in some cases, potentially eliminated with a secondary rear sensor, effectively converting 

the back of the rover into the front, with additional coding required.  
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